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Light-controlled flavonoid biosynthesis in fruits
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Light is one of the most important environmental factors affecting flavonoid biosynthesis in

plants. The absolute dependency of light to the plant development has driven evolvement

of sophisticated mechanisms to sense and transduce multiple aspects of the light

signal. Light effects can be categorized in photoperiod (duration), intensity (quantity),

direction and quality (wavelength) including UV-light. Recently, new information has been

achieved on the regulation of light-controlled flavonoid biosynthesis in fruits, in which

flavonoids have a major contribution on quality. This review focuses on the effects of

the different light conditions on the control of flavonoid biosynthesis in fruit producing

plants. An overview of the currently known mechanisms of the light-controlled flavonoid

accumulation is provided. R2R3 MYB transcription factors are known to regulate by

differential expression the biosynthesis of distinct flavonoids in response to specific

light wavelengths. Despite recent advances, many gaps remain to be understood in

the mechanisms of the transduction pathway of light-controlled flavonoid biosynthesis.

A better knowledge on these regulatory mechanisms is likely to be useful for breeding

programs aiming to modify fruit flavonoid pattern.
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INTRODUCTION

Phenolic compounds constitute one of the most important
groups of the bioactive compounds in food plants. These com-
pounds possess diverse roles in signaling and defense in plants.
In fruits and berries, flavonoids and hydroxycinnamic acids
are the major phenolic compounds. Flavonoids are important
determinants of quality and economic value of fruits as they
have effect on color, aroma, astringency and antioxidant prop-
erties (He and Giusti, 2010). For example in grape berries (Vitis

vinifera), flavonoid composition has effects on taste and quality
of wine as well as conservation. Over 10,000 naturally occur-
ring flavonoids have been described so far (Martens et al., 2010).
The major flavonoid compounds present in flowers and fruits
belong to flavonols, anthocyanins, and proanthocyanidins (PAs).
Anthocyanin pigments are primary determinant of plant colors
and serve as visual signals for pollinators in flowers and seed dis-
persers in ripe fruits. Flavonols have a role in photoprotection and
they are generally considered to act as ultraviolet (UV) protec-
tants and free-radical scavengers. PAs as astringent compounds
can offer protection during the early stages of fruit development
against herbivory and pathogen attack (Koes et al., 2005; Bogs
et al., 2007).

Flavonoids are biosynthesized via the phenylpropanoid path-
way and the key enzymes leading to different intermediates and
different flavonoid classes are well known. At a molecular level,
the biosynthesis of flavonoids is regulated via coordinated tran-
scriptional control of the structural enzymes in the biosynthetic
pathway by DNA binding R2R3 MYB transcription factors and,

in many cases, interaction with MYC-like basic helix-loop-helix
(bHLH) and WD40-repeat proteins (Hichri et al., 2011; Jaakola,
2013). Recent studies have revealed new upstream regulators of
the pathway. In fruits, links between the key regulators of fruit
development, SQUAMOSA- and SEPALLATA-class MADS box
transcription factors, and anthocyanin biosynthesis have been
shown in bilberry (Vaccinium myrtillus) and pear (Pyrus commu-

nis) (Jaakola et al., 2010; Wu et al., 2013).
The genetic background of the plant is the main determinant

of the content of phenolic compounds in plant tissues, whereas
external factors can cause qualitative or quantitative changes in
the composition of these compounds. In many fruits, flavonols
and PAs are the main flavonoids at the beginning of the fruit
development and the accumulation of anthocyanin pigments is
often an indicator of ripening. Fruits can be categorized into
those which accumulate anthocyanins both in their skin and flesh,
those which accumulate anthocyanins only in skin and those that
accumulate anthocyanins in their skin only as response to light
stimulus. In the first two classes, the developmental regulation of
anthocyanin biosynthesis has a crucial role (Jaakola, 2013).

In climacteric fruits, the burst of plant hormone ethylene
initiates the ripening process. In non-climateric fruits, such as
grapevine, strawberry (Fragaria × ananassa), blueberry and bil-
berry (Vaccinium spp.), the plant hormone abscisic acid (ABA)
seems to have a regulatory role both in ripening and initia-
tion of anthocyanin biosynthesis (Wheeler et al., 2009; Jia et al.,
2011; Zifkin et al., 2012; Karppinen et al., 2013). In addition to
hormonal regulation, several studies have pointed that external
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factors, including temperature, light conditions, nutritional status
and biotic stresses play a significant role in the accumulation of
flavonoids in fruits (Koes et al., 2005; Jaakola and Hohtola, 2010;
Azuma et al., 2012).

Several recent reviews have been dealing with the regula-
tion of flavonoid biosynthesis in plants (e.g., Hichri et al., 2011;
Falcone Ferreyra et al., 2012; Li, 2014). Different aspects of plant
response to light have also been reviewed recently (e.g., Carvalho
et al., 2011; Karpinski et al., 2013; Ballaré, 2014). In the present
review, we focus on the role of light in the regulation of flavonoid
biosynthesis in fruits.

PROPERTIES OF LIGHT AND SOLAR RADIATION

The solar irradiation reaching the earth’s surface changes dur-
ing the day and along the year. It is at highest around noontime,
and shows higher peak between summer solstice and equinoxes,
which coincides with the fruit ripening period of most of plant
species. Photoperiod is not the same all over the globe as day
length varies with the latitude. In northern areas, above 66◦N
latitude, the latitude of Murmansk-Russia, Rovaniemi-Finland,
and Selawik Lake-Alaska, the sun remains continuously above
the horizon in the summer, whereas at lower latitudes, for
example 45◦N, the latitude of Milan-Italy, Ottawa-Canada and
Queenstown-New Zealand, sun shines 16 h in the longest days of
the year.

The electromagnetic spectrum of solar radiation stretches
from gamma and X-rays at one extreme to radio waves at

the other (Figure 1). The biologically active radiation consists
of the spectrum from approximately 300 to 800 nm includ-
ing UV-light (below 400 nm). Visible light spectrum lays in the
range between 400 and 710 nm and is subdivided in blue (400–
495 nm), green (495–570 nm), yellow (570–590 nm), and red
(590–710 nm) wavelengths. At the extreme end of the visible
spectrum, is far-red (710–750 nm) light, followed by the infrared
radiation. The spectrum changes daily in terms of radiation inten-
sity, while light quality is more stable. For instance, in a location
nearby Trento (Italy, latitude 46◦N), our measures show that the
relative amount of blue, red and far-red light reaching the earth’s
surface was constant throughout the day (between 9 am and 6 pm,
during two consecutive weeks in June 2013). The measured visi-
ble light spectrum was composed by 17% of blue, 44% of green,
30% of red, and 9% of far-red light (Figure 2). This information is
consistent with the earlier reports on the quality of the sun spectra
(Robertson, 1966).

The quality of daily spectrum may vary, however, with the
latitude as seen in our measurements (Figure 2). In the Arctic
(latitude 69◦N), Taulavuori et al. (2010) recorded an increase of
the relative amount of blue and far-red light components during
the “night hours” on summer solstice, while the relative pro-
portion of red light decreased. In the Southern hemisphere, for
instance New Zealand (latitude 45◦S) receives 40% higher levels
of UV radiation compared to similar latitudes in the Northern
hemisphere (McKenzie et al., 2006; Gregan et al., 2012), and in
Southern Chile (at latitude 39◦S), and Australia (latitude 38◦S)

FIGURE 1 | The spectrum of solar radiation reaching from gamma rays to radio waves with closer view on visible wavelengths and plant photoreceptors

absorbing specific wavelength regions. Cry, cryptochromes; Phy, phytochromes; Phot, phototropins; UV, ultraviolet; UVR8, UV-B photoreceptor.

Frontiers in Plant Science | Plant Metabolism and Chemodiversity October 2014 | Volume 5 | Article 534 | 2

http://www.frontiersin.org/Plant_Metabolism_and_Chemodiversity
http://www.frontiersin.org/Plant_Metabolism_and_Chemodiversity
http://www.frontiersin.org/Plant_Metabolism_and_Chemodiversity/archive


Zoratti et al. Light-controlled flavonoid biosynthesis in fruits

FIGURE 2 | Summer solar radiant flux spectra of two European locations

(Tromsø, Norway, latitude 69◦N, longitude 18◦E; Trento, Italy, latitude

46◦N, longitude 11◦E) under clear sky and midday conditions. Tromsø

UV-B(280–320 nm): 0.71 µjoule cm−; UV-A(320–400 nm): 12.37 µjoule cm−2:

PAR(400–700 nm): 1389 µmoles photones m−2 s−1. Trento UV-B(280–320 nm):

2.29 µjoule cm−2; UV-A(320–400 nm): 45.5 µjoule cm−2: PAR(400–700 nm):

3670 µmoles photones m−2 s−1. IR, infrared; PAR, photosynthetic active

radiation.

the received UV radiation can be even higher (Huovinen et al.,
2006).

PERCEPTION OF LIGHT BY PLANTS

The ability to perceive and transduce light signal is important
for optimal growth and development of sessile plants. Plants are
reliant on sunlight as their source of energy and they are able
to sense the different aspects of light in their growth environ-
ment including light intensity, direction, specific wavelengths and
photoperiod. Plants employ a complex array of photoreceptors to
coordinate their response to the ambient light environment (e.g.,
Wagner et al., 2005). In addition to chlorophylls and carotenoids
in light-harvesting complexes participating in photosynthesis,
higher plants utilize multiple sensory photoreceptors to accu-
rately perceive light conditions ranging from UV-B to far-red
wavelengths (Möglich et al., 2010; Rizzini et al., 2011). Principal
among these is the phytochrome superfamily including photore-
ceptors absorbing red/far-red light (PHYA, PHYB, PHYC, PHYD,
PHYE) as well as cryptochromes (CRY1, CRY2, CRY3), and
phototropins (PHOT1, PHOT2) sensing UV-A/blue light, and
UV-B photoreceptor UV RESISTENCE LOCUS8 (UVR8) that has
been recently identified (Favory et al., 2009; Rizzini et al., 2011;
Casal, 2013) (Figure 1). Upon light absorption, these photore-
ceptors activate various signal transduction cascades to regulate
light-dependent responses and related gene expression in plants.

For light sensing and signaling, phytochromes consist of a
bilin chromophore bonded to the protein moiety. In flowering
plants, LONG HYPOCOTYL 2 (HY2) is the only ferredoxin-
dependent bilin reductase (FDBR) producing the phytochromo-
bilin for phytochromes. It has been shown that mutations in HY2

gene cause the loss of all photoactive phytochromes in plants and

furthermore lead to disruption in photomorphogenesis (Kohchi
et al., 2001; Chen et al., 2012). Phytochromes exist in two differ-
ent interconvertible forms; Pr that absorbs red light and far-red
light absorbing Pfr. Phytocromes are synthesized in the dark in the
Prform and following the conversion to the Pfr form, they move
to the nucleus. Red light (660 nm) causes conversation of Pr to
biologically active Pfr form and far-red light (730 nm) the conver-
sation back to Pr form. Pfr can also be degraded in the proteasome
after ubiquitination if not back-reverted to Pr. Under white light
containing both red and far-red wavelengths, photoequilibrium
is established after few minutes. The different forms allow phy-
tochrome to function as a biological switch, turning responses on
and off enabling the detection of circadian rhythms and seasonal
changes in light conditions (Reed, 1999; Casal, 2013).

Cryptochromes are flavin-containing photoreceptors for blue,
green and UV-A light perception. Cryptochromes are involved in
sensing circadian rhythms and regulation of many developmen-
tal and adaptive processes including biosynthesis of secondary
metabolites, such as flavonoids (Giliberto et al., 2005; Lopez
et al., 2012). Also blue and UV-A light absorbing phototropins
have been shown to be involved in phototropism and blue light-
induced chloroplast migration and stomatal opening (Briggs and
Christie, 2002). Recent findings have shown that phototropins
also play a role in blue light-mediated changes in biosynthesis of
secondary metabolites (Kadomura-Ishikawa et al., 2013).

EFFECT OF LIGHT INTENSITY ON FLAVONOID

BIOSYNTHESIS IN FRUITS

Numerous fruit bagging and shading experiments have shown
the importance of light conditions on the biosynthesis and
accumulation of flavonoids. Exclusion of fruits from sunlight
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has in many cases been demonstrated to lead suppressed
expression of flavonoid pathway genes resulting in decreased
amounts of flavonoid compounds in both climacteric and non-
climacteric fruits. For example in pericarp of non-climacteric
litchi (Litchi chinensis), fruit bagging treatments have been shown
to inhibit accumulation of anthocyanins as well as expression
of anthocyanin biosynthetic genes chalcone synthase (LcCHS),
chalcone isomerase (LcCHI), flavanone 3-hydroxylase (LcF3H),
dihydroflavonol 4-reductase (LcDFR), anthocyanidin synthase
(LcANS), and UDP-glucose: flavonoid 3-O-glucosyltransferase
(LcUFGT) that were again up-regulated accompanied by ele-
vated anthocyanin accumulation after debagging and exposure
the fruits to sunlight (Wei et al., 2011).

Extensive studies have been carried out on the effect of light
conditions on fruit flavonoid composition in non-climacteric
grapevine fruits. The studies demonstrate that grape berries adapt
to high light by elevating the expression of an array of both early
and late flavonoid biosynthetic genes in berry skin which leads
in the increased content of anthocyanins, PAs as well as flavonols
(Jeong et al., 2004; Cortell and Kennedy, 2006; Fujita et al., 2006;
Pereira et al., 2006; Matus et al., 2009; Azuma et al., 2012; Koyama
et al., 2012). In the study of Azuma et al. (2012), light treatment
led to significantly higher total anthocyanin content in grape
berry skin compared to dark grown berries, and induced higher
expression levels of CHS, CHI, F3H, flavonoid 3′,5′-hydroxylase
(F3′5′H), DFR, O-methyltransferase (OMT) as well as UFGT.

Exposure to light was shown to increase anthocyanin concen-
trations in grape berry skin regardless of ambient temperature
(Spayd et al., 2002; Azuma et al., 2012). Especially flavonol levels
seem to be sensitive to changes in light conditions in grape berries,
as highly induced accumulation of flavonols along with increased
expression of flavonol synthase (FLS), has been reported by light
exposure in different cultivars such as Shiraz (Downey et al.,
2004), Merlot (Fujita et al., 2006), Cabernet Sauvignon (Fujita
et al., 2006; Matus et al., 2009; Koyama et al., 2012) as well as
Pione (Vitis × labruscana, Azuma et al., 2012).

Positive effects of light on flavonoid biosynthesis has also
been reported in many other fruit species including Chinese
bayberry (Myrica rubra, Niu et al., 2010), cranberry (Vaccinium

macrocarpon, Zhou and Singh, 2004), bilberry (Uleberg et al.,
2012), raspberry (Rubus idaeus, Wang et al., 2009a), and tomato
(Solanum lycopersicum, Løvdal et al., 2010). In Chinese bayberry,
anthocyanins are responsible for the red coloration in the pres-
ence of light, and bagging of the fruits has been shown to reduce
anthocyanin amount to 0.5% of that of non-bagged fruits (Niu
et al., 2010).

Light has also been recognized as an important regulator
of flavonoid accumulation in species of Rosaceae family such
as strawberry (Fragaria × ananassa, Anttonen et al., 2006;
Kadomura-Ishikawa et al., 2013), peach/nectarine (Prunus per-

sica, Jia et al., 2005; Ravaglia et al., 2013), pear (Pyrus pyrifolia,
Feng et al., 2010; Sun et al., 2014), and apple (Malus × domestica,
Takos et al., 2006a,b; Feng et al., 2013). In the apple skin, sunlight
is the most important environmental factor inducing flavonoid
biosynthesis, especially anthocyanin and flavonol biosynthesis,
and fruits with sun-exposed peel have higher levels of antho-
cyanins and flavonols than those grown in shade (Feng et al.,

2013; Li et al., 2013). Exposure of shaded fruit skin to sun-
light has been demonstrated to lead up-regulation of flavonol
biosynthetic gene MdFLS and several anthocyanin biosynthetic
genes, including MdCHS, MdCHI, MdF3H, MdDFR1, leucoan-
thocyanidin dioxygenase (MdLDOX) and MdUFGT (Feng et al.,
2013; Vimolmangkang et al., 2014). The elevated expression of
flavonoid biosynthetic genes was accompanied by increased levels
of anthocyanins, flavonols, and total phenolics (Feng et al., 2013).
It has been shown that exposure of bagged apple fruits to light can
cause increase in MdCHI transcription level by even up to 240-
fold, accompanied by MdCHS and MdLDOX at 80- and 60-fold,
respectively, (Takos et al., 2006b). In fact, in many apple cultivars
light exposure is required to stimulate anthocyanin biosynthe-
sis and desirable red skin coloration (Takos et al., 2006a; Feng
et al., 2013) and also post-harvest light treatment has been shown
to have highly positive influence on apple peel anthocyanin and
flavonol contents (Hagen et al., 2007).

The rapid induction of flavonoid biosynthesis that is generally
observed under high light conditions reflects the important role
of flavonoids in photoprotection. However, in some fruit species
flavonoid biosynthesis is less affected by light. In tropical man-
gosteen (Garcinia mangostana) fruit, anthocyanin accumulation
is unaffected by light (Palapol et al., 2009) and high light can
even decrease anthocyanin biosynthesis in pears (Zhang et al.,
2011). Moreover, all fruits do not require strong light exposure
to accumulate high amounts of flavonoids. For example, bilberry
is one of the best sources of anthocyanins although prefers shaded
growth habitats and thus anthocyanin accumulation is under
strong developmental control (Jaakola et al., 2004). In these kinds
of fruits, the spatiotemporal regulation directs the biosynthesis
of different classes of flavonoids at different stages of fruit devel-
opment and environmental factors have only fine-tuning affect.
It has been shown that anthocyanin levels are affected more by
fruit developmental stages whereas flavonols and PAs are more
sensitive to environmental factors (Carbone et al., 2009). For
example, flavonol biosynthesis can be induced by light exposure
at such stages of grape berry development when flavonols are not
normally accumulated (Downey et al., 2004; Matus et al., 2009).

Flavonoid biosynthesis also seems to be influenced by light
in a cultivar-specific manner. For instance, among grapevines,
sunlight induces both anthocyanin and flavonol accumulation
in Cabernet Sauvignon (Matus et al., 2009) while only flavonol
production is induced in Shiraz grapes (Downey et al., 2004).
Different ability to accumulate anthocyanins under light exclu-
sion between two grape cultivars (Jingyan and Jingxiu) was shown
to be related to differences in expression of UFGT (Zheng et al.,
2013). Also in apple, centuries of intensive breeding has provided
red and yellow/green cultivars with varying response to light-
stimulated anthocyanin biosynthesis (Feng et al., 2013). Cultivars
differing in their sensitivity to light in the induction of flavonoid
biosynthesis have also been reported in sweet cherry (Prunus

avium, Kataoka et al., 2005) and plum (P. salicina, Murray et al.,
2005), tomato (Giuntini et al., 2008) as well as in pear (Zhang
et al., 2011; Qian et al., 2013). Many fruit species also have
white varieties in which light do not stimulate anthocyanin pro-
duction, due to mutations in structural or regulatory genes of
flavonoid pathway. These kinds of mutations have been reported
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for example in grape berries (Kobayashi et al., 2004; Walker
et al., 2007), strawberry (Salvatierra et al., 2010), Chinese bay-
berry (Niu et al., 2010), and bilberry (Jaakola et al., 2002, 2010),
and these mutants have had an important role when reveal-
ing the regulatory genes involved in the flavonoid biosynthetic
pathway.

REGULATION OF FRUIT FLAVONOID BIOSYNTHESIS BY

LIGHT

During recent years our knowledge on regulation of flavonoid
biosynthesis in fruits has significantly increased through identifi-
cation of the key transcription factors and genome sequencing of
important flavonoid accumulating fruit crops such as grapevine,
apple, peach and strawberry (Jaillon et al., 2007; Velasco et al.,
2010; Shulaev et al., 2011; Verde et al., 2013). These studies indi-
cate that the R2R3 MYB transcription factors, which directly
affect the expression of the structural flavonoid biosynthesis
genes, are the primary regulators of fruit flavonoid biosynthesis
and have been recently reviewed also in the case of fruit bearing
species (Allan et al., 2008; Petroni and Tonelli, 2011; Czemmel
et al., 2012; Jaakola, 2013).

The R2R3 MYB transcription factors coordinately regulate
flavonoid structural genes by activating or repressing their expres-
sion. Recently, R2R3 MYB transcription factors associated with
flavonoid biosynthesis have been identified and characterized in
several fruit producing species and some of them have been found
to respond to light. Light-inducible R2R3 MYB transcription

factors controlling flavonoid biosynthesis in fruits have been iden-
tified in apple, pear, nectarine, Chinese bayberry, strawberry,
litchi, and grapevine (Table 1). In changing light conditions,
the expression level of these R2R3 MYB transcription factors is
adjusted to regulate the biosynthesis of distinct flavonoid com-
pounds.

In grapevine, intensive studies have led to identification of
multiple R2R3 MYB transcription factors and at the same time
shown that the regulation of flavonoid biosynthesis through these
factors forms a complex network (reviewed in Czemmel et al.,
2012). Various R2R3 MYB transcription factors of grapevine
can regulate same branch in flavonoid biosynthetic route but
one transcription factor can also regulate both early and late
biosynthetic genes and be affected by cues from both devel-
opmental and environmental signals (Czemmel et al., 2012;
Lai et al., 2013). In grapevine, light has been demonstrated
to induce expression of an array of R2R3 MYB transcrip-
tion factors that are positive regulators of general flavonoid
pathway (VvMYB5a) as well as those specifically responsible
for anthocyanin (VvMYBA1, VvMYBA2), flavonol (VvMYBF1,

VvMYB12), and PA (VvMYBPA1, VvMYBPA2) biosynthesis
(Table 1). Contradictory results of light-regulation of VvMYB5b

have been reported (Matus et al., 2009; Azuma et al., 2012;
Koyama et al., 2012). However, VvMYB4, a repressor of antho-
cyanin biosynthesis, has not been found to respond light (Matus
et al., 2009; Azuma et al., 2012). In fact, none of the so far
identified R2R3 MYB transcription factors that have role as a

Table 1 | Identified light-inducible R2R3 MYB transcription factors regulating flavonoid biosynthesis in fruit producing species.

Species R2R3 MYB Function References

Apple (Malus × domestica) MdMYB1 Anthocyanin biosynthesis in fruit skin Takos et al., 2006a

MdMYBA Anthocyanin biosynthesis in fruit skin Ban et al., 2007

MdMYB10 Anthocyanin biosynthesis in fruit skin Feng et al., 2013

MdMYB9 Proanthocyanidin biosynthesis in leaves Gesell et al., 2014

MdMYB11 Proanthocyanidin biosynthesis in leaves Gesell et al., 2014

Chinese bayberry (Myrica rubra) MrMYB1 Anthocyanin biosynthesis in fruit Niu et al., 2010

Grape (Vitis vinifera, Vitis × labruscana) VvMYBF1 Flavonol biosynthesis in fruit skin Czemmel et al., 2009; Azuma et al., 2012

VvMYB12 Flavonol biosynthesis in fruit skin Matus et al., 2010; Liu et al., 2014

VvMYBA1 Anthocyanin biosynthesis in fruit skin Jeong et al., 2004; Matus et al., 2009;

Azuma et al., 2012; Koyama et al., 2012

VlMYBA2 Anthocyanin biosynthesis in fruit skin Azuma et al., 2012

VvMYBPA1 Proanthocyanidin biosynthesis in fruit skin Azuma et al., 2012; Koyama et al., 2012

VvMYBPA2 Proanthocyanidin biosynthesis in fruit skin Koyama et al., 2012

VvMYB5a General flavonoid biosynthesis in fruit skin Matus et al., 2009; Koyama et al., 2012

VlMYB5b General flavonoid biosynthesis in fruit skin Azuma et al., 2012

Litchi (Litchi chinensis) LcMYB1 Anthocyanin biosynthesis in fruit pericarp Lai et al., 2014

Nectarine (Prunus persica) PpMYB10 Anthocyanin biosynthesis in fruit skin Ravaglia et al., 2013

Pear (Pyrus pyrifolia) PyMYB10 Anthocyanin biosynthesis in fruit skin Feng et al., 2010; Zhang et al., 2011

Cultivated strawberry (Fragaria × ananassa) FaMYB10 Anthocyanin biosynthesis in fruit Miyawaki et al., 2012

Woodland strawberry (Fragaria vesca) FvMYB10 Anthocyanin biosynthesis in flower petal Lin-Wang et al., 2010
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repressor of flavonoid biosynthesis in fruits have been reported to
respond to light. For example in flower petals of woodland straw-
berry (Fragaria vesca), high light induced expression of positive
regulator FvMYB10 but not FvMYB1, a repressor of anthocyanin
biosynthesis (Lin-Wang et al., 2010).

Most of the identified R2R3 MYB transcription factors of
flavonoid biosynthesis seem to interact with bHLH and WD40-
repeat proteins to form MBW regulatory complex. The role of
bHLH and WD40 partners in light-regulated flavonoid biosyn-
thesis is not yet clear. Matus et al. (2009) did not found expression
of either MYCA1 or WDR1 to change by influence of light expo-
sure in grapevine, although these genes seem to have a role in
other types of stresses (Matus et al., 2010). Zhang et al. (2011) got
contradictory results from the expression of bHLH and WD40
partners between two pear cultivars exposed to light. It has ear-
lier been proposed that the MYB partner of the MBW complex
would be more directly involved in the light-mediated regula-
tion of flavonoid biosynthesis than bHLH or WD40 partners that
would mostly have a co-operative role in the process (Hartmann
et al., 2005; Matus et al., 2009, 2010). Recently, bHLH3 but not
WD40 of the regulators of flavonoid biosynthesis in nectarine,
was shown to be up-regulated after light treatment (Ravaglia et al.,
2013), and light-inducible bHLH was suggested as regulator of
anthocyanin biosynthesis in apple fruit exocarp (Vimolmangkang
et al., 2014).

R2R3 MYB transcription factors mediate direct and specific
interaction with MYB recognition element (MRE) that is present
in the promoters of the structural target flavonoid genes. The
MRE has been found to be necessary for light-induced expres-
sion of the structural flavonoid genes, such as CHS (Feldbrügge
et al., 1997). Hartmann et al. (2005) showed that the MRE
present in promoter of Arabidopsis CHS is part of the light reg-
ulatory unit (LRU) that is needed for light-mediated induction
of CHS. Since then, LRUs as well as other light-responsive ele-
ments have been reported not only in promoters of flavonoid
structural genes, such as MdDFR and MdUFGT in apple (Takos
et al., 2006a), VvFLS1 in grapevine (Czemmel et al., 2009), and
many structural anthocyanin biosynthetic genes of peach (Zhou
et al., 2013) but also promoters of R2R3 MYB transcription fac-
tors of grapevine VvMYBF1, litchi LcMYB1 (Lai et al., 2014) and
pear PyMYB10 (Feng et al., 2010). In addition that the presence
of LRU in the promoter is an indicator of the light respon-
siveness of the gene, it also contains bZIP recognition element
(ACE). Today, the signaling pathway from light perception to
flavonoid biosynthesis through R2R3 MYB transcription factors
to induce biosynthesis of specific flavonoid compounds in fruits
is not well understood. However, it has been proposed that bZIP
transcription factors have a role in this process (Hichri et al.,
2011). The involvement of bZIP transcription factor regulating
the expression of R2R3 MYB transcription factor attending to
flavonoid biosynthesis in fruit was demonstrated recently for the
first time when bZIP transcription factor was shown to regulate
PA biosynthesis in persimmon (Diospyros kaki) fruit (Akagi et al.,
2012).

Recently, an important piece of the puzzle in the mech-
anism by which light controls anthocyanin biosynthesis in
fruits at post-translational level was reported. Li et al. (2012)

demonstrated that in apple, the MdMYB1 protein, a positive
regulator of light-induced anthocyanin biosynthesis, interacts
directly with MdCOP1 protein that negatively modulates abun-
dance of the MdMYB1. The RING-finger type ubiquitin E3
ligase CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) acts
as a negative regulator of light signaling directly at the down-
stream of the photoreceptors and control different light-regulated
plant development processes by adjustment of its subcellu-
lar localization (Lau and Deng, 2012). The physical protein-
protein interaction of COP1 with phytochromes, cryptochomes
and phototropins has been demonstrated in Arabidopsis (Jang
et al., 2010; Jeong et al., 2010; Liu et al., 2011). In the dark,
COP1/SUPPRESSOR OF PHYA (SPA) complex is localized in
the nucleus, where it interacts with the subset of specific key
positive regulators mediating their ubiquitination and degrada-
tion via the 26S proteasome pathway (Figure 3A). Ubiquitination
involves covalent attachment of ubiquitin polypeptides to target
protein, which are subsequently marked for degradation by 26S
proteasome that mediates proteolysis of target protein (Vierstra,
2009). In light, COP1/SPA complex interacts with activated pho-
toreceptors leading to the inhibition of COP1/SPA function by
dissociation of COP1 from the complex and exportation from the
nucleus (Figure 3B). Low abundance of COP1 in nucleus allows
nuclear-localized transcription factors to accumulate and induce
gene expression (Lau and Deng, 2012).

Among COP1 targeted transcription factors, ELONGATED
HYPOCOTYL5 (HY5), a bZIP transcription factor promoting
photomorphogenesis (Lee et al., 2007), is a direct target of
COP1. HY5 becomes stabilized in light when the COP1 protein
is removed from nucleus (Figure 3B). HY5 has also been linked
to activation of the R2R3 MYBs and key structural genes of the
flavonoid pathway as well as the accumulation of flavonoids in
response to light in Arabidopsis and apple (Hardtke et al., 2000;
Stracke et al., 2010; Maier et al., 2013; Peng et al., 2013; Shin et al.,
2013). However, other yet unidentified more rapid mechanism
mediating COP1 signal from phytochomes and cryptochromes
have been proposed since export of COP1 from nucleus is rather
slow (24 h) and thus allows transcription factors to accumulate
only at extended light conditions (Lau and Deng, 2012). Yet
accumulation of HY5 and light-induced expression of flavonoid
pathway genes can be seen rapidly within few hours (Cominelli
et al., 2008; Li et al., 2010).

Mutations in COP1/SPA complex has been shown to lead in
increased accumulation of anthocyanins in Arabidopsis (Maier
et al., 2013) and mutation in light signaling machinery has been
shown to have effects on flavonoid biosynthesis also in fruits.
Tomato hp mutants, characterized by exaggerated light respon-
siveness, overproduce several flavonoid compounds in mature
fruits (Azari et al., 2010). Furthermore, additional mutation
in ANTHOCYANIN FRUIT (AFT), gene encoding MYB tran-
scription factor, in tomato hp mutant positively affects fruit
flavonoid content (Azari et al., 2010). Also inactivation of DE-
ETIOLATED1 (DET1), a photomorphogenesis regulating gene,
has been shown to lead to a significant increase in flavonoid
content in tomato fruit (Davuluri et al., 2005).

The regulation of anthocyanin biosynthesis has recently been
suggested to be closely linked with other protective processes
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FIGURE 3 | COP1 acts as a central repressor in light signaling

pathway by interacting directly with photoreceptors to mediate

different light-regulated plant developmental processes. (A) In

darkness, nuclear localized COP1 targets positive regulators, such as

transcription factors HY5 and R2R3 MYBs, for ubiquitination and

subsequent protein degradation through a 26S proteasome pathway. (B)

In visible light, interaction with activated photoreceptors repress function

of COP1 that is subsequently exported from nucleus allowing

nuclear-localized transcription factors to accumulate and induce gene

expression in light-regulated processes. The expression of structural

flavonoid genes is directly regulated by R2R3 MYB transcription factors

which may be regulated by bZIP transcription factor such as HY5.

During the process, photoreceptors are ubiquitinated by COP1 and

targeted for degradation (Lau and Deng, 2012).

against high light. Shading experiments with peach leaves by
Zhou et al. (2013) demonstrated simultaneous reduction in
anthocyanin biosynthesis with the increase in expression of pho-
torespiratory genes. Also high expression level of photorespira-
tory genes in Arabidopsis CHI/F3′H mutant, that are unable to
accumulate anthocyanins, suggest that photorespiration-related
genes may be involved in the regulation of anthocyanin biosyn-
thesis but the mechanism is so far unknown (Zhou et al., 2013).

EFFECT OF LIGHT QUALITY ON FLAVONOID BIOSYNTHESIS

IN FRUITS

VISIBLE LIGHT WAVELENGTHS

The accumulation of fruit flavonoids is also sensitive to the qual-
ity of the light spectrum received by the plant. It appears that
shorter wavelengths, in the range of blue and UV-light show the
most prominent effect in the accumulation of flavonoids in fruits,
often by increasing the expression of flavonoid pathway genes. In
unripe strawberries, blue light increased significantly the biosyn-
thesis of anthocyanins and the expression of FaCHS after four
days of treatment (Kadomura-Ishikawa et al., 2013). In grape
berries treated with light emitting diode (LED) light, anthocyanin
concentrations were highest in blue light-treated skin, followed
by red light treatment (Kondo et al., 2014). In the same study, dif-
ferences in anthocyanin profile were also detected and especially
malvidin-glycosides increased toward harvest in blue and red
LED-treated skin, unlike in untreated controls. In this case how-
ever, the transcript levels of VlMYBA1-2, VlMYBA2, and VvUFGT

did not necessarily coincide with anthocyanin concentrations.
These findings have increased the interest toward the application
of led lights in fruit orchards in order to improve fruit quality
at ripeness in terms of nutritional value and content of bioactive
compounds.

The relevance of blue light perception through phototropins
in flavonoid biosynthesis has recently been demonstrated at
molecular level in strawberry, when expression of phototropin
2, FaPHOT2, was shown to elevate during berry development
and correspond to increase in anthocyanin content (Kadomura-
Ishikawa et al., 2013). Furthermore, in the same study knock-
down of FaPHOT2 resulted in decreased anthocyanin content
while overexpression increased accumulation of anthocyanins in
strawberry fruit. Also, the overexpression of blue light sensing
cryptochrome in tomato (Giliberto et al., 2005) resulted in the
accumulation of anthocyanins in tomato fruits.

Interestingly, the accumulation of flavonoid compounds in
response to light has been shown to continue in post-harvest
fruits. Total anthocyanin content of strawberry fruits signifi-
cantly increased after four days of treatment with blue light
(40 µmol m−2 s−1) at 5◦C compared to the control fruits (Xu
et al., 2014). Meanwhile, the treatment also increased the activi-
ties of the enzymes of the general phenylpropanoid and flavonoid
pathway including glucose-6 phosphatase (G6PC) phenylala-
nine ammonialyase (PAL), cinnamate-4-hydroxylase (C4H), 4-
coumarate: coenzyme A ligase (4CL), CHS, F3H, DFR, ANS, and
UFGT. Therefore, a supplemental blue light source might increase
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anthocyanin content in strawberries also during fruit storage.
These results are important as they indicate that the physiological
response to light stimulus is located in the fruit.

UV-LIGHT

Solar UV radiation reaching the earth’s surface is composed of
UV-A (320–400 nm) and part of UV-B (280–320 nm) while most
of the UV-B and all UV-C (<280 nm) radiation is absorbed by the
ozone layer. Over the last decades, depletion in ozone layer has
increased the level of solar UV-B radiation reaching the earth and
now approximately 0.5% of total solar light radiation accounts
from UV-B (Heijde and Ulm, 2012). Although UV-B represents
only a small fraction of total solar spectrum, it has extensive pho-
tobiological effects on plants inducing changes in photosynthesis,
cell division and other life processes that affect growth and devel-
opment of plants (Jansen et al., 1998; Cockell and Knowland,
1999; Sullivan and Rozema, 1999; Hollósy, 2002; Kakani et al.,
2003; Brown et al., 2005; Mpoloka, 2008).

Stress caused by UV-B light is known to enhance the produc-
tion of reactive oxygen species (ROS) damaging DNA, proteins
and photosynthetic apparatus in plants, but these effects are
dose and phenotype dependent (Smith et al., 2000; Frohnmeyer
and Staiger, 2003). Some flavonoids, especially flavonols, are
reported to be highly effective scavengers of ROS as well as selec-
tively absorbing UV-B radiation (Falcone Ferreyra et al., 2012).
Therefore, it is not surprising that flavonoid production in plants
is strongly induced by light and UV-B wavelengths. Many flow-
ers and fruits produce flavonols, flavones, and anthocyanins as
response to excess UV-light. However, the mechanisms involved
in the induction of these metabolites need to be discussed in terms
of the resistance and acclimation of plants.

The effects of UV-light in plants have been studied actively
since late 1970s’ when the depletion in the ozone layer was dis-
covered in the polar regions (Farman et al., 1985). Still, the future
of the earth’s UV climate is uncertain (Andrady et al., 2010)
emphasizing the importance of the topic especially for agricul-
ture affecting the yield and quality of crop plants including fruits.
In addition to UV-light effects under natural growth conditions,
post-harvest treatments with UV-light have been performed to
improve fruit quality. Most of these studies have been carried out
with UV-C radiation, which is more energetic and can rapidly
decrease the incidence of pathogens in fruits (Stevens et al., 1996;
Allende and Artés, 2003). UV-B radiation has been applied post-
harvest with the special purpose to increase the contents of health
beneficial secondary metabolites.

Natural UV-light

The effect of natural UV-B radiation on the biosynthesis
of flavonoids was studied in an experiment where Cabernet
Sauvignon grape berries were cultivated under UV-shield
(Koyama et al., 2012). A high decrease in the content of flavonols
was detected in the skin of grape berries (under UV-shield),
whereas levels of PAs and cinnamic acids were less affected.
Additional experiment under artificial white light compared with
white light together with supplemental UV-light revealed that
UV-light did not markedly affect the levels of PAs in grape berry
skin. The transcript levels of analyzed flavonoid pathway genes

were consistent with metabolite results and a decrease in VvFLS4

transcript abundance was detected in berry skin samples under
UV-shield (Koyama et al., 2012).

Liu et al. (2014) reported the effect of natural UV-B radi-
ation related biosynthesis on flavonoid biosynthesis in white
Sauvignon blanc grape berries. The experiment was conducted
in New Zealand, where the natural UV radiation levels are high
compared with corresponding latitudes in Northern hemisphere,
using A-frame-mounted UV-transmitting/excluding screens cov-
ering only the fruiting zone of the plants. Substantial increase
in the levels of flavonols, particularly quercetin and kaempferol
glycosides was detected upon fruit exposure to UV-B (Table 2).
Of five VvFLS genes of grapevines, two were found to be tran-
scriptionally active, and only one (VvFLS4) was responsive to
UV-B. Of the related transcription factors (VvMYB12, VvMYCA1,

VvWDRs), only VvMYB12 was found to be responsive to UV-
B. In the same study, other candidate genes associated with low
and high UV-B fluence responses (VvUVR8, VvHY5, VvCOP1,

VvCHS) showed variable results.
Similarly to other photoreceptors, signaling of the UV-B

absorbing photoreceptor UVR8 is also mediated through COP1.
Contrary to the role of COP1 in visible light, under UV-B irra-
diation Arabidopsis COP1 has been shown to act as a positive
regulator by interacting with UVR8 and promote through an
unknown mechanism the expression of HY5 (Lau and Deng,
2012; Figure 4). In the process, UVR8 changes from a dimer to
monomer to interact with COP1. The recent results have given
evidence on the function of the same mechanism mediating the
responses of the UV-B radiation also in apple (Peng et al., 2013).
In grape berries, VvUVR8 did not respond to UV-B but instead
showed fruit development related changes having significantly
higher expression at pre-veraison compared to post-veraison (Liu
et al., 2014). This result is consistent with previous findings in
Arabidopsis showing that UVR8 does not respond to different
light qualities (Kaiserli and Jenkins, 2007). In contrast, VvHY5 did
show a significant up-regulation by UV-B light as well as VvCHS1

and VvCHS2. The results suggested that flavonol biosynthesis in
grape is stimulated predominantly through the low fluence UV-B
response pathway (Liu et al., 2014). It is notable that more than
98% of the UV-light reaching the earth’s surface correspond to
UV-A radiation. There has been suggestions of the existence of
specific photoreceptor for UV-A, different than UVR8, but it still
remains uncertain (Zhou et al., 2007; Guo and Wang, 2010; Wang
et al., 2012).

Pre- and post-harvest studies with supplemental UV-light

The effect of supplemental UV-light treatments on the content of
phenolic compounds has been evaluated in various fruit crops,
often with the aim of developing techniques to increase health-
promoting potential of the fruits and indirectly improve the
aesthetic value with higher anthocyanin content. The changes in
the content of phenolic compounds in response to UV-light vary
between species. Early pre-harvest studies showed the enhance-
ment of anthocyanin levels as response to UV irradiation in apple
(Arakawa et al., 1985) and sweet cherry skin (Arakawa, 1993;
Kataoka et al., 1996). More recently, UV-B irradiation treatment
has been shown to increase the anthocyanin content and the
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Table 2 | Main responses of flavonoid compounds under UV-light exposition in fruits.

Species Tissue UV type and experimental

conditions

Metabolites Response References

Apple (Malus

domestica) cv.

Braeburna/Granny

Smithb

Skin Post-harvest UV-B

97.0 kJ m−2

2.5 h

Quercetin-3-O-glycoside a / b

+ n

Solovchenko and

Schmitz-Eiberger, 2003

cv. Aroma Peel Post-harvest UV-B shade

grown/sun exposed

Epicatechin

Procyanidin (B1+B2)

Phloridzin

Quercetins (galactoside,

glucoside, and rhamnoside)

Cyanidin-3-galactoside

+/+

n/n

n/n

+/n

+/+

Hagen et al., 2007

Blueberry (Vaccinium

corymbosum) cv.

Duke

Complete

fruit

Post-harvest UV-C

4.3 kJ m−2

24 h (highdose)

Myricetin-3-O-arabinoside

Quercetin-3-O-galactoside

Quercetin-3-O-glucoside

Kaempferol-3-O-glucoside

Kaempferol-3-O-glucuronide

Delphinidin-3-O-galactoside

Dephinidin-3-O-arabinoside

Cyanidin-3-galactoside

Petunidin-3-O-galactoside

Petunidin-3-O-glucoside

Petunidin-3-arabinoside

Malvidin-3-O-galactoside

Malvidin-3-O-arabinoside

–

–

–

n

–

–

–

n

–

–

–

–

–

Wang et al., 2009b

Grapevine (Vitis

vinífera) cv. Cabernet

Sauvignon

Skin Post-harvest

UV-A/B/C

1.8 kJ m−2

3-week old berries*

7-week*

11-week*

2,3 -cis- flavan-3-ols

2,3- trans-flavan-3-ols

(-)-epigallocatequin

[(-)-epigallocatequin-3-O-gallate

+ (-)-epicatequin + catechin]

+/–/+

+/–/+

+/–/+

+/+/+

n/+/+

+/+/+

+/+/+

n/+/+

–/–/–

–/–/–

–/n/–

–/–/–

Zhang et al., 2013

cv. Sauvignon blanc Skin Solar UV-B

6 weeks post-veraison

Quercetin-3-O-glucoside

Quercetin-3-O-glucuronide

Quercetin-3-O-rutinoside

Isorhamnetin-3-O-glucoside

Kaempferol-3-O-glucoside

Kaempferol-3-O-rutinoside

Kaempferol-3-O-glucuronide

+

+

+

+

+

+

+

Gregan et al., 2012; Liu

et al., 2014

cv. Tempanillo Skin Supplemental UV-B

9.66 kJ m−2 d−1

set to ripness/onset of

veraison to ripness

Kaempferol-3-O-galactoside

Kaempferol-3-O-glucoside

Quercetin-3-O-galactoside

Quercetin-3-O-glucuronide

Quercetin-3-O-glucoside

Isorhamnetin-3-O-glucoside

Syringetin-3-O-glucoside

Delphinidin-3-O-glucoside

Cyanidin-3-O-glucoside

Petunidin-3-O-glucoside

+/+

+/+

+/+

+/+

+/+

n/n

n/n

n/n

n/n

+/n

Martínez-Lüscher et al.,

2014

(Continued)
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Table 2 | Continued

Peonidin-3-O-glucoside

Malvidin-3-O-glucoside

+/n

n/n

Peaches and

nectarine (Prunus

persica) cv.

Suncresta

/Babygoldb/

Babygoldc

Skin Post-harvest UV-B

146 kJ m−2

24 h

Quercetin-3-O-diglucoside

Quercetin-3-O-galactoside

Quercetin-3-O-rutinoside

Quercetin-3-O-glucoside

Kaempferol-3-O-galactoside

Kaempferol-3-O-rutinoside

Kaempferol-3-O-glucoside

Isorhamnetin-3-O-galactoside

Isorhamnetin-3-O-rutinoside

Isorhamnetin-3-O-glucoside

Cyanidin-3-O-glucoside

a / b / c

+ − −

+ n n

+ n n

+ − −

+ n n

n + +

+ n n

+ n n

− n n

− n n

+ + nd

Scattino et al., 2014

Tomato (Solanum

lycopersicum) cv.

Money Makea/hp-1

mutantb

Skin

Flesh

Post-harvest UV-B

6.08 kJ m−2d−1

mature green fruit stage

Naringenin

3-quercetin-pentosyl-rutinoside

Rutin (quercetin 3-O-rutinoside)

a / b

+ +

+ n

+ n

nd nd

n n

n +

Castagna et al., 2014

+, significantly induced; −, significantly reduced; n, no variation compared to control; nd, not detected; a/b/c, different genotype from the same species. *Main

responses between hours (Zhang et al., 2013).

expression of MdMYBA and anthocyanin pathway genes in apple
skin (Ban et al., 2007; Peng et al., 2013).

Martínez-Lüscher et al. (2014) exposed red grapevine vari-
ety (cv. Tempranillo) to two doses (5.98 and 9.66 kJ m−2 d−1)
of supplemental UV-B radiation, under controlled conditions, in
order to study the effect on grape traits including flavonoid pro-
file. The contents of anthocyanins and flavonols were enhanced
by UV-B in grape berry skin, and qualitative differences were
also detected in the flavonol profiles compared to untreated fruits
(Martínez-Lüscher et al., 2014; Table 2). In Cabernet Sauvignon
grapevine variety, the accumulation of flavan-3-ols was found to
be developmental stage-dependent in response to the three types
of supplemental UV-light (Zhang et al., 2013). Supplemental UV-
A irradiation promoted flavan-3-ol accumulation and transcript
levels of related genes at all studied early developmental stages (3–
11 weeks after flowering), whereas UV-B and UV-C were effective
only grape berries of 7–11 weeks after flowering. The results indi-
cated that UV radiation increased flavan-3-ol levels during the
berry development but did not increase the flavan-3-ol content in
the mature berries (Zhang et al., 2013).

Significant post-harvest effects of UV-B exposure on flavonoid
biosynthesis has been reported in different nectarine varieties.
The accumulation of anthocyanins in the skin of nectarines
(cv. Stark Red Gold) exposed to white light supplemented with
UV-light was after 72 h in accordance with enhanced transcript
levels of flavonoid pathway genes such as PpDFR and PpUFGT

(Ravaglia et al., 2013). Particularly, the PpMYB10 gene was
strongly responsive to the treatment but the levels of PAs and
flavonols were not changed during the experiment. However,
increment in the transcript level of PpFLS1 was reported, which

suggests the accumulation of flavonols in a longer period than
72 h (Ravaglia et al., 2013). In apple, the exposure of post-harvest
fruits to visible light supplemented with UV-B also increased
the content of total flavonoids, and in particular quercetin-
glycosides and anthocyanins, in shade-grown fruits of cultivar
Aroma (Hagen et al., 2007). Another post-harvest treatment
with UV-B/visible light showed similar results in European pear
(P. communis) and Chinese sand pear (P. pyrifolia Nakai, Qian
et al., 2013; Sun et al., 2014). The UV-B radiation also increased
significantly flavonoid levels, especially flavonols, in the flesh of
post-harvest tomato fruits at green mature stage (Castagna et al.,
2014), whereas UV-A caused significant short term increment in
anthocyanin content in tomato fruits at green mature stage (Guo
and Wang, 2010).

Genotype-related differences were detected in a study focus-
ing also on post-harvest effects of UV-B irradiation, in which
fruits of cv. Suncrest and cv. Babygold 7 of peach and cv. Big
Top of nectarine were irradiated with UV-B. Fruits of cultivars
Big Top and cv. Suncrest responded by increasing the levels of
flavonol and anthocyanidin glycosides whereas in cv. Babygold
7 that is lacking anthocyanins, flavonol levels decreased after
UV-B irradiation (Table 2). The transcript levels of the struc-
tural phenylpropanoid and flavonoid pathway genes (PpC4H,
Pp4CL, PpF3H, PpDFR, PpCHI, PpPAL, PpCHS, PpLDOX) were
consistent with the detected metabolite levels (Scattino et al.,
2014).

The post-harvest treatments with UV-C light have been
reported to delay fruit senescence and increase the antioxidant
activity and flavonoid content in fruits. Wang et al. (2009b) tested
the effect of UV-C dosages from 0.43 to 6.45 kJ m−2 (1–15 min
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FIGURE 4 | Proposed mechanism for signaling pathway affecting

flavonoid biosynthesis under UV-B radiation. UV-B radiation is strongly

absorbed by tryptophan (Trp) amino acid residues in the dimeric form of

UVR8 photoreceptor leading to the monomerization of UVR8. Monomeric

UVR8 and COP1 form a complex that accumulates in the nucleus of the

cells. The UVR8-COP1-SPA complex stabilizes bZIP transcription factor HY5

promoting the activity of different R2R3 MYBs for the transcription of

specific flavonoid biosynthesis genes (Favory et al., 2009; Christie et al.,

2012; Jenkins, 2014; Li et al., 2014).

treatments) on flavonoid contents and antioxidant activity in
post-harvest blueberries (V. corymbosum). The results indicated
substantial increase in flavonol and anthocyanidin glycosides and
antioxidant activities instantly after the treatments. However, the
contents decreased to the same level with the untreated control
berries after 19 h from the treatments. In strawberry, the effect
of 4.1 kJ m−2 UV-C radiation on anthocyanin content, antiox-
idant activity, and overall quality was studied in post-harvest
berries at the large green maturity stage (Li et al., 2014). UV-
C induced accumulation of anthocyanins and flavonols as well
as activity of the enzymes of the phenylpropanoid pathway, but
after 3 days under UV-C light these effects were not detected
anymore. UV-C irradiation also positively enhanced the content
of stilbene cis- and trans-piceid together with quercetin-3-O-
galactoside and quercetin-3-O-glucoside in grape berry skin up to
3-fold respect to control grape berries (Crupi et al., 2013). UV-C
irradiation has also been shown to increase the radical scavenging
properties of papaya fruit skin due enhanced flavonoid content
(Rivera-Pastrana et al., 2013).

PHOTOPERIOD

Photoperiod influences various ways in the growth and develop-
ment of plants. The photoperiodic conditions can also affect the
biosynthesis of secondary metabolites. For instance, the biosyn-
thesis of anthocyanins in Xanthium flowers has been shown to

be under photoperiodic regulation (Taylor, 1965). Plants possess
an internal timekeeping system, circadian clock, which runs on
a period of about 24 h. In addition to light perception, circa-
dian clock activity is essential for the detection of photoperiod
and subsequent mediation of responses to daily changes in light
conditions. Light signaling pathways and circadian clock are
interconnected as photoreceptors are involved in entrainment
of the clock and the circadian clock in the regulation of the
photoreceptor genes (Harmer, 2009; Lopez et al., 2012).

Increased levels of flavonoids, especially anthocyanins under
longer photoperiod have been detected in different plant species
(Camm et al., 1993; Reyes et al., 2004; Carvalho et al., 2010;
reviewed by Jaakola and Hohtola, 2010) but opposite results
have also been reported (Steindal et al., 2013). Studies focus-
ing purely on the effect of circadian rhythms on the flavonoid
content in fruits are scarce and the results are often difficult to
analyze because of many variables. In field studies, along with day
length and total irradiation level, diurnal temperature changes
also affect the flavonoid biosynthesis. In controlled experiment
with bilberry, 24 h day length yielded significantly higher levels
of anthocyanins in fruits compared with 12 h day length treat-
ment (Uleberg et al., 2012). Field experiments have also shown
higher anthocyanin levels in Vaccinium berries growing under
longer day length in the northern latitudes (Lätti et al., 2008, 2010;
Åkerström et al., 2010). Long-term field experiments with cur-
rants (Ribes spp.) showed contradictory results in the flavonoid
levels between different latitudes (Zheng et al., 2012; Yang et al.,
2013). The content of flavonols in red, white and green currants
and anthocyanins in red currant cultivars were notably higher in
the northern growth habitants whereas opposite was detected in
black currant (R. nigrum) cultivars. However, these field experi-
ments were performed in long day conditions with the differences
in day length varying from about 16 h to 24 h during the growth
period.

Increasing evidence has been gathered to support the idea that
ubiquitination-mediated targeted protein degradation is involved
in controlling day length perception in plants in response to pho-
toperiod. Ubiquitin-mediated protein degradation by COP1 has
been shown to be important element in stabilization of circadian
clock components in Arabidopsis (Lau and Deng, 2012; Piñeiro
and Jarillo, 2013).

CONCLUDING REMARKS

In conclusion, flavonoid composition in fruits is strongly affected
by surrounding light conditions. In general, higher solar radia-
tion tends to increase flavonoid content in fruits. Specific wave-
lengths can also alter the profile of flavonoids in fruit tissues.
However, variation in response can be high between and even
within species. Interaction of specific light conditions with other
environmental factors can also change the response markedly.
Although biosynthesis of flavonoids has been extensively studied,
only recently the underlying molecular mechanisms of light-
controlled flavonoid biosynthesis have begun to be revealed.
Some of the mechanisms shown in model plants, such as COP1-
mediated signaling pathways, have recently also been found in
fruit tissues. Understanding the regulation of flavonoid biosyn-
thetic pathway as well as involved light signaling machinery in
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fruit producing species is important to generate and select fruits
enriched with flavonoid compounds to obtain desirable dietary
and health-beneficial properties. The same compounds can also
affect to self-life of the fruits. Moreover, several recent studies
show that pre- and post-harvest treatments with selected light
conditions have potential for commercial applications.
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