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ABSTRACT

Context. Ongoing and future surveys of variable stars will require new techniques to analyse their light curves as well as to tag objects
according to their variability class in an automated way.
Aims. We show the use of principal component analysis (PCA) and Fourier decomposition (FD) method as tools for variable star light
curve analysis and compare their relative performance in studying the changes in the light curve structures of pulsating Cepheids and
in the classification of variable stars.
Methods. We have calculated the Fourier parameters of 17 606 light curves of a variety of variables, e.g., RR Lyraes, Cepheids, Mira
Variables and extrinsic variables for our analysis. We have also performed PCA on the same database of light curves. The inputs to
the PCA are the 100 values of the magnitudes for each of these 17 606 light curves in the database interpolated between phase 0 to 1.
Unlike some previous studies, Fourier coefficients are not used as input to the PCA.
Results. We show that in general, the first few principal components (PCs) are enough to reconstruct the original light curves compared
to the FD method where 2 to 3 times more parameters are required to satisfactorily reconstruct the light curves. The computation of
the required number of Fourier parameters on average needs 20 times more CPU time than the computation of the required number
of PCs. Therefore, PCA does have some advantages over the FD method in analysing the variable stars in a larger database. However,
in some cases, particularly in finding the resonances in fundamental mode (FU) Cepheids, the PCA results show no distinct advantages
over the FD method. We also demonstrate that the PCA technique can be used to classify variables into different variability classes in
an automated, unsupervised way, a feature that has immense potential for larger databases in the future.

Key words. methods: data analysis – stars: binaries: eclipsing – stars: variables: RR Lyraes – stars: variables: Cepheids –
methods: statistical

1. Introduction

The recent interest in the structure and properties of light curves
of variable stars has increased because of the large amount of
observational data from variable star projects like OGLE (opti-
cal gravitational lensing experiment), MACHO (massive com-
pact halo object), ASAS (All Sky automated survey) and NSVS
(Northern Sky variability survey). In addition, new techniques
to tag variable objects expected in huge numbers from satel-
lite missions like CoRoT (Convection Rotation and Planetary
Transits), Kepler, and Gaia in a robust and automated manner
are being explored (Debosscher et al. 2007; Sarro et al. 2009).
The Fourier decomposition technique is a reliable and efficient
way of describing the structure of light curves of variable stars.
Schaltenbrand & Tammann (1971) derived UBV light curve pa-
rameters for 323 galactic Cepheids by Fourier analysis. The first
systematic use of the Fourier technique was made by Simon
(1979) to analyze the observed light variations and radial ve-
locity variation of AI Velorum. The first-order amplitudes and
phases from the Fourier fits were then compared with those
obtained from linear adiabatic pulsation models to obtain the
mass of AI Vel. Simon & Lee (1981) made the first attempt to

reconstruct the light curves of Cepheid variables using Fourier
decomposition and to describe the Hertzsprung progression in
Cepheid light curves. The method has been applied extensively
by various authors for light curve reconstruction, mode discrimi-
nation and classification of pulsating stars (Antonello et al. 1986;
Mantegazza & Poretti 1992; Hendry et al. 1999; Poretti 2001;
Ngeow et al. 2003; Moskalik & Poretti 2003; Jin et al. 2004;
Tanvir et al. 2005). However, Fourier decomposition by itself is
not perfectly suitable for classification of variable stars in large
databases as the method works only for individual stars, but
it can be used as a preprocessor for other automated schemes
(Kanbur et al. 2002; Kanbur & Mariani 2004; Sarro et al.
2009).

Principal component analysis transforms the original data
set of variables with an orthogonal transformation to a new set
of uncorrelated variables or principal components. The tech-
nique amounts to a straightforward rotation from the original
axes to the new ones and the principal components are de-
rived in decreasing order of importance (Singh et al. 1998). The
first few components thus account for most of the variation in
the original data (Chatfield & Collins 1980; Murtagh & Heck
1987). The technique has been used for stellar spectral classi-
fication (Murtagh & Heck 1987; Storrie-Lombardi et al. 1994;
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Singh et al. 1998), QSO spectra (Francis et al. 1992) and for
galaxy spectra (Sodré & Cuevas 1994; Connolly et al. 1995;
Lahav et al. 1996; Folkes et al. 1996). There have been a number
of studies on the use of PCA in analyzing Cepheid light curves
(Kanbur et al. 2002) and RR Lyrae light curves (Kanbur &
Mariani 2004). In both these studies, the input data to the princi-
pal component analysis (PCA) are the Fourier coefficients rather
than the light curves themselves. Nevertheless, it was noted that
PCA was able to reproduce the light curves with about half the
number of parameters (PCs) needed by the Fourier technique.
In PCA, the first few PCs are usually examined as they contain
most of the information about the data.

The PCA has been applied to the light curves of Cepheid
variable stars by Kanbur et al. (2002) and RR Lyrae stars by
Kanbur & Mariani (2004). They concluded that PCA is more ef-
ficient than the FD method in bringing out changes in the light
curve structure of these variables. In our opinion, there is no ad-
vantage in the way the PCA was applied because the Fourier
coefficients were used as input to the PCA which are themselves
the information-bearing coefficients of the light curve structure.
Therefore PCA will not extract any additional information ex-
cept the dimensionality reduction to a few orders. In the case
of databases where a variety of variables is present, the method
of application of PCA on Fourier coefficients is further compli-
cated by the fact that the optimal order of fit to different light
curves is different. When using Fourier coefficients as input to
the PCA one has to decide where to make a cut in the Fourier
fitting orders. For Fourier decomposition of FU Cepheids, one
needs precise Fourier components up to order ∼10−15 in ex-
plaining the Cepheid bump progression whereas RR Lyraes need
fewer Fourier components (∼2−7) to completely describe the
light curve structure. Also, if the phase coverage is not smooth,
then fitting such light curves with higher orders of the fit may
give rise to false bumps that are not associated with the true light
curve structures. Therefore it is not meaningful to use Fourier co-
efficients as input to the PCA when light curves of a large num-
ber of variable stars having different variability classes are to be
analysed. We demonstrate this fact with the following example:

Suppose a larger database of stars contains RRab, RRc and
FU Cepheid variables. The RRc stars are always fitted with
a lower order of the Fourier fit as compared to RRab and
FU Cepheids. Generally RRc stars need ∼2−5 orders of the fit
because of the sinusoidal and symmetric nature of their light
curves, RRab ∼ 3−7 orders of fit because of their asymmetric
light curve, whereas some of the FU Cepheids need to be fitted
with ∼10−15 orders of the fit to explain the bump progression.
Therefore for FU Cepheids, if the light curves are fitted with
fewer orders, the bump progression will not be fitted properly
and one will miss the important bump feature. On the other hand,
if all the light curves are fitted with higher orders of the fit then
one is basically fitting the noise in the case of RR Lyrae stars
which will also be reflected in the PCA.

One of the most important advantages of PCA over the
FD method is that in PCA, all the light curve data can be pro-
cessed and analysed in one go if all the phased light curve data
can be made of similar dimensions, as we shall demonstrate
later, whereas in the FD method each light curve has to be fitted
with the optimal order of the fit and analysed individually. This
is a very time consuming process for large databases. Therefore,
the decision regarding the cut in the order of the fit is manual
and hence very cumbersome. Unlike FD, one can decide where
to make a cut in the PCA order in light curve reconstruction for
all the light curves simply by looking at the cumulative percent-
ages of variance in the data set. The optimal data compression

using PCA is enormous, a fact that is quite relevant with the
larger databases of the future.

PCA has also the advantage of preferential removal of noise
from the light curve data and isolating the bogus light curves,
whereas for precise Fourier decomposition, one needs very well-
defined and accurate light curves free from noisy, scattered data
points and having a good phase coverage. The most significant
PCs contain those features which are most strongly correlated in
many of the light curves. Therefore, the noise that is uncorre-
lated with any other features will be represented in the less sig-
nificant components. Also, by retaining only the most significant
PCs to represent the light curves we achieve a data compression
that preferentially removes the noise. PCA can be used to fil-
ter out bogus features in the data as it is sensitive to the relative
frequency of occurrence of features in the data set (Bailer-Jones
et al. 1998). However, one distinct disadvantage of PCA is that
addition of a single light curve in the analysis requires the entire
PCA to be redone.

In this paper, we show the use of PCA directly on the light
curve data of more than 17 000 stars (RR Lyraes, Cepheids,
Eclipsing binaries and Mira variables) taken from the literature
and different existing databases. We also apply the FD method
to these light curves to determine the Fourier parameters.
Denoising should be carried out before the Fourier decomposi-
tion if the light curves are noisy. However, the photometric error
in the light curves in the case of the present selected database
is very small, i.e., the light curve data have a good photometric
accuracy (∼0.006−0.14 mag in the case of the OGLE database
and ∼0.02−0.220 mag in the case of the ASAS database). To in-
vestigate the noise in the light curves, we have calculated the
unit-lag auto-correlation function on the residual light curves.
The auto-correlations are found to be�1. Therefore no denois-
ing has been carried out. However, in some light curves there
were outliers present. To remove these outliers, we used a ro-
bust multi-pass non linear fitting algorithm in IDL (Interactive
Data Language). We use light curves (magnitudes at different
epochs) as input to PCA and compare the relative performance
of the ability of PCA in finding resonances in Cepheids and in
the classification of different types of variables as compared to
the FD method. We have, therefore, performed independent au-
tomated Fourier analysis of all the data sets described in the pa-
per using a computer code developed by us.

Another aim of this paper is to analyze the performance of
PCA as a fast, automated and unsupervised classification tool
for variable stars. Since one of the important aspects of this pa-
per is to do a preliminary PCA based classification in an unsu-
pervised way on a larger sets of astronomical data, we explore
the possibility of its use for future databases. PCA can be used
for preliminary classification of variable stars such as classifica-
tion between pulsating stars and eclipsing binaries and different
variability classes.

We present the Fourier decomposition technique using the
Levenberg-Marquardt algorithm for non-linear least square fit-
ting (Press et al. 1992) in Sect. 2. We also describe the unit-lag
auto-correlation function for finding the optimal order of the fit.
Section 3 describes the PCA for dimensionality reduction and
light curve reconstruction. Section 4 describes the results ob-
tained by the FD and PCA techniques when applied to study the
structure of Cepheid light curves. In addition, we compare the
relative performance of FD and PCA for classification of various
variability classes in the database selected for the present analy-
sis. In Sect. 5, we present the important conclusions of the study.
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Table 1. Data selected for the present analysis.

Data References No. of stars selected Data set
RR Lyrae
I band (LMC RRab) Soszyński et al. (2003) 5835 IA
I band (LMC RRc) Soszyński et al. (2003) 1751 IB
Fundamental Cepheids
I band (LMC) Soszyński et al.(2008) 1804 IIA
V band (LMC) Martin et al. (1979) 6 IIB
V band (LMC+SMC) Moffett et al. (1998) 13+6 IIC
Overtone Cepheids
I band (LMC) Soszyński et al. (2008) 1228 III
Mira Variables
V band http://archive.princeton.edu/~asas/ 2878 IV
Eclipsing Binary
I band (LMC) Wyrzykowski et al. (2003) 2681 VA
I band (SMC) Wyrzykowski et al. (2004) 1404 VB

2. Fourier decomposition technique

Since the light curves of the selected ensemble of variable stars
are periodic, they can be written as a sum of cosine and sine
series:

m(t) = A0 +

N∑
i=1

ai cos(iω(t − t0)) +
N∑

i=1

bi sin(iω(t − t0)), (1)

where m(t) is the observed magnitude at time t, A0 is the mean
magnitude, ai, bi are the amplitude components of (i − 1)th har-
monic, P is the period of the star in days,ω = 2π/P is the angular
frequency, and N is the order of the fit. t0 is the epoch of maxi-
mum light. Obviously, Eq. (1) has 2N + 1 unknown parameters
which require at least the same number of data points to solve
for these parameters. Equivalently, we can write Eq. (1) as

m(t) = A0 +

N∑
i=1

Ai cos(iω(t − t0) + φi), (2)

where Ai =
√

ai
2 + bi

2 and tanφi = −bi/ai. Since period is
known from the respective databases, the observation time can
be folded into phase (Φ) as (cf. Ngeow et al. 2003)

Φ =
(t − t0)

P
− Int

( t − t0
P

)
· (3)

The value of Φ is from 0 to 1, corresponding to a full cycle of
pulsation and Int denotes the integer part of the quantity. Hence,
Eqs. (1) and (2) can be written as (Schaltenbrand & Tammann
1971)

m(t) = A0 +

N∑
i=1

ai cos(2πiΦ(t)) +
N∑

i=1

bi sin(2πiΦ(t)), (4)

m(t) = A0 +

N∑
i=1

Ai cos[2πiΦ(t) + φi], (5)

with relative Fourier parameters as

Ri1 =
Ai

A1
; φi1 = φi − iφ1

where i > 1. The combination of coefficients Ri1, φi1 where i =
2, 3, 4... can be used to describe the progression of the light curve
shape in the case of Cepheids and other variables and can be used
for variable star classification. In Table 1, we list all the variable

star light curve data that has been subjected to the analysis. In
the case of the data taken from the OGLE database (Soszyński
et al. 2003, 2008; Wyrzykowski et al. 2003, 2004), the number
of stars seems to be more than the actual number presented in
the database. This is because of the fact that we have not tried
to remove the overlapping stars in different OGLE fields as this
will not affect our analysis. In the case of data from Martin et al.
(1979), the stars with poor phase coverage have been left out.

The estimation of the optimal number of terms to be used in
the Fourier decomposition of the individual light curve is not
straightforward. As has been pointed out by Petersen (1986),
if N is chosen too small, a larger number of Fourier parame-
ters can be calculated from a given observation and the resulting
parameters will have systematic deviations from the best esti-
mate. On the other hand, if N is chosen too large, we are fitting
the noise. Following Baart (1982), Petersen (1986) adopted the
calculation of the unit-lag auto-correlation of the sequence of
the residuals in order to decide the right N so that the residuals
consist of noise only. It as defined as

ρ :=

∑n
j=1

(
v j − v̄

) (
v j+1 − v̄

)
∑n

j=1 (v j − v̄)2
,

where v j is the jth residual, v̄ is the average of the residuals and
j = 1, ...n are the number of data points of a light curve. The
value of v is basically the residuals of the fitted light curve

v = m(t) − [A0 +

N∑
i=1

Ai cos(2πiΦ(t) + φi)].

It should be noted that for the calculation of ρ we must choose
the ordering of v j given by increasing phase values rather than
the ordering given by the original sequence. A definite trend in
the residuals will result in a value of ρ equal to 1, while uncorre-
lated residuals give smaller values of ρ. In the idealized case of
residuals of equal magnitude with alternating sign, ρ will be ap-
proximately equal to −1. A suitable value of ρ can be chosen us-
ing Baart’s condition. According to this, a value of ρ ≥ [n−1]−1/2

(where n is the number of observations) is an indication that it is
likely that a trend is present, whereas a value of ρ ≤ [2(n−1)]−1/2

indicates that it is unlikely that a trend is present. Baart therefore
used the following auto-correlation cut-off tolerance

ρc = ρ(cut) = [2(n − 1)]−1/2. (6)

While computing the Fourier parameters of all the light curve
data selected for the present analysis we have taken care that

http://archive.princeton.edu/~asas/
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Fig. 1. Fitted light curves for fundamental mode long period Cepheids
from Moffett et al. (1998).

Baart’s condition is satisfied. The optimal order of the fit
for RRc, RRab, FU Cepheids (OGLE), first overtone (FO)
Cepheids, eclipsing binaries and Mira variables are 3, 5, 12, 10, 4
and 4 respectively. The longer period data for FU Cepheids from
Martin et al. (1979) and Moffett et al. (1998) are fitted with the
fifth order of the fit because of the relatively small numbers of
data points. A typical example of a fitted light curve of all types
of variables with the optimal order of the fit is shown in Fig. 2.

All the data sets in Table 1 are finally fitted with the optimal
order of the fit and the fitted light curves are used to derive the
Fourier phase and amplitude parameters from the Fourier coef-
ficients. Figure 1 shows the fitted light curves of FU Cepheids.
Although the number of data points for the longer periods are
less, the phase coverage is sufficient to do the Fourier decompo-
sition. Although the phase coverage is poor, the fits are reason-
ably good. The lower right panel shows an example of a short
period fundamental mode Cepheid from the OGLE-III database
which has a good phase coverage. χ2

ν is the chi square per de-
gree of freedom (ν) of the fit. The degree of freedom (ν) is the
number of data points minus the number of parameters of the
fit. The Fourier decomposition parameters (ai, bi) for Cepheids
have been computed based on the optimal order of the fit by the
calculation of the unit-lag auto-correlation function

3. Principal component analysis

The principal component analysis transforms the original set
of p variables by an orthogonal transformation to a new set
of uncorrelated variables or principal components (PCs). It in-
volves a simple rotation from the original axes to the new ones
resulting in principal components in decreasing order of impor-
tance. The first few q components (q� p) usually contain most
of the variation in the original data (Chatfield & Collins 1980;
Murtagh & Heck 1987). This feature of the PCA has been used
in astronomical data analysis primarily for the purpose of reduc-
ing the dimensionality of the data and as a preprocessor for other

Fig. 2. Fitted light curves of different classes of variables used in the
analysis obtained with the optimal order of the fit. The caption at the
top of each panel shows the variable name, period and type of vari-
able respectively. We have RR Lyrae variables (RRc, RRab), Cepheid
variables (Fundamental mode (FU) and first overtone (FO)), eclipsing
binaries (EB) and Mira variables (MIRA).

automated techniques like artificial neural networks (ANN). The
application of PCA to the light curve analysis of variable stars
has been limited to a few studies (Hendry et al. 1999; Kanbur
et al. 2002, 2004; Tanvir et al. 2005). In the following, we briefly
describe the transformation.

Let mi j be the p magnitudes corresponding to n light curves.
Let us define the n × p matrix by X = xi j,

xi j =
mi j − m

sj
√

n
,

with

m j =
1
n

n∑
i=1

mi j,

and

s j
2 =

1
n

n∑
i=1

(mi j − m j)
2,

where m j is the mean value and s j is the standard deviation.
Using such standardization we find the principal components
from the correlation matrix (cf. Murtagh & Heck 1987)

C jk =

n∑
i=1

xi jx jk =
1
n

n∑
i=1

(mi j − m j)(mik − mk)/(s jsk), (7)

with the axis of maximum variance being the largest eigenvec-
tor e1 associated with the largest eigenvalue λ1 of the equation

Ce1 = λ1e1. (8)

The next (second) axis is to be orthogonal to the first and another
solution of Eq. (8) gives the second largest eigenvalue λ2 and the

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912851&pdf_id=1
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corresponding eigenvector or the principal component e2. Hence
the proportion of the total variation accounted for by the jth com-
ponent is λ j/p, where p is also the sum of the eigenvalues (Singh
et al. 1998).

Let us suppose that the first q principal components are
sufficient to retain the information on the original p variables.
Therefore, we now have a (p × q) matrix Eq of eigenvectors.
The projection vector Z onto the q principal components can be
found by

Z = xEq, (9)

where x is vector of magnitudes defined by

xi j s j
√

n + m j = mi j,

and can be represented by

x = ZEq
T. (10)

We obtain the final light curve xrec by multiplying x by s j
√

n
and adding the mean. Z is a (n × q) matrix and Eq

T is a (q × p)
matrix and hence the reconstructed light curve is the original
(n × p) matrix.

With the phase (Φ) as the epoch for each light curve avail-
able from Eq. (3), we interpolate and obtain 100 mag for phase 0
to 1 in steps of 0.01. Therefore, each light curve now consists
of 100 data points (magnitudes) normalized to unity. The input
to the PCA are these 100 points of magnitudes for each of the
light curves. We also emphasize that while applying PCA to the
phased magnitudes of light curves, Fourier coefficients are not
used to interpolate the light curves. We have used standard in-
terpolation routines in IDL to generate interpolated magnitudes
in a light curve. Two examples of the result of interpolation are
shown in Fig. 3. There are 223 actual data points for the Mira
variable (lower panel) and 100 interpolated magnitudes have
been obtained.

4. Analysis of light curves

In the following analysis, we compare the capabilities of FD and
PCA for structural analysis of Cepheids and the classification
accuracy for different classes of variable stars.

4.1. Structural analysis and classification

4.1.1. Fundamental mode (FU) Cepheids

We use the light curve data for 1829 FU classical Cepheids
from various sources as mentioned in Table 1 (Data set
IIA+IIB+IIC). The majority of the data used in the analysis are
from the OGLE database. The Fourier decomposition of all the
1829 Cepheid light curves was independently done by us for
the calculation of the Fourier decomposition parameters as de-
scribed in Sect. 2. We verified that all the Cepheid light curves
selected in the present study give a satisfactory light curve shape
with no numerical bumps or deviations when reconstructed us-
ing the Fourier parameters.

PCA is performed on an input matrix consisting of a 1829 ×
100 array corresponding to 100 mag from phase 0 to 1 for
1829 FU Cepheids. The result of the PCA output is shown in
Table 2. We see that first 10 PCs contain nearly 90 percent of the
variance in the data. Figure 4 shows the reconstruction of four
FU Cepheid light curves using the first 1, 3, 7 and 10 PCs.

Kanbur et al. (2002) have tried to explain the resonances us-
ing the PCA on the Fourier coefficients (ai, bi). But due to the

Fig. 3. Examples of interpolation of magnitudes for 100 points. The
upper panel shows the light curve with 100 interpolated data points
for the OGLE longer period eclipsing binary while the lower panel
shows the interpolated data of a long period Mira variable from the
ASAS database. The lighter points denote the interpolated data while
the bigger black dots represent the original data.

Table 2. The first 10 eigenvectors, their percentage variance and the cu-
mulative percentage of variance of 1829 fundamental mode Cepheids.
The input matrix is an 1829 × 100 array.

PC Eigenvalue Percentage Cum. Percentage
1 41.0424 41.0424 41.0424
2 22.8331 22.8331 63.8755
3 11.7668 11.7668 75.6423
4 5.4564 5.4564 81.0987
5 3.6225 3.6225 84.7212
6 2.4477 2.4477 87.1689
7 1.3398 1.3398 88.5087
8 0.7918 0.7918 89.3005
9 0.6435 0.6435 89.9440
10 0.6395 0.6395 90.5835

relatively smaller number of data points, they did not give any
definite conclusions about some of the resonances suggested by
Antonello & Morelli (1996) in the period range 1.38 < log P <
1.43. By doing the PCA analysis of the same data as used by
Antonello & Morelli (1996), Kanbur et al. (2002) could not find
any feature in that period range. Based on the available light
curves covering a wide range of periods, we have plotted R21,
R31, φ21, φ31 versus log P in Fig. 5. It is evident from the plots
that there is a definite structural change in the Fourier coeffi-
cients at periods log P ∼ 1.0 and 1.5, the latter being close to
the period range 1.38 < log P < 1.43 suggested by Antonello &
Morelli (1996). We see that the Fourier decomposition parame-
ters R21 and R31 decrease until log P ∼ 1.0, increase thereafter
until log P ∼ 1.5 and after that R21 and R31 fall gradually again
until log P ∼ 2.10. Similarly in the φ21 and φ31 plane, we see a
sharp discontinuity around log P ∼ 1. The sharp and the more
prominent discontinuity around log P ∼ 1.0 is reflected in both
φ21 and φ31 plots, whereas the other changes in the light curve

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912851&pdf_id=3
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Fig. 4. Reconstruction of FU Cepheid light curves using the first 1, 3, 7
and 10 principal components. The input matrix is an array of 1829 rows
(stars) and 100 columns (magnitudes from phase 0 to 1). The black dots
represent the original 100 interpolated data points normalized to unit
magnitude.

Fig. 5. Fourier parameters R21, R31, φ21, φ31 as a function of log (period)
for the 1829 FU Cepheids (data set IIA+IIB+IIC, Table 1). The Fourier
parameters for the I band stars and V band stars are marked with filled
circles and filled triangles respectively.

structures around the period log P ∼ 1.5 are visible in all the
Fourier parameter plots.

In Fig. 6 we plot the first two PCs and PC1 × PC2 (PC1 × 2)
against log P. For PC1, PC2 and PC1 × 2, a discontinu-
ity around log P = 1.0 is visible. PC1, PC2 and PC1 × 2
clearly show a change around the period log P ∼ 1.5. But the

Fig. 6. First two PCs as a function of log (Period) for the
1829 FU Cepheids (Data set IIA+IIB+IIC, Table 1). The Fourier pa-
rameters for the I band stars and V band stars are marked with filled
circles and filled triangles respectively.

discontinuity around log P ∼ 1 as revealed by the Fourier param-
eters φ21 and φ31 in Fig. 5 is much more pronounced compared
to the PC plots.

Kanbur et al. (2002), using the PCA analysis on the Fourier
coefficients, did not find any structure changes in the period
range 1.38 < log P < 1.43. Using PCA on a larger light curve
data set, we have found that in fact there are structural changes
around log P ∼ 1 and 1.5 and hence there may exist resonances
around these periods. While the resonance around the period
log P ∼ 1 is well-known, the first two PCs and PC1 × 2 show
a change in the light curve structure around log P = 1.5. It is
difficult to pinpoint the exact location of the change in structure
because of fewer stars in the period around log P ∼ 1.5. Model
calculations are necessary to confirm the existence of this reso-
nance. Further, Antonello & Poretti (1996) also used a number
of data points of the longer period side and found some evidence
of a decrease of R21 at longer periods around (log P ∼ 2). It is
difficult to confirm the existence of such a resonance from ei-
ther FD or PCA although we see some change in trend in the
first two PCs around this period. Therefore, although there are
changes in the light curve structures around the periods log P ∼
1.5 and 2.10 days, one cannot confirm the existence of reso-
nances around these periods. Such information about these reso-
nances are generally derived from the combined photometric and
spectroscopic observations and radiative hydrodynamical model
calculations (Kienzle et al. 1999).

4.1.2. First overtone (FO) Cepheids

The light curves of FO Cepheids show a discontinuity in
the Fourier phase parameters φ21 and φ31 around a period of
∼3.2 days. This is shown in Fig. 7 for the OGLE data (Data
set III) of 1228 FO Cepheids. This feature was interpreted as
the signature of 2:1 resonance between the first and fourth over-
tones (Antonello & Poretti 1986). This feature was however not
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Fig. 7. Fourier parameters R21, R31, φ21, φ31 as a function of log (period)
for 1228 LMC overtone Cepheids (data set III).

reproduced in the hydrodynamical models and in the Fourier pa-
rameters of highly accurate observational radial velocity curves
of FO Cepheids (Kienzle et al. 1999). By means of hydrodynam-
ical models for FO Cepheids, Kienzle et al. (1999) have shown
that the 3.2 day is not the resonance, the true resonance is at
around 4.5 d and 3.2 d is not a resonance. On the other hand
Buchler et al. (1996) suggested that for a consistent picture on
the evolutionary mass-luminosity relations, the FO Cepheid res-
onance should occur at P = 4.3 days. Therefore, not all such
structures in the photometric Fourier parameters need to be con-
nected to the resonances.

On the other hand, by analyzing the Fourier coefficients of a
large number of FO LMC Cepheids in the OGLE III database,
Soszyński et al. (2008) found a change in the photometric
Fourier parameters around a period of ∼0.35 d. The short-period
discontinuity at 0.35 d can be explained by the presence of the
2:1 resonance between the first and fifth overtones in stars with
masses of about 2.5 M� (Dziembowski & Smolec 2009).

In Fig. 7, we plot the Fourier parameters R21, φ21, R31, φ31
for 1228 LMC FO Cepheids (Data set III in Table 1). The op-
timal order of the fit to the Fourier method has been found to
be 10. There is a definitive marked structure of discontinuity in
the Fourier plots at periods around 0.35 and 3.2 days.

We now try to find out whether our PCA procedure can ex-
tract the information about the structure changes. We carry out
PCA on a 1228 × 100 matrix of 1228 LMC FO Cepheids with
100 I band magnitudes corresponding to phase 0 to 1 in steps
of 0.01. Figure 8 shows the plot of first three PCs versus the pe-
riod. A sharp discontinuity around the shorter period end near
0.35 day is evident in all the PC plots. Also, some change in the
light curve structure seems to occur near to 4 days for all the
PC plots. There is no change in the light curve structure around
3.2 days in PC2 and PC3 whereas in PC1, there is a change in
the light curve shape around a period of ∼3.2 days.

Thus, we see that the Fourier parameters performed better
in bringing out the structural changes in FU Cepheids while
for FO Cepheids the performance of FD and PCA techniques
is similar.

Fig. 8. First three PCs versus period for LMC overtone Cepheids (data
set III). The change in the light curve shape as shown in Fig. 7 is also
seen from the PC plots. The input matrix is an array of 1228 rows (stars)
and 100 columns (magnitudes from phase 0 to 1).

4.1.3. Classification

We now explore the possibility of classification of different
classes of variable stars on the basis of FD & PCA. We use the
Fourier decomposition parameter R21 and the first principal com-
ponent PC1 to classify all the 17 606 stars of different variability
classes in Table 1. In Fig. 9 we plot the Fourier parameter R21
versus log P. As may be seen, the Mira variables form a sep-
arate group because of their longer periods and not because of
separation in R21. However, in the intermediate period range (1
to 100 days), eclipsing binaries have distinct R21 values from
other classes of variables. Figure 10 shows the plot of log R21
to demonstrate the complete range of R21 for 4085 eclipsing bi-
naries. In the short period range there is a considerable overlap
between the FO Cepheids and RRc stars. This degeneracy in the
Fourier parameter R21 in the short period range cannot be lifted
and the classification accuracy cannot be improved by further
manipulation.

We carry out the PCA on a 17 606 × 100 matrix of
17 606 stars, each star having 100 values of magnitudes in their
light curves. We have used the first principal component (PC1)
as it contains the maximum variance in this data set. As in the
case of FD, the PCA is able to separate the Mira variables and
the eclipsing binaries and the separation is more effective in the
case of PCA (Fig. 11). The plot of PC1-log P space also shows
that although PC1 is able to separate the eclipsing binaries and
Mira variables, there is some overlap in the regions dominated
by RR Lyraes and Cepheids. In the next step, we choose only
the samples of RR Lyraes (RRab & RRc) and Cepheids (FU &
FO) that could not be separated well by the use of PCA on the
whole data set. We now run PCA on 10 643 light curves (Data

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912851&pdf_id=7
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Fig. 9. The classification based on R21 obtained from the FD method.
L and S denote the LMC and SMC objects respectively.

Fig. 10. The classification based on log R21 obtained from the
FD method.

set IA+IB+IIA+IIB+IIC+III) of RR Lyraes and Cepheids. The
result of PCA on this 10 643 × 100 array is shown in Fig. 12.
It may be noted that PC1 is able to separate FU Cepheids and
RRab stars to a large extent while there is some overlap between
RRc and FO Cepheids in a narrow period range (0.25−0.5 d).
We hope to return to this degeneracy problem in a subsequent
study in which we also intend to increase the sample by adding
more classes of variables.

Fig. 11. The classification based on PC1 obtained from PCA of 100
interpolated magnitudes for the phase from 0 to 1 in steps of 0.01.

Fig. 12. The classification between RR Lyraes (RRab & RRc) and
Cepheids (FU & FO) based on PC1.

5. Conclusions

Fourier decomposition is a trusted and much applied technique
for analyzing the behaviour of light curves of periodic variable
stars. It is well suited for studying individual light curves as the
Fourier parameters can be easily determined. However, when
the purpose is to tag a large number of stars for their variable
class using photometric data from large surveys, the technique
becomes slow and cumbersome and each light curve has to be
fitted individually and then analyzed. The same is true if the aim
is to look for resonances in the light curves in an automated way

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912851&pdf_id=9
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for a large class of pulsators. It is, therefore, desirable to look for
methods that are reliable, automated and unsupervised and can
be applied to the available light curve data directly.

Some attempts have been made in the recent past to use the
well known PCA for the light curve analysis, but the major draw-
back of these studies was that they required the calculation of the
Fourier parameters which then went as input to the PCA. This
meant that the PCA, which was supposed to replace the Fourier
decomposition, in fact relied on it. Also for precise and accu-
rate determination of Fourier parameters, the light curve should
have good phase coverage and less noisy data points so that the
fit to the light curve is good enough to rely on its parameters.
But this is not the case for every light curve data generated from
the automated surveys. Sometimes there are gaps and/or outliers
in the data. The fitting of such a light curve will give a wrong
estimation of the Fourier parameters.

In this paper we have used the original light curve data for
computation of the principal components. It involves four simple
steps: a) to phase each light curve between 0 to 1 with the respec-
tive period in days. b) Interpolation of light curve magnitudes in
short steps (0.01) between phase 0 to 1 to obtain 100 points of
magnitude for each light curve. c) Normalize the magnitudes be-
tween 0 and 1 for each of the light curves and d) to do PCA on
the normalized magnitudes of 100 points for all the light curves.

The PCA is then used to analyse the structure of the light
curves of classical Cepheids and the results compared with those
obtained from the analysis of the Fourier parameters. In addition,
the two techniques are compared regarding their ability to clas-
sify stars into different variability classes.

We applied the PCA technique to study the structure of light
curves of fundamental and first overtone Cepheids. By choos-
ing a large data set of a large range of periods, we have shown
that the structure of the fundamental mode Cepheid light curves
shows significant changes around the periods log P ∼ 1 and 1.5.
The resonance around the period log P ∼ 1 is well known. The
first two PCs also show that the behavior of the light curves
changes around the period log P ∼ 1.5 which is close to the res-
onance suggested by Antonello & Poretti (1996) in the period
range 1.38 < log P < 1.43. There is some evidence of a struc-
tural change in the light curve shape around the period log P ∼
2.0 also but this can be confirmed only when longer period data
become available. We find that the Fourier parameters performed
better in bringing out the discontinuities in FU light curves at pe-
riods around log P ∼ 1.

For the first overtone LMC Cepheids, we find a discontinu-
ity at a shorter period of ∼0.35 d. The first few PCs also show a
clear trend of structural changes of the first overtone Cepheids at
this short period. For FO Cepheids, the performance of FD and
PCA is similar in bringing out the structural changes around a
period of 0.35 days. We have been able to find this feature be-
cause of the availability of a significant number of light curves
towards the shorter period end of the LMC Cepheids in the
OGLE database. The PCA technique can easily find similar res-
onances in the Galactic and SMC first overtone Cepheids as and
when there is substantial data available for the short period ob-
jects of this class.

We have also demonstrated the ability of PCA and its distinct
advantage over the FD method in classifying stars into different
variability classes. Although alternative automated methods for
variable star classification exist, the PCA based technique can be
used as a first step in a hierarchical classification scheme because
of its accuracy and efficiency.

The data compression ratio using PCA on the direct light
curve data is enormous, a fact that has great relevance when deal-
ing with large databases of the future. Also, we have shown some
preliminary results of variable star classification for an ensemble
of 17 606 stars selected in the present analysis. In a future paper,
we will describe the application of the PCA technique to a larger,
more diverse database by looking at the classification accuracy
and errors.
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