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Light curves from rapidly rotating neutron stars
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ABSTRACT

We calculate light curves produced by a hotspot of a rapidly rotating neutron star, assuming that

the spot is perturbed by a core r mode, which is destabilized by emitting gravitational waves.

To calculate light curves, we take account of relativistic effects, such as the Doppler boost due

to the rapid rotation and light bending, assuming the Schwarzschild metric around the neutron

star. We assume that the core r modes penetrate to the surface fluid ocean to have sufficiently

large amplitudes to disturb the spot. For an l′ = m core r mode, the oscillation frequency

ω ≈ 2m�/[l′(l′ + 1)] defined in the corotating frame of the star will be detected by a distant

observer, where l′ and m are, respectively, the spherical harmonic degree and the azimuthal

wavenumber of the mode, and � is the spin frequency of the star. In a linear theory of oscillation,

using a parameter A, we parametrize the mode amplitudes, such that max(|ξθ |, |ξφ|)/R = A

at the surface, where ξθ and ξφ are, respectively, the θ and φ components of the displacement

vector of the mode and R is the radius of the star. For the l′ = m = 2 r mode with ω = 2�/3,

we find that the fractional Fourier amplitudes at ω = 2�/3 in light curves depend on the

angular distance θs of the spot centre measured from the rotation axis and become comparable

to or even larger than A ∼ 0.001 for small values of θs.

Key words: stars: magnetic field – stars: neutron – stars: oscillations – stars: rotation.

1 IN T RO D U C T I O N

Accretion-powered millisecond X-ray pulsars in low-mass X-ray binaries (LMXBs) show small amplitude, almost sinusoidal X-ray time-

variations, the dominant periods of which are thought to correspond to the spin periods of the neutron stars (e.g. Lamb & Boutloukos 2008).

Lamb et al. (2009) argued that the millisecond X-ray variations are produced by an X-ray-emitting hotspot located at a magnetic pole of the

rotating neutron star and that so long as the centre of the hotspot is only slightly off the rotation axis, the X-ray variations produced will have

small amplitudes and become almost sinusoidal. They also suggested that if the hotspot is located close to the rotation axis, a slight drift of

the hotspot away from the rotation axis leads to appreciable changes in the amplitudes and phases of the X-ray variations. Lamb et al. (2009)

pointed out that a temporal change in mass-accretion rates and hence the radius of the magnetosphere, for example, can cause such a drift of

the hotspot.

It is now well known that neutron stars can support various kinds of oscillation modes (e.g. McDermott, Van Horn & Hansen 1988).

There has been, however, no observational evidence that definitely indicates global oscillations of the stars, probably except for quasi-periodic

oscillations (QPOs) observed in the tail of giant X-ray flares from soft gamma-ray repeaters (SGRs) (Duncan 1998; Israel et al. 2005;

Strohmayer & Watts 2005, 2006; Watts & Strohmayer 2006), which are believed to have a global magnetic field as strong as B � 1014 G at

the surface (e.g. Woods & Thompson 2006). The QPOs observed in SGRs may be caused by damping oscillations excited when a sudden

restructuring of a global magnetic field in the neutron star takes place. For any global oscillations of a neutron star to become observable,

mechanisms are needed that excite the oscillations to have amplitudes large enough to produce observable variations in the radiation flux.

The ǫ mechanism can be an example of such excitation mechanisms for low-frequency g modes and r modes in the surface fluid layers

of mass-accreting neutron stars (e.g. Strohmayer & Lee 1996; Narayan & Cooper 2007). In fact, the r modes propagating in the surface

fluid layers of mass-accreting neutron stars have been proposed for the burst oscillations observed during type I X-ray bursts in LMXBs

(Strohmayer et al. 1996, 1997; Heyl 2004, 2005; Lee 2004; Lee & Strohmayer 2005). It is also argued that retrograde oscillation modes can

be destabilized by emitting gravitational waves, if they satisfy the frequency condition given by 0 < ω/� < m (Friedman & Schutz 1978),

and that r modes, which are retrograde modes, become unstable to the gravitational radiation reaction (Andersson 1998), where � is the spin
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482 K. Numata and U. Lee

frequency of the star, ω is the oscillation frequency observed in the corotating frame and m is the azimuthal wavenumber of the mode. r

modes in the fluid core of rapidly rotating neutron stars have been a subject of intensive study (e.g. Lindblom, Owen & Morsink 1998; Owen

et al. 1998; Lockitch & Friedman 1999; Yoshida & Lee 2000a,b, 2001) and are now regarded as a possible candidate for oscillation modes

of a neutron star that are excited to produce observable effects.

If a hotspot on a rapidly rotating neutron star can produce clean light curves without any strong harmonics of the spin frequency, it may

be possible to use the light curves as a probe into oscillation modes that are excited to periodically disturb the spot so that the periodicities

of the modes manifest themselves in the light curves. In this paper, we calculate light curves by a hotspot taking account of the disturbances

by r modes in the fluid core, which are assumed to be excited by emitting gravitational waves. Although the amplitudes of the r modes are

confined into the core, in the presence of a global magnetic field, the amplitudes may penetrate to the surface fluid ocean (e.g. Lee 2010).

In general, the radial component of the displacement vector of the r modes at the surface has amplitudes much smaller than those of the

horizontal and toroidal components, and hence the temperature variations at the surface produced by the r modes would be too small to have

observable amplitudes. If the horizontal component of the r modes is large enough to deform the hotspot appreciably, on the other hand, the

periodic deformation of the spot may manifest itself in the light curves produced by the hotspot. Section 2 describes the method of solution,

numerical results are given in Section 3 and Section 4 provides the conclusion.

2 M E T H O D O F C A L C U L AT I O N

We consider a rapidly rotating neutron star having a hotspot on the surface and assume that r modes in the fluid core are destabilized by

emitting gravitational waves (Andersson 1998; Friedman & Morsink 1998). For a distant observer, light curves produced by the hotspot will

then be observed to have periodic flux variations with the dominant period equal to the spin period of the star. If the core r modes excited by

emitting gravitational waves can penetrate the solid crust to have sufficient amplitudes at the surface to give periodic disturbances to the spot,

it is expected that the periodicities due to the core r modes will be contained in the light curves from the hotspot. It is the aim of this section

to present a method of calculation of light curves produced by a surface hotspot, which is disturbed by a core r mode.

It is convenient to use two Cartesian coordinate systems (x, y, z) and (x ′, y ′, z′) and to assume that the distant observer is in the x–z and

x ′–z′ planes, where the z-axis is the spin axis of the star and z′-axis is pointing to the distant observer and y = y ′. We denote the spherical

polar coordinates associated with the Cartesian coordinates by (r, θ, φ) and (r ′, θ ′, φ′), where the z-axis (z′-axis) corresponds to the axis

defined by θ = 0 (θ ′ = 0). We denote the inclination angle between the z-axis and z′-axis by i. If we assume Schwarzschild metric to calculate

photon trajectories around the spinning neutron star, for a photon emitted from a point (R, θ ′, φ′) on the surface of the star and reaching the

distant observer, the angle θ ′ is given by (see Pechenick, Ftaclas & Cohen 1983):

θ ′ =

∫ ∞

R

dr ′

r ′2

[

1

b2
−

1

r ′2

(

1 −
rg

r ′

)

]−1/2

, (1)

where b is the impact parameter given by

b =
R

√

1 − rg/R
sin δ, (2)

where δ is the angle between the surface normal vector n and the direction vector l, measured by a non-rotating observer at the stellar surface,

of the photon that reaches the distant observer, rg = 2GM/c2 is the Schwarzschild radius, R and M are the radius and mass of the star, and

G and c are the gravitational constant and the light velocity, respectively. Note that the three vectors n, l and k′ are coplanar, where k′ is the

unit vector along the z′-axis. The observed differential flux d FE may be given by (e.g. Poutanen & Gierliński 2003):

dFE = IEdO =

√

1 − rg/R

D2
η3ÎÊ

(

δ̂
) d cos δ

d cos θ ′
cos δ̂ dŜ, (3)

where IE and dO are the intensity of radiation at energy E and the solid angle seen by a distant observer, respectively, D is the distance to

the observer from the centre of the star, ÎÊ

(

δ̂
)

is the intensity of radiation at energy Ê into the direction angle δ̂ measured from the surface

normal and dŜ is the area of a surface element on the surface and the hatted quantities indicate those defined in the frame corotating with the

star, and we have used cos δ dS = cos δ̂ dŜ (e.g. Lind & Blandford 1985; Ghisellini 2000). Here, η is the Doppler factor given by

η =
1

γ (1 − β cos ζ )
, (4)

where

γ =
1

√

1 − β2
, β =

R�/c
√

1 − rg/R
sin θ and cos ζ = −

sin δ

sin θ ′
sin i sin φ. (5)

Integrating the flux d FE by photon energy E measured by a distant observer, we obtain

dF =
(1 − rg/R)

D2
η5 cos δ

d cos δ

d cos θ ′
Î

(

δ̂
)

dŜ, (6)

where we have used

E = η
√

1 − rg/RÊ, η cos δ = cos δ̂ and Î
(

δ̂
)

=

∫ ∞

0

ÎÊ

(

δ̂
)

dÊ. (7)
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Light curves from rotating neutron stars 483

Assuming Î (δ̂) = Î0 is homogeneous blackbody radiation independent of δ̂ and integrating over the surface in the corotating frame, we have

F =
(

1 −
rg

R

)

Î0

R2

D2

∫

Ŝ

η5 sin δ

sin θ ′

d sin δ

dθ ′
sin θ̂ dθ̂ dφ̂, (8)

where (r̂ , θ̂ , φ̂) are spherical polar coordinates in the corotating frame of the star, and we assume θ = θ̂ and φ = φ̂ + �t with � being

the spin frequency of the star observed by a distant observer, and t is the coordinate time at infinity. Hereafter, (r̂ , θ̂ , φ̂) and (x̂, ŷ, ẑ) denote

coordinates defined in the corotating frame of the star.

To take account of the effects of periodic disturbances due to core r modes on the spot, we first calculate small amplitude oscillations

of rotating and magnetized neutron stars in Newtonian dynamics, disregarding general relativistic effects on the oscillations (Lee 2010). We

introduce a dipole magnetic field given by B = μm∇(cos θ/r2), whose magnetic axis is assumed to align with the spin axis of the star, where

μm is the magnetic dipole moment. Since the magnetic pressure in the deep interior is much smaller than the gas pressure for neutron stars

with a magnetic field whose strength at the surface is comparable to or less than ∼1012G, we treat the fluid core as being non-magnetic

(e.g. Lee 2007, 2010). Since we have assumed that the spin axis is the magnetic axis, the temporal and azimuthal angular dependence of

oscillations can be represented by a single factor ei(mφ̂+ωt), where m is the azimuthal wavenumber around the rotation axis and ω ≡ σ + m�

is the oscillation frequency in the corotating frame of the star with σ being the oscillation frequency in an inertial frame. Since the angular

dependence of the oscillations in a rotating and magnetized star cannot be represented by a single spherical harmonic function, we expand the

perturbed quantities in terms of spherical harmonic functions Y m
l (θ, φ) with different values of l for a given m, considering that the axis of

rotation coincides with that of the magnetic field. The displacement vector ξ is then represented by a finite-series expansion of length jmax as

ξ

r̂
=

jmax
∑

j=1

[

Slj (r̂)Y m
lj

(θ̂ , φ̂)êr + Hlj (r̂)∇HY m
lj

(θ̂ , φ̂) + Tl′
j
(r̂) êr × ∇HY m

l′
j

(θ̂ , φ̂)
]

eiωt , (9)

where êr , êθ and êφ are the orthonormal vectors in the r̂ , θ̂ and φ̂ directions, respectively, and

∇H = êθ

∂

∂θ̂
+ êφ

1

sin θ̂

∂

∂φ̂
, (10)

and lj = |m| + 2(j − 1) and l′j = lj + 1 for even modes, and lj = |m| + 2j − 1 and l′j = lj − 1 for odd modes, where j = 1, 2, 3, · · · , jmax.

Substituting these expansions into the linearized basic equations, we obtain a finite set of coupled linear ordinary differential equations for

the expansion coefficients Slj , Hlj and Tl′
j

(e.g. Lee 2007, 2010). When the angular dependence of the displacement vector at the surface is

represented by the functions �j

(

θ̂
)

defined by

�r (θ̂)eimφ̂ =

jmax
∑

j=1

Slj (R) Y m
lj

(θ̂ , φ̂) (11)

�θ (θ̂)eimφ̂ = êθ ·

jmax
∑

j=1

[

Hlj (R)∇HY m
lj

(θ̂ , φ̂) + Tl′
j
(R) êr × ∇HY m

l′
j

(θ̂ , φ̂)
]

, (12)

�φ(θ̂)eimφ̂ = −iêφ ·

jmax
∑

j=1

[

Hlj (R)∇HY m
lj

(θ̂ , φ̂) + Tl′
j
(R) êr × ∇HY m

l′
j

(θ̂ , φ̂)
]

, (13)

we can rewrite the displacement vector at the surface as

ξ

R
=

[

�r (θ̂)êr + �θ (θ̂ )êθ + i�φ(θ̂)êφ

]

exp i(mφ̂ + ωt), (14)

the real part of which is given by

Re (ξ )

R
=

[

�r (θ̂ )êr + �θ (θ̂ )êθ

]

cos(mφ̂ + ωt) − �φ(θ̂ )êφ sin(mφ̂ + ωt). (15)

Note that mφ̂ + ωt = mφ + σ t . In Fig. 1, the functions �r , �θ and �φ of the l′ = m = 2 core r mode calculated for a 0.5-M⊙ neutron star

model composed of a fluid core, a solid crust and a fluid ocean are plotted from the left-hand to right-hand panels, for �̄ ≡ �/
√

GM/R3 = 0.1,

0.2 and 0.3, where we have assumed B0 = 1010 G with B0 being the strength of a dipole magnetic field at the surface (see Lee 2010), and

in each panel the amplitudes of the functions are normalized by max(|�r |, |�θ |, |�φ |). As shown by the figure, since the amplitudes of the

function �r at the surface are much smaller than those of �θ and �φ for the r modes, we neglect the term �r in the following. In a linear

theory of stellar oscillations, the amplitudes of the oscillations are indeterminate, and we have to treat the amplitudes as a parameter. In this

paper, using a parameter A, we normalize the oscillation amplitudes, such that max(|�θ (θ̂)|, |�φ(θ̂)|) = A in 0 ≤ θ̂ ≤ π.

Let us write the vector pointing from the stellar centre to the centre of a circular hotspot in the corotating frame as r̂ s = Rn̂s, where

n̂s = sin θ̂s cos φ̂s î + sin θ̂s sin φ̂s ĵ + cos θ̂s k̂, (16)

and θ̂s denotes the colatitude of the spot centre measured from the spin axis of the star, and î, ĵ and k̂ are the orthonormal vectors in the x̂, ŷ

and ẑ directions, respectively. If the angular radius of the circular hotspot is equal to α, we have for points r̂ = Rn̂ on the spot

n̂s · n̂ ≥ cos α, (17)
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484 K. Numata and U. Lee

Figure 1. �r , �θ and �φ versus cos θ for the l′ = m = 2 r modes calculated for a neutron star model composed of a fluid core, a solid crust and a fluid ocean.

The dashed, solid and dotted curves represent �r , �θ and �φ , respectively, and the amplitudes are normalized by max(|�r |, |�θ |, |�φ |). For the left-hand,

middle and right-hand panels, �̄ ≡ �/
√

GM/R3 = 0.1, 0.2 and 0.3, respectively.

where n̂ = sin θ̂ cos φ̂ î + sin θ̂ sin φ̂ ĵ + cos θ̂ k̂. The outer boundary of the circular spot is given by n̂s · n̂b = cos α, that is,

sin θ̂b sin θ̂s cos(φ̂b − φ̂s) + cos θ̂b cos θ̂s = cos α, (18)

where n̂b = sin θ̂b cos φ̂b î + sin θ̂b sin φ̂b ĵ + cos θ̂b k̂. If the hotspot is deformed by an r mode having the displacement vector ξ , the outer

boundary of the spot is approximately given by

(r̂d, θ̂d, φ̂d) = (R, θ̂b + δθ, φ̂b + δφ), (19)

where

δθ = ξθ (R, θ̂b, φ̂b)/R = �θ (θ̂b) cos(mφ̂b + ωt) (20)

and

δφ = ξφ(R, θ̂b, φ̂b)/(R sin θ̂b) = −�φ(θ̂b) sin(mφ̂b + ωt)/ sin θ̂b, (21)

where |ξ/R| ≪ 1 is assumed.

If using n̂ we define a vector n̂⊥, perpendicular to n̂s, as

n̂⊥ = n̂ − (n̂ · n̂s) n̂s ≡ −Y ês
θ + Xês

φ, (22)

we have

X = sin θ̂ sin(φ̂ − φ̂s), Y = −cos θ̂s sin θ̂ cos(φ̂ − φ̂s) + sin θ̂s cos θ̂ , (23)

where ês
θ and ês

φ are the orthonormal vectors in the θ̂ and φ̂ directions and are perpendicular to ês
r = n̂s. For n̂ = n̂b that satisfies equation (18),

we obtain

X2
b + Y 2

b = 1 − cos2 α, (24)

where

Xb = sin θ̂b sin(φ̂b − φ̂s), Yb = −cos θ̂s sin θ̂b cos(φ̂b − φ̂s) + sin θ̂s cos θ̂b. (25)

For n̂ = n̂d, on the other hand, we have

Xd = sin(θ̂b + δθ ) sin(φ̂b + δφ − φ̂s), Yd = −cos θ̂s sin(θ̂b + δθ ) cos(φ̂b + δφ − φ̂s) + sin θ̂s cos(θ̂b + δφ). (26)

A plot of (Xd, Yd) in a plane may be regarded as a projection of the outer boundary of the deformed spot on to a plane perpendicular to the

vector n̂s. Examples of the plots (Xb, Yb) and (Xb, Yb) are given in Fig. 2 for �̄ = 0.1 and in Fig. 3 for �̄ = 0.3, where for the spot of

α = 20◦, we have assumed θs = 10◦, 20◦ and 30◦, from the left-hand to right-hand panels in each figure, and A = 0.1 for the amplitudes of

the functions �θ and �φ of the l′ = m = 2 r modes given in Fig. 1. Note that we have assumed for simplicity that the oscillation frequency of

the l′ = m = 2 r mode is exactly equal to ω = 2m�/[l′(l′ + 1)] = 2�/3 in the corotating frame. The deviation of the r mode frequency from

the analytic formula 2m�/[l′(l′ + 1)] for neutron stars depends on various parameters, such as the spin frequency, the solid crust thickness,

the equation of state, the thermal stratification in the core, the general relativistic effects, etc., and since it is not our main concern here to

investigate how the light curves depend on the frequency deviation, we have simply assumed ω = 2m�/[l′(l′ +1)] for the modes. The figures

show periodic deformation of the spot shape, caused by the l′ = m = 2 r mode, as seen in the corotating frame of the star. As shown by the

middle panels of the figures, for α = 20◦ and θs = 20◦, the outer boundary of the spot touches the pole of θ̂ = 0, at which �θ and �φ vanish.

Since the amplitudes of the functions �θ and �φ show a sharp increase around the poles for �̄ = 0.3, the outer boundary of the spot is largely

deformed when θs ∼ α.

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 409, 481–490

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
0
9
/2

/4
8
1
/1

0
3
5
7
2
8
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2



Light curves from rotating neutron stars 485

Figure 2. Plots of (Xb, Yb) and (Xd, Yd) for the spot of α = 20◦ computed using the functions �θ and �φ for the l′ = m = 2 r mode at �̄ = 0.1, where

θs = 10◦, 20◦ and 30◦, from the left-hand to right-hand panels, and we assume ω = 2�/3 and A = 0.1. Here, the black curve is for the non-perturbed spot

(Xb, Yb) and the blue, red and green curves represent the perturbed spot (Xd, Yd) at �t/(2π) = 0, 1 and 2, respectively.

Figure 3. Same as Fig. 2, but for �̄ = 0.3.

3 N U M E R I C A L R E S U LTS

Examples of light curves produced by a hotspot of α = 20◦ are plotted as a function of �t/(2π) in Fig. 4 for �̄ = 0.1 and in Fig. 5 for

�̄ = 0.3, where θs = 10◦ for panel (a) and 30◦ for panel (b), and we have assumed M = 1.4 M⊙, R = 106 cm for the neutron star, and

ω = 2�/3 and A = 0.01 for the l′ = m = 2 r modes. Here, we have also assumed that Î0 is constant. The figures show that the amplitudes of

δF = (F − Fm)/Fm, where Fm is the mean flux, increase when the angular distance θs of the spot centre or the inclination angle i increases.

An increase in the spin frequency also tends to increase the amplitudes of the variations δF through the Doppler factor, particularly for large

values of θs and i. For a oscillation amplitude A = 0.01, we can clearly see the r modes cause periodic modulations of the amplitudes of δF .

Using light curves F(t), we calculate the discrete Fourier transform aj(j = − N/2, · · · , N/2−1) defined by

aj =

N−1
∑

k=0

F (tk) exp(2πifj tk), (27)

where N is the total number of sampling points in the time-span �T , tk = k�T /N, fj = j/�T and |aj| = |a−j | for a real function F(t),

and k and j are integers. For light-curve calculations, we use N = N1N2 with N1 = 26 and N2 = 25, so that we have the Nyquist frequency

νNy = 1/(2δt) with δt = Ps/N1 and the time-span �T = PsN2, where Ps = 2π/� is the spin period. In Fig. 6, the fractional Fourier

amplitudes aj/a0, which are proportional to the fractional rms, are plotted as functions of σj/� with σj ≡ 2πfj for light curves calculated

assuming M = 1.4 M⊙, R = 106 cm and �̄ = 0.3. The dominant peak of aj/a0 appears at σj = � due to the spin frequency � of the star,

which we may call the fundamental, and there also appear weaker peaks at σj = 2� (first overtone) and 3� (second overtone). Because of the

periodic modulations caused by the l′ = m = 2 r mode having the frequency ω = 2m�/[l′(l′ + 1)] = 2�/3 in the corotating frame, we also

have a noticeable peak at σj = 2�/3. Note that a distant observer will detect the r mode frequency measured in the corotating frame, instead

of that in an inertial frame, because we are seeing waves restricted to the spot comoving with the star. Although the peak at σj = 2�/3 is

almost insensitive to the inclination angle i, the peak at σj = � becomes higher as i or θs increases (e.g. Lamb et al. 2009). It is reasonable

that the peak at σj = 2�/3 is approximately proportional to the amplitude parameter A, but the peak at σj = � is insensitive to it. We also

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 409, 481–490
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486 K. Numata and U. Lee

Figure 4. Light curves F/Fm produced by a hotspot of α = 20◦ for �̄ = 0.1 as functions of �t/(2π) for θs = 10◦ (panel a) and 30◦ (panel b), where Fm

is the mean flux, and the dashed, dash–dotted, dotted and solid lines are for the inclination angles i = 10◦, 30◦, 50◦ and 70◦, respectively. Here, we assume

M = 1.4 M⊙ and R = 106 cm for the neutron star, and ω = 2�/3 and A = 0.01 for the l′ = m = 2 r mode.

Figure 5. Same as Fig. 4, but for �̄ = 0.3.

note that much weaker peaks, which seem to be proportional to the parameter A, are found at σj = k� ± j2�/3 with k and j being integers

as a result of non-linear couplings between the frequencies k� and j2�/3.

The fractional amplitudes aj/a0 are plotted versus θs in Fig. 7 for �̄ = 0.1 and in Fig. 8 for �̄ = 0.3. In general, the peaks at σj = � and

2� increase their height with increasing θs. On the other hand, the peak at σj = 2�/3 shows rather a complicated behaviour with increasing

θs, depending on the parameter α and the functions �θ (θ̂ ) and �φ(θ̂ ), but as θs → 0 its height simply increases to become even higher than

the peak at σj = 2�, because in this limit the periodic deformation of the spot shape is the only cause for any periodicities. For the amplitude

parameter A = 10−3, for example, the amplitude aj/a0 at σj = 2�/3 stays less than 10−3, when θs � 10◦, for both cases of �̄ = 0.1 and 0.3,

but it becomes as large as ∼0.01 for small values of θs. We also note that although the peaks at σj = � and 2� are dependent on the angle i,

the peak at σj = 2�/3 is almost insensitive to i, because no effects of the velocity field due to the r modes are included. Fig. 9 gives plots of
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Light curves from rotating neutron stars 487

Figure 6. Normalized Fourier amplitudes aj/a0 as functions of σj /� calculated for light curves produced by a hotspot of α = 20◦ for θs = 10◦ (panel a) and

30◦ (panel b), where �̄ = 0.3, and the black and red lines are for A = 0.01 and 0.001, respectively, and the solid and dotted lines are for the inclination angle

i = 30◦ and 10◦, respectively. Here, we assume M = 1.4 M⊙ and R = 106 cm.

Figure 7. Normalized Fourier amplitudes aj/a0 as functions of the angular distance θs of the spot centre from the rotation axis of the star for α = 20◦

(panel a) and α = 40◦ (panel b), where the black and red lines are for i = 50◦ and 10◦, respectively, and the solid, dotted and dashed lines are for the

fundamental σj = �, the first overtone σj = 2� and the l′ = m = 2 r-mode σj = 2�/3, respectively. Here, we assume M = 1.4 M⊙, R = 106 cm and

�̄ = 0.1 for the neutron star and A = 0.001 for the mode.

(Xb, Yb) and (Xd, Yd) for the case of �̄ = 0.3, α = 20◦ and θs = 50◦ corresponding to the deep dip found at θs = 50◦ in the panel (a) of Fig. 8.

We find that differences between the spot deformations in different phases �t are rather small compared to those found in the plots of (Xb,

Yb) and (Xd, Yd) in Fig. 3, leading to the dip in aj/a0 associated with σj = 2�/3. We have also examined the dependence of the amplitudes

aj/a0 at σj = 2�/3 on the compactness parameter rg/R and found that the amplitudes are only weakly dependent on the parameter.
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488 K. Numata and U. Lee

Figure 8. Same as Fig. 7, but for �̄ = 0.3.

Figure 9. Plots of (Xb, Yb) and (Xd, Yd) for the spot of α = 20◦ and θs = 50◦, where we have used the functions �θ and �φ computed for the l′ = m = 2 r

mode at �̄ = 0.3 and have assumed ω = 2�/3 and A = 0.1 for the plots. Here, the black curve is for the non-perturbed spot (Xb, Yb) and the blue, red and

green curves are for the perturbed spot (Xd, Yd) for �t/(2π) = 0, 1 and 2, respectively.

4 C O N C L U S I O N

We have calculated light curves produced by a hotspot of a rapidly rotating neutron star, assuming that the hotspot is periodically disturbed by

the horizontal displacement field of the l′ = m = 2 core r mode, which is assumed to be excited by emitting gravitational waves. To calculate

light curves, we have taken account of relativistic effects, such as the Doppler boost due to the rapid rotation and light bending, assuming the

Schwarzschild metric around the star. We have also assumed that the oscillation frequency of the l′ = m = 2 core r mode is exactly equal

to ω = 2�/3 in the corotating frame of the star. It is found that a distant observer will detect in the light curves a periodicity due to the

l′ = m = 2 core r mode and that the observed frequency will be 2�/3, the frequency of the mode defined in the corotating frame of the star,

instead of the frequency 4�/3 defined in an inertial frame for the mode. The fractional Fourier amplitude aj/a0 at σj = 2�/3 in light curves

is approximately proportional to the amplitude parameter A, which parametrizes the mode amplitude, such that max(|�θ (θ̂ )|, |�φ(θ̂ )|) = A

for 0 ≤ θ̂ ≤ π. We find that besides the parameter A the amplitude aj/a0 at σj = 2�/3 depends on the parameter θs, but it is almost insensitive

to the parameters i and rg/R. The reason for the insensitivity of aj/a0 to the parameters may be that no effects of the velocity field due to the

r mode on light curves are taken into account in the calculations and the periodic deformation of the spot shape is restricted to a small area

on the surface. For A = 0.001–0.01, the amplitude aj/a0 at σj = 2�/3 will be ∼0.001–0.01 and becomes comparable to or even greater than

that of the first overtone at σj = 2�, particularly for small values of θs.
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Light curves from rotating neutron stars 489

If we write the oscillation frequency of the r modes observed in the corotating frame of the star as
ω

�
= κ0 + κ2�̄

2 + O(�̄4), (28)

the coefficient κ0 for the r modes with l′ and m is simply given by

κ0 =
2m

l′ (l′ + 1)
, (29)

and the coefficient κ2 depends on the physical properties of neutron stars, such as the equation of state and the deviation from the isentropic

stratification in the core (e.g. Yoshida & Lee 2000a,b). Since the neutron star core is nearly isentropic, such that N 2 ∼ 0 with N being the

Brunt–Väisälä frequency, we only have to consider the l′ = m r modes, for which we have ω ≈ κ0� = 2�/ (m + 1), and we obtain the

frequency ω ≈ 2�/3 for m = 2 in the corotating frame of the star. Although no detection of periodicities ω ≈ 2�/3 associated with the

l′ = m = 2 core r mode has so far been reported, any detection of periodicities caused by the l′ = m core r modes in the X-ray millisecond

pulsation makes it possible to use the frequency deviation given by �ω̄ ≡ ω̄ − κ0�̄ ≈ κ2�̄
3 to derive information about the equations of state

and the thermal stratification in the core.

Employing space–time metric numerically computed for rotating neutron stars instead of the Schwarzschild metric, Cadeau, Leahy &

Morsink (2005) and Cadeau et al. (2007) have discussed the frame-dragging effects on the light curves produced by a small hotspot on the

surface of rapidly rotating neutron stars. Cadeau et al. (2007) have concluded that in most cases, the differences in the light curves between

the choices of metrics are smaller than the differences caused by the spherical or oblate shape of the initial emission surface. We think this

is also the case for light curves produced by a finite hotspot periodically modified by the r mode. We may also guess that the effects of the

rotational deformation of neutron stars on the frequency and surface wave pattern of the r mode, for example, could be more significant than

the frame-dragging effects for light curves. We believe that at the current stage of investigation the frame dragging may be regarded as one

of the effects that become discernible only after very accurate light-curve determination becomes possible observationally and theoretically.

To use a surface hotspot of a rapidly rotating neutron star as a probe into core r modes, the modes must penetrate the solid crust to have

sufficient amplitudes at the surface. The detectability of periodicities due to the core r modes in light curves therefore may depend on, for

example, the thickness of the solid crust, the property of the surface fluid ocean, the strength of the magnetic field, etc. In this paper, although

we have used the functions �θ and �φ computed for a low-mass, cold neutron star model with a thick solid crust, which makes the frequency

spectrum simple, it is desirable to use the functions computed for more massive neutron stars as well, which may have a thin solid crust and

hence have a different oscillation frequency spectrum from that for a cold low-mass neutron star. For accretion-powered neutron stars, it is

also desirable to use mass-accreting neutron star models with a hot fluid ocean and solid crust, with which we can examine how the amplitudes

of core r modes at the surface depend on the physical properties of the fluid ocean and solid crust. The existence of a magnetic field is another

important factor we have to consider, particularly to determine the wave patterns at the surface. Although the effects of a magnetic field on the

displacement vector ξ of core r modes have been examined only for a dipole field, whose axis aligns with the spin axis, we need to examine

how an oblique dipole field and a field different from a dipole one changes the surface wave patterns (e.g. Heng & Spitkovsky 2009).

Applying a weak non-linear theory, Arras et al. (2003) have estimated the saturation level for the r-mode energy Er−mode by considering

non-linear transfer of energy to the sea of stellar inertial oscillation modes of rotating stars with negligible buoyancy and elastic restoring

force and without magnetic field. For the saturation energy in the strong driving limit of the r mode, they obtained an estimate given by

Er-mode/(0.5MR2�2) ≃ 10−6(νspin/103 Hz)5, which may amount to the mode amplitude parameter A ∼ 10−3(νspin/103 Hz)5/2, where νspin

denotes the spin frequency of the star. If this amplitude estimation is correct, the amplitude parameter A for neutron stars spinning at

νspin ∼ 500 Hz becomes of the order of 10−4, which is one order of magnitude smaller than the value A = 10−3 used in this paper for

presentation and may suggest that the detectability of the periodic modulation due to the r modes is not very high even for small values of

θs. In this paper, we have discussed the possibility of using X-ray light curves from a hotspot as a probe into the core r modes of neutron

stars, but it is also conceivable that periodicities due to the r modes, which may shake the surface magnetic field, are contained in the pulses,

possibly as drifting sub- or micro-pulses, from millisecond radio pulsars.
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