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1 Introduction

The Standard Model (SM) is a renormalizable quantum field theory that makes unambigu-

ous predictions for elementary particle processes over a very large range of energy scales.

Apart from a possible metastable vacuum, the SM has no theoretical inconsistencies at

least up to the Planck scale at which we expect gravity to become strong and quantum

field theories to break down. If this scenario is realized in nature, the Higgs mass pa-

rameter seems artificially small compared to the Planck scale. However, in the SM itself
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the Higgs mass parameter is the only explicit scale in the theory, and therefore it is only

multiplicatively renormalized [1].

An interesting modification of the SM is given by requiring that the Higgs mass term

vanishes at some very high energy (UV) scale; in this case it will not be generated by SM

radiative corrections at lower scales either. The tree-level potential has only a quartic term,

and the full Lagrangian is classically scale invariant. Electroweak symmetry breaking could

be triggered, in principle, by the one-loop corrections to the effective potential

Veff(h) =
λ

2
h4 +B h4 log(h2/µ2) , (1.1)

in which µ denotes the renormalization scale and B is a loop suppressed function of the

couplings. Such a possibility has been envisioned by Coleman and Weinberg [2]. A very

attractive feature of the Coleman-Weinberg (CW) symmetry breaking mechanism is, that

for couplings of order 1 at some renormalization scale in the UV, µ = µUV, the minimum

of the potential appears at an exponentially smaller scale

〈h〉 ∝ µUV e
−λ(µUV)/B . (1.2)

Therefore, similar to the large disparity between the Planck scale and the confinement scale

of QCD, the large disparity between the Planck scale and the electroweak scale is explained

through renormalization group running [3].

However, in the SM the CW mechanism is ruled out. The dominant contribution to

the effective potential comes from the top quark, which renders it unbounded from below,

since it enters the coefficient B in (1.1) with a negative sign. In order to overcome the top

quark contribution and to reproduce the measured Higgs mass, one would need to extend

the SM by bosonic degrees of freedom with sizable couplings to the Higgs [4, 5].

Another motivation for extending the SM is the strong observational evidence for dark

matter (DM), plausibly in the form of weakly interacting heavy particles. Even in the

absence of a Higgs mass parameter in the UV, such particles will generically introduce ad-

ditive corrections to the Higgs mass parameter and spoil the CW dynamics in the absence

of additional symmetries. This motivates an alternative implementation of the CW mecha-

nism, first proposed by Hempfling [6]. In this model, the Higgs couples to one extra scalar,

which through dynamics of a hidden sector undergoes CW symmetry breaking and com-

municates the corresponding mass scale through the Higgs portal to the SM. Dark matter

can then be given by any of the new hidden sector fields that govern the renormalization

group evolution of the scalar potential in the dark sector.

There has been a lot of recent interest in models that implement various aspects of

these basic ideas [4, 5, 7–36]. Here we will focus on implementations with dark sectors that

are fairly simple and thus predictive. In section 2 we comment on issues of naturalness as

applied to classically scale invariant modificiations of the SM, without claiming to resolve

these issues. In section 3 we show, that in extensions of the SM with no explicit mass

scales, the combination of a Higgs mass term generated through CW symmetry breaking

together with the restriction to have a stable vacuum up to the Planck scale generically

sets an upper bound on the dark matter mass scale of the order of a few TeV. Furthermore,
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the CW mechanism requires sizable couplings for gauge fields in the hidden sector, so that

the simplest models in the literature are in addition subject to a lower bound on the DM

mass of several hundred GeV. In section 4 we present a model with additional fermions in

the hidden sector that can be dark matter candidates with masses at the electroweak scale

or below. In sections 5, 6 and 7, we discuss the collider and dark matter phenomenology

of the model. In section 7, we also comment on further implications of this model for

the dynamics of galaxy structure formation and a possible first order electroweak phase

transition. We conclude in section 8.

The one loop effective potential of the discussed model and the one loop beta functions

of the dark sector couplings are collected in appendices A and B. For the beta functions and

anomalous dimensions, we follow the methods, conventions and notation of Machacek and

Vaughn [37–39], with the improvements and extensions introduced by Luo and Xiao [40–42].

For the effective potentials, we follow the methods and conventions of Martin [43]. There

are slight differences of notation in the literature: for example compared to [44, 45], our

scalar self-coupling is twice as large, and our convention for anomalous dimensions has the

opposite sign.

2 Motivation

A Coleman-Weinberg mechanism as the origin of electroweak symmetry breaking was first

considered by Gildener and Weinberg [3]. In the absence of the Higgs mass term, the

Lagrangian of the SM exhibits classical scale invariance that is softly broken by quan-

tum effects - the well known scale anomaly. In UV completions of the SM, the physical

thresholds associated with new massive states would constitute an explicit breaking of this

symmetry. This introduces the need for a fine-tuning of the bare Higgs mass parameter

against radiative corrections involving more massive particles. The fact that the Higgs

mass parameter is not protected by a symmetry from these radiative corrections is known

as the naturalness or hierarchy problem.

If the SM is UV completed by a conformal or supersymmetric (SUSY) theory, the

Higgs mass parameter is radiatively stable above the scale at which this completion sets

in; thus if this scale is not too high, the hierarchy problem is solved. This has led to the

expectation that such a UV completion is realized in the vicinity of the electroweak scale.

However, the new degrees of freedom predicted by either supersymmetric or conformal UV

completions have not been observed, yet. This raises the prospect that the UV scale at

which they set in is considerably higher than the electroweak scale, leaving the naturalness

problem unresolved.

There are a number of experimental observations and theoretical questions, unrelated

to the naturalness problem, that point to new high energy scales. Neutrino masses, gauge

coupling unification, dark matter, and the expectation of a more fundamental theory of

gravity are all expected to introduce new scales and as a consequence introduce an ad-

ditive renormalization of the Higgs mass parameter. None of these arguments, however,

necessarily points to a new UV scale relevant to the hierarchy problem. Neutrinos could

be Dirac fermions with tiny Yukawa couplings, gauge coupling unification may not occur
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or may not imply new superheavy states, and dark matter could well be related to the

electroweak scale itself.

There is still the challenging question of quantum gravity. We know that gravity

does not make sense as a fundamental (perturbative) quantum field theory at short dis-

tances [46]. Naively, the Planck scale is expected to correspond at least roughly to a

physical threshold where new massive states appear. In string theory this is indeed the

case, and one can also argue that the existence of microscopic black holes is enough to re-

quire fine-tuning of the Higgs mass parameter [47]. A non-perturbative theory of quantum

gravity might avoid this problem, but not if it resembles strongly-coupled gauge theories

where new massive states are connected to the scale of strong coupling. At present no

mechanism is known that can realize even a toy model for the type of UV completion that

would avoid the hierachy problem, despite promising models in 2d [48].

On the other hand, all claims about Planckian physics and resulting effects on the

renormalization of the Higgs mass parameter are, at this point, speculative. Generic UV

completions of the Standard Model certainly have a Higgs naturalness problem [49], but

for all we know, spacetime geometry breaks down at the Planck scale, and whether this

results in a physical cut-off of relevance to the Higgs mass parameter is an open question.

Following the same line of reasoning, it is not clear to what extent the existence of

ultra-Planckian Landau poles, as occurs for the hypercharge gauge coupling of the SM,

should be regarded as a fundamental issue. In particular, our semi-classical understanding

of gravity seems to indicate that such Landau poles are unobservable; the requisite scat-

tering experiments would presumably be dominated by black hole production long before

reaching the regime where incipient strong coupling in the hypercharge interactions would

show itself.1 It is striking that no couplings of the SM run into a Landau pole below the

Planck scale, which would be an unambigous sign of a new scale and therefore of the need

(presumably) to fine-tune the Higgs mass.

In this paper, we assume that all explicit mass parameters vanish at the Planck scale,

either as the consequence of the UV completed Planckian theory, or in spite of it. In

addition we will focus on extensions of the SM that are weakly coupled and have no

vacuum instability below the Planck scale.

3 UV stability and IR instability from dark sectors

3.1 UV stability

It is an intriguing observation about the Standard Model, that it seems to be consistent

up to very high mass scales. Below the Planck scale, the only hint for New Physics within

the SM itself is a possible instability of the electroweak vacuum triggered by the large top

Yukawa. In the SM, the observed Higgs mass of mh ' 125.5 GeV implies a Higgs quartic

coupling at the electroweak scale of around λSM
H (mt) ' 0.254 [44, 45]. With this infrared

boundary condition, assuming central values for mt and αs, the Higgs quartic coupling

1This observation is from Steve Giddings.
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runs negative at scales around 1010 GeV and stays at a small negative value λH ' −0.02

up to the Planck scale, rendering the electroweak vacuum unstable [44, 45].2

The instability can for example be overcome by the extension of the SM by a complex

scalar Σ with portal coupling to the Higgs H, so that the most general scalar potential reads

V (H,Σ) = µ2
H H

†H +
λH
2

(H†H)2 + µ2
ΣΣ†Σ +

λΣ

2
(Σ†Σ)2 + λΣHΣ†ΣH†H . (3.1)

This potential is absolutely stable if the following condition is fulfilled

λH cos4 θ + λΣ sin4 θ + 2λΣH sin2 θ cos2 θ > 0 (3.2)

for all values of the angle θ. In particular, this implies the necessary conditions

λH > 0 , λΣ > 0 , λH + λΣ + 2λΣH > 0 . (3.3)

The new scalar can affect the stability of the Higgs potential in two ways: (i) by changing

the beta function of the Higgs quartic; (ii) by changing the infrared boundary condition of

the Higgs quartic. We briefly review both possibilities.

(i) The portal coupling λΣH gives a positive contribution to the beta function of the

Higgs quartic. At the one loop level we have

βλH =
1

16π2

{
12λ2

H − λH
(
3(g′)2 + 9g2

)
+

3

4
(g′)4 +

3

2
(g′)2g2 +

9

4
g4 (3.4)

+12λHY
2
t − 12Y 4

t + 2λ2
ΣH

}
,

where g′ and g are the U(1) and SU(2) gauge couplings, Yt is the top Yukawa coupling

and we neglected the contributions from all other Yukawa couplings. In the SM, the top

Yukawa contribution, −12Y 4
t , dominates at low scales and drives the Higgs quartic coupling

negative. If λΣH is sufficiently large, it can balance the top contribution and stabilize the

vacuum. If in addition the vacuum expectation value of the new scalar vanishes, 〈Σ〉 = 0,

the scalar can be stable and is a dark matter candidate [50–53].

(ii) If the new scalar has a non-vanishing vev, 〈Σ〉 = w/
√

2, the tree level scalar mass

matrix in the broken phase of (3.1) reads

M2 =

(
λH v

2 λΣH w v

λΣH w v λΣw
2

)
. (3.5)

In the limit λΣw
2 � λHv

2, the light Higgs-like mass eigenstate has a mass

m2
h =

(
λH −

λ2
ΣH

λΣ

)
v2 +O

(
v4

w2

)
. (3.6)

In order to reproduce a Higgs mass of 125.5 GeV, the value of λH at the electroweak scale

has to be larger than in the SM. In that way the UV instability can be avoided [54–56].

2The electroweak vacuum in the SM is still meta-stable, i.e. its lifetime is larger than the age of the

universe.
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Indeed, for a Higgs quartic that is about 7% larger than in the SM, λH(mt) ' 0.273, the

central value of the Higgs quartic remains positive up to high scales and vanishes around

the Planck mass. Taking into account uncertainties in the running of λH from the top

mass and strong gauge coupling, a positive Higgs quartic at the 2σ level corresponds to

0.259 . λH(mt) . 0.288 . (3.7)

Interestingly enough, for such a range of boundary conditions not only the Higgs quartic,

but also its beta function become zero at scales close to the Planck scale. The required

size of the portal coupling to stabilize the potential in the UV is considerably smaller than

using mechanism (i). If the scalar quartic λΣ is of the same order of the Higgs quartic

λH , a portal coupling of |λΣH | ∼ 0.05 is sufficient. Although the heavy scalar is unstable

in scenario (ii), additional fields which get their mass from couplings to Σ could explain

dark matter.

As pointed out in [54], the correction in (3.6) from the heavy scalar persists even in the

decoupling limit, w → ∞, so that neither mechanism to mitigate the vacuum instability

clearly points to a specific scale for the extra sector.3 This situation is fundamentally dif-

ferent in models with classical scale invariance in the UV. If the Higgs mass parameter µ2
H

in (3.1) is zero it will be generated by the vev of the extra scalar through the portal coupling

λΣHΣ†ΣH†H → λΣHw
2

2
H†H . (3.8)

In that case, the ratio of vacuum expectation values is controlled by the portal coupling

(note that λΣH has to be negative to trigger a vev for the Higgs boson)

v2

w2
= −λΣH

λH
, (3.9)

and the correction in (3.6) does decouple for w →∞. For a vanishing Higgs mass parameter

µ2
H = 0 and for the Higgs being the lightest scalar, the vev of the extra scalar is therefore

bounded from above. The requirement that the central value (2σ upper bound) of λH
remains positive up to the Planck scale implies

w . (λΣ)−
1
4 × 350 (470) GeV . (3.10)

Here, we worked in the limit λΣw
2 � λHv

2 and neglect the tiny λΣH contributions to the

running of λH . In the limit in which λΣw
2 = λHv

2 the bounds become w . 3.5(12.7) TeV.

This corresponds to the extreme case of maximal mixing between the Higgs and the dark

scalar. As we will discuss in section 5, the mixing is strongly constrained by collider bounds.

3.2 IR instability

We now address the question of how to generate the vev for the scalar Σ. In particular, if

not only the Higgs mass parameter, but all scales in the potential (3.1) vanish in the UV,

3In both mechanisms however the scale has to be at least somewhat below 1010 GeV, the scale where

the Higgs quartic crosses zero.
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µ2
H = µ2

Σ = 0, the vev of the extra scalar can only be induced radiatively, either through

strong dynamics, in which a new condensation scale induces a mass term for the extra

scalar [16, 25, 57], or by a Coleman-Weinberg mechanism, in which the balance between

the quartic and the one-loop corrections to the effective potential determine the vev [2].

We will concentrate on the latter mechanism in the following.

In the limit of small Higgs portal coupling |λΣH | � 1, we can consider the effective

potential Veff for the scalar independently from the Higgs boson. Its general one loop form

is given by

Veff(s, µ) =
1

8
λΣ(µ) s4 +

B(µ)

4
s4 log

(
s2

µ2

)
, (3.11)

in which the scalar component s in (4.4) is treated as a background field and µ is the

renormalization scale. Subleading terms in Veff that are proportional to the anomalous

dimension of s are suppressed. This effective potential has a local minimum if

∂Veff(s, µ)

∂s

∣∣∣∣
µ=s=w

= 0 ⇒ B = −λΣ , (3.12)

and

∂2Veff(s, µ)

∂s2

∣∣∣∣
µ=s=w

> 0 ⇒ B > 0 . (3.13)

Since B is a loop-suppressed function, it follows, that in the vicinity of the minimum, the

quartic coupling needs to be small and negative for CW symmetry breaking to work. For

the full potential, including terms proportional to the portal coupling, λΣH , the condition

λΣ < 0 is replaced by [58]

4λH λΣ − λ2
ΣH < 0 . (3.14)

As long as the portal coupling is small, λ2
ΣH � β

(1)
λΣ
λH , this gives approximately the same

constraint.4 Further, the coefficient B is related to the beta-function of λΣ by the one-loop

renormalization group equation

µ
∂

∂µ
V1(s, µ) + β

(1)
λΣ

d

dλΣ
V0 − γ(1)

s s
d

ds
V0 = 0 , (3.15)

in which γ
(1)
s denotes the one-loop anomalous dimension of the scalar fields s and β

(1)
λΣ

the

one-loop beta function of the quartic coupling. From the general form (3.11) follows

β
(1)
λΣ

= 4γ(1)
s λΣ + 4B . (3.16)

Close to the minimum, the first term can be neglected to good approximation. Therefore

the beta function of λΣ has to be positive to induce a vev for the scalar. A natural way

to ensure a positive beta function in a region around the minimum is to charge the scalar

under a dark gauge symmetry. Loops with dark gauge bosons give a positive contribution

to βλΣ
and lead to the desired IR instability of the scalar potential. At the same time, a

positive beta function for the quartic coupling ensures that the scalar potential is stable in

the UV.
4This situation changes for models in which the two-loop contribution becomes relevant [5].
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3.3 The scale of dark matter

Independent on whether the vev of the dark scalar is induced by strong dynamics or by a

Coleman-Weinberg mechanism as discussed in the previous section, additional fields with

couplings to Σ are required, which can provide dark matter candidates. If the new sector

does not introduce explicit mass scales, the masses of any new states can only be generated

through the vev of the extra scalar. In this context it is very interesting that the range

suggested by stability considerations seems to agree with the mass scales suggested by the

“WIMP miracle”. We emphasize that this is a generic feature of extensions of the SM

with the above properties. Extended models with additional scalars can of course soften

this relation.

Examples of models in the literature, in which the electroweak vacuum is stabilized

through the Higgs portal and dimensionful couplings are absent, reveal the mentioned

connection between the dynamical generation of a vacuum expectation value in the IR,

the stabilization of the vacuum in the UV, and the dark matter sector: the authors of [13]

discuss a model with an extra scalar charged under a U(1)B−L that gives a Majorana

mass to right-handed neutrinos through a CW mechanism. The Z ′ in this model is not a

candidate for DM, because it couples to B − L and the resulting experimental bounds on

the Z ′ push the vev of the extra scalar above 3 TeV. As a consequence, the vacuum cannot

be stabilized up to the Planck scale in this model. In [17], the extra scalar is a doublet

under an additional dark SU(2) and breaks it completely. In this case the heavy gauge

boson triplet constitutes dark matter, and if vacuum stability is enforced, the vev of the

scalar is bound to be at the TeV scale. In addition, the authors of [28] have shown, that

the extra gauge couplings that drive the quartic of the extra scalar negative in the IR need

to be of order one in these models in order to stabilize the vacuum, so that the masses of

the corresponding gauge bosons are bound from below by m = g w/2 & 500 GeV.

If the hidden sector in addition to scalars and gauge bosons has also fermionic degrees of

freedom, they are generically required to be lighter than the gauge bosons. This can easily

be understood from the fact that they enter the effective potential with a negative sign,

Veff(s, µ) = V0(s, µ) +
1

64π2

∑
i=B,F

nim
4
i (s)

[
log

m2
i (s)

µ2
− Ci

]
, (3.17)

where the sum goes over fermions (F) and bosons (B), mi(s) denotes the corresponding

Higgs dependent masses, ni = ∓ the number of fermionic/bosonic degrees of freedom, and

the Ci are renormalization scheme dependent constants. If the fermionic contributions

dominate the one loop contributions to the effective potential (3.17), the condition (3.13)

cannot be fulfilled. Hence, the effective potential is unbounded from below, i.e. the fermions

generate a UV instability instead of a IR instability. Therefore, for the CW mechanism

to work, the gauge bosons are generically heavier and fermions constitute dark matter. In

the following sections we will discuss in detail an example of a model

• that does not contain any explicit mass scales,

• that utilizes the Coleman-Weinberg mechanism in a dark sector to induce spontaneous

electroweak symmetry breaking through a Higgs portal,
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• that is weakly coupled below the Planck scale, with all of the running scalar quartic

couplings starting near zero at the Planck scale,

• that stabilizes the vacuum until the Planck scale, and

• that contains fermionic dark matter with masses at or below the electroweak scale.

4 The model

We consider an extension of the SM by a SU(2)X × U(1)X gauge group, under which all

SM fields are uncharged. In addition to the SU(2)X ×U(1)X gauge bosons W ′a and B′, we

introduce a scalar doublet Σ under SU(2)X with U(1)X charge QXΣ = 1/2. The fermionic

sector consists of two sets of chiral SM singlet fermions: ψLi , ξRi , χRi , with i = 1, 2. The

left handed fields ψL1 = (χL1 , ξ
L
1 ) and ψL2 = (ξL2 , χ

L
2 ) are SU(2)X doublets, while the right

handed ones are SU(2)X singlets. We assign the following dark hypercharges that ensure

anomaly cancellation: QXψ1
= +1/2, QXψ2

= −1/2, QXχ1
= +1, QXχ2

= −1, QXξ1 = QXξ2 = 0.

We denote the field strength tensors of the SU(2)X and U(1)X gauge symmetries by (W ′a)µν
and (B′)µν , so that their kinetic terms read

Lgauge =
1

4
(W ′a)µν(W ′a)

µν +
1

4
(B′)µν(B′)µν , (4.1)

where a = 1, 2, 3 is the index of the adjoint of SU(2)X . We assume that there is no

kinetic mixing between the U(1)X gauge boson and the SM hypercharge gauge boson. As

our model does not contain fields that are charged under both U(1) symmetries, such a

choice is stable under radiative corrections. In the absence of kinetic U(1) mixing and

not considering the dark singlet fermions, the only renormalizable portal between the dark

sector and the SM is the mixing of the dark scalar with the Higgs. Explicit mass terms for

the scalars are assumed to vanish, such that

Lscalar = |DH|2 + |DΣ|2 − λH
2
|H|4 − λΣ

2
|Σ|4 − λΣH |H|2|Σ|2 . (4.2)

The covariant derivatives of H and Σ are given by (Lorentz indices are suppressed for

simplicity)

DH =
(
∂ − ig

2
σaWa − ig′QHB

)
H , DΣ =

(
∂ − igX

2
σaW ′a − ig′XQXΣB′

)
Σ . (4.3)

Here, g and g′ are the SU(2) and U(1) gauge couplings of the SM, and gX and g′X are

the corresponding couplings in the dark sector. The Higgs and the dark scalar can be

decomposed as follows

H =

(
G+

1√
2
(h+ v + iG0)

)
, Σ =

(
a+

1√
2
(s+ w + ia)

)
, (4.4)

where v (w) is the respective vacuum expectation value that breaks the SU(2)(X)×U(1)(X)

gauge group down to (dark) electromagnetism. The Goldstone bosons G±, G0 and a±, a
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provide the longitudinal components of the W and Z boson of the SM, as well as the

corresponding W ′ and Z ′ in the dark sector. The masses of the dark gauge bosons are

given by

mγ′ = 0 , mW ′ =
w

2
gX , mZ′ =

w

2

√
g2
X + g′ 2

X . (4.5)

Analogous to the photon in the SM, the dark sector contains a massless gauge boson,

which we will refer to as dark photon, γ′. In complete analogy to the SM, we define a dark

electromagnetic coupling eX as well as a dark mixing angle θX

eX =
gXg

′
X√

g2
X + g′ 2

X

, cX = cos θX =
gX√

g2
X + g′ 2

X

, sX = sin θX =
g′X√

g2
X + g′ 2

X

. (4.6)

The dark fermions couple to the extra scalar Σ through Yukawa couplings,

Lfermion = iψ̄Li D/ ψ
L
i + iχ̄Ri D/ χ

R
i + iξ̄Ri ∂/ ξ

R
i

+
(
Yχ1ψ̄

L
1 χ

R
1 Σ̃ + Yχ2ψ̄

L
2 χ

R
2 Σ + Yξ1ψ̄

L
1 ξ

R
1 Σ + Yξ2ψ̄

L
2 ξ

R
2 Σ̃ + h.c.

)
, (4.7)

where Σ̃ = iσ2Σ∗.

As in the scalar sector, we do not consider explicit Majorana mass terms for the

fermions that would be allowed given the quantum number assignments for ψi, χi, and

ξi. Moreover, we do not allow Yukawa couplings of the dark singlets ξRi with the SM

lepton doublets. The absence of Majorana masses, flavor off-diagonal Yukawa couplings

and lepton Yukawa couplings can for example be enforced by demanding dark fermion

number conservation. The covariant derivatives of the fermions are

DψLi =
(
∂ − igX

2
σaW ′a − ig′XQXψiB

′
)
ψLi , DχRi =

(
∂ − ig′XQXχiB′

)
χRi , (4.8)

and ξRi are total singlets. After breaking of the dark SU(2)X ×U(1)X by the vev of Σ, the

fermions become massive and we introduce the Dirac spinors χi = PLχi+PRχi = (χLi , χ
R
i )

and ξi = PLξi + PRξi = (ξLi , ξ
R
i ) with masses

mχi =
Yχi√

2
w , mξi =

Yξi√
2
w . (4.9)

Conservation of dark fermion number and dark electromagnetism implies that both χi and

ξi can be stable dark matter candidates.

4.1 The scalar spectrum

The one loop effective potential of the model is given in the appendix A. If the bosonic

contributions to the effective potential dominate over the fermionic ones, non-zero scalar

vevs will be induced radiatively. In the limit of a small portal coupling, the vevs of the Higgs

v and of the dark scalar w are approximately connected by the relation (3.9). Neglecting

the effects of the field anomalous dimensions of the Higgs and the dark scalar as well as

the running of both the SM quartic coupling and the portal coupling, while keeping the
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dominant contribution from the running of λΣ, the scalar mass matrix in the minimum of

the potential can be written as

M2 ' v2

2

(
2λH −2

√
λH |λΣH |

−2
√
λH |λΣH | 2|λΣH |+ λHβλΣ

/|λΣH |

)
. (4.10)

This mass matrix can be diagonalized through the rotation(
h

s

)
→
(
cα sα
−sα cα

)(
h

s

)
, sin 2α =

2
√
λH |λΣH |v2

m2
s −m2

h

, (4.11)

with sα = sinα and cα = cosα. The mass eigenvalues mh and ms are given by

m2
h ' v2

(
λH −

2λ2
ΣH

βλΣ
− 2|λΣH |

)
, m2

s ' v2

(
λHβλΣ

2|λΣH |
+

βλΣ
|λΣH |

βλΣ
− 2|λΣH |

)
, (4.12)

where we expanded to first order in the limit λΣH , βλΣ
� λH . In this limit, the mass

of the dark scalar is directly proportional to the beta function of the dark scalar quartic

coupling. If the dark scalar beta function is larger than twice the absolute value of the

portal coupling,

βλΣ
& 2|λΣH | , (4.13)

the dark scalar is heavier than the Higgs boson, and the mass of the Higgs boson is reduced

compared to the Standard Model expression.

4.2 Vacuum stability in the UV

We now discuss the renormalization group running of the model parameters up to high

scales and demonstrate that the electroweak minimum in the scalar potential can be ab-

solutely stable. The one loop beta functions for all couplings of the dark sector as well

as the one loop correction to the beta function of the Higgs quartic are collected in the

appendix B. For the SM beta functions we use 2 loop results from [37–42].

As discussed already in section 3 and as shown in Equation (4.12), the physical Higgs

mass is not completely determined by the Higgs quartic, but gets an additional contribution

from the mixing with the dark scalar. If the dark scalar is heavier than the Higgs, mixing

effects will reduce the Higgs mass and a quartic coupling larger than in the SM is required

to accommodate a Higgs mass of mh ' 125.5 GeV. If the portal coupling is large enough,

the IR boundary condition for λH is such that λH stays positive all the way to the Planck

scale, or, in the limiting case, “touches” zero close to the Planck scale. The region of the

parameter space where this can be achieved is shown in figure 1 in the plane of the scalar

mass ms and the mixing angle sinα. In the shaded region the Higgs quartic is positive up

to the Planck scale. Between the two dashed curves the limiting case where λH touches

zero close to the Planck scale can be realized within 2σ. The dotted lines in the unstable

region indicate the scale in GeV where the Higgs quartic runs negative. The solid lines

show contours of constant scalar vev w, that corresponds to a given scalar mass ms and

mixing angle sinα.
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Figure 1. Vacuum stability properties in the ms-sinα plane. In the shaded region the Higgs

quartic is positive up to the Planck scale. Between the two dashed contours the Higgs quartic

touches zero close to the Planck scale within 2σ. The dotted lines in the unstable region show the

scale at which the Higgs quartic runs negative. The solid lines indicate contours of constant scalar

vev, w. Note, that large mixing angles sinα & 0.5 are phenomenologically strongly constrained by

collider bounds, see section 5.

As we will discuss in section 5, the mixing angle is bounded at the order of sinα .
0.5. This implies a typical value for w around the TeV scale, and an upper bound of

several TeV, as expected from the general discussion in section 3. On the other hand,

scalar vevs considerably below a TeV can in principle be achieved by increasing |λΣH |
(see Equation (3.9)). However, this requires that the beta function βλΣ

needs to to be

increased simultaneously due to the bound (4.13). The beta function βλΣ
is also bounded

from above by perturbativity requirements on the dark gauge couplings. As a result, values

for w considerably below the TeV scale are disfavored. In the following, we will concentrate

on regions of parameter space with w = O(1 TeV) and a Higgs quartic that touches zero

close to the Planck scale.

As long as the dark fermion Yukawa couplings are not too large, the beta function of

the scalar quartic βλΣ
is dominated by the dark gauge couplings and stays positive. In

such a case, λΣ increases monotonically with the RG scale and is always positive in the

UV. Note, however, that sizable dark fermion Yukawas can modify the behavior of λΣ in

the UV. In particular, the model allows to accommodate the limiting case where not only

the Higgs quartic but also the dark scalar quartic touches zero close to the Planck scale.

In the approximation βλΣ
≈ 4B, it is straightforward to compute the leading terms in the

beta function of the scalar quartic from comparing (3.17) with (3.11), using (4.5) and (4.9),

β
(1)
λΣ
≈ 1

16π2

{
9

4
g4
X +

3

2
g2
Xg
′ 2
X +

3

4
g′ 4
X − 4(Y 4

χ1
+ Y 4

χ2
+ Y 4

ξ1 + Y 4
ξ2)

}
. (4.14)
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The full one loop expression for the beta function can be found in appendix B. The beta

function of λΣ receives contributions dominantly from three sources: (i) from SU(2)X
gauge boson loops, (ii) from fermion loops, and (iii) from U(1)X gauge boson loops. The

gauge boson (fermion) loops increase (decrease) λΣ for higher scales. At low scales, the

SU(2)X contribution dominates and leads to the infrared instability in the scalar potential

as discussed above. With the given particle content, the SU(2)X gauge interactions are

asymptotically free. Therefore the contribution of the SU(2)X gauge bosons to the running

of the scalar quartic becomes smaller and smaller for higher scales. At sufficiently high

scales, the dominant contributions to the beta function can come from the fermion Yukawa

couplings, and the scalar quartic will start to decrease again. Finally, at scales close to the

Planck scale, the U(1)X gauge coupling, having a positive beta function, can become large

and compensate the effect of the Yukawa couplings. It is possible to adjust parameters

such that the scalar quartic as well as its beta function vanish exactly at the Planck scale.

The plots of figure 2 show the renormalization group evolution of the gauge couplings,

Yukawa couplings and the scalar quartic couplings for an example parameter point of the

model where such a limiting case is realized.5 The shown couplings correspond approxi-

mately to the following dark sector spectrum

mh ' 125.5 GeV , ms ' 168 GeV , mW ′ ' 740 GeV , mZ′ ' 850 GeV ,

mχ1 ' 50 GeV , mχ2 ' 50 GeV , mξ1 ' 160 GeV , mξ2 ' 700 GeV . (4.15)

The values for the dark vev is

w ' 1.1 TeV , (4.16)

and the masses in (4.15) (apart from the Higgs mass) correspond to running MS masses

at the scale µ = w. The SU(2)X gauge coupling is O(1) at the low scale, while the U(1)X
coupling is O(1) close to the Planck scale. The U(1)X gauge coupling develops a Landau

pole at around 1030 GeV, well above the Planck scale. Both the Higgs quartic λH and the

dark scalar quartic λΣ as well as their beta functions are approximately 0 at the Planck

scale. The portal coupling λΣH is small and negative at all scales but cannot run to zero

at the Planck scale. It is the only link between the SM and the dark sector and is therefore

only multiplicatively renormalized.

5 Higgs and dark scalar phenomenology

The considered model leads to various testable predictions for Higgs phenomenology. Due

to the mixing of the two scalars, the couplings of the Higgs boson h to all SM particles are

suppressed by a factor cα compared to the SM case, resulting in an overall suppression of

all Higgs rates by c2
α. The latest results from Higgs rate measurements from ATLAS [59]

and CMS [60] read

µATLAS = 1.30+0.18
−0.17 , µCMS = 1.00± 0.09+0.08

−0.07 ± 0.07 , (5.1)

5Note that due to the small negative portal coupling λΣH , the vacuum is actually not absolutely stable

in the shown example. Absolute stability requires that λH and λΣ are at least of the same size as the (tiny)

absolute value of the portal coupling, see (3.3).
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Figure 2. The renormalization group evolution of the gauge couplings, the Yukawa couplings and

the scalar quartic couplings for one example parameter point in the considered model that leads to

an almost flat scalar potential at the Planck scale.

which we will interpret roughly as a constraint of cα & 0.9, equivalent to a 20% reduction of

the SM production rate. At the next run of the LHC, the precision of the rate measurements

is expected to be improved by around a factor of 3, which will allow to probe deviations

of cα from unity of the order of 5%.

Moreover, the mixing of the Higgs with the dark scalar also leads to couplings of h to

the fermions in the dark sector. If some of these fermions are sufficiently light, the Higgs

can decay into them. We find for the corresponding partial decay widths

Γ(h→ fifi) =
Y 2
fi

8π
mh s

2
α

(
1−

4m2
fi

m2
h

) 3
2

, (5.2)
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which applies for dark-charged and neutral fermions fi = χi, ξi. Analogous to the SM decay

of the Higgs into two photons, the Higgs can also decay into two dark photons through

loops of dark-charged fermions χi and the dark W ′ boson. In the limit mW ′ � mh, we

find for the h→ γ′γ′ decay width

Γ(h→ γ′γ′) ' 1

16π
s2
α

m3
h

w2

(
g2
X

16π2

)2
∣∣∣∣∣7−∑

i

8m2
χi

m2
h

[
1 +

(
1−

4m2
χi

m2
h

)
f

(
m2
h

4m2
χi

)]∣∣∣∣∣
2

.

(5.3)

The loop function f is given in the appendix C. Given that h → γ′γ′ is loop suppressed,

it can only compete with the decay into dark fermions if the dark gauge coupling is large

gX & 1 and the fermion Yukawas are very small, Yχi . 10−2.

Given the tiny total width of the SM Higgs, ΓSM
h ' 4 MeV, even for moderate mixing

angles sα the induced invisible branching ratio can be sizable. This is illustrated in the

upper plot of figure 3, that shows for various mixing angles sα the branching ratio of the

Higgs into the charged dark fermions as a function of the charged dark fermion mass, for

the example choice mχ1 = mχ2/2. The dark vev is set to w = 1.5 TeV and the neutral

fermions are assumed to be heavier than at least half the Higgs mass. We observe that

for moderate mixing angles of sα ∼ 0.3, branching ratios into dark fermions of O(10%)

are possible. The branching ratio can be even larger for smaller w. The branching ratio

into dark photons is at most at the percent level and therefore hardly relevant. ATLAS

and CMS search for invisible decays of Higgs bosons that are produced in association

with a Z boson [61, 62] and in vector boson fusion [63]. The current best bound reads

BR(h → invisible) . 58% @95% C.L. [62] (see also [64] where a slightly stronger bound

BR(h→ invisible) . 40% @95% C.L. has been obtained, recasting a CMS stop search [65]).

Bounds are expected to be improved down to BR(h → invisible) . 10% at the high

luminosity LHC [66].

Due to the mixing with the Higgs boson, the dark scalar s acquires in turn couplings to

all SM particles that are suppressed by a factor sα compared to the SM Higgs. Therefore,

the dark scalar can be searched for at the LHC in the usual Higgs searches. Particularly

strong constraints arise already from current searches in the WW and ZZ channels that

exclude a signal strength of the order of µ ∼ 0.1 over a very broad range of masses [67–70].

The production cross section of the scalar is suppressed by s2
α with respect to a SM Higgs

boson with the same mass. Therefore, we generically expect a bound on the mixing angle

of the order of sα . 0.3. This is slightly more stringent than the bound obtained from

Higgs rate measurements, cα & 0.9, discussed above.

Note, however, that also the dark scalar can decay into dark sector particles. The cor-

responding partial width into dark fermions and dark photons are given by the expressions

in (5.2) and (5.3) with the replacements mh → ms and sα → cα. If the scalar is light, with a

mass below the WW threshold, its decay width into SM particles is very small. Therefore,

its invisible branching ratio can be sizable, in particular if the decay into dark fermions is

kinematically accessible. This can easily reduce the branching ratio into SM particles by

a factor of few or more and reduce the scalar signal strength well below µs = 0.1 also for

mixing angles of sα & 0.3. This is illustrated in the lower left plot of figure 3 that shows
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Figure 3. Top: the invisible branching ratio of the Higgs boson as a function of the charged dark

fermion mass, for example choices of the scalar mixing angle. Bottom: the scalar signal strength

into SM particles as function of the charged dark fermion mass for example choices of the scalar

mixing angle. The scalar mass is fixed to ms = 140 GeV in the left and ms = 180 GeV in the

right plot.

the signal strength of a 140 GeV dark scalar for several choices of sα as a function of the

charged dark fermion masses mχ1 = mχ2/2. If the dark scalar has a mass above the WW

threshold, its width is dominated by decays into WW and decays into dark fermions tend

to give only a small correction. This is illustrated in the lower right plot of figure 3, where

we show the signal strength of the dark scalar for a dark scalar mass of ms = 180 GeV.

In summary, we find that in the bulk of parameter space the prospects for detecting the

dark scalar at the next run of the LHC are excellent, unless in the case where it dominantly

decays into dark fermions. In the latter case, precision measurements of the Higgs signal

strength in inclusive Higgs production will provide the strongest constraint on the mixing
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angle. In the case of sufficiently light dark fermions, a high luminosity LHC could provide

sensitivity to the invisible decay of the Higgs boson.

6 Dark matter and dark photon phenomenology

The dark fermion sector of our model contains two charged and two neutral Dirac fermions

χ1,2 and ξ1,2. If the mass of each fermion is less than the sum of the other three masses,

none of the fermions can decay and all four constitute a stable dark matter component.

If one of the fermions has a mass that is larger than the sum of the other three masses,

it can decay into the lighter three fermions through W ′ exchange. In that case the dark

matter will consist of only the lighter three fermions. None of the other massive particles

of the model are stable in the regions of parameter space that we will consider. The heavy

dark gauge bosons can decay into a pair of dark fermions, while the dark scalar can decay

through the Higgs portal into a pair of SM particles. The massless dark photon can have

interesting effects in the early universe.

6.1 Dark matter relic abundance

The relic abundance of the charged dark fermions χi is primarily set by annihilation into

two massless dark photons γ′. Annihilation into two dark scalars is p-wave suppressed and

typically negligible. Annihilation into SM particles through an s-channel exchange of the

dark scalar or the Higgs is strongly suppressed by the small Higgs portal and therefore also

negligible.6 For the annihilation cross section into dark photons, depicted in diagram (a)

of figure 4, we find

(σv)χi '
e4
X

8π

1

m2
χi

. (6.1)

This annihilation cross section decreases for increasing charged dark fermion masses. The

relic abundance of stable charged dark fermions is approximately given by

Ωχih
2 ' 0.12×

(
2.2× 10−26 cm3/s

(σv)χi

)
. (6.2)

A charged dark fermion fraction of the total relic abundance is subject to various con-

straints [71–73]. A component of (strongly) self-interacting dark matter is constrained

by halo shapes [74] and the observed structure of the Bullet Cluster [75, 76]. Numerical

simulations that account for the observed deviations from spherical halos allow for ∼ 10%

interacting dark matter, while simulations of the Bullet Cluster allow for up to ∼ 30% of

all dark matter to have arbitrarily strong self-interactions. A more stringent bound comes

from possible CMB structure, which constrains the fraction of dark matter coupled to dark

radiation to . 5% [77]. If dark matter forms a disk due to long ranged interactions, the

local dark matter density puts a comparable bound on this fraction [71]. In the following,

6Dark matter annihilation into SM particles through s-channel exchange of the Higgs or the dark scalar

might be important in fine tuned corners of parameter space where the annihilation is resonant, e.g. mχi '
mh/2 or mχi ' ms/2.
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Figure 4. Feynman diagrams corresponding to the dominant processes contributing to dark matter

annihilation (a), (b), and (c), as well as direct detection (d). In the case of annihilation into dark

photons (a) an additional crossed diagram is not shown.

we will therefore allow a charged dark matter fraction of at most 5%. This leads to an

upper bound on the mass of the charged dark fermions. We find

m2
χ1

+m2
χ2

. (1 TeV)2 × e4
X . (6.3)

For values of the dark electromagnetic coupling of the order of the electroweak couplings of

the SM, eX ∼ 0.5, this implies an upper bound on the mass of stable charged dark fermions

of a few 100 GeV.

It is important to observe, that in the absence of the dark photons, the annihilation

cross section of the fermions χi would be strongly suppressed resulting generically in a dark

matter relic abundance in excess of the measured value ΩDMh
2 ' 0.12.

Obviously, the neutral dark fermions ξi cannot annihilate into the dark photons at

tree level. Annihilation into two dark scalars or into SM particles is also suppressed for

the same reasons as in the case of the charged dark fermions. The only unsuppressed

annihilation of the neutral dark fermions is into the charged dark fermions, which is only

an option if the neutral fermions are significantly heavier than the charged ones, such that

their freeze out occurs sufficiently earlier. Annihilation into charged dark fermions can

proceed through s-channel exchange of a Z ′ or t-channel exchange of a W ′ as shown in

diagrams (b) and (c) in figure 4. The s-channel exchange of a dark scalar is suppressed

by the charged fermion Yukawa coupling and hardly relevant in the regions of parameter

space that we will consider. Even more suppressed is the s-channel annihilation through

a Higgs boson. In the limit mχi � mξi � mZ′ ,mW ′ , the annihilation cross section is

approximately given by

(σv)ξi '
m2
ξi

2πw4

(
4s4
X − 3s2

X + 2
)
. (6.4)

We learn that the annihilation cross section increases for increasing neutral dark fermion

mass. For mξi ∼ mZ′/2, the annihilation cross section is strongly enhanced by the Z ′

resonance and reaches its maximum. For mξi & mZ′/2 the annihilation cross section

decreases again with increasing mass. Expressions for the annihilation cross section that

hold in the general case of arbitrary fermion and gauge boson masses are given in the

appendix D.

The relic abundance of the stable neutral dark fermions is given by an expression

analogous to (6.2). The relic abundance of the light neutral dark matter species is shown
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Figure 5. The relic density of the light neutral dark fermion species as a function of its mass. In

the left (right) plot, the Z ′ mass is fixed to mZ′ = 1(2) TeV.

in the plots of figure 5 as a function of the fermion mass. In the left and right plots the Z ′

mass is fixed to mZ′ = 1 TeV and mZ′ = 2 TeV, respectively. The charged fermion masses

are fixed to mχ1 = mχ2 = 50 GeV and the dark hypercharge gauge coupling is g′X = 0.25.

The various curves correspond to different choices of the dark SU(2)X gauge coupling that

ranges from gX = 0.5 up to gX = 2. We observe that the annihilation into charged fermions

is very efficient. If the neutral fermion is above the Z ′ resonance, the requirement of the

right relic abundance leads to an upper bound on the SU(2)X gauge coupling of the order

of gX . 1. Note that a dark matter fermion with mass above the Z ′ mass implies a large

fermion Yukawa coupling and therefore generically leads to a UV instability in the dark

scalar quartic λΣ. For a dark fermion mass below the Z ′ resonance as preferred by vacuum

stability, gauge couplings over a broad range of values can be made easily compatible with

the relic abundance.

6.2 Dark matter direct detection

The dark matter particles couple to SM particles only through the Higgs portal. The direct

detection cross section is therefore necessarily suppressed by the mixing between the Higgs

and the dark scalar. Working with scalar mass eigenstates and evaluating the relevant

diagram in figure 4, we find for the spin-independent cross section for elastic scattering of

neutral dark matter particles ξi off protons

σSI =
Y 2
ξi

2π

m2
ξi
m4
p

v2(mξi +mp)2
f2 s2

αc
2
α

(
1

m2
h

− 1

m2
s

)2

, (6.5)

where mp is the proton mass and

f =
2

9
+

7

9

(
fTu + fTd + fTs

)
' 0.3 (6.6)

parametrizes the nuclear matrix element [78, 79]. The dark matter direct detection cross

section is suppressed by the scalar mixing angle s2
α as well as by the destructive interference
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between the Higgs and dark scalar exchange. We find typical direct detection signals at

the level of σSI ' 10−46 − 10−47cm2, well below the current experimental sensitivities of

the XENON100 experiment [80] and the LUX experiment [81]. The predicted signals are

probably also below the sensitivity of XENON1T [82]. They should however be in reach

of the planned LZ experiment [83].

An equation completely analogous to (6.5) holds also for the direct detection cross

section of the charged dark matter fermions χi. However, barring additional structure

which radically changes the local density of the charged dark matter component [71], the

maximal relic density fraction of 5% strongly suppresses sensitivity of direct detection

experiments to the χi. For charged dark matter masses of mχi ∼ 50 GeV, there are only

corners of parameter space, where the direct detection cross section of the charged fermions

might reach σSI ∼ few × 10−48cm2. Combined with the smaller density of charged dark

matter, this results in direct detection rates that are at the border of or even below the

atmospheric and supernova neutrino background, and beyond the reach of planned direct

detection experiments.

6.3 Number of relativistic degrees of freedom in the early universe

The dark photon of our model contributes to the effective number of relativistic degrees

of freedom in the early universe. Measurements of the 4He abundance [84] in the uni-

verse and the combination of Planck data with astrophysical measurements of the Hubble

constant [85] put constraints on the active degrees of freedom during Big Bang nucleosyn-

thesis (BBN) and at the time at which the Cosmic Microwave Background (CMB) radiation

formed, respectively [71, 86].

The process of scattering of visible photons into dark photons γγ ↔ γ′γ′ can potentially

keep the dark and the visible sector in thermal equilibrium. In our model, the Higgs portal

is the only connection between the dark and the visible sectors. Therefore γγ ↔ γ′γ′ is

induced by a dimension eight operator and suppressed by two loops. As a consequence,

this process decouples at very high temperatures. More relevant processes that connect

the dark and the visible sector are the annihilation of visible photons into dark fermions,

γγ ↔ χ̄χ, and of dark photons into SM fermions, γ′γ′ ↔ f̄f . Such processes are induced

by dimension six operators and only suppressed by one loop. Depending on the dark scalar

mass, mixing angle and the dark fermion Yukawa couplings, we find that the decoupling

temperature is at the order of T (tdec) ∼ O(10) GeV. Below this temperature, the entropy

density should be separately conserved in both sectors, so that the ratio of temperatures

ξ(t) = Tdark/Tvis in the dark and visible sector at some later time t is given by [71]

ξ(t) =

(
gdark
∗s (tdec)

gvis
∗s (tdec)

gvis
∗s (t)

gdark
∗s (t)

)1/3

, (6.7)

where g∗s(t) denotes the effective number of degrees of freedom at the time t. In the SM, all

degrees of freedom besides the Higgs boson, the top, and the electroweak gauge bosons are

active during decoupling, so that gvis
∗s (tdec) = 86.75. In the dark sector, the dark photons,

and dark fermions can contribute gdark
∗s (tdec) = 2 + 7

8 × 4 × n = 2 + n × 3.5, where n is

the number of dark fermions with masses below the decoupling temperature. At the BBN
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scale, electrons, neutrinos and photons contribute to the SM entropy density gvis
∗s (tBBN) =

7
8 × 10 + 2 = 10.75, while during formation of the CMB only colder neutrinos and photons

remain active gvis
∗s (tCMB) =

(
4
11

)4/3 × 7
8 × 6 + 2 = 3.36. In the dark sector, at these times

only the dark photon is a relativistic degree of freedom, gdark
∗s (tBBN) = gdark

∗s (tCMB) = 2.

The temperatures in the dark sector during BBN and CMB are therefore smaller than in

the visible sector. We find

ξ(tBBN) ≈ 0.50/0.70/0.82 , ξ(tCMB) ≈ 0.34/0.47/0.56 , (6.8)

where the first/second/third value corresponds to n = 0/1/2. These temperature ratios

can be translated into the change of effective number of neutrinos at these temperatures

∆NBBN
eff,ν =

8

7
ξ(tBBN)4 ≈ 0.07/0.27/0.53 , (6.9a)

∆NCMB
eff,ν =

(
4

11

)− 4
3 8

7
ξ(tCMB)4 ≈ 0.06/0.22/0.43 . (6.9b)

In the Standard Model, the effective number of neutrinos is given by Neff,ν = NBBN
eff,ν =

NCMB
eff,ν = 3.046 [87]. Currently, the strongest constraints on the numbers of effective degrees

of freedom during BBN [84] and CMB [85] are

NBBN
eff,ν = 3.24+0.61

−0.57 at 68% C.L. , (6.10a)

NCMB
eff,ν = 3.52+0.48

−0.45 at 95% C.L. . (6.10b)

This has to be compared with the values for Neff,ν + ∆Neff,ν in our model, which can

be comfortably accommodated within the uncertainties. Future CMB experiments will

improve the bounds on NCMB
eff,ν significantly [88] and might be able to find evidence for the

presence of the dark photon in the early universe.

7 Numerical analysis, discussion, and outlook

We now analyse the dark scalar and dark matter phenomenology of the model numerically,

starting from the underlying model parameters in the Lagrangian. We explore regions of

parameter space that are compatible with vanishing Higgs and scalar quartic couplings at

the Planck scale. We checked that small non-zero scalar quartics at the Planck scale do

not appreciably change any of our findings. In addition, we impose the correct dark matter

relic abundance with a ∼ 5% admixture of dark charged dark matter component.

The model introduced in section 4 has 9 free parameters: the Higgs quartic λH , the

dark scalar quartic λΣ, the portal coupling λHΣ, the SU(2)X × U(1)X gauge couplings

gX and g′X , as well as the Yukawa couplings of the dark fermions Yχ1 , Yχ2 , Yξ1 , and Yξ2 .

We consider the one loop effective scalar potential given in the appendix A, with the

approximations discussed there. We use 2 loop beta functions for the SM couplings and

1 loop beta functions for the dark sector couplings. For every given set of parameters, we

minimize the effective potential numerically and obtain values for the vevs v and w, as well

as mass eigenvalues for the scalars and their mixing angle.
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We allow to vary the Higgs quartic coupling at the electroweak scale in the range

0.259 . λH(mt) . 0.288 which is compatible with a vanishing λH at the Planck scale

given the current uncertainties on the top mass and the strong gauge coupling. The portal

coupling λΣH sets the ratio of the Higgs vev v and the dark vev w. For a dark vev at

the TeV scale, the portal coupling is small, typically at the order of |λΣH | ∼ 10−2. We

chose a vanishing dark scalar quartic coupling λΣ at the Planck scale. The value of the

scalar quartic coupling at the weak scale as well as the value of its beta function are mainly

determined by the SU(2)X gauge coupling gX and the largest dark fermion Yukawa coupling

Yξ2 . We chose these parameters such that we reproduce the Higgs vev of v = 246 GeV as

well as a Higgs mass of 124.5 GeV . mh . 126.5 GeV. With these boundary conditions the

heaviest neutral dark fermion turns out to be unstable. The lighter neutral dark fermion

comprises the dominant part of the dark matter relic abundance. Obtaining the right

annihilation cross section fixes its Yukawa coupling Yξ1 . We allow to vary Yξ1 such that its

annihilation cross section lies in the range 1.8× 10−26cm3/s < (σv)ξ1 < 2.6× 10−26cm3/s,

reproducing the right dark matter abundance within approximately 20%. For simplicity we

assume degeneracy among the charged dark matter particles and fix their Yukawa couplings

Yχ1 , Yχ2 such that their masses are mχ1 = mχ2 = 50 GeV. With this mass, requiring that

the charged dark matter is responsible for ∼ 5% of the observed relic abundance fixes the

U(1)X gauge coupling at the TeV scale to be at the order of g′X ∼ 0.25. Such small values of

g′X do not significantly impact the running of the dark scalar quartic, and therefore cannot

overcome the effect of the largest dark fermion Yukawa coupling Yξ2 . As a consequence

the dark scalar quartic will cross zero at the Planck scale. The limiting case where the

scalar quartic coupling barely touches zero close to the Planck scale demands a coupling of

g′X ∼ 0.7, which results in a charged dark matter component well below the percent level.

We find that the low energy phenomenology of the dark scalar s and the dominant dark

matter component ξ1 hardly depends on these choices.

Under the discussed boundary conditions, we obtain predictions for the mass and signal

strength of the dark scalar, as well as the mass and direct detection cross section of the

dominant dark matter component. In figure 6, we show the predictions for direct searches

for the dark scalar at the LHC (left) as well as dark matter direct detection experiments

(right). The red/green/blue points correspond to different choices for the dark scalar vev

w = 1/1.5/2 TeV as indicated. For a fixed choice of w, all parameters of the model are

determined by the chosen boundary conditions discussed above. Demanding that central

values for λH(mt), mh, and, (σv)ξ1 are reproduced, we obtain the predictions indicated by

the stars in the plots of figure 6. The dark and light points show the ranges of predictions

that can be obtained by varying the Higgs quartic between 0.266 < λH(mt) < 0.280 and

0.259 < λH(mt) < 0.288, which corresponds to the 1σ and 2σ ranges for mt and αs.

We find dark scalar masses in the range 140 GeV . ms . 220 GeV. The current

sensitivity of Higgs searches in the h → ZZ and h → WW channels at the LHC [67–70]

already starts to probe parts of parameter space. Improving the sensitivity down to the

percent level over the shown mass range, would probe almost the entire parameter space

of the discussed scenario. Note that in this scenario, the charged dark matter mass is fixed

to 50 GeV, allowing for a sizable s → χiχi rate that dilutes the signal strength at the
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Figure 6. Left: predictions for the signal strength of the dark scalar as function of its mass. The

shaded regions are excluded by Higgs searches at the LHC [67–70]. Right: predictions for the spin

independent dark matter nucleon cross section. The region above the solid black line is excluded by

the current experimental bound from LUX [81]. Future sensitivities of XENON1T [82] and LZ [83]

are indicated with the dotted lines. In the region below the dashed line, neutrino background limits

the sensitivity of direct detection experiments.

LHC. For charged dark matter particles that are heavier than half the dark scalar mass,

the dark scalar signal strength increases, especially for dark scalar masses below the WW

threshold, ms . 160 GeV. As expected from the discussion in section 5, the prospects for

direct detection of the dark scalar at the next run of the LHC are excellent.

Typical values for the dark matter mass are at the level of few 100 GeV. As anticipated

already in section 6.2, the predicted direct detection cross sections are still 1-2 orders of

magnitude below the current best experimental sensitivity of the LUX experiment [81].

The XENON1T experiment [82] might start to probe parts of the parameter space, if

the dark scalar vev is around w ' 1 TeV or smaller, which corresponds to a small dark

matter mass of around mξ1 ' 150 GeV. We expect that future dark matter direct detection

experiments like LZ [83] will be able to detect the dark matter unless the dark vev is far

above the TeV scale, in which case the direct searches for the dark scalar become more

powerful. The direct detection rates of the charged dark matter component is generically

below the neutrino floor. Interestingly, for mχ ≤ mh/2 the Higgs can decay into the

light dark matter candidate with a sizable branching fraction. Improved measurements of

the invisible branching ratio of the Higgs can therefore indirectly constrain the mass and

fraction of charged dark matter even if direct detection experiments cannot see it.

Anomaly cancellation enforces at least two generations of charged fermions with dark

charges QX = ±1. In the discussed model they are both stable. As argued in [71], this can

result in dark bound states, which imply cosmological dynamics radically different from cold

dark matter. This would provide a new testing ground for our model through measurements

of the dark matter distribution within the milky way, for example by precisely mapping the
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movement of stars as planned by the GAIA survey [89]. Numerical simulations of galaxy

formation are beyond the scope of this work, but we observe that a double disk scenario

as discussed in [71] can be reproduced within the parameter space of our model.

If all physics below the Planck scale should be captured in a model without new mass

scales, the matter-antimatter asymmetry needs to be addressed. One possibility would

be to consider baryogenesis at the electroweak scale. This requires a strongly first order

phase transition [90, 91]. Since the electroweak scale is induced by a dynamically broken

dark gauge symmetry, we expect bubble nucleation to occur through a two step process

in the discussed model. Similar scenarios have been studied in general singlet extensions

of the SM [92, 93] and in a model with an additional electroweak scalar triplet [94]. The

sphaleron rate for the dark gauge group differs from the one in the SM. A direct comparison

to previous results is therefore not straightforward and we leave this interesting question

for future work.

8 Conclusion

After the 8 TeV run of the LHC, the dynamics of the electroweak symmetry breaking

mechanism is still a mystery. Natural UV completions of the Standard Model predict new

degrees of freedom in the vicinity of the electroweak scale, that have not been discovered

so far. If the electroweak scale emerges as a quantum effect from a boundary condition

of vanishing mass parameters at the Planck scale, the large disparity of scales can be

explained by RGE running similar to the case of the QCD scale. Unlike QCD however,

there is no underlying symmetry which protects such a boundary condition at the Planck

scale in the SM.

We have shown that clasically scale invariant models with a minimal dark sector, that

incorporate radiative electroweak symmetry breaking through a Higgs portal, and stabilize

the Higgs potential up to the Planck scale put an upper bound of the order of a few TeV

on the mass of the dark matter candidate. As discussed previously in the literature, if the

dark sector consists of only a scalar charged under dark gauge interactions, the dark gauge

bosons that obtain their mass through couplings to the scalar can constitute dark matter.

As the dark gauge coupling has to be sizable in order to generate Coleman-Weinberg

symmetry breaking, in those scenarios one finds a lower bound on the dark matter mass.

As a consequence, dark matter is generically constrained to a window of a few hundred

GeV to a few TeV.

In this work we have considered the effect of additional fermions in the dark sector.

Radiative symmetry breaking dictates that the bosonic contribution to the effective poten-

tial needs to be larger than the fermionic contribution. This renders the fermions naturally

lighter than the gauge bosons and allows for fermionic dark matter masses at the elec-

troweak scale, or even below. We demonstrated this on the basis of a model that contains

a dark sector with a SU(2)× U(1) gauge group, a dark scalar that is a doublet under the

dark SU(2), and two generations of chiral dark fermions. The gauge interactions drive the

dark scalar quartic negative at low energies and radiatively induce a vev for the dark scalar.

The dark sector gauge symmetry is broken spontaneously by the vev of the scalar doublet,
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SU(2) × U(1) → U(1), leaving a long-ranged “dark electromagnetism” at low energies.

The vev of the scalar doublet also generates a Higgs mass term through a quartic portal

coupling and thus triggers breaking of the electroweak symmetry in the visible sector.

If this is indeed the origin of electroweak symmetry breaking, the dark scalar mixes

with the Higgs and therefore has Higgs-like couplings to Standard Model particles, only

suppressed by the portal coupling. We find that if the dark scalar stabilizes the vacuum

up to the Planck scale, its mass is constrained to be ms . 250 GeV. Its signal strength

is generically at the level of O(10%) of a SM Higgs boson. Current Higgs searches in

the WW and ZZ channels already constrain parts of the parameter space of the model,

and the prospects for detecting the dark scalar at the next run of the LHC are excellent.

Mixing of the dark scalar with the Higgs also leads to a slight reduction of the signal

strenghts of the Higgs boson and more precise measurements of the various Higgs signal

strengths are equally important to test the discussed framework. For sizable mixing, the

Higgs boson can also decay through the scalar portal into the dark charged fermions, if

they are kinematically accessible. This can induce an invisible branching ratio of the Higgs

of up to ∼ 10% which can be within reach of the high-luminosity LHC.

The model has two dark matter components: (i) dark fermions that are charged under

the long range dark electromagnetism and with masses typically below the electroweak

scale, mχi . 100 GeV; (ii) a neutral dark fermion with mass generically in the range

mξ1 ∼100–500 GeV. The model can easily accommodate a non-negligible fraction of long-

range interacting dark matter of the order of a few percent and could have interesting

implications for galaxy structure formations. While the neutral dark matter component

has a spin-independent scattering cross section with nuclei in reach of future direct detection

experiments like XENON1T or LZ, the light dark matter component will be most likely

buried in the neutrino background. In addition, the dark radiation present in the model

can be independently tested by future measurements of the number of relativistic degrees

of freedom in the early universe. Interestingly, the parameter space of our model in which

direct detection experiments are least sensitive is the one most strongly constrained by

collider searches for the dark scalar. The complementarity of both searches imply excellent

prospects to discover or exclude our model in the near future.

Finally, we argue, that if the electroweak scale is generated subsequently to the break-

ing of a dark gauge symmetry, bubble nucleation during the dark and electroweak phase

transition becomes a two step process. Previous studies of a similar scenario suggest, that a

strong first order phase transition as required by electroweak baryogenesis can be achieved

in this setup. Studies in this direction are left for future work.
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A Effective potential

The one loop effective potential Veff of our model is approximately given by

Veff(h, s) ' 1

8
λH(µh)h4 +

1

4
λΣH(µsh)h2s2 +

1

8
λΣ(µs)s

4

+
1

16π2

{
− 3m2

t

[
log

(
m2
t

µ2
h

)
− 3

2

]

+
3

2
m2
W

[
log

(
m2
W

µ2
h

)
− 5

6

]
+

3

4
m2
Z

[
log

(
m2
Z

µ2
h

)
− 5

6

]}

+
1

16π2

{
−
∑
i

m2
χi

[
log

(
m2
χi

µ2
s

)
− 3

2

]
−
∑
i

m2
ξi

[
log

(
m2
ξi

µ2
s

)
− 3

2

]

+
3

2
m2
W ′

[
log

(
m2
W ′

µ2
h

)
− 5

6

]
+

3

4
m2
Z′

[
log

(
m2
Z′

µ2
h

)
− 5

6

]}
, (A.1)

where the field dependent masses are given by

m2
t = Y 2

t h
2/2 , m2

W = g2h2/4 , m2
Z = (g2 + (g′)2)h2/4 , (A.2)

m2
χi = Y 2

χis
2/2 , m2

ξi
= Y 2

ξi
s2/2 , m2

W ′ = g2
Xs

2/4 , m2
Z′ = (g2

X + (g′X)2)s2/4 . (A.3)

In (A.1) we took into account contributions from the top quark, the W and Z bosons, the

dark fermions and the dark W ′ and Z ′ bosons. Contributions to the effective potential from

the Higgs boson h, the scalar s, and the corresponding Goldstone bosons lead to imaginary

parts of the one loop effective potential, whenever the corresponding quartic coupling (λH
or λΣ) becomes negative. Such imaginary parts signal the presence of an instability in the

potential [95].7 We neglect the contributions from h, s and the corresponding Goldstone

bosons. We explicitly checked that this leads to shifts in physical observables of a few

percent at most. We also do not take into account additional corrections coming from the

anomalous dimensions of the Higgs and the scalar field, as they are typically only at the

few percent level, as well.

All couplings as well as all logarithms in the effective potential depend on a renor-

malization scale. In (A.1) we introduced three scales µh, µs, and µhs. In the absence of

the portal coupling λΣH it is clear that the dependencies on the renormalization scales µh
and µs cancel separately up to terms suppressed by two loops. In our numerical analysis

7The imaginary part coming from the Goldstone contribution in the SM is actually spurious and can be

avoided by resummation [96, 97].
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we set these renormalization scales to the corresponding field values µh = h and µs = s,

which is expected to keep higher order corrections to the effective potential small. Switch-

ing on the portal coupling will lead to residual scale dependencies at the one loop level.

However, such effects are strongly suppressed due to the smallness of the portal coupling

and they are of the same order as the neglected effects from scalar loops on the effective

potential. The scale dependence of the portal coupling itself is very weak and in the nu-

merical analysis we chose µhs =
√
hs. Refined methods for analyzing effective potentials

were recently presented in [98]. We do not expect them to change any of our conclusions

in a significant way.

B Beta functions

The one loop beta functions of the couplings of our framework read (t = logµ)

dλH
dt

= βλH = βSM
λH

+
1

16π2
4λ2

ΣH , (B.1)

dλΣ

dt
= βλΣ

=
1

16π2

(
12λ2

Σ + 4λ2
ΣH − 9g2

XλΣ − 3(g′X)2λΣ +
9

4
g4
X +

3

4
(g′X)4 +

3

2
g2
X(g′X)2

− 4
∑
i

(Y 4
ξi

+ Y 4
χi) + 4λΣ

∑
i

(Y 2
ξi

+ Y 2
χi)

)
, (B.2)

dλΣH

dt
= βλΣH

=
1

16π2

[
4λ2

ΣH + 6(λH + λΣ)λΣH −
λΣH

2

(
3(g′)2 + 9g2 + 9g2

X + 3(g′X)2
)

+ λΣH

(
6Y 2

t + 2
∑
i

(Y 2
ξi

+ Y 2
χi)
)]
, (B.3)

dgX
dt

= βgX = − 1

16π2

39

6
g3
X , (B.4)

dg′X
dt

= βg′X =
1

16π2

13

6
(g′X)3 , (B.5)

dYξi
dt

= βYξi =
1

16π2
Yξi

3

2
(Y 2
ξi
− Y 2

χi) +
∑
j

(Y 2
ξj

+ Y 2
χj )−

9

4
g2
X −

3

4
(g′X)2

 , (B.6)

dYχi
dt

= βYχi =
1

16π2
Yχi

3

2
(Y 2
χi − Y 2

ξi
) +

∑
j

(Y 2
ξj

+ Y 2
χj )−

9

4
g2
X −

15

4
(g′X)2

 . (B.7)

C Loop function

The loop function that enters the partial width of h→ γ′γ′ given in section 5 reads

f(x) =

 arcsin2√x for x ≤ 1 ,

−1
4

(
log
(√

x+
√
x−1√

x−
√
x−1

)
− iπ

)2
for x > 1 .

(C.1)
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D Dark matter annihilation

In this appendix we give the annihilation cross section of the lightest neutral dark fermion ξ1

into the charged dark fermions χ1, χ2, that are assumed to be lighter than ξ1. Unsuppressed

contributions come from s-channel exchange of a Z ′ boson and t-channel exchange of a W ′

boson. We find

(σv)ξ1 '
1

2π

m2
ξ1

w4

√
1−

m2
χ1

m2
ξ1

(
1 +

m2
ξ1

m2
W ′
−
m2
χ1

m2
W ′

)−2

+
1

8π

m2
ξ1

w4

∑
i=1,2

√
1−

m2
χi

m2
ξ1

(
1− 4s2

X + 8s4
X +

m2
χi

m2
ξ1

2s2
X(2s2

X − 1)

)

×

(1−
4m2

ξ1

m2
Z′

)2

+
Γ2
Z′

m2
Z′

−1

+
1

4π

m2
ξ1

w4

√
1−

m2
χ1

m2
ξ1

(
1−

4m2
ξ1

m2
Z′

)(
1− 2s2

X +
m2
χ1

m2
ξ1

s2
X

)

×
(

1 +
m2
ξ1

m2
W ′
−
m2
χ1

m2
W ′

)−1
(1−

4m2
ξ1

m2
Z′

)2

+
Γ2
Z′

m2
Z′

−1

. (D.1)

The 1st line is the W ′ contribution, the 2nd and 3rd lines the Z ′ contribution and the 4th

and 5th line the interference term.

The width of the Z ′ boson that enters the above expressions is given by

ΓZ′ '
∑
i

g2
X

96πc2
X

mZ′

√
1−

4m2
ξi

m2
Z′

(
1− 4s2

X + 8s4
X −

m2
ξi

m2
Z′

(
1 + 8s2

X − 16s4
X

))

+
∑
k

g2
X

96πc2
X

mZ′

√
1−

4m2
χk

m2
Z′

(
1−

m2
χk

m2
Z′

)
, (D.2)

where the sums over i and k run over those fermions with mass smaller than half of the

Z ′ mass.
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