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Box-in-box or frame-in-frame techniques 1,2 are the state of the art in present overlay measurement. These
methods are based on the evaluation of images recorded with a CCD-camera by means of sophisticated image
processing algorithms. Essentially, the decentering of a frame or box patterned in one layer has to be determined
in relation to a frame or box generated during a foregoing patterning cycle. Under optimum conditions
accuracies of 5 through 10 nm can be achieved. Thus the approach fully meets the requirements of today's
lithography.

However, there are also some drawbacks. First, due to the small depth of focus associated with high-resolution
imaging optics the focus must be put on one layer. Hence, the image of the second layer overlay mark may be
appear blurred. To overcome this issue at least to images with different focus settings have to be taken. Second,
the image contrast depends on the material properties of the particular layer as well as on the probing wavelength
3. In the worst case this can lead to complete failures of the overlay metrology tool. And third, non-symmetric
edge deposition may occur caused by the self shadowing of mark depth. This effect is called wafer-induced-shift.
Special overlay measurement mark designs are recommended to avoid this error source 4.

Another concern is the further development of measurement accuracy requirements. The Sematech roadmap
predicts the 70 nm critical dimension (CD) node for the year 2004. It will be associated with an overlay budget
of about 10 to 20 nm resulting in a required overlay tool precision of 1.3 nm. Probably, these requirements are
beyond the limits of optical imaging based tools. Recent publications show that the box in box techniques may
become insufficient with shrinking device geometry 2.

LIGHT DIFFRACTION BASED OVERLAY MEASUREMENT

ABSTRACT

Optical overlay measurement methods are very effective since they are rapid and non-destructive. Imaging
techniques need sophisticated image processing and suffer from the wave-optical resolution drawback. Presently,
leading edge devices are offered with 5 through 10 nm measuring accuracy. In this paper a method is proposed
that relies on the diffraction of a probing laser beam at a periodic reference pattern. This special pattern is
implemented in the circuit layout. After the resist patterning of the second of two consecutive layers, the
diffraction at the resulting net grating is measured. If an appropriate grating design is chosen, the misalignment
error can be directly extracted from the diffraction efficiency. In order to obtain a strong diffraction signal and
thus a sufficient signal-to-noise ratio optimum grating designs have been computed by means of rigorous
diffraction modeling. Experimental results supported by rigorous modeling suggest that this technique could
have the potential to meet next generation overlay accuracy requirements.

1. INTRODUCTION
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In spite of the high lateral and vertical resolution of non-optical techniques such as scanning electron microscopy
and atomic force microscopy applied to overlay metrology, optical methods have the crucial advantage of being
rapid and non-destructive. Light based metrology principles can be maintained if the diffraction is purposely
applied to get more information about the causing scatterer. This has been shown successfully in the field of CD-
metrology where the so-called optical scatterometry 5-7 and related spectral methods 8 have been evolved to
serious competitors.

Diffractive zone plate alignment marks have been proposed by Feldman and White9. We propose an overlay
measurement technique that makes use of the defined diffraction of light. This technique can be applied both for
the stepper evaluation and for the overlay measurement of consecutive patterning layers.

As for the stepper qualification, the following scenario is proposed. After being coated with photoresist the wafer
is exposed with the mask containing a special diffractive overlay mark. This overlay mark comprises a simple
transmission grating with a line-to-space-ratio greater than 1:1 for a positive resist and less than 1:1 for negative
one. (On a first glance, a factor 3, that is to say either 3:1 (positive) or 1:3 (negative) seems to be a reasonable
choice which results as can be seen later to a duty cycle of 1:1 in the overlay pattern to be measured.)

After printing the mask, the latent overlay grating has a period p on the wafer. We call this first grating primary
grating. The inverse of the grating period can be considered as a spatial frequency 1/p. In a second step, a stepper
repositioning is done including an additional offset of exactly half a period of the overlay grating. Then, the
wafer is exposed again with the same dose as before and thereafter, the resist is developed. The further procedure
shall be exemplified with the positive resist process. In case of accurate alignment, the spaces (or lines,
respectively in case of applying a negative resist) of the second exposed grating or secondary grating fit exactly
in the larger lines of the first one. The result is a grating with the doubled spatial frequency 2/p. If the second
exposure is misaligned caused by the stepper tool error the spaces of the second grating are shifted either to the
right or to the left in relation to those of the primary grating. In other words the resulting grating keeps the period
p. Figure 1 shows a schematic example of a negative resist and figure 8 contains cross sectioning micrographs of
a overlay pattern printed in positive resist.

Now the overlay measurement can be performed by illuminating the overlay mark with a laser beam at normal
incidence. Choosing an appropriate wavelength, the first order diffraction disappears if the misalignment
approaches zero due to the doubling of the grating frequency. The right wavelength-to-period ratio can be found
by means of the well known grating equation:

p
mm

λθ ⋅=sin

with m being the diffraction order, θm the angle of this order and λ the wavelength of the probing beam. In order
to allow the first diffraction order to propagate for a period p and suppress it for half the period p/2, the
wavelength-to-period ratio has to be chosen between:

15.0 <<
p
λ

For instance, a He-Ne laser with 633 nm is suited for a basic grating period of 1 micron. In this case, the first
order reflection is deflected at about 39.3 degrees from the normal direction.

Our next consideration shall be devoted to the question whether this principle can be transferred to the overlay
measurement between consecutive patterning cycles. To this end, let's have a closer look at the underlying
procedure of overlay measurement. Shortly, the procedure runs as follows. First, a primary grating is generated
in the first patterning cycle. Depending on the particular technology step this primary grating can be etched for
example in poly-silicon or oxide. After completing this technology step, the next patterning cycle is launched
with the resist coating step. The reticle for the photolithographic exposure contains the same overlay grating like

2. BASIC PRINCIPLE



Proceedings SPIE Vol. 4344-28 (2001)

3

the reticle used in the foregoing patterning step, but it is displaced by half a grating period on the mask layout.
Then, the wafer is developed and the secondary grating is printed in photoresist.
Evidently, the straightforward principle explained above cannot be directly applied to overlay measurement
since the two patterns are usually made of different materials, e.g., resist and silicon or oxide. Thus the resulting
grating originating from the superposition of the primary and secondary grating will not double its frequency
even in the case of perfect overlay. However, it may become symmetric. This means that the plus and the minus
first order will provide the same efficiency for ideal alignment. Hence, the basic principle can be maintained by
measuring the difference between the plus and minus first diffraction order.

3.1 Theory

Generally, the relation between overlay error and diffraction signal will be non-linear. Therefore the diffraction
response versus overlay error must be calculated as accurate as possible. Moreover, due to the very fine
geometry, the light polarisation has to be taken into consideration. This can only be done by full electromagnetic
approaches. An overview over the most widely accepted methods is given for instance in 10. The Rigorous
Coupled Wave Approach (RCWA)11,12 which adheres to the modal methods with Fourier expansion has been
evolved to one of the most versatile and robust algorithms for the diffraction computation of multilayer gratings.
A characteristic feature of the RCWA is the so-called slicing where the grating profile is decomposed in a
number of thin slices in which the refraction index is independent on the normal direction. Basically, this method
relies on the transformation of Maxwell’s equations within a slice into a system of differential equations for the
transversal field components. Then, these equations are Fourier factorised and solved by means of an
Eigenvector/Eigenvalue decomposition. And eventually, the elementary solution matrices in every slice are
coupled recursively to connect cause and response fields on the front side and back side of the multilayer system.
This procedure was implemented numerically in the UNIGIT-code.

3.2  Modeling Results

Now we are going to verify the qualitative arguments made in section 2 by means of numerical simulations.
First, the stepper qualification, i.e., the resist in resist grating shall be considered. Here, two cases shall be
investigated – a resist (Shipley positive resist DUV 210) grating with a period of 1 micron that is illuminated
with a 633 nm beam and a resist grating with 600 nm period probed with 442 nm wavelength (He-Cd laser). The
mean duty cycle (line-to-space ratio) was set to 3:1. To investigate the impact of the duty cycle, additional
computations were performed with increased and decreased ratios. In all cases a resist thickness of 420 nm was
assumed corresponding to the IHP resist process. Then the misalignment was changed gradually from –100 nm
through +100 nm and the diffraction efficiency of the first order in reflection was calculated for both polarisation
cases namely TE and TM. The results are depicted in figures 3a through 3c. Figure 3a shows the TE-polarisation
case and figure 3b shows the TM-case for the 1 micron grating illuminated with 633 nm. Here, the spacewidth s
of the basic grating served as a parameter. It was varied from 0.2 through 0.3 microns (which corresponds to
duty ratios of 4:1 and 2.3:1). For the definition of the spacewidth see figure 8.

From these simulations the following conclusions can be drawn:
• First, the feasibility of the basic principle explained in section 2 is confirmed. That is to say, the first order

diffraction drops to zero in the state of best alignment.
• Second, a non-linear parabolic dependence is observed between first order diffraction efficiency and

alignment error. The slope of the curve is zero at zero error. This means low sensitivity of the method at
small tool errors. Having an efficiency value of 0.002% at 1 nm and of about 10 at 100 nm misalignment,
the required dynamic range is about 5·103.

• Third, working with TM-polarised light gives a stronger signal compared to illumination with TE-
polarisation, although in the best case (s = 0.3 µm) the modulation is nearly equal. However, in general the
polarisation impact is also dependent on other factors such as the resist thickness.

3. MODELING
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• Fourth, the best sensitivity is expected for an increased width of the spaces s (low duty ratio).

Next, the overlay measurement technique shall be investigated numerically. Since the Poly-silicon layer is
particular critically we focused our efforts on this technology step. In contrast to the stepper qualification we
considered the alignment of a resist line grating relative to a previously patterned Poly-Si Grating. The cross
section of the complete multilayer stack is depicted in figure 4. The ARC layer is necessary for the second resist
patterning thus covering the Poly-Si lines. It has a thickness of 20 nm at the bottom and of 40 nm at the top of
the Poly-Si lines. Below the ARC a 5 nm thick gate oxide layer was deposited. The Poly-Si lines are 200 nm in
height whereas the resist lines are 420 in height. Figure 5 shows the computed diffraction efficiencies for the +1.
diffraction order in reflection for normal incidence of a 633 nm laser beam. The -1. order curves are not depicted
since they are mirrored on the y-axis due to the inherent symmetry of the arrangement. Obviously, the curves do
not drop to zero for diminishing overlay error. However, if we consider the difference between the +1. and the -
1. order the optimum constellation observed from the resist in resist case can be retained, i.e., the signal can be
forced to zero at zero alignment error. Moreover, the difference signals (bold curves) show two benefits:
• First, the curves are pretty linear. This facilitates the calibration of the overlay sensor. Furthermore, the

measurement accuracy is expected to better than in the resist in resist case. The required dynamic range is
reduced to 102 (related to an alignment error range from 1 nm through 100 nm).

• Second, the signal changes its sign with a zero crossing. In this way, the direction of the misalignment can
be derived, i.e., a negative signal corresponds to a negative shift and a positive one to a positive shift.

• Third, a stronger signal sensitivity is observed for TE polarised light.

So far, we proved the feasibility of the proposed diffractive overlay measurement by means of rigorous
modeling. In this section, some of the results shall be verified by experiment. Again the two cases, stepper
qualification and Poly-Si overlay shall be investigated. Two 8 inch silicon wafers were prepared - one with a
resist pattern and one with a developed resist pattern above an underlying Poly-Si layer. The photolithographic
exposure was performed with a Nikon DUV stepper. Here, we used a special mask design that was developed for
the particular application of generating test patterns for the optical CD metrology. Among other patterns the
mask contains line/space patterns with line/space ratios ranging from 1:4, 1:3, 1:1, 3:1 to 4:1 and with 1 µm pitch
after printing onto the wafer. In the second exposure, the reticle was offset perpendicular to the grating lines. In
addition to the basic offset of a half grating period (500 nm), an overlay error simulating offset was chosen
ranging from -100 nm in steps of 25 nm through +100 nm. This overlay error was assigned to the rows on the
wafer, i.e., the first row corresponds to +100 nm misalignment and so on. Eventually, according to the local
secant across the wafer three (top and bottom) to nine (center) exposure fields with identical nominal
displacement were printed onto the wafer.

Following, the actual alignment error was measured by means of CD scanning electron microscopy (SEM).
Figure 6 presents some representative examples of SEM-micrographs. It contains two different alignment states
out of 9 possible ones for the resist in resist pattern (the dark areas are the spaces). In the frame of this paper, the
central column of exposure fields was selected for the investigations. Further evaluations of the neighboured
fields must be adjourned to a later date. From these more comprehensive measurements a statistical evaluation
can be derived. While the left hand side shows the secondary grating displaced relative to the primary grating by
a nominal value of 75 nm, the right hand side presents the best case with no alignment error. This corresponds to
the anticipated doubling of the grating frequency. The displacement measurements by means of these
micrographs also reveal that there are deviations from the nominal values. Essentially, these deviations shown in
table 1 are caused by the tool error of the stepper.

Nominal
Displacement in nm - 100 -75 -50 -25 0 +25 +50 +75 +100
Measured
Displacement in nm -125.5 -80 -49 -23.5 +5 +25.5 +50 +73 +104.5

4. EXPERIMENTAL
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After examining the overlay patterns by means of the CD-SEM, the optical measurements were performed in the
next step. The experimental arrangement corresponds mainly to the schema depicted in figure 2. The overlay
patterns having dimensions of 1 by 3 mm were illuminated with a 633 nm laser beam focused to about 0.8 mm in
diameter on the wafer surface. Then, the diffracted light was measured using a photosensitive element. Several
measurements were performed per site with repositioning the sample. In addition, the incident intensity was
measured each time before moving to the next measuring site. The diffraction efficiency is then obtained from
the intensity ratio (diffracted to incident energy). Last, the measured diffraction values were compared with the
modeling results. Figure 7 exhibits the results for the resist in resist grating. Obviously, the agreement between
SEM-measurement and optical diffraction measurement is quite good. Some slight deviations might arise from
local overlay variations within the measuring field, from photometric measurement uncertainties and from
profile slopes differing from the 90 degrees assumed for the modeling.

Finally, cross sectioning preparations were made from the test wafer. Generally, the analysis of these
micrographs confirmed the results obtained from the top down measurements. Besides, these micrographs served
as input profiles for the modeling. Figure 8 shows two alignment states (LHS misaligned, RHS aligned) for the
resist in resist case and figure 9 for the resist in Poly-Si grating.

An alternative method for overlay metrology in microtechnology was presented. This method is based on the
light diffraction at grating patterns shifted against each other. Beside overlay metrology, stepper alignment
qualification might be another important application. The basic principle of the proposed method relies on the
symmetry of the resulting overlay mark in case of ideal alignment. Here it was shown that either the diffraction
efficiency in the first order (resist in resist pattern) or the difference between the two first orders (resist in non-
resist pattern) has to be used as signal. The physical considerations were examined by means of rigorous
modeling. Besides, optimum overlay patterns were derived from the simulations.  Finally, the proof of the
experimental feasibility was given. The obtained results are very encouraging. Experimental results show good
conformity with the mathematical modelling. Essentially, the method seems to have the potential for overlay
measurement accuracy down to 1 nanometer. Much more work is necessary to obtain more clarity about the
practicability and attainable accuracy of the proposed technique.

This work was financially supported by the Thuringia State Ministry of Science, Research and Arts (TMWFK)
under Grant No. B509-99033.  Besides, we like to thank Mrs. Naumann from IHP Frankfurt/O. for the SEM-
preparations.
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Figure 1:  Schematic layout of the diffractive overlay mark
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Figure 2:  Experimental arrangement for the overlay measurement using diffractive marks
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Figure 3a:  Simulation of the +1. diffraction order efficiency vs. lateral misalignment for the 1 µm grating
probed with 633 nm in TE-polarized light with the spacewidth s of the basic grating as parameter
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Figure 3b:  Same as Fig. 3a, but TM-polarization
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Figure 3c:  Comparison of the response (1. order efficiency) for a 1 µm pitch grating probed with λ = 633 nm
(TE - slim solid line, TM - slim dashed line) with a 600 nm grating pitch probed with 442 nm (TE - bold
solid line, TM - bold dashed line)
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Figure 4:  Schematic illustration of the Poly-Si layer overlay pattern after resist development of the following
patterning cycle
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Figure 5:  Simulation of the detector response for the Poly-Si overlay pattern presented in figure 4. The slim
lines show the +1. order diffraction efficiencies (the -1. order are mirrored on the y-axis thus having a negative
slope) and the bold lines present the difference D between the +1. and the -1. order (solid lines -TE, dashed lines
- TM).

   
Figure 6:  Top down view of the resist in resist overlay pattern (LHS: with nominal displacement of 75 nm,

RHS: without overlay error, i.e., with no nominal displacement )
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Figure 7:  First order diffraction efficiency (TE polarisation) for the 1 µm resist in resist grating - measured
(diamonds) versus modeled (squares).
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Figure 8:  Cross section of the resist in resist overlay pattern (LHS: with nominal displacement of 75 nm, RHS:
without overlay error, i.e., with no nominal displacement )
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Figure 9:  Cross section of the resist in Poly-Si overlay pattern (LHS: with nominal displacement of 75 nm, i.e.,
the resist lines are shifted to the left in relation to the Poly lines by about 75 nm, RHS: nearly perfect
alignment).


