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Light Field Analysis for Modeling Image Formation
Chia-Kai Liang, Member, IEEE, Yi-Chang Shih, and Homer H. Chen, Fellow, IEEE

Abstract—Image formation is traditionally described by a
number of individual models, one for each specific effect in the
image formation process. However, it is difficult to aggregate the
effects by concatenating such individual models. In this paper, we
apply light transport analysis to derive a unified image formation
model that represents the radiance along a light ray as a 4-D
light field signal and physical phenomena such as lens refraction
and blocking as linear transformations or modulations of the
light field. This unified mathematical framework allows the entire
image formation process to be elegantly described by a single
equation. It also allows most geometric and photometric effects of
imaging, including perspective transformation, defocus blur, and
vignetting, to be represented in both 4-D primal and dual domains.
The result matches that of traditional models. Generalizations and
applications of this theoretic framework are discussed.

Index Terms—Defocus blur, image formation, light field, light
transport analysis, perspective transformation, vignetting.

I. INTRODUCTION

M
ODELING the appearance of a scene on an image is the

most fundamental step in image processing and com-

puter vision. It entails the use of the properties of scene (geom-

etry, reflectance, etc.) and imaging system (location, lens, etc.)

to control image formation. The scene appearance models char-

acterize the scene properties and map the scene to the image.

Traditional image formation modeling describes each specific

imaging phenomenon by an individual model. For example, the

classic pinhole camera model describes the perspective projec-

tion part of an image formation process. Since the image forma-

tion process usually involves various geometric and photometric

effects, such as defocus blur and vignetting, it is often difficult

to describe the combined effect by concatenating the individual

models, if possible at all.

In this paper, we develop a unified framework for modeling

the image formation process by representing the radiance along

the light ray as a high-dimensional light field. An ordinary image

is a projected signal of the light field. With this framework,

the transportation of the radiance from the object surface to the
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image plane can be simply formulated as linear transformations

or modulations of the light field. Furthermore, these various

light field manipulations can be combined into a single opera-

tion to account for the aggregation of photographic effects. The

light field representation also enables spectral analysis of the

radiance distribution, leading to mathematically more elegant

analysis of the photographic effects in the frequency domain.

A unified framework of image formation is appealing. It

allows all photographic effects to be modeled on the same base

and facilitates a better estimation of the scene and imaging

parameters. It encompasses all elements of the light transport

process of an imaging system and is applicable to different

kinds of imaging systems. Although light transport analysis

has been applied to many image-related problems, a unified

framework for image formation has not been proposed till now.

The rest of the paper is organized as follows. Section II

describes the related work on image formulation and light

transport analysis. Section III presents various light field oper-

ations that serve as the basic building blocks of our framework.

Section IV shows how these operations can be combined into

a single photographic operation and how the transportation of

light from the object surface all the way to the image sensor

can be represented. Section V discusses the relation of the

proposed unified framework to the traditional photographic

models. The generalizations, applications, and limitations of

the framework are discussed in Section VI, followed by a

conclusion in Section VII.

II. RELATED WORK

A. Image Formation

Image formation modeling, which describes the appearance

of objects on an image, has been studied for decades, and the

basic models can be found in computer vision and image pro-

cessing books [1], [2].

Existing image formation models can be roughly classified

into two categories. The first category deals with the geometrical

aspect of image formation. For example, the projection of a 3-D

scene onto a 2-D image is modeled as a perspective transforma-

tion, and the image of an out-of-focus scene is modeled as the

convolution of a sharp image with a spatially variant low-pass

kernel that is a function of object distance and camera parame-

ters [3]. The second category deals with the photometric aspect

of image formation. For example, the vignetting effect is usu-

ally modeled by a 2-D smooth function of view angle, surface

orientation, and camera parameters [1], [4].

While having been widely applied, such models have several

fundamental problems. First, as these models were separately

developed to account for different photographic effects, an in-

tegrated treatment of the effects is rather difficult to do. For ex-

ample, while the defocus blur and the vignetting are functions
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of the camera parameters, they cannot be analyzed together with

existing models. Second, most models are confined to the 2-D

image domain, which is not an ideal domain for analysis of a

number of photographic effects. For instance, an occluded ob-

ject can be partially observed by a lens camera because the fi-

nite-size aperture induces a small parallax, but this effect cannot

be analyzed in the image domain [6]. Third, while physically all

photographic effects occur simultaneously, existing models can

only be sequentially applied to the image. To our knowledge,

there is not yet any study about which order these models can

be applied to best describe the entire image formation process.

Last but not least, many models assume that a perfect image

can be used as the reference. However, this is not always true in

practice.

B. Light Transport Analysis

By representing the radiance of a light ray by a plenoptic

function [7] or light field [8], we can apply standard signal pro-

cessing techniques, such as convolution and spectral analysis

[9], to analyze the light transport. This concept was first used to

analyze the bandwidth of the light field. Chai et al. [11] showed

that the spectral support of the light field depends upon the range

of the scene depth and, thus, knowledge of scene geometry helps

improve the sampling and reconstruction efficient. In [12], a

depth-dependent reconstruction filter is proposed to suppress

the aliasing effect. Note, however, that only the propagation of

light rays in free space is considered in these studies.

Ramamoorthi and Hanrahan modeled the surface reflection as

a convolution [13], [14]. Typically, the surface acts as a low-pass

filter on the incoming light. Therefore, the lighting and the re-

flectance properties (precisely, the bidirectional reflectance dis-

tribution function) of the surface can be recovered from the

image by a simple deconvolution. This also implies that the sur-

face reflection may be efficiently evaluated in the frequency do-

main [15], which is the basic idea of many precomputed radi-

ance transfer algorithms [16].

The occlusion of the object in the path of a light ray may be

modeled as a modulation of the light field [17]–[20]. An ana-

lytical representation of the irradiance field due to diffuse emit-

ters and occluders is derived in [17]. The effect of modulation

is exploited to predict the bandwidth of the local light field for

efficient sampling [18], and the occluder is recovered from the

modulated light field [19]. In this paper, we describe the effect

of an aperture on the light field as modulation and discuss its

relation with the defocus blur.

Light transport analysis is a technique often employed in the

design of light field cameras and displays [21]–[26]. Ng showed

that a photo is equivalent to an integral projection of the light

field, or a slice of the light field spectrum [26]. Therefore, by

properly modulating or transforming the light field such that all

the information falls on the slice, a light field can be captured

with a 2-D sensor array [24].

The framework presented here is significantly different from

previous work in several ways. First, we present a full derivation

of the light transport from the object surface all the way to the

image plane, including the blocking effect of the aperture. On

the contrary, previous works usually present or utilize a small

part of this framework. For example, the effect of the aperture

is discussed in [21]. In [22], the light transport equation without

aperture is presented, but no derivation is provided. Second, un-

like previous work that only considers geometric transforma-

tion, we include photometric transformation in the light trans-

port process as well to account for effects such as vignetting.

Third, we show that the photographic effects such as perspective

transformation and defocus blur can be modeled in the unified

framework.

During the submission of the paper, Levin et al. concurrently

developed a related analysis to design a lattice-focal lens for

extending the depth-of-field [27]. There are a few notable dif-

ferences between their work and ours. First, we model the lens

refraction and aperture separately for better flexibility, while

they model them together as a single 4-D convolution for a sim-

pler representation. Second, while they focus on the analysis of

defocus blur in many different imaging systems, we develop a

framework to describe various photographic effects in the stan-

dard thin-lens camera.

III. LIGHT TRANSPORT OPERATIONS

In this section, we describe the representation of light field

and basic light transport operations. Like the traditional models,

we consider the effects of geometric optics [1], for which the

object and the space of concern are much larger than the wave-

length of the light, and neglect the wave effects such as diffrac-

tion and interference. We first describe how to represent the

radiances of light rays as a light field. Then, we describe the

light field operations corresponding to the propagation, refrac-

tion, and blocking of light rays. We also use Fourier analysis

to interpret these operations in the frequency domain. Finally,

we show that these operations can be combined into a single

one and that the backward light transport can be easily derived.

For conciseness, we only present the light transport operations

needed to model the image formation process. Other light trans-

port operations and analyses can be founded in [14] and [18].

A. Light Field Representation

In geometric optics, if a light ray can be uniquely parameter-

ized, the representation of its radiance value can be easily deter-

mined. Generally, a light ray in 3-D space can be represented by

a point (3-D) the light ray passes through and the direction (2-D)

of the light ray. Hence, the radiance of a light ray is a sample of

a 5-D signal, which is the plenoptic function [7].

However, the radiance measured along a light ray is constant

if the light ray is not blocked by any occluding object. Therefore,

when a light ray leaves the convex hull of a scene, the dimen-

sionality of the plenoptic function is decreased by one. In this

case, it has been shown that each light ray can be specified by

its intersections with two 2-D manifolds and that the radiance

of the light ray is a sample of a 4-D signal called light field [8]

or lumigraph [10]. We adopt the former name throughout the

paper.

An example of the light field representation is shown in Fig. 1.

Two infinite planes with independent coordinate systems are de-

fined on the right-hand side of the scene (a toy house). Each

rightward light ray emitted from the scene intersects these two

planes at two points: one at the coordinates on Plane 1

and the other at on Plane 2. Therefore, the radiance of
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Fig. 1. 4-D representation of a light ray in 3-D space.

TABLE I
NOTATION

a light ray, which is a sample of the light field , can be de-

scribed by

(1)

For simplicity, we derive our framework in 2-D space, where

2-D manifolds become 1-D and, thus, the light field becomes

2-D. The derivation is readily extendable to 3-D space as de-

scribed in Section VI. The notation used in this paper is defined

in Table I.

We use three different parameterizations to represent the light

field: plane–sphere, two-plane, and in-camera. In the plane–

sphere parameterization shown in Fig. 2(a), the light ray is repre-

sented by the intersection of the light ray with a reference plane

,1 denoted by , and the angle between the light ray and

the normal of the reference plane. In the two-plane parameteri-

zation, the light ray is represented by its intersections with two

parallel reference planes and as shown in Fig. 2(b), where

is at a unit distance from . The coordinates of the inter-

section point on are defined with respect to the intersec-

tion point on . That is, is defined in the local frame fixed

at . These two parameterizations are related to each other by

. For convenience, we call the -axis spatial axis and

the -axis angular axis since it is related to the direction of the

light ray.

1In 2-D space, a 2-D plane is degenerated into a 1-D line, but we still call it
plane for convenience.

Fig. 2. Light field representations. (a) Plane–sphere parameterization. (b) Two-
plane parameterization. (c) In-camera parameterization.

The third method, in-camera parameterization, is used to rep-

resent the light rays entering the camera, as shown in Fig. 2(c).

It is similar to the two-plane parameterization but one refer-

ence plane is aligned with the aperture plane and another with

the image plane. The distance between these two planes is .

The coordinate systems of these two planes are independent,

but their origins are on the optical axis of the camera.

The radiances of the light rays in different parameterizations

are measured in different ways. Traditionally, the radiance

along a light ray is measured by its power per unit

projected area and per unit solid angle. That is

(2)

In the plane–sphere parameterization, we remove the cosine

term and define the radiance as

(3)

In the two-plane parameterizations the radiance is defined as

(4)

We pack and into a vector to facilitate the derivation. The

conversion between these radiance representations is given in

Appendix A.

Because the light field under the two-plane parameteriza-

tion is a regular 2-D signal, it can be transformed to the Fourier

spectrum

(5)

where is the vector representation of the fre-

quency components. We use the calligraphic symbols to denote

the signal spectrums. Note that Fourier analysis used here is not

related to Fourier optics.

When the reference plane is aligned with the surface of

an object, the resulting light field, denoted by and illustrated

in Fig. 3, is called surface light field [28]. If the reflectance of

the object is Lambertian, the radiances of the light rays emitted

from the object are independent of the view angle. Therefore,

the light field can be described by a 1-D texture function

(6)
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Fig. 3. (a) Construction of the surface light field of a Lambertian object.
(b) Resulting light field. (c) Fourier spectrum of (b).

The derivation is described in Appendix B. Therefore, the sur-

face light field is constant in the direction. Moreover, because

it is invariant along the -axis, we have

(7)

where is the Dirac delta function. That is, all energies of the

spectrum fall on the plane in the Fourier domain, as

shown in Fig. 3(c).

If we move the location of the reference plane as the light rays

traverse in space, the light field representation is changed even

though the radiances of the light rays are not. In the following,

we discuss the operations of light field.

B. Light Ray Propagation

When a light ray traverses in free space, the radiance along the

light ray is unchanged. Consider the example shown in Fig. 4.

If we displace the reference planes by units in the center ray

direction, the representation of the light ray becomes

, and . We can relate the

original light field defined by planes and to the new

light field defined by planes and by

(8)

That is, when the light rays traverse by units, the new light

field is a linear transformation of the original light field, where

the transformation matrix is a function of .

Moreover, according to the Fourier linear transformation the-

orem [29], the spectrum of the light field is also the result of

a linear transformation of the original spectrum

(9)

Consider again the example in Fig. 4, assuming the surface

light field shown in Fig. 3(a) is the initial light field . As the

Fig. 4. Light ray propagation. (a) One light ray can be represented using two
different sets of reference planes. The initial light field is the surface light field
shown in Fig. 3, we can use (8) and (9) to obtain (b) the light field at � �

��� away from the surface, and (c) the spectrum of the transformed light field.
(d) and (e) Are the light field and its spectrum at � � ���, respectively.

light rays travel along the central ray by, for example, 100 units,

according to (8) the light field is sheared [Fig. 4(b)], so is the

corresponding spectrum of the light field [Fig. 4(c)]. As we in-

crease the distance between the surface and the reference plane,

the degree of shearing increases. Although the initial light field

contains only spatial variations, they become angular variations

due to the linear transformation.

C. Lens Refraction

According to the Snell’s law, a light ray changes its direction

when passing from one medium to another that has a different

refractive index. Unfortunately, this direction change cannot be

described as a linear transformation in the light field represen-

tation. However, for the purpose of image formation modeling,

we only have to consider lens refraction, not general refraction.

Specifically, we consider the thick lens or thin lens models in

Gaussian optics [5]. These models are commonly used in image

processing and computer vision.

For a thin lens model, if we align the reference plane X with

the thin lens, then the light fields before refraction is related

to the light field after the refraction by

(10)
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where is the focal length of the lens. We can see that the refrac-

tion of the lens can also be modeled as a linear transformation

of the light field. Similar to the case described by (9), the spec-

trum of the refracted light field is related to that of the original

light field by a linear transformation.

Note that matrices similar to and are used in matrix

optics to describe the behavior of individual light rays [30]. Here

we use them to transform the light field that represents the radi-

ances of all light rays. An advantage of analysis in the light field

space is that we can simultaneously describe both geometric and

photometric changes of the light rays. On the contrary, tradi-

tional matrix optics can only describe the geometric transfor-

mations of the light rays. Another advantage of light filed anal-

ysis is that the techniques well developed in signal processing

become immediately applicable.

D. Occlusion

When an occluder is present in the path of a light ray, the

radiance along the light ray cannot be propagated through the

occluder. This blocking effect can be described as a modulation

of the light field

(11)

where is the blocking function, or the shield field [19], of

the occluder. The value of controls how the light ray

is blocked or attenuated by the occluder. Unlike the previous two

operations that describe the geometric changes of the light rays,

the blocking operation describes the photometric changes of the

light rays in the light transport process.

According to the convolution theorem and the duality prop-

erty, when a signal is a modulation of inputs and , its

spectrum is the convolution of the two input signals

(12)

Determining the blocking function of an arbitrary occluder is

generally difficult. However, several occluders needed for our

analysis can be derived. For example, when an occluder is in-

finitesimally thin and is aligned with the reference plane ,

whether a light ray is blocked would solely depend upon the

intersection point with the occluder. In this case, the blocking

function and its spectrum are similar to the surface light field

of a Lambertian object

(13)

(14)

where is a 1-D signal describing the transmittance of the oc-

cluder. Clearly, the energy of the blocking function concentrates

on the plane and, thus, (12) is effectively a convolution

of a 2-D signal with a 1-D signal.

An example occlusion is illustrated in Fig. 5, where the initial

light field is the one shown in Fig. 4(d) and the occluder is a thin

periodic grating. Fig. 5(b) shows that the effect of occlusion is a

modulation of the light field by a periodic function. Because the

spectrum of the blocking function is a 1-D signal, convolving it

with the initial light field results in several small replicas along

Fig. 5. Effect of occlusion on the light field. (a) Thin periodic occluder is placed
at the reference plane. Assume the initial light field is the propagated surface
light field in Fig. 4(d), we can use (11) to obtain (b) the modulated light field
and (12) to obtain the convolved spectrum.

the -axis. The power of each replica depends upon the power

spectrum of the blocking function.

E. Reparameterization

For the light rays entering the camera body, we use the

in-camera parameterization shown in Fig. 2(c) to represent the

light field. By aligning the reference plane in the original

two-plane parameterization with the image plane, the light field

in the in-camera parameterization is represented as a linear

transformation of the original light field

(15)

where the scaling factor is the Jacobian of the transforma-

tion. Also, according to the Fourier linear transform theorem,

the spectrum of is a linear transformation of . In the fol-

lowing, we use the symbol to denote signals represented by the

in-camera parameterization.

F. Integration of Radiances Into an Irradiance

For a sensor with a uniform angular sensitivity, the sensed ir-

radiance value is the integration of the incoming radiances times

the sensor sensitivity,

(16)

where the second equality is due to different light field repre-

sentations. We can see that the 1-D irradiance is obtained by

integrating the light field along the -axis. Note that this formu-

lation is similar to the reflected reflectance from the Lambertian

object [18].
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For an -dimensional signal, integrating along – di-

mensions reduces the signal to -dimensional. This process is

called canonical projection operation. According to the Fourier

slice theorem [26], projecting the signal in the primal domain

is equivalent to extracting a spectrum of a -dimensional

hyperplane in the Fourier domain, and this process is called a

slicing operation.

For the completeness, we derive the theorem for

, which is the case for (16). The spectrum is the

Fourier transformation of the image

(17)

In other words, is equivalent to the subset along the slice

. The slicing operation plays an important role in the

image formation as we show in Section IV.

G. Combined and Backward Operations

We have shown that several processes in light transport can be

described as transformations or modulations of the light field.

Because these operations are linear, they can be combined to-

gether. For example, given the initial light field , if the light

rays propagate for units, we can obtain the new light field

using (8). If the light rays propagate for more units, the light

field can be obtained in a similar way. Because matrix mul-

tiplication is associative, we have

(18)

The combined matrix describes the transformation of the

light field when the light rays are propagated by units

from the original reference plane. We can also obtain from

directly by

(19)

and with simple calculation we have . That is,

the combined operation is equivalent to the direct operation.

Therefore, as the light rays are refracted or blocked during

traversal, we can simply concatenate all individual operations

to represent the overall light transport process without deriving

it—a major benefit of the light transport analysis.

While the operations of the light transport process are dis-

cussed in a forward fashion, many of them can be described in

a backward manner. For example, if a light field is linearly

transformed to by A due to either propagation or refraction;

Fig. 6. Camera configuration. Traditionally, each light ray is traced indepen-
dently to construct the image formation models.

we have . Then it is straightforward to show

that

(20)

(21)

Therefore, given the forward operation and a specific coordinate

system in the transformed light field, we can easily obtain its co-

ordinates in the original light field using the backward operation.

Similarly, the modulation operation can be reversed by multi-

plying the light field by the inverse of the modulation function.

However, the projection operation, or the equivalent slicing

operation in the Fourier domain, irreversibly reduces the dimen-

sionality of the signal. Therefore, we cannot recover the light

field from an irradiance signal without relying on proper prior

information of the light field [36]. A special case of layered

scenes is discussed in Section VI-C.

IV. PHOTOGRAPHIC OPERATION FOR IMAGE FORMATION

We have described the basic operations of light field. In the

following, we use these operations to model the image forma-

tion process. Specifically, we show how the light field emitting

from the object surface propagates in space before it enters the

camera, and how the image is generated from the light field in

the camera.

Without loss of generality, we assume the reference plane

of the initial light field is units away from the thin lens of

the camera, the focal length of the lens is , and the distance

between the image plane and the aperture plane is . The ref-

erence plane can be aligned with the object surface as shown in

Fig. 6, but it is not necessary.

In traditional image formation models, one has to apply a

ray-tracing to determine the end points of all light rays emitting

from the object. Only those light rays that hit the image plane

contribute to the final image. However, ray-tracing is difficult to

express elegantly. On the contrary, we use the light transport op-

erations to describe the transformation of all radiances together.

The light rays first propagate units to the lens and, thus, the

light field is transformed by according to (8). Then the light

rays not blocked by the aperture are refracted by the lens. The

blocking process causes a modulation of the light field, and then

the light field is transformed by according to (10). The re-

fracted light rays then propagate units to the image plane; the

light field is transformed by . Finally, we change the param-

eterization of the light field to the in-camera parameterization
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Fig. 7. Transformation of the light field and its spectrum in image formation. The first row shows the light fields at different steps in image formation, and the
second row shows the corresponding spectrums. The scene and camera parameters in this case is � � ����� � � ���� � ��, and � � ������ �������
(i.e., the object at � � ���� is in-focus). (a) The surface light field. (b) The light field observed at the lens plane that is � units away from the surface. (c) The light
field modulated by the blocking function of the aperture. The dotted lines define the width of the aperture. (d) The light field observed at the image plane. (e) The
light field represented by the in-camera parameterization.

Fig. 8. (a) Texture function of the surface in the Fig. 7. (b) Resulting defocused
image using the scene and camera parameters given in Fig. 7.

using (15) and have the final light field . One example of this

process is shown in Figs. 7 and 8, which are used to assist the

derivations shown in the following and discussed in the end of

the section.

A. Derivation Without Aperture

We can see that is related to by a series of linear trans-

formations and modulation. For now, we neglect the modulation

due to the aperture and let denote the perfectly transformed

light field at the image plane before changing the parameteriza-

tion. Because we can combine several operations together, we

have

(22)

This transformation is called photographic operation and

is dubbed photographic matrix. We let denote

for convenience. According to the Fourier linear transform

theorem, the spectrum of is

(23)

The sensors at the image plane integrate the radiances into the

irradiances. According to (17) and remove for simplicity, the

spectrum of the captured image is

(24)

Therefore, if the size of the aperture is infinite, the spectrum

of the image is equivalent to a slice of along .

B. Derivation With Aperture

When the size of the aperture is finite, a number of light

rays are blocked from entering the camera. As described in

Section III-D, this causes a modulation of the light field. If the

aperture is infinitesimally thin and its size is , when we align

the reference plane with the aperture, the blocking function

is a 1-D rectangular function

otherwise
(25)

and according to (14) its spectrum is

(26)

After the light field is modulated with the blocking function,

the light rays propagate units to the image plane. Due to the
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linearity of the operations and the distributive rule, we can trans-

form both the input light field and the blocking function and then

multiply them together. Therefore, when the aperture is present,

the light field at the image plane and its spectrum are

(27)

(28)

We can see that the blocking function is transformed due

to the propagation operation. This causes a skew to the

axis-aligned rectangular function and complicates our analysis

[see Fig. 7(d)]. To address this issue, we change the parameter-

ization to the in-camera parameterization shown in Fig. 2(c).

Then the blocking function due to the aperture becomes

(29)

and its energies fall on the plane . Using (15), (27), and

(29), we have the final light field

(30)

and its spectrum

(31)

Here we remove the constant Jacobian in (15), which has

no effect on our analysis. Note that because the spectrum of the

blocking function falls on the plane , the transformed

light field is only convolved along the -axis.

According to (16), the captured image , is

(32)

and according to (24) and (26), the spectrum of the image is

(33)

In summary, given the initial light field representing the

radiance distribution of the scene, we can obtain the light field in

the camera by linearly transforming the initial light field using

the photographic matrix, and modulating it with the blocking

function. The modulation causes a convolution of the light field

spectrum. The spectrum of the image is the result of the slicing

operation on the transformed light field.

One example of the full light transport process of image for-

mation is shown in Fig. 7. Starting from the object surface, the

light rays first propagate units to reach the lens plane, and the

light field is transformed according to (8), as shown in Fig. 7(b).

The light field is then modulated by the aperture function, and

the spectrum is spread out due to the convolution operation, as

shown in Fig. 7 (c). Finally, the light rays propagate to the image

plane, and by changing the parameterization, the final light field

is obtained [Fig. 7(e)]. The texture function of the surface in this

example is a windowed Gaussian function as shown in Fig. 8(a).

Because the surface is not in-focus, the steep boundaries of the

surface are blurred [Fig. 8(b)].

We can see that in the light transport process, the light field

is never filtered. This should be clear because the light rays do

not interact with other, and neither do the radiances along the

light rays. This is different from the traditional methods that per-

form analysis on the image domain, where filtering is a common

operation.

Equations (30)–(33) describe the exact physical process in

image formation. They present both the changes of the geo-

metric and photometric properties of the light rays during light

transport. Moreover, we can map those equations to several tra-

ditional models of photographic effects.

V. RELATION TO TRADITIONAL MODELS

In this section, we show that the equations presented in the

previous section can be used to describe geometric and photo-

metric effects in image formation. We also show that those ef-

fects can be analyzed in the frequency domain using spectral

analysis.

A. Perspective Transformation

It is well known that in the pinhole model, a scene point

is projected to on the image plane. The projection is de-

scribed as a perspective transformation of 3-D primitives using

the homogenous coordinate system. Here we show that the per-

spective projection is essentially a light field transformation due

to light transport.

We first discuss the case of pinhole camera, of which the aper-

ture size is infinitesimally small. That is, in (29) and the

blocking function becomes a delta function of . Substituting it

into (30) and (32), we have

(34)

That is, the irradiance of x on the image plane is a radiance

of the initial light field . When the reference plane of is

aligned with the Lambertian surface, can be described by a

1-D texture function as in (6)

(35)
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That is, when the object is at units away from the lens, the ra-

diance at on the surface is mapped to the irradiance at

on the image plane. This is exactly the equation of the perspec-

tive transformation. In other words, the pinhole camera captures

a specific subset of light rays, or a slice of the light field. This

slice is stretched on the image plane, and the stretch factor is a

function of and .

Now consider the case of a lens camera with a finite aperture.

Before we explain the defocus effect in the next subsection, we

assume the object is in-focus. According to the lens formula,

when the object at distance is in-focus,

, and the photographic matrix becomes

(36)

then substituting it into (30) we have

(37)

Again, when is emitted from the Lambertian surface at ,

all light rays reaching on the image plane are from the scene

point , and only differ in the emitting angles. As a

result, for a lens camera, the perspective transformation is still

valid when the object is in-focus.

Because the light field is a signal, we also conduct our anal-

ysis in the frequency domain. Combining , (31), and (33)

we have

(38)

where (ignoring the effect of

the aperture for now). Applying variable substitution to (7) and

(38), we have

(39)

We can see that the image spectrum is a stretched version of the

texture spectrum. Again the stretch factor only depends upon

and . As the object moves away from the camera ( increases),

the frequencies of its texture appear higher in the image. This

result exactly matches that of the perspective transformation.

B. Defocus Blur

Defocused images are often modeled as the result of applying

a pillbox or Gaussian filter to the in-focus images, for which

the point spread function of the filter depends upon the object

distance and the camera parameters. Here we show that such

image filtering actually corresponds to the combination of the

photographic operation and the projection/slicing operation in

the light transport framework. We also show that even when

the object is out of focus, the perspective transformation is still

valid.

We use the backward transport operation to facilitate the anal-

ysis and neglect the effect of the aperture for now. According to

(21) and (31), when we have

(40)

Fig. 9. Effect of the aperture size on the defocus blur. The first row shows the
final light field, the second row shows the corresponding spectrums, and the third
row shows the final images. (a) Object is in focus, that is, � � �. (b) Object
is out of focus and aperture size is infinite. (c) Object is out of focus and the
aperture size is finite.

Assuming that there is only one object at distance and that the

reference plane of is aligned with the Lambertian surface,

we immediately have that the energies concentrate on the plane

. Then (40) becomes

(41)

We can see that before the convolution with the blocking func-

tion, the energies fall on the plane . Because all

other frequency components are null and the blocking function

only spreads the energies along the -axis, according to (33)

we have

(42)

The second and third equalities are obtained by simple vari-

able substitution. This equation indicates that the spectrum of

the image is a modulated and stretched texture function, where

the modulation is dependent upon the camera parameters. Ac-

cording to the convolution theorem, the image is a filtered ver-

sion of the stretched texture function.

An example of the defocus blur with and without aperture

is shown in Fig. 9. When the object is in focus, . Ac-

cording to (42), all frequency components in this case are cap-

tured without decay. Therefore, all details of the object are pre-

served in the image. When the object is out of focus and the

aperture size is infinite, unless .

Therefore, the image is a flat signal. Finally, when the aperture

size is finite, a blurred image is captured.
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It should be noted that the mapping between the texture func-

tion and the image is independent of . When , (42)

is equivalent to (39) up to a scale factor. This means when the

object is out of focus, the image spectrum is not shifted but

only attenuated (and the attenuation is characterized by a sinc

function). Therefore, the perspective transformation is still valid

even when the object is out of focus. This claim is difficult to

obtain from the traditional ray-based or image-based analysis.

To relate (42) to the traditional defocus model, we think of

it as a linear system, where the input is the stretched texture

function and the output is the image. If the texture function

is a delta function (e.g., a white point on a black surface), is

uniform and the image is the response function of the system

(43)

(44)

which is identical to the pillbox filter in the traditional model

[3]. The appearance of an out-of-focus scene point is a box of

width with uniform irradiance distribution.

When the aperture is a pinhole , the spectrum of the

blocking function is uniform along . Therefore, the energy at

any frequency is mapped to the slice without any decay. In

this case, all objects are in focus. This means that the pinhole

camera is only a special case of the lens model. On the other

hand, when the aperture size is infinite, the out-of-focus objects

are absent from the image [see Fig. 9(b)]. Therefore, when the

aperture is very large, one may see the in-focus object behind

the out-of-focus one which only contributes a constant offset to

the image signal, as demonstrated in [12].

Finally, one can also use our framework to derive the point

spread function of defocus blur in the primal domain. Let the

scene contain a single Lambertian point at and

the initial light field be . Then we obtain the

transformed light field from (30) and the image from (32). It

is straightforward to verify that the image of the scene point is a

flat box of width , identical to the result described by (44).

C. Vignetting

The perspective transformation and the defocus blur are due

to the geometric transformation of the light field. Here we turn

our attention to a different kind effect on the image caused by

photometric changes of the light field.

The reduction of brightness at the periphery of the image,

which is a typical phenomenon encountered in practice, is in

fact a combination of several effects collectively called the vi-

gnetting effect. The falloff due to the natural vignetting can be

modeled by a cosine fourth law [1]. When the object is Lam-

bertian with a uniform texture function , the image

is proportional to , where is the angle between the

optical axis and the light ray pointing from the pinhole center to

the image point . In 2-D space, we have a slightly different law:

The image is proportional to , as derived in Appendix C.

In the following, we show that our light transport framework can

also account for this effect.

First, note that we neglect the effect of the parameterization

function in the previously shown analyses. If we use (55) as

the initial light field and assume that is a constant and

that the object is in focus, (30) becomes

(45)

Then, according to (16), the image of the uniform Lam-

bertian surface, which is called vignetting field, becomes

(46)

Let and , we have

(47)

This is the vignetting field obtained from our framework. Un-

like the traditional model in which the vignetting field is only a

function of , we show that the aperture size also influences the

degree of vignetting. In fact, when the aperture size is small, we

obtain the traditional model

(48)

It is clear by now that the traditional cosine falloff model is only

valid when the aperture is small.

Comparing (47) with (48), we can see the main difference

between the traditional model and ours is that, while the size

of the aperture only causes a uniform scaling to the image in

the traditional model, it causes a spatially variant effect in our

model. This means, when the size of the aperture changes, the

degree of the vignetting changes as well. When the aperture is

very small, the vignetting field follows the simple cosine-falloff

model. However, as the aperture size increases, because the an-

gular ranges of the incident light rays are different for different

sensors on the image plane, the vignetting field diverges from

the cosine-falloff model.

We can also model the vignetting effect in the frequency do-

main. When , the initial light field spectrum is a delta

function. That is, all the energies fall on the origin

. According to (33), the image spectrum only has a DC com-

ponent and, hence, the image should have a constant brightness.

However, if we consider the parameterization function , the

spectrum of the light field would be convoluted with a 1-D filter
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in the direction .2 Therefore, the energy of the DC

component is spread out. Combining this effect and (33), the

image has a few low-frequency components and matches (47).

D. Summary

We have discussed several photographic effects and shown

that these effects are the result of transformation, modulation,

and projection of the light field. These effects can be modeled

all together by our framework.

It is straightforward to model other effects with our frame-

work. For example, in the telecentric lens system, the aperture

is placed in front of the lens so that the perspective transfor-

mation becomes invariant to the focus setting [32]. Tradition-

ally, modeling this effect requires tedious ray-tracing. But in our

framework, the new aperture is nothing but a blocking function

undergoing a propagation operation. Therefore, we can easily

obtain the model for the telecentric lens by slightly modifying

(29). The derivation is detailed in Appendix D.

VI. DISCUSSION

In this section, we discuss how to generalize the framework

to handle complex scenes, how to extend it to 3-D space, and

what the possible applications and limitations are.

A. Generalization

Traditional image formation models are usually based upon

the assumption that the scene is Lambertian or even just a single

plane parallel to the image plane. We adopt the same assumption

when we show that our framework is quantitatively equivalent

to those models.

However, this assumption is not essential for our framework.

We derive the relationship between the initial light field and

the final light field , but the structure or the content of is

not specified. When the scene is a planar Lambertian surface

aligned with the image plane, is defined by a 1-D texture

function (6).

When there are multiple planes, we can obtain by simple

composition. Starting from the surface light field of the plane

farthest to the camera, we propagate the light field to the next

surface, modulate it with the blocking function caused by this

surface, combine the modulated light field with the new surface

light field, and continue to the next surface. This regular proce-

dure does not require complex visibility testing for tracing the

propagation of each individual light ray.

When the surface is not Lambertian, the surface light field

has angular variation. Therefore its spectrum no longer falls on

a 1-D plane in the frequency domain. However, our framework

can still accurately model its propagation to the image plane.

The appearance of the non-Lambertian objects in the image with

defocus blur or vignetting effect can, thus, be obtained.

Finally, we can combine other light transport processes into

our framework. Starting from the light source, the light field

would be transformed due to propagations, convolved due to

surface reflections, and modulated due to occlusions. We can

2The parameterization function is ���� in the two-plane parameterization.
When changed to the in-camera parameterization, it becomes ���� � ���� �,
which is constant along the direction ��� � �. Therefore, the energies fall on
the plane � � � � �.

combine all operations into a single one which describes the

complete light transport process, from the light emitter to the

image sensor.

B. Extensions to 3-D Space

While the derivation of the framework is performed in 2-D

space, it is straightforward to extend it to 3-D space. In 3-D

space, the reference planes become 2-D and, thus, each inter-

section point requires two coordinates. For example, for the

two-plane parameterization [Fig. 2(b)], we can use

to represent a light ray, where denotes the intersection

point on the plane and denotes the intersection point

on the plane . Although the dimensionality of the light field

increases, the structures of the light transport operations remain

unchanged. We can easily combine 4-D propagation operation,

lens refraction operation, and reparameterization to obtain the

4-D photographic operation.

However, there are two noticeable changes in the derivations.

The first one happens to the parameterization function . In 3-D

space, it becomes

(49)

Similar to the 2-D case, the parameterization function is a

smooth function with a small bandwidth. Multiplying with

the surface light field causes a small blur to the spectrum. This

is negligible when the vignetting effect is not considered.

The second change happens to the blocking function. The

aperture is a plane with a circular hole, and therefore the

blocking function is

otherwise
(50)

and its spectrum is a first-order Bessel function [3], [5]. Besides

these two changes, the derivation of the framework and the map-

ping to the traditional models can be obtained by simply fol-

lowing the procedure we have developed for the 2-D cases.

Due to the increase of dimensionality, the number of param-

eters in the light transport operations becomes larger, and new

photographic effects may occur. For example, the lens refrac-

tion still results in a linear transformation of the light field

(51)

where and are defined in (10), and

and are the lens focal length measured in the and direc-

tions, respectively. When , there are two in-focus planes in

different directions, resulting in the so-called astigmatic effect

[5]. We can easily model this effect by just adding one param-

eter to the light transport operation.

C. Applications

In this paper we focus on interpreting various effects in image

formation, but the main result, the relationship between the light

field and the image, can be used in many applications. One ob-

vious application is light field acquisition, specifically, recov-

ering the modulated light field from . Because the slicing
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operation performed by the sensors always extracts a 1-D slice

of the 2-D spectrum as we have shown in Section IV, one must

find a way to put all 2-D frequency components on the slice.

This is the motivation of several light field cameras [19], [21],

[22], [24].

Another important result of our framework is that, for Lam-

bertian objects at different ’s, their energies would fall on slices

with different slopes in the spectrum of . Therefore, when

we have a complete light field, we can synthetically refocus the

image by changing the slope of the slicing operation. This is the

basic concept of the Fourier slice photography [26], [34]. More-

over, by analyzing the power spectrum of the light field, we can

detect the slices that possibly contain in-focus objects without

estimating the per-pixel depth information [33].

The light field in the camera is modulated by the blocking

function, and the spectrum is convolved. It may be interesting

to remove this effect by deconvolution of the light field spectrum

(52)

However, because is a low-pass filter, the deconvolution is

an ill-posed problem. In [33] and [34], it is shown that when

the number of the objects with different depths is much smaller

than the spectrum resolution and the depths are known, the

un-modulated spectrum is sparse and, thus, perfect deconvolu-

tion is possible. Therefore an all-focused image (i.e., an image

without defocus blur) can be generated from the blurred light

field spectrum.

In the images captured with different camera parameters, the

change of object appearance provides a cue for estimating the

scene structure. However, while all photographic effects are

changed with the camera parameters, only a few of them are

used in traditional algorithms. For example, in depth-from-de-

focus algorithms, the scene structure is estimated from images

with different ’s or ’s by using the differences in the degree

of defocus blur. The difference in perspective transformation is

usually neglected or intentionally compensated [3], [35]. This is

mainly because those two effects were modeled independently.

Since our framework can model them together, it is possible to

develop novel algorithms using both the perspective cue and

the defocus cue to obtain more accurate results.

We have shown that the image is a filtered and stretched ver-

sion of the surface light field. Therefore, the bandwidth of the

image can be calculated from the bandwidth of light field. In

the rendering applications, we can use this information to per-

form adaptive sampling. Specifically, when rendering a region

with a small bandwidth, which may be due to out-of-focus or

low-frequency texture functions, we can use a coarser sampling

rate to reduce the computational cost. Note that the estimation of

the bandwidth can be calculated analytically using (31) and (42)

without performing Fourier transform. This application was first

proposed in [18] where the bandwidth of the light field after

propagation, reflection, and occlusion is estimated, but the ef-

fect of defocus blur was not considered.

Finally, although we derive the photographic operation ac-

cording to the physic entities, we may do it in a reverse way

to design new imaging systems. One can change and the

blocking functions until a specific effect appears in the image,

and then search for a physically feasible decomposition of

into a number of basic propagation and reflection operations

and apertures of different shapes. Some possible transforma-

tions and the corresponding effects such as pushroom projec-

tion and afocal effect are given in [31] without considering the

physical feasibility.

D. Limitations

Our framework is built upon geometric optics, and therefore

the effects, including diffraction and polarization, of wave op-

tics cannot be modeled. When the size of the element, such as

sensor, in the imaging system is comparable to the wavelength,

the diffraction effect must be considered. In [36], it is shown

that the light field is closely related to the Wigner distributions

in wave optics, but unifying these two representations for mod-

eling the wavelength-dependent effects requires more study.

Because we use first-order approximation to model the lens

refraction, several third-order effects (aberrations, coma, etc.)

are not discussed. However, these effects, which are within the

scope of geometric optics, result in nonlinear but invertible

transformations of the light field. Finding proper methods to

describe these transformations and their influences on the light

field spectrum is worth pursuing in the future.

VII. CONCLUSION

In this paper, we have presented a unified framework for mod-

eling image formation using light transport analysis. We have

shown that the image formation process can be characterized as

a series of transformations, modulations, and projection of the

light field signal. We have shown that these operations can be

combined into a single equation to describe the full process and

discussed several extensions and applications of this theoretical

framework.

The unified framework can be used to describe all the geo-

metric and photometric phenomena encountered in the image

formation process, including perspective transform, defocus

blur, and vignetting. The results obtained by this framework

quantitatively match those of the traditional models.

APPENDIX

A. Mapping Between the Radiance Representations

For a specific light ray represented by and according to

(2), (3), and (4), we have

(53)

(54)

Combine the previous equations and with , we have

(55)
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Fig. 10. (a) Parameterization function ���� and (b) its spectrum �� �. The
second row shows the effective pa-rameterization function of different scene
points when the aperture size is 50 units, and the third row shows the cor-re-
sponding spectrums. The scene point is at (c) ��� �� � ��� ������������ �� �
�����������, and (e) ��� �� � �����������.

In our example shown in Fig. 2 where the object is Lamber-

tian, the emitted radiance is constant regardless of the view

angle. Let denote the parameterization function .

Given in (6), we have

(56)

which can be approximated as when the range of is

small, as shown in the next section.

B. Effect of the Parameterization Function

We repeat the parameterization function here for convenience

(57)

which is plotted in Fig. 10(a) and its spectrum is shown in

Fig. 10(b). Because it is a smooth function, modulating the

light field with it causes a very small blur to the light field

spectrum.

In this paper, our main interest is modeling the light transport

in image formation of regular cameras. For normal scene con-

figuration and camera parameters, the effective range of of

each scene point is very small. Several examples are shown in

Fig. 10(c)–(e), where we can see that the effect of the parameter-

ization function can be approximated by uniform scaling. That

is, if we only consider the light rays around the direction , we

have

(58)

Given a specific , we can embed into the texture

function and obtain the approximate equality in (6).

Fig. 11. Typical scene and camera configuration for the derivation of the vi-
gnetting effect in 2-D space.

C. Cosine-Falloff in 2-D Space

For completeness we give the derivation of the vignetting ef-

fect in 2-D space using the traditional method. The derivation in

3-D space can be found in [1]. Consider the scene and camera

configuration shown in Fig. 11. The lens is of diameter at

away from the image plane. Let a patch on the Lambertian

surface at distance from the lens have area and the radi-

ance value . The image of the patch has area . The angle

between the optical axis and the light ray from the object to the

lens center is , and the angle between the surface normal and

that light ray is .

Because the light ray passing through the lens center is not

deflected, the solid angles formed at the lens center subtended

by and are the same. That is

(59)

If we assume the is much larger than , the solid angle

formed at the surface patch subtended by the lens is

(60)

Thus, the power emitting from and passing through the

lens is

(61)

and because no light ray from other patch reaches the patch ,

its irradiance is

(62)

which is identical to our result in (48) following the same

approximation.

D. Modeling of the Telecentric Effect

We have shown that the perspective transformation and the

defocus blur are both dependent upon the object depth and

the distance between the lens and the image plane . There-

fore, when adjust the focus setting, the magnification factor of

the object changes simultaneously. By placing an aperture/stop

at the focus plane of the lens on the object side, the telecentric

lens makes the magnification factor constant, no matter how

is changed.

Previously, the functionality of the telecentric lens is ex-

plained by ray tracing [32]. The systematic configuration of a
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Fig. 12. Configuration of the telecentric lens. When the point � is out-of-focus,
its image is always a pillbox centered at � regardless of the value of � .

telecentric lens is shown in Fig. 12. The aperture of the telecen-

tric lens is placed in front of the lens by units. Consider the

light ray emitting from point on the surface toward the point

at the center of the aperture. After lens refraction, this light

ray is parallel to the optical axis and always hits the same point

on the image plane regardless of the changes in . It is shown

that all the light rays from hit the image plane within a box

centered at [31]. Therefore, while the magnification factor

becomes constant, the defocus effect still varies with and .

However, the ray tracing method is difficult to analyze. Here

we show that the telecentric effect can be easily modeled using

light transport analysis. According to Section III-D, the aperture

of size at distance is mathematically a blocking function

.3 Physically, the initial light field is first

modulated with this blocking function before reaching the lens.

However, mathematically, we can transform both the light field

and the blocking function and then modulate them together. As

a result, the final light field is

(63)

We can see the transformed light field is modulated by a bi-

nary function, which is 1 if and 0 other-

wise. For a regular camera, the blocking function is also a binary

function, but whether a light ray is blocked only depends upon

its entry point on the lens.

Assume the scene is a Lambertian point at , we have

, a line in 2-D space. By putting this into (63),

the final light field is a line segment along ,

and the coordinates of its two endpoints are

(64)

Using the projection operation, the image of this segment is a

pillbox centered at

(65)

with width

(66)

We can see that the center is invariant to the focus , but

the width is not. This result is quantitatively identical to that by

3We use the notation � to distinguish it from the blocking function � of
the aperture in normal lens camera.

ray tracing [32]. However, the analysis in the light field domain

is still somewhat tedious. In the following, we show that the

same result can be obtained more easily by spectral analysis.

The Fourier transform of is

(67)

of which all the energies fall on the plane .

Therefore, the convolution effectively spreads the energies of

the transformed light field along . Let the scene

be the Lambertian surface with texture function at units

from the lens, according to (41), (42), (63) and the convolution

theorem, the relationship between the image spectrum and the

texture spectrum is

(68)

Therefore, the image spectrum is the stretched and attenuated

texture spectrum. The stretch/magnification factor is indepen-

dent of , but the attenuation factor is not. This result is quan-

titatively equivalent to the ones by ray tracing.

The light transport analysis makes the interpretation of the

telecentric lens much easier than previous approaches. Further-

more, it is straightforward to combine the previously shown

image formation with the photometric transformation. There-

fore, one can derive the change of the vignetting effect in the

telecentric lens system. When multiple apertures are present in

the imaging system, we can modulate their blocking functions

together to model their joint effect on the light field and the

image.
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