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ABSTRACT

This paper describes a novel light field compression scheme

using a depth image-based view synthesis technique. A small

subset of views is compressed with HEVC inter coding and

then used to reconstruct the entire light field. The resid-

ual of the whole light field can be then restructured as a

video sequence and encoded by HEVC inter coding. Experi-

ments show that our scheme significantly outperforms a simi-

lar view synthesis method which utilizes convolutional neural

networks, and does not require training with a large dataset

of light fields as required by deep learning techniques. It also

outperforms as well the direct encoding of all the light field

views.

Index Terms— Light fields, Compression, Depth image

based rendering, View synthesis, Convolutional neural net-

works

1. INTRODUCTION

During the last two decades, there has been a growing inter-

est in light field imaging. Light fields capture the radiance

of a dense set of rays emitted by a scene along various direc-

tions. This rich scene description enables post-capture image

creation with a variety of amazing features such as digital re-

focusing, change of focal length, change of viewpoint, scene

depth estimation, 3D scene reconstruction, to name a few. Ef-

fort has been dedicated to light field camera design, going

from camera arrays [1] or single cameras mounted on moving

gantries, both yielding a wide baseline, to plenoptic cameras

using arrays of micro-lenses placed in front of the photosen-

sor leading to light fields with narrow baselines [2], [3].

The problem of light field compression rapidly appeared

as quite critical given their significant demand in terms of

storage capacity. First methods for compressing synthetic

light fields appeared late 90’s essentially based on classical

coding tools as vector quantization followed by Lempel-Ziv

(LZ) entropy coding [4] or wavelet coding as in [5] and [6],

yielding however limited compression performances (com-

pression factors not exceeding 20 for an acceptable quality).
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Innovation Programme under grant agreement No 694122 (ERC advanced

grant CLIM).

Predictive schemes inspired from video compression methods

have then been naturally investigated, adding specific predic-

tion modes, as in [7] and [8] where the proposed schemes

are inspired from H.264 and MVC. The latest HEVC video

compression standard has then been naturally considered for

light fields, capitalising on advances in the video compression

field. With the emergence of plenoptic cameras, two main di-

rections have been followed: either coding the array of sub-

aperture images as in [9] after extraction from the lenslet im-

age after de-vignetting and de-mosaicing, or directly encod-

ing of the lenslet images captured by plenoptic cameras [10],

[11]. Approaches based on HEVC mostly focus on the intro-

duction of dedicated prediction modes. A scalable extension

of HEVC-based scheme is proposed in [12] where a sparse

set of micro-lens images (also called elemental images) is en-

coded in a base layer. The other elemental images are recon-

structed at the decoder using disparity-based interpolation and

inpainting. The reconstructed images are then used to predict

the entire lenslet image and a prediction residue is transmitted

yielding a multi-layer scheme.

Instead of directly encoding the light field (the array of

sub-aperture images or the lenslet image for light fields cap-

tured by plenoptic cameras), the authors in [13] consider the

focus stack as an intermediate representation of reduced di-

mension of the light field and encode the focus stack with a

wavelet-based scheme. The light field is then reconstructed

from the focus stack using the linear view synthesis approach

described in [14]. In [15], the authors propose a homography-

based low rank approximation method to construct an inter-

mediate representation of reduced dimension which is then

encoded using HEVC.

In this paper, we further investigate light field compres-

sion based on view synthesis from a subset of selected views.

The problem of light field reconstruction from a subset of

views has been addressed in [16] and [17] with two differ-

ent approaches. The authors in [16] exploit light field sparsity

in the angular continuous Fourier domain. Assuming the light

field is k-sparse in the angular continuous Fourier domain, it

can be represented as a linear combination of k non-zero con-

tinuous angular frequency coefficients. The reconstruction al-

gorithm then searches for the frequency values and the corre-

sponding coefficients. The authors in [17] instead propose a

learning architecture based on two consecutive convolutional



neural networks (CNN). From features extracted from 4 views

at the corners of the light field, the first CNN predicts depth

maps which are then used to produce by warping 4 estimates

of each synthesized view. A second CNN then reconstructs

each light field view from these 4 estimates.

Inspired by [17], in this paper we propose to replace the

neural network structure by a depth image-based rendering

(DIBR) approach for light fields. The disparity maps of the

4 corner views are first estimated by optical flow techniques,

before being forward warped to generate the novel disparity

map of a projected position. Given this estimated disparity,

the color image is finally synthesized by applying backward

warping of the 4 corner views. Low rank matrix completion

algorithms are applied to fill the zone of disocclusion and

cracks, both for the disparity map and color image synthe-

sis. For each novel position, a simple weighted average is

considered to fuse the 4 warped estimates.

2. RELATED WORKS

2.1. Disparity estimation for light fields

In the literature, disparity estimation for light fields has been

largely studied. Estimation can be performed by using mi-

crolens images, sub-aperture images, or EPIs (epipolar plane

images). Methods exploiting microlens images such as [18]

have advantages of being free from later processing (e.g.

demoisaicing, etc.) errors. Some other works mesure the

slope on EPIs, or refocused EPIs in order to estimate the

scene depth. For this purpose, [19] uses a variational method,

whereas [20] and [21] propose to combine defocus and cor-

respondence cue. Occlusion is further explicitly modeled in

[21]. Finally, estimations using sub-aperture images [22] [23]

assume that these views are well rectified with constant base-

line and use block matching techniques.

Most of these methods work on very densely sampled

light fields and demand high computational cost. In our

scheme of view synthesis from very sparsely sampled views,

we adopt optical flow approach, which estimates efficiently

disparity between a pair of views. More details will be given

in Section 4.1.

2.2. CNN-based view synthesis

The learning based view synthesis described in [17] gener-

ates the target view at a novel position from a sparse set of

n reference views. This model can be learnt in a machine

learning fashion. It is materialized by a sequence of two suc-

cessive convolutional neural networks. Instead of taking di-

rectly the pixel values of the reference views, the input fea-

tures are extracted in a similar manner as described in [20].

For a given position, the n reference views are warped to this

position, using a set of uniformly distributed disparity levels.

Then, the pixel-wise mean and standard deviation of all the

warped views at each disparity level are computed. For a spe-

cific pixel, the correct disparity level should correspond to the

maximum mean contrast and the minimum standard devia-

tion. The first CNN is supposedly able to learn this relation-

ship and computes a disparity map for each view to be syn-

thesized, which is then used to warp all the reference views

to the novel position. The combination of these warped views

is finally realized by the second CNN, which synthesizes the

final color pixel values.

In this approach, the handling of occlusion is implicit.

The intermediate output disparity map is not necessarily of

high quality, but as the two CNNs are trained simultaneously,

the second CNN tends to mitigate the final color image ren-

dering error caused by disparity inaccuracy.

3. PROPOSED COMPRESSION SCHEME

Let L(x, y, u, v) denote the 4D representation of a light field,

describing the radiance of a light ray parameterized by its

intersection with two parallel planes [24], and where (u, v)
(with u = 1 . . . U and v = 1 . . . V ) denote the angular (view)

coordinates and (x,y) (with x = 1 . . . Nx and y = 1 . . . Ny)

the spatial (pixel) coordinates. Let I(u,v) denote a view at the

angular position (u, v) in the light field. The main steps of the

proposed compression scheme are depicted in Fig. 1.

At the encoder side, only the four sub-aperture images

on the extreme corners {I(1,1), I(1,V ), I(U,1), I(U,V )} are en-

coded as a sequence by HEVC inter coding. The de-

coder extracts the compressed version of these four corners

{I ′(1,1), I
′

(1,V ), I
′

(U,1), I
′

(U,V )} before the corresponding dis-

parity maps being estimated by using optical flow estimation

methods. The other views are then synthesized by a depth

image-based rendering approach. The details of the algorithm

will be explained in Section 4.

4. DEPTH IMAGE-BASED RENDERING FOR LIGHT

FIELDS

4.1. Disparity estimation using DeepFlow

DeepFlow [25] blends a matching algorithm with a variational

approach for optical flow. The matching algorithm, a multi-

layer architecture inspired by convolutional neural networks,

called Deep Matching [26], computes dense correspondences

between a pair of images. The gradient histograms used by

Deep Matching are robust to illumination and color changes,

which makes it interesting for light field views captured by

plenoptic cameras (e.g. Lytro Illum). Although DeepFlow

is specially designed for computing large displacements, it

works also fine with light fields captured by lenslet with rela-

tively small baselines.

We use DeepFlow to compute disparity maps of the four

corner views. Let D
(ui,vi)→(uj ,vj)
X and D

(ui,vi)→(uj ,vj)
Y de-

note the disparity on two spatial dimensions from the view
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Fig. 1: Coding and decoding scheme overview.

I(ui,vi) to I(uj ,vj), i.e.

D(ui,vi)→(uj ,vj) =

(

D
(ui,vi)→(uj ,vj)
X

D
(ui,vi)→(uj ,vj)
Y

)

. (1)

Let us take the top left corner I(1,1) as an example. Deep-

Flow computes 3 disparity maps D(1,1)→(1,V ), D(1,1)→(U,1)

and D(1,1)→(U,V ). Contrary to other disparity estimation

techniques that make use of the whole light field, DeepFlow

takes each time only two views, and thus in the resulting dis-

parity maps may reside incoherence. We propose to average

these maps in order to mitigate this problem. Here, we take

U = V . Hence, for a rectified light field, assuming that the

scene is lambertian, an ideal flow estimation should give:

D
(1,1)→(U,V )
X = D

(1,1)→(U,V )
Y

= D
(1,1)→(U,1)
X = D

(1,1)→(1,V )
Y ,

(2)

and

D
(1,1)→(1,V )
X = D

(1,1)→(U,1)
Y = 0. (3)

Then, the disparity information for the view I(1,1) can be

described by a single map estimated as:

D̂(1,1) =
1

4U
· 1⊤ ·











D
(1,1)→(U,V )
X

D
(1,1)→(U,V )
Y

D
(1,1)→(U,1)
X

D
(1,1)→(1,V )
Y











, (4)

where 1 is 4× 1 unit matrix.

Assuming that the baseline between views is uniform,

which is the case for most plenoptic cameras and camera grid

setups, D̂(1,1) can be used to compute both the horizontal and

vertical disparities between view I(1,1) and any other view of

the light field (see Eq. (5)-(6)). The other three disparity maps

D̂(U,1), D̂(1,V ) and D̂(U,V ) are computed in a similar manner,

with the signs adjusted considering their relative positions.

4.2. Disparity maps generation for all views

Given D̂(1,1), D̂(U,1), D̂(1,V ) and D̂(U,V ), we intend to gen-

erate the corresponding disparity map of each view in the

whole LF. We project to the novel position (the view to syn-

thesize) the 4 reference disparity maps, which are considered

as monochrome images, by using the disparity information

itself.

Considering the novel position (us, vs). The disparity es-

timation based on the input position (ui, vi) is computed as:

D̂
(ui,vi)
(us,vs)

(x′, y′) = D̂(ui,vi)(x, y), (5)

with
(

x′

y′

)

=

(

x

y

)

+

(

us − ui

vs − vi

)

· D̂(ui,vi)(x, y). (6)

This forward warping generates two types of holes. First,

cracks are caused by the rounding of x′, y′ (rounding neces-

sary because the projected image must be sampled at integer

positions), leaving small holes between two normally adja-

cent pixels. Second comes the zone of disocclusion, which is

visible in the novel view because of the view position change,

but is occluded in the input view.

For each novel position (us, vs), there are 4 such warped

estimates. We thus construct the matrix M of 4·U ·V columns,

each column being a vectorized warped disparity image. The

goal is to recover the entire matrix (fill the holes of cracks

and disocclusion) by exploiting the low rank prior that is sat-

isfied by the matrix M thanks to the high correlation between

the views. The low rank matrix completion problem can be

formally expressed as:

min
M̂

rank(M̂)

s.t. PΩ(M̂) = PΩ(M),
(7)

where Ω is the set of indices of the known elements in M .

To solve this, we apply the low rank matrix completion

via the Inexact Augmented Lagrangian Multiplier method

(IALM) [27]. This method efficiently recovers the holes since

the disoccluded areas of different warped views from 4 ex-

treme corners are unlikely to be overlapped, and the positions

of cracks are dispersed.

Finally, for each position (us, vs), a simple weighted av-

erage of the 4 filled disparity maps is performed to obtain the

final estimate:



bit rates (bpp)
0 0.05 0.1 0.15

P
S

N
R

 (
d
B

)

31

32

33

34

35

36

37

38

39

40

41
Building 8x8 views (Lytro Illum LF)

HEVC inter (whole LF),
Lozenge sequencing, GOP=4
4 ref images (HEVC inter)
+ CNN based view synthesis
4 ref images (HEVC inter)
+ DIBR based view synthesis
base layer (4 ref images, DIBR, QP=20)
+ Residual coding

(a)

bit rates (bpp)
0 0.05 0.1 0.15 0.2

P
S

N
R

 (
d
B

)

30

32

34

36

38

40

42

44
Fruits 8x8 views (Lytro Illum LF)

HEVC inter (whole LF),
Lozenge sequencing, GOP=4
4 ref images (HEVC inter)
+ CNN based view synthesis
4 ref images (HEVC inter)
+ DIBR based view synthesis
Base layer (4 ref images, DIBR, QP=20)
+ Residual coding

(b)

bit rates (bpp)
0 0.02 0.04 0.06 0.08 0.1

P
S

N
R

 (
d
B

)

32

34

36

38

40

42

44

46
Rose 8x8 views (Lytro Illum LF)

HEVC inter (whole LF),
Lozenge sequencing, GOP=4
4 ref images (HEVC inter)
+ CNN based view synthesis
4 ref images (HEVC inter)
+ DIBR based view synthesis
base layer (4 ref images, QP=14)
+ Residual coding

(c)

bit rates (bpp)
0 0.05 0.1 0.15 0.2

P
S

N
R

 (
d
B

)

30

32

34

36

38

40

42
Building 7x7 views (Lytro Illum LF)

HEVC inter (whole LF),
Lozenge sequencing, GOP=4
4 ref images (HEVC inter)
+ CNN based view synthesis
4 ref images (HEVC inter)
+ DIBR based view synthesis
Base layer (4 ref images, DIBR, QP=20)
+ Residual coding

(d)

bit rates (bpp)
0 0.05 0.1 0.15 0.2

P
S

N
R

 (
d
B

)

30

32

34

36

38

40

42

44
Fruits 7x7 views (Lytro Illum LF)

HEVC inter (whole LF),
Lozenge sequencing, GOP=4
4 ref images (HEVC inter)
+ CNN based view synthesis
4 ref images (HEVC inter)
+ DIBR based view synthesis
Base layer (4 ref images, DIBR, QP=20)
+ Residual coding

(e)

bit rates (bpp)
0 0.02 0.04 0.06 0.08 0.1 0.12

P
S

N
R

 (
d
B

)

32

34

36

38

40

42

44

46

48
Rose 7x7 views (Lytro Illum LF)

HEVC inter (whole LF),
Lozenge sequencing, GOP=4
4 ref images (HEVC inter)
+ CNN based view synthesis
4 ref images (HEVC inter)
+ DIBR based view synthesis
base layer (4 ref images, QP=14)
+ Residual coding

(f)

Fig. 2: PSNR-rate performance for DIBR view synthesis compression scheme (Fig. 2a - 2c for 8× 8 views and Fig. 2d - 2f for

7× 7 views) compared with deep learning based method and direct HEVC inter coding.

Fig. 3: Light Fields used in the tests: “Building”, “Fruits” and

“Rose”. All of the three are captured by Lytro Illum camera

and demultiplexed by Lytro Power Tools Beta software.

D̂(us,vs) =
∑

i

w(ui,vi) · D̂
(ui,vi)
(us,vs)

, (8)

with

w(ui,vi) =

(

1−
|ui − us|

U − 1

)

·

(

1−
|vi − vs|

V − 1

)

. (9)

4.3. Color images generation for all views

At this stage, we dispose of disparity D̂(us,vs) for each view

(us, vs), and color pixels information from four corner im-

ages. To generate the novel view, backward warping is per-

formed separately for each RGB channel:

∀C ∈ {R,G,B}, ÎC
(ui,vi)

(us,vs)(x, y) = ÎC (ui,vi)(x
′, y′), (10)

with

(

x′

y′

)

=

(

x

y

)

+

(

ui − us

vi − vs

)

· D̂(us,vs)(x, y). (11)

The same inpainting algorithm as in Section 4.2 is applied

to fill the holes of warped color images. Note that inpainting

is performed independently on each RGB component. The

same weighted average (c.f. Eq. (8)-(9)) is finally performed

to compute the final color images.

5. EXPERIMENT RESULTS

In this section, we evaluate our compression scheme against

the CNN-based view synthesis approach. Both of them are

compared with the naive HEVC inter coding of the video with

a lozenge sequencing of all sub-aperture views. The used

HEVC version is HM-16.10. PSNRs are computed on the

luminance component Y .

For a fair comparison, we consider only real light fields

captured by a Lytro Illum camera. The three test LFs we use

in this comparison are “Building”, “Fruits” and “Rose”, the

central views being shown in Fig. 3. As in [17], the extrac-

tion of sub-aperture images from RAW capture (i.e. demul-

tiplexing) is performed by Lytro Power Tools Beta software

[28]. The actual angular resolution of Lytro Illum camera is



14 × 14, but the remote views suffer serious vignetting and

distorsion problems. Thus, in our experiments, we take only

the 8 × 8 or 7 × 7 middle views. Note that the convolutional

neural network used in [17] is trained exclusively with the

middle 8× 8 views of Illum LFs.

In Fig. 2, we observe that for the 8 × 8 views compres-

sion, our DIBR approach for LF synthesis slightly outper-

forms CNN learning based scheme. At low to middle bit-

rates, both of them significantly outperforms the naive HEVC

inter coding reference. At high bit-rates, however, the PSNR-

rate performance is saturated by view synthesis accuracy (ex-

cept for “Rose”). In fact, only 4 out of the 64 views are

provided, which is very demanding for an accurate synthe-

sis task. Nevertheless, compression performance can be fur-

ther enhanced by residual coding, as shown by the red dashed

lines in Fig. 2. It was generated by using a fixed QP for the

base layer (4 corner views) and varying QPs for encoding the

residue of all the other views. In these tests, the residue is

encoded as a sequence by HEVC inter coding.

The same simulations are also performed for 7× 7 views

configuration. In this case, the gain of our scheme against

CNN based scheme considerably increases. Another config-

uration such as 5 × 5 or 4 × 4 will further accentuate this

performance gap, though the curves are not shown in this pa-

per. Note that the neural network is exclusively trained for the

8 × 8 configuration. This demonstrates that like most of the

learning based methods, the CNN based synthesis model is

very subject to training data. With the change of angular reso-

lution or the change of LF capture devices (different plenoptic

camera LFs, camera grids LFs, synthetic LFs, etc.), the model

should be retrained, at the best some fine-tuning operation is

required. On the contrary, our method is data-independent.

6. CONCLUSION

In this paper, we have proposed a light field compression

scheme using depth image-based rendering approach. Only

very sparse samples (4 views at the corners) of light field

views are transmitted, the others are synthesized. Despite of

the fact that disparity maps are required for view synthesis,

this information does not need to be encoded and transmit-

ted, since it is deduced at the decoder side. Compared to

the deep learning based method which implicitly deals with

occlusions, our scheme treats this explicitly. Our scheme

is better in terms of PSNR-rate performance, and is data-

independent. With the residue coded, our scheme also sig-

nificantly outperforms HEVC inter coding for the tested light

fields.
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