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Light Field inpainting propagation via Low Rank

Matrix completion
Mikael Le Pendu, Xiaoran Jiang, and Christine Guillemot

Abstract—Building up on the advances in low rank matrix
completion, this article presents a novel method for propagating
the inpainting of the central view of a light field to all the other
views. After generating a set of warped versions of the inpainted
central view with random homographies, both the original light
field views and the warped ones are vectorized and concatenated
into a matrix. Because of the redundancy between the views,
the matrix satisfies a low rank assumption enabling us to fill the
region to inpaint with low rank matrix completion. To this end, a
new matrix completion algorithm, better suited to the inpainting
application than existing methods, is also developed in this paper.
In its simple form, our method does not require any depth prior,
unlike most existing light field inpainting algorithms. The method
has then been extended to better handle the case where the
area to inpaint contains depth discontinuities. In this case, a
segmentation map of the different depth layers of the inpainted
central view is required. This information is used to warp the
depth layers with different homographies. Our experiments with
natural light fields captured with plenoptic cameras demonstrate
the robustness of the low rank approach to noisy data as well as
large color and illumination variations between the views of the
light field.

Index Terms—Light Field, Inpainting, Low rank matrix com-
pletion, homography.

I. INTRODUCTION

L IGHT Field imaging is becoming increasingly popular

thanks to the recent advances in Light Field capture of

real scenes. While a traditional 2D camera loses a lot of

information of the captured 3D scene (e.g. no depth infor-

mation, limited depth of field), light field imaging devices

are able to yield a much richer description of the scene in

a 4D representation, enabling novel post-capture processing.

For instance, refocusing, extended depth of field and different

viewpoint rendering can be performed from a single capture

[1]–[3]. A light field can be seen as an array of views of the

scene (also called sub-aperture images) with densely sampled

view points. For the sake of parametrization, a light field is

often considered as a 4D function L(x, y, u, v), where u and v
represent the angular dimensions, corresponding respectively

to a horizontal and vertical shift in the viewpoint. The x
and y parameters are the horizontal and vertical axis in each

view. Thus, for u, and v fixed respectively to u∗ and v∗,

L(x, y, u∗, v∗) represents one sub-aperture image.

As the capture of 4D light fields from real scenes grows

in popularity, the need for a generalization of traditional

image editing tools is expected to rise as well. In particular,
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for inpainting, which is the recovery of missing parts of an

image, plenty of algorithms already exist in the 2D case. For

instance, diffusion based methods [4] can efficiently recover

thin holes. Exemplar based methods [5]–[7] are better suited

for applications such as object removal thanks to their ability

to fill larger holes using patches of texture taken from the

known parts of the image. However, applying independently

these methods to each sub-aperture image of a light field is

very unlikely to result in a consistent inpainting in the angular

direction (i.e. across sub-aperture images) as illustrated in

Figure 1(b) and (c). In addition, in some challenging examples,

where large holes in a background with complex geometry

and textures need to be recovered, even advanced patch-based

methods do not give satisfactory results. Therefore, a manual

editing remains necessary. For light field inpainting, though,

manually editing each sub-aperture image in a consistent

manner is extremely tedious.

For those reasons, in our approach, only the inpainting

of the central view is required and can be performed either

manually or using existing 2D algorithms. Our method thus

focuses on consistently propagating the inpainted region to

all the other views of the light field, as in Figure 1. In a first

step, a matrix is built where each column is a vectorized view.

Additional images, and thus additional columns of the matrix,

are constructed by warping the inpainted central view using

randomly sampled homographies. In order to cope with the

case where the area to inpaint contains depth discontinuities,

an extension of the method is proposed where a segmentation

map of the depth layers of the inpainted central view is

required as additional input. It is used by our algorithm to warp

each depth layer with a different random homography. Because

of the redundancy existing between the different views of the

light field and the warped versions of the inpainted view,

the constructed matrix can be well approximated by a low

rank matrix. Our algorithm then draws on the recent advances

in low rank matrix completion to fill the unknown parts of

the matrix corresponding to the region to inpaint in each

view. Although a large number of low rank matrix completion

algorithms have already been developed (e.g. [8]–[16]), they

have been seldom used for inpainting. They are not suitable

for this problem for at least one of the following reasons:

either the rank must be known a priori or the method assumes

the positions of the unknown matrix entries are uniformly

distributed. In summary, the contributions of the paper include:

• The definition of a new low rank matrix completion

algorithm suitable for completing large parts of a matrix

without requiring the exact matrix rank.
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(a) (b) (c) (d)

Fig. 1. Illustration of our inpainting propagation method : (a) Original central view (5,5). (b) Central view inpainted with [6]. Note that because of the short
baseline, disocclusion is not available and a single image inpainting method must be used. (c) View (8,8) inpainted with [6]. (d) Propagated inpainting from
central view to view (8,8). Our propagation method keeps consistent inpainting across views.

• The use of this algorithm for propagating an inpainted

area from the central view to all the other views of a

light field. In case of depth discontinuities within the

inpainted area, an extension of the method using a depth

layer segmentation map is also proposed.

• As an intermediate step of the inpainting propagation,

we define a method for randomly generating homogra-

phy warpings that are consistent with the displacement

between views in actual light field data.

II. RELATED WORK

Light Field inpainting

Although the problem of image or video inpainting has

already been extensively studied, only a few methods in the

literature address the specific case of 4D light field data.

In [17], the authors propose a variational framework for

solving various inverse problems including inpainting. By

exploiting depth information, they defined constraints on the

structure of the epipolar plane images of the light field, thus

ensuring a consistent inpainting across views. This method can

successfully recover missing parts of the light field as long

as the regions unknown in some views are visible in several

other views. However, for removing an object in all the views,

the method no longer applies since a consistent inpainting of

several views should already be available in order to infer

depth information in the area to recover.

A different approach is used in [18], where the spatial

consistency is ensured by minimizing a 4D patch consistency

measure extending the bidirectional similarity measure of [19].

A depth estimation of each view of the light field is required

to evaluate this measure.

In [20], the editing of the central view is first performed

using a 2D patch based method, and the offsets between

the filled patches and their best match in the known region

are memorized. Using a layered depth map, the offsets are

propagated to other views in order to fill them in a consistent

manner. However, the method does not generalize to the case

where the central view has been inpainted with an arbitrary

method that does not provide the offset information.

Note that each of these algorithms require a depth map

and are thus highly dependent on the quality of the depth

estimation. Furthermore, the depth map must also be inpainted

in the area to be removed. Another difference with our

approach is that they do not propagate the inpainting result of a

single view performed by an arbitrary method. Therefore, they

do not allow a user to control the quality of the inpainting for

one of the views in the complex cases where a fully automatic

inpainting is not possible.

Concerning the propagation of one inpainted view (by an

arbitrary method) to the rest of the light field, very few works

have been conducted yet to the best of our knowledge. The

authors of [21] inpaint an all-in-focus image and propagate

it to the light field represented as a focal stack (i.e. set of

refocused images) instead of processing directly the light field

views. The method in [22] propagates user strokes performed

on one view to edit all the light field views, but the method

only applies to the re-colorization application. In [23], the

authors propose a simple adaptation of the exemplar based

inpainting of Criminisi et al. [5] where one of the views

is inpainted first. For the other views, instead of searching

a corresponding patch in the known regions of the view to

inpaint, the patch is searched in the first inpainted view in

order to ensure a better consistency across views. However,

because of the greedy nature of the algorithm and the fact

that the views are processed separately, the inpainting results

may still contain severe angular inconsistencies.

Other methods have been proposed in the related topic

of multiview image inpainting [24], [25]. These methods

were designed for images with large differences between

viewpoints. Experiments from the authors have shown that

the generalization to densely sampled light fields with short

baselines is not straightforward because their camera calibra-

tion step failed with such data. The complexity in [24] is also

an issue considering the large number of views of a light

field. Similarly, the method in [26] processes light fields with

a sparse set of views and a large baseline, which makes it

possible to recover occluded areas of an image from different

viewpoints where the corresponding area is visible. However,

this method hardly applies to densely sampled light fields

because of its computational cost and the fact that very few

disoccluded areas can be exploited.

Low rank matrix completion

The low rank matrix completion problem has received a

great deal of attention in the past few years. For a matrix

M ∈ R
m×n of sufficiently low rank r (r ≪ min (m,n)) and



3

given only a subset of its entries, the goal is to recover the en-

tire matrix by exploiting the low rank prior. The optimization

problem is then:

min
X

rank(X)

s.t. PΩ(X) = PΩ(M),
(1)

where Ω is the set of indices of the known elements of M ,

and PΩ is such that the element (i, j) of PΩ(X) is equal to

Xi,j if (i, j) ∈ Ω and zero otherwise.

Candes and Recht [27] have determined conditions under

which the problem has a unique solution. Furthermore, al-

though the rank is not a convex function, replacing it by

the trace norm ‖X‖∗ leads to a convex problem with the

same unique solution, assuming the conditions in [27] are

satisfied. An algorithm based on singular value soft thresh-

olding has then been developed in [8] to solve this trace

norm minimization problem. The authors in [10] accelerate

the latter algorithm by using the alternating direction method

of multipliers (ADMM) [28]. In [29], a similar algorithm,

HaLRTC, have been used for filling holes in an image by

considering the 2D image directly as a matrix to complete.

Note that in this context of spatial 2D inpainting, the low

rank prior is only satisfied for images containing essentially

horizontal and vertical repetitions. Our application, though,

is not concerned by this limitation since the 4D light field is

inpainted in the angular dimensions given the complete central

view (previously spatially inpainted with an arbitrary method).

Another important issue must be taken into consideration

when performing inpainting using low rank completion al-

gorithms. The theoretical results in [27] are based on the

assumption that the known elements Ω of the matrix are

selected uniformly at random. However, this is not the case

in the context of object removal in an image or a light field.

Therefore, replacing the rank by the trace norm in equation (1)

does not necessarily yield optimal results. In a second type of

approach, the true rank is considered. For a given target rank

r, the r-rank matrix that best approximates the known entries

of the input matrix is sought:

min
X

1

2
‖PΩ (M −X)‖2F

s.t. rank(X) ≤ r,
(2)

where ‖.‖F is the Frobenius norm. Many algorithms have

been developed to solve this problem such as ADMiRA [11],

OptSpace [12], GoDec [13], NIHT [14]. They are based on

singular value decomposition (SVD) and hard thresholding.

In the weighted non negative matrix factorization (WNMF)

[15] and in LMaFit [16], a similar rank constraint is enforced

by expressing X as a product of two matrices A ∈ R
m×r

and B ∈ R
r×n. These methods are however impractical

for inpainting because they require an accurate rank estimate

which is in itself difficult to obtain.

III. PROPOSED LOW RANK COMPLETION ALGORITHM

In order to solve the problem of Equation (1), we use

the alternating direction method of multipliers (ADMM) [28],

similarly to several low rank approximation algorithms [10],

[29]–[31]. Unlike those methods however, we directly want

to solve the problem of rank minimization instead of its

convex relaxation formed with the trace norm. Furthermore,

in order to increase the robustness of the method in the

case where the matrix is only approximately low rank, we

propose to relax the equality constraint of Equation (1) by

the inequality ‖PΩ(X)− PΩ(M)‖2F /‖PΩ(M)‖2F ≤ ǫ, given

a positive value ǫ. The problem can be equivalently written:

min
X

rank(X)

s.t. X = Z

Z ∈ C,
(3)

with C =
{

Z ∈ R
m×n | ‖PΩ(Z)−PΩ(M)‖2

F

‖PΩ(M)‖2

F

≤ ǫ
}

.

The constraint X = Z can be removed by defining the

following augmented Lagrangian function:

L(X,Z,Λ, ρ) = rank(X) + 〈Λ, X −Z〉+ ρ

2
‖X − Z‖2F (4)

where Λ is a matrix of lagrangian multipliers, ρ is a positive

scalar, and 〈., .〉 is the scalar product (i.e. 〈A,B〉 = Tr(A⊤B)).
The ADMM method then alternatively solves a sub-problem

for each of the matrices X , Z and Λ using the update rules

given in Algorithm 1. The value of ρ is also increased at each

iteration in order to accelerate the convergence.

Algorithm 1 Low rank completion with ADMM

Input: Ω, PΩ(M), ǫ, ρ, t.
1: Initialize : Z = PΩ(M), Λ = 0,

2: repeat

3: X ← argmin
X

L(X,Z,Λ, ρ) (see Equation 5)

4: Z ← argmin
Z∈C

L(X,Z,Λ, ρ) (see Equation 6)

5: Λ← Λ + ρ(X − Z)
6: ρ← t · ρ (with t > 1)

7: until ‖PΩ(Z)− PΩ(M)‖2F /‖PΩ(M)‖2F ≤ ǫ
Output: X

In subsections III-A and III-B, we will demonstrate that

the X and Z sub-problems, (lines 3 and 4 of Algorithm 1

respectively), have the following closed form solutions:

argmin
X

L(X,Z,Λ, ρ) = H√

2

ρ

(

Z − Λ

ρ

)

, (5)

where Hs is the singular value hard thresholding operator

defined by, Hs(A) = U diag({Hs(σi)})V ⊤, for a matrix A
of singular vectors U and V , and singular values {σi}, and

where Hs(σi) is equal to σi if σi ≥ s, and 0 otherwise.

The solution of the Z sub-problem is given by:

PΩ(Z) = PΩ ((N + λM)/(1 + λ)) , (6a)

PΩ(Z) = PΩ(N), (6b)

with N = X + Λ
ρ

, and λ = max
(

‖PΩ(M−N)‖
F√

ǫ·‖PΩ(M)‖
F

− 1, 0
)

.

We can note from equation (5), that the singular values

threshold depends on ρ. As ρ increases with iterations, the

threshold decreases. Therefore the rank is likely to increase.



4

(a) incomplete image (b) trace norm minimized (ǫ = 0)

(c) rank minimized (ǫ = 0) (d) rank minimized (ǫ = 0.03)

Fig. 2. Example of low rank matrix completion. For this test, each column
of the matrix to complete contains the R,G and B values of the pixels of one
column of the image. The rank minimization results in (c) and (d) are sharper
than in (b) where the trace norm is minimized. For (d), ǫ has a non-zero value
resulting in less noisy completion. The simulations (b), (c), (d) give respective
ranks of 233, 119, and 54 after respectively 16, 26 and 49 iterations.

For that reason we initialize ρ as ρ = 8/(σ1 + σ2)
2 (with σ1

and σ2 the two largest singular values of the initial Z) so

that the threshold
√

(2/ρ) at the first iteration is between σ1

and σ2. This way the algorithm starts with a rank-1 estimate

of X and increases the rank progressively. Although the

general ADMM method was designed for convex optimization,

convergence is observed in practice in our non-convex rank

minimization thanks to the update of ρ. From our experiments,

satisfactory results were obtained by multiplying ρ by the

parameter t = 1.45 at each iteration. A trade-off between

convergence speed and accuracy can be obtained by increasing

this value.

Note that replacing the rank by the trace norm in the

problem formulation (3) would lead to a very similar expres-

sion of the solution where singular value soft thresholding

is used instead of hard thresholding (e.g. [8], [29]) in the

X subproblem. The value of the threshold is also different

(1/ρ for trace norm minimization instead of
√

(2/ρ) in our

algorithm). Therefore, in order to compare both approaches,

the initialization of ρ was adapted in our implementation of

the trace norm minimization as ρ = 2/(σ1 + σ2), so that the

threshold at the first iteration is the same as the one used in

our method. Figure 2 shows the results obtained using either

rank or trace norm minimization for matrix completion in a

simple 2D inpainting example. Sharper details are recovered

in Figure 2(c) and (d) (rank minimization), than in Figure

2(b) (trace norm minimization). Note, for example, how the

repetition of the black crosses is preserved in our method

while these detail have almost vanished in the inpainted area

with trace norm minimization. In addition, we can observe in

Figure 2(d) that the introduction of the tolerance parameter ǫ
successfully removes noise in the inpainted area. Intuitively,

the sharper results obtained with the rank minimization can be

understood by the fact that the hard thresholding only removes

the lowest singular values which are associated to the singular

vectors containing the highest frequencies. But it does not

affect the singular vectors with medium frequencies associated

to singular values just above the threshold. Soft thresholding

also attenuates those medium frequencies as it reduces all the

singular values.

A. X sub-problem

One can verify that the X sub-problem is equivalent to

determining X that minimizes the following expressions:

min
X

rank(X) +
ρ

2

∥

∥

∥

∥

X − Z +
Λ

ρ

∥

∥

∥

∥

2

F

(7a)

=min
r

(

r + min
X s.t. rank(X)≤r

ρ

2

∥

∥

∥

∥

X − Z +
Λ

ρ

∥

∥

∥

∥

2

F

)

. (7b)

Let us denote by UΣV ⊤ the SVD of Z − Λ
ρ

(where Σ is

a diagonal matrix with non-increasing diagonal entries). We

define σi := Σ(i, i) and Σr ∈ R
m×n by:

Σr(i, j) :=

{

σi if i = j, i ≤ r

0 otherwise.
(8)

From the Eckart-Young theorem, we know that given r,

Equation (7b) is minimized for X = UΣrV
⊤. We can then

rewrite Equation (7b) as follows:

min
r

(

r +
ρ

2

∥

∥UΣrV
⊤ − UΣV ⊤∥

∥

2

F

)

(9a)

=min
r

(

ρ

2

(

2

ρ
· r + ‖Σr − Σ‖2F

))

(9b)

=min
r





ρ

2





r
∑

i=1

2

ρ
+

min(m,n)
∑

i=r+1

σ2
i







 . (9c)

This expression is minimized by choosing r such that

σi ≥
√

2
ρ

if and only if i ≤ r. Therefore, the solution of

the X sub-problem is X = UΣrV
⊤ = H√

2

ρ

(Z − Λ
ρ
). �

B. Z sub-problem

Similarly to subsection III-A, we can express the Z sub-

problem as:

min
Z
‖N − Z‖2F

s.t. ‖PΩ(Z)− PΩ(M)‖2F /‖PΩ(M)‖2F ≤ ǫ
(10)

where N = X + Λ
ρ

. The problems for PΩ(Z) and PΩ(Z) can

be solved independently. For PΩ(Z), the constraint does not

apply. Then, the solution is PΩ(Z) = PΩ(N).
For PΩ(Z), let us define the Lagrangian function:

Lz(z, λ) = ‖n− z‖2F + λ
(

‖m− z‖22 − ǫ · ‖m‖22
)

. (11)
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For convenience, we define vectors z, n, and m as the

vectorized entries within Ω of respectively Z, N , and M .

Since the Frobenious norm is convex, the solution only

needs to satisfy the first order Kuhn-Tucker conditions:

• Stationary condition (i.e. ∂Lz

∂z
(z) = 0):

∂Lz

∂z
(z) = 0⇔ 2(z− n) + 2λ(z−m) = 0, (12a)

⇔ z =
n+ λm

1 + λ
. (12b)

• Complementary slackness:

{

λ ≥ 0

λ = 0 or ‖m− z‖22 − ǫ · ‖m‖22 = 0.
(13)

Using Equation (12b), z can be replaced by its expression.

We obtain: ‖m− z‖22 = ‖m− n‖22 /(1 + λ)2. The

condition (13) thus becomes:

λ = max

( ‖m− n‖2√
ǫ · ‖m‖2

− 1, 0

)

. (14)

This concludes the proof of equation (6).

IV. APPLICATION TO LIGHT FIELD INPAINTING

In this section, we show how the inpainting of one light field

view (e.g. the central view) can be consistently propagated

to the rest of the light field by means of low rank matrix

completion. Figure 3 illustrates how the light field data is

organized in a matrix that can be completed by our algorithm.

The method is based on the premise that the views are highly

correlated. As a consequence, the matrix formed by vector-

izing each view and by concatenating the resulting column

vectors, can be assumed to have a low rank (with respect

to the number of views). Here, a row of the matrix contains

the pixels’ values in all the views at a fixed (x,y) coordinate.

Unfortunately, when the area to be removed has roughly the

same position in all the views, many rows of the matrix

only contain one known entry, corresponding to the central

view. In this configuration, low rank completion is not able to

recover reliably the unknown entries. Thus, in a preliminary

step, we generate several additional views by warping the

inpainted central view with a set of homography projections,

as shown in Figure 3. Instead of computing the homographies

that globally compensate for the disparities between the central

view and the other views, we prefer to generate a set of random

homographies. This approach allows a more uniform sampling

of all the possible displacements of each region of the image.

Note that the low rank property is relative to the matrix size.

Therefore, a light field with large amount of parallax may still

satisfy this property as long as it contains a sufficient number

of views, including the additional warped views. However, for

practical reasons, this application essentially targets light fields

with a limited baseline such as those captured by plenoptic

cameras, for which a dense view sampling can be achieved

with a limited number of views.

Fig. 3. Construction of the matrix to complete.

A. Random generation of homographies

A homography transformation is defined by a 3× 3 matrix

H , transforming 2D coordinates (x, y) into (x′, y′) as:

w · [x′, y′, 1]
⊤
= H · [x, y, 1]⊤ . (15)

Note that the element (3, 3) of H can be fixed to 1
without loss of generality. Therefore, eight parameters are

needed to determine one homography. In our method, we

need to carefully generate those values so that the resulting

homographies are within a reasonable range of rotation angle,

translation, shear etc. In order to determine a suitable proba-

bility distribution function (pdf) for the eight parameters, we

have built a dataset of homographies from a set of 62 light

field images captured with a Lytro camera. For all the images,

we have matched one homography between the central view

and each of the other views.

Note that the homography matrix depends on the image size.

For instance, applying the same homography transformation

to two images of different definition will result in a larger

translation for the lower definition image relatively to its size.

In order to remove the influence of the image size, one must

determine the relation between a homography matrix H trans-

forming any point (x, y) into (x′, y′) and the corresponding

scaled matrix Ha,b transforming (ax, by) into (ax′, by′), given

scaling values a, b > 0. By noting hi,j the element (i, j) of

H , one can find that Ha,b is expressed as (see Appendix):

Ha,b =





h1,1 h1,2
b
a

h1,3

a

h2,1
a
b

h2,2
h2,3

b

h3,1 · a h3,2 · b 1



 . (16)

For building our dataset, each homography H was then

replaced by its scaled version Ha,b where a and b are the

inverse of the image width and height respectively. This

simulates the homography one would obtain for images of

size 1× 1.

Figure 4 shows the marginal distributions of all the ho-

mography parameters for our dataset. We observe that the

eight distributions have a narrow peak around the mean that is
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Fig. 4. Marginal distributions of the eight homography parameters (each
corresponding to an entry of the homography matrix).

(a) (b) (c)

Fig. 5. (a) Input inpainted central view with layer segmentation. (b) and (c)
are two examples of random warpings. Red areas correspond to pixels with
no color information after the warping. In (b), the foreground layer partly
occludes the background.

better modeled by a generalized gaussian distribution (GGD)

than a simple gaussian distribution. In order to take into

account the dependencies between the parameters, we fit a

multivariate GGD (MGGD) to the data using the method in

[32]. For each homography to generate, a 8× 1 vector is first

generated randomly with our MGGD distribution as described

in [33]. The vector is re-arranged into a homography matrix

H . Finally, in order to warp an image, the scaled version Ha,b

of the matrix must be used, where a and b are the image width

and height respectively.

For our experiments, we considered light field images with a

limited baseline (e.g. captured with a plenoptic Lytro camera).

In this situation, generating 400 warpings of the central view

using this procedure was found to give a sufficiently dense

sampling of the homographies for our inpainting application.

B. Extension to multiple depth layers

In the case where the area to recover contains several layers

with different depths, the global homography warping is not

sufficient to represent the depth discontinuity. The method

has then been extended to better handle this case. For that

purpose, a segmentation map of the different depth layers of

the inpainted central view must be provided additionally, and

the depth order of the segments must be known.

This information is used to warp the layers with different

homographies (each homography being chosen randomly as

(a) (b) (c)

Fig. 6. (a) Central view inpainted with [6] within the red boundary. (b)
Inpainting propagated to another view without filling the invalid regions of
the warped views (they are set to zero). (c) Result when the invalid regions
are set into Ω (i.e. filled by low rank matrix completion).

described in the previous subsection). The warped regions

corresponding to each layer are combined in one image. In

case of overlap between several warped layers, the layer

labelled with the lowest depth should occlude the other ones.

Several images are generated randomly with this method to

augment the matrix to complete as shown in Figure 3. Two

examples of warpings obtained with this method are shown in

Figure 5(b) and (c).

Note that depth cannot be directly estimated in the area

to be inpainted since only the central view is fully available.

Therefore, a certain level of user interaction is required in

order to segment the different depth layers. State-of-the art

segmentation tools with user interaction such as grab-cut [34]

can be used for that purpose. In this method, a user can paint

strokes associated to different labels to coarsely define the

different regions. The labels are then propagated to the rest

of the image to generate the segmentation map. Since this

segmentation is only needed for the central view, the user input

required for this step is limited.

C. Determination of the unknown pixels

Once the matrix M has been defined, the set of unknown

entries Ω must be determined in order to perform matrix com-

pletion. Ω essentially contains the entries corresponding to the

area to be removed in the original light field views, as shown

in Figure 3. For simplicity, the area to be removed in each view

is defined by enlarging the mask that was used for inpainting

the central view. For all the light field images considered in

our experiments (i.e. essentially plenoptic capture), enlarging

the mask by 10 pixels was sufficient to completely cover the

object to be removed in each view.

In addition to the original views, the warped versions of the

central views may also contain unknown pixels. When warping

the central view, some pixels at the border of the warped

image are undetermined if their projection in the central view

is outside of the image area (e.g. red areas in Figure 5(b) and

(c)). In the case where several depth layers are considered,

a disocclusion area between the warped layers may also be

unknown as shown in red in Figure 5(c). All those unknown

regions should be included in Ω so that they are filled jointly

with the original views by the low rank completion algorithm.

Figure 6 shows the benefit of filling the borders of the warped

views by matrix completion.
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(a) (b)

Fig. 7. Inpainting results for one view of the light field ’Figurine’ using (a)
RGB colorspace (b) Yu’v’ colorspace. The zoomed detail is included in the
inpainted area.

D. Color Processing

In our method, the color components are treated sepa-

rately. This is more computationally and memory efficient

than building one matrix containing all the color components.

However, instead of processing the light field directly in the

RGB colorspace, we compute the luminance channel Y, and

the two chromaticity components CIE u’v’. The choice of this

Yu’v’ colorspace is due to its perceptual uniformity. Since the

three components are treated separately, there may be small

difference between the completed regions of each component

(e.g. slightly shifted textures). If the RGB colorspace was

used, these differences would be perceived more easily than in

the Yu’v’ colorspace which decouples the luminance from the

chromaticity components that are less important perceptually.

Additionally, since the human eye is less sensitive to chro-

maticity than luminance, the memory and computation time

can be further reduced by using less homography warpings

for the u’ and v’ components (100 in our experiments, instead

of 400) without significantly degrading the perceived result.

Similarly, for the chromaticity components, we use a higher

value for the parameter t controlling the convergence speed

(t = 5 for u’ and v’ instead of t = 1.45), which significantly

reduces the number of iterations without noticeable difference.

Figure 7 shows an example of inpainting results obtained using

either the Yu’v’ or RGB colorspaces. Some color artifacts can

be seen around the white line when the images are processed in

RGB (Figure 7(a)). Note that the matrix completion algorithm

was also faster with Yu’v’ (19 seconds instead of 45 with

RGB) because of the reduced computation time for the u’ and

v’ components.

E. Limitations

The main limitation of our method is the memory require-

ment, since a large set of views (400 for the luminance) are

added to the original light field views to form the matrix M .

In order to alleviate this problem, in our implementation, only

the pixels within an area surrounding the object to be removed

are used to build the matrix M . The number of lines of M is

then the number of pixels in this area.

Our method has been designed and validated for light fields

captured by plenoptic cameras or synthetic light fields with

a limited baseline. Other types of capture devices such as a

camera array or a camera mounted on a gantry can produce

light fields with larger baselines. Such data would require a

different probability distribution for the homography sampling,

and a larger number of warped views.

TABLE I
RUNNING TIMES AND NUMBER OF ITERATIONS OF ALGORITHM 1 FOR THE

TESTED LIGHT FIELDS. THE NUMBER OF ITERATION IS GIVEN FOR EACH

COLOR COMPONENT YU’V’. THE RUNNING TIME IS THE SUM ON THE

THREE COMPONENTS.

Light field (#views)
Central view

inpainting
Running

Time
#iterations

Y u’ v’

butterfly (9x9) manual 45.0 s 30 8 8

stillife (9x9) Turkan et al. [7] 13.2 s 32 9 9

TotoroWaterfall (7x7) Daisy et al. [6] 9.1 s 30 8 9

TotoroAlley (7x7) Daisy et al. [6] 9.2 s 34 8 10

Bee2 (11x11) manual 4.2 s 29 7 9

Figurines (11x11) manual 19.3 s 34 9 9

V. EXPERIMENTAL RESULTS

Our method has been evaluated on both synthetic and real

world light field images presented in Table I. For some of

the tested light fields, manual inpainting of the central view

was necessary. This task was performed with the open source

GIMP software [35], essentially using the cloning tool.

The synthetic light fields ’butterfly’ and ’stillife’ are taken

from the HCI database [36]. The other ones were captured with

a Lytro camera and the sub-aperture images were extracted

with the toolbox of Dansereau et al. [37]. This produces chal-

lenging data with noise and color and illumination variations

between views. The images shown in subsections V-A, V-B,

and V-C do not present depth discontinuity in the area to

inpaint. Hence, no depth layer segmentation was used for these

experiments. We show in subsection V-D how our method is

improved by the use of a depth layer segmentation for light

fields with a depth discontinuity.

For all the experiments, the parameters of the Algorithm

1 are fixed as: ǫ = 0.003, t = 1.45 for the luminance and

t = 5 for the chromaticity components. The parameter ρ is

initialized automatically as explained in section III.

The experiments were performed with our matlab imple-

mentation using a PC with an Intel Core i7-7700 CPU with

4 cores (8 threads) at 3.6GHz and 32GB RAM. The number

of iterations and running times of Algorithm 1 are given in

Table I for each tested light field.

A. Rank vs trace norm minimization

First, in order to confirm the interest of minimizing the rank

instead of the trace norm (e.g. [10], [29]), a comparison of both

approaches is shown in Figure 8. In our implementation of

the trace norm based matrix completion [10], the same values

were used for the parameters ǫ and t. The only differences

with our rank minimization are the thresholding step and the

initialization of the parameter ρ as explained in section III.

This example illustrates that our low rank matrix completion

better preserves the details when propagating the inpainted

area. This observation is consistent with the 2D inpainting

result of Figure 2 which is sharper with our algorithm based

on rank minimization. Note that in the case of the trace norm

minimization, the effect of the noise tolerance parameter ǫ is

very limited. Taking ǫ = 0 does not produce sharper results.



8

(a) Central view with mask (b) Central view inpainted by [7]

(c) Propagation to view (8,8)
with trace norm minimization

(d) Propagation to view (8,8)
with our rank minimization

Fig. 8. Light field consistent inpainting of the synthetic lightfield ”stilllife”
with low rank matrix completion algorithm using either rank or trace norm
minimization. For (c), our implementation of the trace norm based matrix
completion [10] was used. More results can be found in the supplementary
materials.

B. Comparison with patch-based methods

Additionally, we have implemented the method described in

[23] that propagates an inpainted reference view to the other

views of the light field. Each view is inpainted independently

using a modified version of the patch based algorithm of

Criminisi et al. [5] that searches patches from the inpainted

reference view. Note that in their method, an extended focus

image is used as a reference in place of the central sub-

aperture image. However, for the comparison, we have used

the central view as a reference in both methods. Figure 9 shows

that the inpainting in [23] may yield inconsistent results. This

is caused by the greedy procedure which fills patches of the

unknown region one by one. Moreover, since the patches are

selected from the central view, it is not robust to color and

light intensity differences between the views.

(a) (b) (c)

Fig. 9. (a) Central view inpainted with [6] within the red boundary. (b)
Propagation to view (8,8) with the method described in [23]. (c) Propagation
to view (8,8) with our method.

Chen et al. [18] and Zhang et al. [20] also proposed more

advanced patch-based methods taking advantage of the 4D

structure of the light field. Unlike our method, they cannot be

used to propagate a view inpainted with an arbitrary technique

to the rest of the light field. Although in PlenoPatch [20],

the central view is inpainted first and then propagated to the

other views, the propagation requires additional information

retrieved from the initial 2D inpainting step. This information

(i.e. patch offsets) is specific to the patch-based 2D inpainting

method used in their implementation. Therefore, the method

may not apply to complex cases such as the light field

“butterfly” in Figure 11 for which a patch-based inpainting

of the central view is unlikely to provide satisfactory results.

Nevertheless, a comparison between these patch-based

methods and our approach can still be led by evaluating the

consistency between the inpainted views. Section III of the

supplementary materials shows that inconsistencies appear in

the results of [18] and [23] (e.g flickering of texture details

between views in [18], texture not following the geometry of

the object in [23]), while our method does not produce such

artifacts.

Visual comparisons with PlenoPatch [20] could not be

performed. However, it should be noted that the depth layer

estimation step used in this algorithm was not designed to

cope with the amount of noise and color variations between

views in the data extracted from plenoptic captures with [37].

Furthermore, regardless of the accuracy of the depth layers

as well as the quality of the initial 2D inpainting of the

central view, the authors of [20] have also reported that their

depth layer based patch synthesis does not accurately model

geometry with slanted surfaces. This is not the case of our

method thanks to the use of homography warpings (e.g. light

field “figurine” in figure 10).

C. Comparison with direct homography projection

Additional results of our method are presented in Figure 10.

It also shows the results obtained when the inpainted region

of the central view is directly projected onto the other views

with an homography. For this experiment the homographies

were determined by matching SIFT descriptors [38] between

the central view and each of the other views, and outliers were

eliminated with RANSAC [39].

In the light field “figurines” (first example in Figure 10),

the input top left view has severe distortion (noise, ghosting

effect) caused by the capture and inaccuracies in the decoding

process. This issue makes it difficult to find accurate cor-

respondences between the central view and the other ones.

It explains the discontinuities observed at the boundary of

the inpainted region propagated with direct projection. These

inaccuracies consequently impair the images generated by

refocusing the inpainted light field. For example, in the light

field “figurine” refocused on the foreground, the inpainted area

appears blurred in the foreground with the direct projection

method. In contrast, our method can cope with this type of

data and ensures a consistent inpainting propagation to all the

views. As a result, the refocused image has a realistic depth of

field, where only the out-of-focus areas appear blurred. Note
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however that the inpainted area may still have a different

appearance (less noise) than the rest of the image for the

views that are more noisy than the central inpainted view.

This is visible in the inpainted top left view shown in Figure

10 because the outer views of the light fields captured with

plenoptic cameras are more noisy than the central views.

However, this effect is no longer visible after the refocusing

step which reduces the noise by averaging all the views.

Another type of distortion introduced by plenoptic capture

can be observed in “Bee2” and “TotoroAlley” (second and

third examples of Figure 10) : a global variation of color and

light intensity appears between the central and the outer views.

While our low rank matrix completion approach is able to

adjust the overall color and brightness of the inpainted area to

each view, the direct projection causes a color discontinuity.

Note however that this artifact is less perceptible after refocus-

ing the light field, since only a few of the views are concerned

by this issue.

D. Extension with depth layer segmentation

Finally, Figure 11 shows the results obtained for two light

fields containing a depth discontinuity, either using the simple

version of our method (without segmentation) or with the ex-

tended version which takes a segmentation map of depth layers

as input. In both cases, the results are improved by the use of

the segmentation. It is particularly visible in the refocused

image where we can see a clearer separation between the in-

focus foreground and the out-of-focus background.

E. Convergence and complexity

Because of the non-convexity of the rank minimization

problem, the use of the ADMM method does not provide

theoretical guarantees of convergence. Studying the theoretical

convergence is particularly challenging for this problem and

is out of the scope of this paper. However, in our experiments,

convergence was obtained in approximately 30 iterations for

the luminance and less than 10 for the chromaticity which

requires less accuracy (see Table I).

The running time also depends on the size of the matrix to

complete. For a m× n matrix, the complexity of the SVD is

O(min(n2m,nm2)), which is the complexity bottleneck for

each iteration of our algorithm. In the light field inpainting

application, the number of columns n is equal to the number

of views including the additional warped views. The number

of rows m is equal to the number of pixels within an area

surrounding the inpainting mask, which is generally much

higher than n. The complexity is then O(n2m) per iteration.

Therefore, the complexity depends on the square of the

number of added warped views. For that reason and for the

memory limitations, this parameter should not be taken higher

than necessary. An example showing the effect of the number

of warped views on the inpainting quality is shown in the

supplementary materials. Increasing this parameter improves

the quality of the inpainted area (e.g. reduce blur and ghosting

artifacts), but the results tend to stabilize for sufficiently high

numbers of added warped images. From our experiments, we

have considered that setting this parameter to 400 for the

luminance component and 100 for the chrominance was a

reasonable tradeoff between the result quality and the compu-

tational load since higher values did not produce significantly

better results in most cases.

In order to reduce unnecessary memory consumption and

computing time, single precision arithmetic was used in the

implementation. However, further speed optimizations could

be considered. In practice, less than a third of the matrix

completion running time is spent on the singular value thresh-

olding step that includes the most complex operations of the

algorithm (i.e. SVD computation and matrix multiplications).

More than half of the time is used for internal matlab compu-

tations which may include unnecessary duplications of large

matrices in memory. Therefore, significant gains may still be

obtained. Furthermore, our algorithm may also benefit from

accelerations with parallel computing since there exist parallel

algorithms for the singular value decomposition of large

matrices. For example, significant speed improvements were

reported by the authors of [40] for their SVD implementation

on GPU compared to that of matlab.

VI. CONCLUSION

In this paper we proposed a novel light field inpainting

algorithm where the central view is inpainted first using a

classical automatic or semi-supervised 2D image inpainting

method. Our focus was on the consistent propagation of the

inpainted area to the rest of the light field. For that purpose we

first generate a set of warped versions of the inpainted central

view with random homographies, using a carefully chosen

random distribution. If the area to inpaint contains depth

discontinuities, a segmentation map of the depth layers of the

inpainted central view may be given as additional input. It is

used by our algorithm to warp the depth layers with different

homographies. Then, a matrix is formed by vectorizing and

concatenating the warped images and the original light field

views. Thanks to the high correlation between views, the

matrix can be assumed to have a low rank, which enables

the use of a low rank matrix completion algorithm.

The current matrix completion methods have been designed

essentially for the case where the positions of the unknown

entries are uniformly distributed in the matrix. Therefore, we

also proposed a new matrix completion algorithm that is better

suited to the inpainting application where a large region is

unknown instead of random entries. We have demonstrated the

effectiveness of our matrix completion scheme for inpainting

all the views of a light field. In particular, the method is well

suited for real world light fields captured by plenoptic cameras,

that have a short baseline but present challenging features such

as noise and color and illumination variations between the

views. Furthermore, thanks to the consistency of the inpainting

across views, the resulting light field can be used to produce

refocused images with realistic depth of field, which is an

important application of plenoptic photography.

APPENDIX

PROOF OF THE HOMOGRAPHY SCALING EQUATION (16)

Given a homography matrix H transforming a 2D point

(x, y) into (x′, y′), we want to find the matrix Ha,b that
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Fig. 10. Results for the three light fields “figurine”, “Bee2” and “TotoroAlley” (from top to bottom) captured with a Lytro Illum camera. Our method
based on matrix completion is compared to the direct projection of the inpainted region using homographies computed by matching SIFT points between
the central view and the other views. The last column shows an example of refocused image generated by shifting and averaging all the views. For
‘figurine” and “Bee2”, the inpainting of the central view was performed manually since traditional 2D inpainting methods did not produce satisfactory
results. More results including videos displaying all the views of the light fields can be found in the supplementary materials and on our web page:
https://www.irisa.fr/temics/demos/lightField/InpaintMC/LFinpaintMC.html

https://www.irisa.fr/temics/demos/lightField/InpaintMC/LFinpaintMC.html
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Fig. 11. Results of our method for the light fields “butterfly” (synthetic) and “TotoroWaterfall” (captured with a Lytro Illum camera). Those light fields
contain a depth discontinuity, and the result are shown either with or without using a segmentation of the depth layers as input (segmentation map shown on
top of the inpainted central view). The last column shows an example of refocused image generated by shifting and averaging all the views. For ‘butterfly”,
the inpainting of the central view was performed manually since traditional 2D inpainting methods did not produce satisfactory results. More results including
videos displaying all the views of the light fields can be found in the supplementary materials and on our web page: https://www.irisa.fr/temics/demos/
lightField/InpaintMC/LFinpaintMC.html

transforms (ax, by) into (ax′, by′) for arbitrary scaling values

a, b > 0, and any point (x, y).

For a given a pair of coordinates (x, y), its projection (x′, y′)

with the homography defined by H =





h1,1 h1,2 h1,3

h2,1 h2,2 h2,3

h3,1 h3,2 h3,3



,

is expressed as:

w · [x′, y′, 1] = [x, y, 1] ·H (17)

Therefore,











wx′ = h1,1 · x+ h2,1 · y + h3,1 (18a)

wy′ = h1,2 · x+ h2,2 · y + h3,2 (18b)

w = h1,3 · x+ h2,3 · y + 1 (18c)

Then, by replacing w by its expression in Equations (18a) and

(18b), we obtain:



















h1,3 · xx′+h2,3 · yx′ + x′

= h1,1 · x+ h2,1 · y + h3,1

(19a)

h1,3 · xy′+h2,3 · yy′ + y′

= h1,2 · x+ h2,2 · y + h3,2

(19b)

Similarly, Ha,b being defined as the homography matrix

https://www.irisa.fr/temics/demos/lightField/InpaintMC/LFinpaintMC.html
https://www.irisa.fr/temics/demos/lightField/InpaintMC/LFinpaintMC.html
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projecting (ax, by) to (ax′, by′), we obtain:






















ha,b
1,3 · a2xx′+ha,b

2,3 · abyx′ + ax′

= ha,b
1,1 · ax+ ha,b

2,1 · by + ha,b
3,1

(20a)

ha,b
1,3 · abxy′+ha,b

2,3 · b2yy′ + by′

= ha,b
1,2 · ax+ ha,b

2,2 · by + ha,b
3,2

(20b)

where the element (i, j) of Ha,b is noted ha,b
i,j . By dividing

Equation (20a) by a and Equation (20b) by b, we obtain:






































aha,b
1,3 · xx′+bha,b

2,3 · yx′ + x′

= ha,b
1,1 · x+ ha,b

2,1 ·
b

a
· y +

ha,b
3,1

a

(21a)

aha,b
1,3 · xy′+bha,b

2,3 · yy′ + y′

= ha,b
1,2 ·

a

b
· x+ ha,b

2,2 · y +
ha,b
3,2

b

(21b)

We note that the systems of equations (19) and (21) are

identical by taking:

Ha,b =





h1,1 h1,2
b
a

h1,3

a

h2,1
a
b

h2,2
h2,3

b

h3,1 · a h3,2 · b 1



 . (22)

Therefore, for any point (x, y) and its projection (x′, y′)
with the homography defined by H , the homography matrix

projecting (ax, by) to (ax′, by′) is given by equation (22).
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[33] E. Gómez, M. Gomez-Viilegas, and J. Marn, “A multivariate generaliza-
tion of the power exponential family of distributions,” Communications

in Statistics - Theory and Methods, vol. 27, no. 3, pp. 589–600, 1998.

[34] C. Rother, V. Kolmogorov, and A. Blake, “”grabcut”: Interactive fore-
ground extraction using iterated graph cuts,” ACM Transactions on

Graphics, vol. 23, no. 3, pp. 309–314, Aug. 2004.

[35] “GIMP,” https://www.gimp.org/.

[36] S. Wanner, S. Meister, and B. Goldlücke, “Datasets and benchmarks for
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