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Light Field Reconstruction Using Sparsity in the Continuous
Fourier Domain
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Sparsity in the Fourier domain is an important property that enables the

dense reconstruction of signals, such as 4D light fields, from a small set of

samples. The sparsity of natural spectra is often derived from continuous ar-

guments, but reconstruction algorithms typically work in the discrete Fourier

domain. These algorithms usually assume that sparsity derived from con-

tinuous principles will hold under discrete sampling. This article makes the

critical observation that sparsity is much greater in the continuous Fourier

spectrum than in the discrete spectrum. This difference is caused by a win-

dowing effect. When we sample a signal over a finite window, we convolve

its spectrum by an infinite sinc, which destroys much of the sparsity that

was in the continuous domain. Based on this observation, we propose an ap-

proach to reconstruction that optimizes for sparsity in the continuous Fourier

spectrum. We describe the theory behind our approach and discuss how it

can be used to reduce sampling requirements and improve reconstruction

quality. Finally, we demonstrate the power of our approach by showing how

it can be applied to the task of recovering non-Lambertian light fields from

a small number of 1D viewpoint trajectories.
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1. INTRODUCTION

Fourier analysis is a critical tool in rendering and computa-
tional photography. It tells us how to choose sampling rates (e.g.,
Heckbert [1989], Mitchell [1991], Durand et al. [2005], and Egan
et al. [2009]), predict upper bounds on sharpness (e.g., Ng [2005],
Levin et al. [2008b, 2009]), do fast calculations (e.g., Soler and
Sillion [1998], model wave optics) (e.g., Goodman [1996], Zhang
and Levoy [2009]), perform light field multiplexing [Veeraraghavan
et al. 2007], and do compressive sensing (e.g., Candes et al. [2006a].
In particular, the sparsity of natural spectra such as those of light
fields makes it possible to reconstruct them from smaller sets of
samples (e.g., Levin and Durand [2010] and Veeraraghavan et al.
[2007]). This sparsity derives naturally from the continuous Fourier
transform, where continuous-valued depth in a scene translates to
2D subspaces in the Fourier domain. However, practical algorithms
for reconstruction usually operate on the Discrete Fourier Trans-
form (DFT). Unfortunately, little attention is usually paid to the
impact of going from the continuous Fourier domain to the discrete
one, and it is often assumed that the sparsity derived from continu-
ous principles holds for discrete sampling and computation. In this
article, we make the critical observation that much of the sparsity in
continuous spectra is lost in the discrete domain and that this loss of
sparsity can severely limit reconstruction quality. We propose a new
approach to reconstruction that recovers a discrete signal by opti-
mizing for sparsity in the continuous domain. We first describe our
approach in general terms, then demonstrate its application in the
context of 4D light field acquisition and reconstruction, where we
show that it enables high-quality reconstruction of dense light fields
from fewer samples without requiring extra priors or assumptions
such as Lambertian scenes.

The difference between continuous and discrete sparsity is due to
the windowing effect. Sampling a signal, such as a light field, inside
some finite window is analogous to multiplying this signal by a
box function. In the frequency domain, this multiplication becomes
convolution by an infinite sinc. If the non-zero frequencies of the
spectrum are not perfectly aligned with the resulting discretization
of the frequency domain (and therefore the zero crossings of the
sinc), this convolution destroys much of the sparsity that existed in
the continuous domain. This effect is shown in Figure 1(a) which
plots a 2D angular slice of the 4D light field spectrum of the Stanford
crystal ball. In practice, natural spectra, including those of light
fields, are never so conveniently aligned, and this loss of sparsity is
always observed.

We introduce an approach to recover the sparsity of the original
continuous spectrum based on nonlinear gradient descent. Starting
with some initial approximation of the spectrum, we optimize for
sparsity in the continuous frequency domain through careful mod-
eling of the projection of continuous sparse spectra into the discrete
domain. The output of this process is an approximation of the con-
tinuous spectrum. In the case of a light field, this approximation can
be used to reconstruct high-quality views that were never captured
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Fig. 1. Sparsity in the discrete vs. continuous Fourier domain, and our reconstruction results: (a) The discrete Fourier transform (top) of a particular 2D

angular slice ωu, ωv of the crystal ball’s light field, and its reconstructed continuous version (bottom); (b) a grid showing the original images from the Stanford

light field archive. The images used by our algorithm are highlighted (courtesy of Stanford [2008]); (c) and (d) two examples of reconstructed viewpoints

showing successful reconstruction of this highly non-Lambertian scene that exhibits caustics, specularities, and nonlinear parallax. The uv locations of (c) and

(d) are shown as blue and green boxes in (b).

and even extrapolate to new images outside the aperture of recorded
samples.

Our approach effectively reduces the sampling requirements of
4D light fields by recovering the sparsity of the original continuous
spectrum. We show that it enables the reconstruction of full 4D light
fields from only a 1D trajectory of viewpoints, which could greatly
simplify light field capture. We demonstrate a prototype of our
algorithm on multiple datasets to show that it is able to accurately
reconstruct even highly non-Lambertian scenes. Figures 1(b), 1(c),
and 1(d) show our reconstruction of a highly non-Lambertian scene
and the 1D trajectory of viewpoints used by our implementation.

We believe our observations on continuous versus discrete spar-
sity and careful handling of sampling effects when going from a
sparse continuous Fourier transform into the discrete Fourier do-
main can also have important applications for computational pho-
tography beyond light field reconstruction.

2. RELATED WORK

2.1 Light Field Capture and Priors

Light field capture is challenging because of the 4D nature of light
fields and the high sampling rate they require. Capture can be done
with a microlens array at the cost of spatial resolution (e.g., Adelson
and Wang [1992], Ng et al. [2005], and Georgeiv et al. [2006]), using
robotic gantries [Levoy and Hanrahan 1996], using camera arrays
[Wilburn et al. 2005], or with a handheld camera moved over time
around the scene [Gortler et al. 1996; Buehler et al. 2001; Davis et al.
2012]. All these solutions require extra hardware or time, which has
motivated the development of techniques that can reconstruct dense
light fields from fewer samples.

Levin and Durand [2010] and Levin et al. [2008a] argue that the
fundamental differences between reconstruction strategies can be
seen as a difference in prior assumptions made about the light field.
Such priors usually assume a particular structure of sparsity in the
frequency domain.

Perhaps the most common prior on light fields assumes that a
captured scene is made up of Lambertian objects at known depths.
Conditioning on depth, the energy corresponding to a Lambertian
surface is restricted to a plane in the frequency domain. Intuitively,

this means that, given a single image and its corresponding depth
map, we could reconstruct all 4 dimensions of the light field (as
done in many image-based rendering techniques). The problems
with this approach are that the Lambertian assumption does not
always hold and that depth estimation usually involves fragile non-
linear inference that depends on angular information, meaning that
sampling requirements are not reduced to 2D in practice. However,
paired with a coded aperture [Levin et al. 2007; Veeraraghavan et al.
2007] or plenoptic camera [Bishop et al. 2009], this prior can be
used to recover superresolution for Lambertian scenes in the spatial
or angular domain.

Levin and Durand [2010] use a Lambertian prior, but do not
assume that depth is known. This corresponds to a prior that puts
energy in a 3D subspace of the light field spectrum, and reduces
reconstruction to a linear inference problem. As a result, they require
only 3 dimensions of sampling, typically in the form of a focal stack.
Like our example application, their technique can also reconstruct
a light field from a 1D set of viewpoints. However, they still rely
on the Lambertian assumption and the views they reconstruct are
limited to the aperture of input views. In contrast, we show how
our approach can be used to synthesize higher-quality views, both
inside and outside the convex hull of input images, without making
the Lambertian assumption. For a comparison, see Section 6.

The work of Marwah et al. [2013] assumes a different kind of
structure to the sparsity of light fields. This structure is learned
from training data. Specifically, they use sparse coding techniques
to learn a dictionary of basis vectors for representing light fields. The
dictionary is chosen so that training light fields may be represented
as sparse vectors, and their underlying assumption is that new light
fields will have similar structure to those in their training data.

2.2 Sparse Fourier Transform

We build on recent work on the sparse Fourier transform, which
shows that it is possible to compute the Fourier representation of
a sparse signal using only a subset of its samples [Gilbert et al.
2005; Hassanieh et al. 2012a, 2012b; Ghazi et al. 2013]. Since the
light field is sparse in the angular domain, it should be possible
to leverage this sparsity to recover the signal from a subset of
the viewpoints without sampling the whole 2D angular space. The
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existing sparse Fourier algorithms, however, assume the signal is
very sparse in the discrete Fourier domain, that is, the nonzero
angular frequencies should be less than 2% to 3% (see Figure 3
in Hassanieh et al. [2012b]). Due to the windowing effect, the
discrete angular spectrum of the light field is not sufficiently sparse,
as shown in Figure 1 (upper right). Thus, simply applying one of
the existing sparse Fourier algorithms to light field reconstruction
would only recover the large frequencies and miss many of the
small ones, producing poor results. We handle this by optimizing
for sparse coefficients in the continuous domain.

3. SPARSITY IN THE DISCRETE VS.

CONTINUOUS FOURIER DOMAIN

In this section, we show how the discretization of a signal that is
sparse in the continuous Fourier domain results in a loss of sparsity.
We then give an overview of our approach for recovering sparse
continuous spectra. In subsequent sections, we will describe in detail
one application of this theory, namely reconstructing full 4D light
fields from a few 1D viewpoint segments. We will also show results
of this application on real light field data.

A signal x(t) of length N is k-sparse in the continuous Fourier
domain if it can be represented as a combination of k nonzero
continuous frequency coefficients:

x(t) =
1

N

k∑

i=0

ai exp

(
2πjtωi

N

)
, (1)

where {ωi}
k
i=0 are the continuous positions of frequencies (i.e., each

ωi is not necessarily an integer), and {ai}
k
i=0 are the coefficients

or values corresponding to these frequencies. The same signal is
sparse in the discrete Fourier domain only if all of the ωi’s happen
to be integers. In this case, the output of its N -point DFT has only k
nonzero coefficients. Consequently, any signal that is k-sparse in the
discrete Fourier domain is also k-sparse in the continuous Fourier
domain; however, as we will show next, a signal that is sparse in the
continuous Fourier domain is not necessarily sparse in the discrete
Fourier domain.

3.1 The Windowing Effect

The windowing effect is a general phenomenon that occurs when
one computes the discrete Fourier transform (DFT) of a signal using
a finite window of samples. Since it is not limited to the light field,
we will explain the concept using 1D signals. It naturally extends
to higher dimensions.

Consider computing the discrete Fourier transform of a time
signal y(t). To do so, we would sample the signal over a time window
[−A

2
, A

2
], then compute the DFT of the samples. Since the samples

come from a limited window, it is as if we multiplied the original
signal y(t) by a box function that is zero everywhere outside of this
acquisition window. Multiplication in the time domain translates
into convolution in the Fourier domain. Since acquisition multiplies
the signal by a box, the resulting DFT returns the spectrum of the
original signal y(t) convolved with a sinc function.

Convolution with a sinc, in most cases, significantly reduces the
sparsity of the original signal. To see how, consider a simple example
where the signal y(t) is one sinusoid, namely, y(t) = exp (−2jπω̃t).
The frequency domain of this signal has a single impulse at ω̃. Say
we sample the signal over a window [−A

2
, A

2
], and take its DFT. The

spectrum will be convolved with a sinc, as explained earlier. The
DFT will discretize this spectrum to the DFT grid points located at
integer multiples of 1

A
. Because a sinc function of width 1

A
has zero

Fig. 2. The windowing effect: limiting samples to an aperture A is equiva-

lent to convolving the spectrum with a sinc function. (a) If a frequency spike

lies on a DFT grid point, then the sinc disappears when it is discretized and

the original sparsity of the spectrum is preserved; (b) if the frequency spike

is not on the DFT grid, once we discretize we get a sinc tail and the spectrum

is no longer as sparse as in the continuous domain.

Fig. 3. A 2D angular slice of the 4D light field spectrum of the Stanford

crystal ball for (ωx , ωy ) = (50, 50). (a) In the discrete Fourier domain, we

have sinc tails and the spectrum is not very sparse; (b) in the continuous

Fourier domain, as reconstructed by our algorithm, the spectrum is much

sparser. It is formed of four peaks that do not fall on the grid points of the

DFT.

crossings at multiples of 1
A

(as can be seen in Figure 2(a)), if ω̃ is

an integer multiple of 1
A

then the grid points of the DFT will lie on
the zeros of the sinc(·) function and we will get a single spike in
the output of the DFT. However, if ω̃ is a not an integer multiple
of 1

A
, then the output of the DFT will have a sinc tail as shown in

Figure 2(b).
Like most natural signals, the sparsity of natural light fields is

not generally aligned with any sampling grid. Thus, the windowing
effect is almost always observed in the DFT of light fields along
spatial and angular dimensions. Consider the effect of window-
ing in the angular domain (which tends to be more limited in the
number of samples and consequently exhibits a stronger window-
ing effect). Light fields are sampled within a limited 2D window
of uv coordinates. As a result, the DFT of each 2D angular slice,
L̂ωx ,ωy

(ωu, ωv), is convolved with a 2D sinc function, reducing spar-
sity. Figure 3(a) shows the DFT of an angular slice from the crystal
ball light field. As can be seen in the figure, the slice shows a sparse
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number of peaks but these peaks exhibit tails that decay very slowly.
These tails ruin sparsity and make reconstruction more difficult. We
propose an approach to light field reconstruction that removes the
windowing effect by optimizing for sparsity in the continuous spec-
trum. Figure 3(b) shows a continuous Fourier transform of the same
crystal ball slice, recovered using our approach. Note that the peak
tails caused by windowing have been removed and the underlying
sparsity of light fields has been recovered.

3.2 Recovering the Sparse Continuous Fourier

Spectrum

From sparse recovery theory we know that signals with sparse
Fourier spectra can be reconstructed from a number of time samples
proportional to sparsity in the Fourier domain [Candès et al. 2006b;
Donoho 2006; Hassanieh et al. 2012a]. Most practical sparse re-
covery algorithms work in the discrete Fourier domain, however,
as described previously, the nonzero frequency coefficients of most
light fields are not integers. As a result, the windowing effect ru-
ins sparsity in the discrete Fourier domain and can cause existing
sparse recovery algorithms to fail. Our approach is based on the
same principle of sparse recovery, but operates in the continuous
Fourier domain where the sparsity of light fields is preserved.

Recall our model in Eq. (1) of a signal that is sparse in the continu-
ous Fourier domain. Given a set of discrete time samples of x(t), our
goal is to recover the unknown positions {ωi}

k
i=0 and values {ai}

k
i=0

of the nonzero frequency coefficients. From Eq. (1), we see that this
problem is linear in the values {ai}

k
i=0 and nonlinear in the positions

{ωi}
k
i=0 of the nonzero coefficients. Thus, to recover the values and

positions, we use a combination of a linear and nonlinear solver.
Recovering Coefficient Values {ai}

k
i=0. If we know the positions

of nonzero coefficients (i.e., each ωi) then Eq. (1) becomes a system
of linear equations with unknowns {ai}

k
i=0, and, given > k discrete

samples of x(t), we can form an overdetermined system allowing
us to solve for each ai .

Recovering Continuous Positions {ωi}
k
i=0. We use nonlinear gra-

dient descent to find the continuous positions {ωi}
k
i=0 that minimize

the square error between observed discrete samples of x(t) and the
reconstruction of these samples given by our current coefficient po-
sitions and values. Thus, the error function we wish to minimize
can be written as

e =
∑

t

∥∥∥∥∥x(t) −
1

N

k∑

i=0

ãi exp

(
2πjtω̃i

N

)∥∥∥∥∥

2

, (2)

where ãi and ω̃i are our estimates of ai and ωi and where the pre-
ceding summation is taken over all the observed discrete samples.

As with any gradient descent algorithm, in practice, we begin

with some initial guess of discrete integer positions {ω
(0)
i }k

i=0. In
Section 5.2 we describe the initialization used to generate the results
in this article, but other initializations are also possible. From this
initial guess, we use gradient descent on {ωi}

k
i=0 to minimize our

error function. In practice, the gradient is approximated using finite
differences. In other words, we calculate error for perturbed peak

locations {ω
(j )
i + δi} and update our {ω

(j+1)
i } with the ǫi that result

in the smallest error. We keep updating until the error converges.
Once we have recovered both ai and ωi , we can reconstruct the

signal x(t) for any sample t using Eq. (1).

4. LIGHT FIELD NOTATION

A 4D light field L(x, y, u, v) characterizes the light rays between
two parallel planes, namely, the uv camera plane and the xy

Table I. Notation

Term Definition

u, v angular/camera plane coordinates

x, y spatial plane coordinates

ωu, ωv angular frequencies

ωx , ωy spatial frequencies

L(x, y, u, v) 4D light field kernel

L̂(ωx , ωy , ωu, ωv) 4D light spectrum

L̂ωx ,ωy (ωu, ωv) a 2D angular slice of the 4D light spectrum

L̂ωx ,ωy (u, v) a 2D slice for fixed spatial frequencies

X 2D slice = L̂ωx ,ωy (u, v)

S set of samples (u, v)

X|S 2D X with only samples in S

xS X|S reordered as 1 × |S| vector

P set of frequency positions (ωu, ωv)

x̂P 1 × |P | vector of frequency coefficients

F set of positions and coefficients (ωu, ωv, a)

[N ] the set {0, 1, . . . N − 1}

y 1D signal or line segment

M × M number of image pixels in spatial domain

N × N number of camera locations

image plane, which we refer to as angular and spatial dimensions,
respectively. Each (u, v) coordinate corresponds to the location of
the viewpoint of a camera and each (x, y) coordinate corresponds
to a pixel location. L̂(ωx, ωy, ωu, ωv) characterizes the 4D spectrum

of this light field. We will use L̂ωx ,ωy
(ωu, ωv) to denote a 2D angu-

lar slice of this 4D spectrum for fixed spatial frequencies (ωx, ωy).
Similarly, Lu,v(x, y) denotes the 2D image captured by a camera
with its center of projection at location (u, v). Table I presents a list
of terms used throughout this article.

5. LIGHT FIELD RECONSTRUCTION FROM 1D

VIEWPOINT TRAJECTORIES

To demonstrate the power of sparse recovery in the continuous
Fourier domain, we show how it can be used to reconstruct light
fields from 1D viewpoint trajectories. We choose to work with 1D
trajectories because it simplifies the initialization of our gradient
descent. However, the continuous Fourier recovery described in the
previous section is general and does not require this assumption.

In this section we describe the initialization used for our exper-
iments as well as our implementation of the continuous Fourier
recovery. The high-level structure of the algorithm described in this
section is given by the pseudocode in Algorithm 5.1. More pseu-
docode describing the subroutines used in Algorithm 5.1 can be
found in Appendix A.

5.1 Input

Our input is restricted to 1D viewpoint trajectories that consist of
discrete lines. A discrete line in the angular domain is defined by
the set of (u, v) points such that

{
u = αut + τu mod N

v = αvt + τv mod N
, for t ∈ [N ],

where 0 ≤ αu, αv, τu, τv < N and GCD(αu, αv) = 1.

(3)

ACM Transactions on Graphics, Vol. 34, No. 1, Article 12, Publication date: November 2014.



Light Field Reconstruction Using Sparsity in the Continuous Fourier Domain • 12:5

Fig. 4. Sampling patterns: Our algorithm samples the (u, v) angular do-

main along discrete lines. (a) Box and 2 diagonals; (b) box and 2 lines with

slopes = ±2. Note that in this case the discrete line wraps around.

ALGORITHM 5.1: Light Field Reconstruction Algorithm

procedure SPARSELIGHTFIELD(L|S)

L̂u,v(ωx, ωy) = FFT(Lu,v(x, y)) for u, v ∈ S
for ωx, ωy ∈ [M] do

L̂ωx ,ωy
(ωu, ωv) = 2DSPARSEFFT(L̂ωx ,ωy

(u, v)|S)

L(x, y, u, v) = IFFT(L̂(ωx, ωy, ωu, ωv))
return L

procedure 2DSPARSEFFT(X|S)
P = SPARSEDISCRETERECOVERY(X|S)
F, e = SPARSECONTINOUSRECOVERY(X|S, P )

X(u, v) =
∑

F a · exp
(
2jπ uωu+vωv

N

)
for u, v ∈ [N ]

X̂ = FFT(X)
return X̂

This lets us use the Fourier projection slice theorem to recover
a sparse discrete spectrum that we use to initialize our gradient
descent. Figure 4 shows the specific sampling patterns used in our
experiments.

For a light field L(x, y, u, v), our algorithm operates in the inter-
mediate domain L̂ωx ,ωy

(u, v) that describes spatial frequencies as a
function of viewpoint. We start by taking the 2D DFT of each input
image, which gives us the spatial frequencies (ωx, ωy) at a set of
viewpoints S consisting of our 1D input lines. We call this set of
known samples L̂ωx ,ωy

(u, v)|S . Our task is to recover the 2D angular

spectrum L̂ωx ,ωy
(ωu, ωv) for each spatial frequency (ωx, ωy) from

the known samples L̂ωx ,ωy
(u, v)|S . For generality and parallelism

we do this at each spatial frequency independently, but one could
possibly use a prior on the relationship between different (ωx, ωy)
to improve our current implementation.

5.2 Initialization

The goal of our initialization is to calculate some initial guess for

the positions {ω
(0)
i }k

i=0 of our nonzero frequency coefficients. We do
this by using the Fourier projection slice theorem in a voting scheme
similar to a Hough transform. By the projection slice theorem, taking
the DFT of an input discrete line gives us the projection of our light
field spectrum onto the line. Each projection gives the sum of several
coefficients in our spectrum. Different projections provide us with
different sums, and each sum above a given threshold votes for the
discrete positions of coefficients that it sums. Our initialization then
selects the discrete positions that receive a vote from every input
projection and returns these as its initial guess. We refer to this
initialization as sparse discrete recovery.

5.2.1 Computing Projections. To simplify our discussion of
slices, we will use X to denote the 2D slice L̂ωx ,ωy

(u, v) in our

intermediate domain and X̂ to denote its DFT, L̂ωx ,ωy
(ωu, ωv). Thus,

our input is given by a subset of sample slices X|S , where the
set S gives the coordinates of our input samples ((u, v) viewpoint
positions).

For each slice X in our input X|S , the views in X lie on a discrete
line. We perform a 1D DFT for each of these discrete lines, which
yields the projection of our 2D spectrum onto a corresponding line
in the Fourier domain. Specifically, let y be the 1D discrete line
corresponding to a 2D slice X (parameterized by t ∈ [N ])

y(t) = X(αut + τu mod N,αvt + τv mod N ), (4)

where 0 ≤ αu, αv, τu, τv < N and GCD(αu, αv) = 1.
Then, ŷ, the DFT of y, is a projection of X̂ onto this line, that is,

each point in ŷ is a summation of the N frequencies that lie on a
discrete line orthogonal to y, as shown in Figure 6. Specifically, the
frequencies (ωu, ωv) that satisfy αuωu +αvωv = ω mod N project
together onto ŷ(ω) (recall that discrete lines may “wrap around” the
input window).

5.2.2 Voting. To recover the discrete positions of the non-zero
frequency coefficients, we use a voting approach. For each line
projection, the projected sums that are above some threshold vote
for the frequencies that map to them (similar to a Hough transform).
Since the spectrum is sparse, most projected values are very small
and only the coefficients of large frequencies receive votes from
every line projection. Thus, by selecting frequencies that receive
votes from every projection, we get an estimate of the discrete
positions of non-zero coefficients.

To better illustrate how voting works, consider the simple ex-
ample shown in Figure 7(a). The 2D spectrum has only 3 large
frequencies at (5, 5), (5, 9), and (9, 5). When we project along the
rows of our grid, the 5th and 9th entries of the projection will be
large and this projection will vote for all frequencies in the 5th
and 9th columns. Similarly, when we project along columns, the
projection will vote for all frequencies in the 5th and 9th rows.
At this point, frequencies (5, 5), (5, 9), (9, 5), (9, 9) have two votes.
However, when we project on the diagonal, frequency (9, 9) will
not get a vote. After 3 projections, only the 3 correct frequencies
get 3 votes. Another example is shown in Figure 7(b).

5.3 Optimization in the Continuous Fourier Domain

Recall from Section 3.2 that our optimization takes the initial posi-

tions {ω
(0)
i }k

i=0 and a subset of discrete samples as input. With both
provided by the input and initialization described earlier, we now
minimize the error function of our reconstruction using the gradient
descent approach outlined in Section 3.2.

5.3.1 Recovering Frequency Coefficients. As we discussed in

Section 3.2, when we fix the coefficient positions {ω
(0)
i }k

i=0, Eq. (1)
becomes linear in the coefficient values {ai}

k
i=0. To solve for the full

light field spectrum at each iteration of our gradient descent, we
express each of our known discrete input samples as a linear com-
bination of the complex exponentials given by our current choice
of {ωi}

k
i=0.

With the appropriate system of linear equations, we can solve for
the coefficient values that minimize the error function described in
Eq. (2). To construct our system of linear equations, we concatenate
the discrete input (u, v) samples from X|S into an |S| × 1 vector
that we denote as xS . Given the set P of frequency positions, we let
x̂P be the |P | × 1 vector of the frequency coefficients we want to
recover (with each coefficient in x̂P corresponding to a frequency
position in P ). Finally, let AP be a matrix of |S|× |P | entries. Each
row of AP corresponds to a (u, v) sample, each column corresponds
to an (ωu, ωv) frequency, and the value of each entry is given by a
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Fig. 5. Flowchart of the 2D sparse FFT reconstruction algorithm. The algorithm takes a set of sampled discrete lines. The initialization, Discrete Recovery,

has 2 steps: computing the projections and recovering the discrete positions of the large frequency coefficients. In the sparse continuous recovery, the gradient

search tries to shift the positions of the frequencies to noninteger locations and recover their coefficients. We keep repeating this gradient search until we get a

small enough error. This stage will output a list of continuous frequency positions and their coefficients, which can then be used to reconstruct the full 2D slice.

Fig. 6. Computing the DFT of a discrete line of a 2D signal is equivalent

to projecting the 2D spectrum onto the line. The top row of figures shows

the sampled lines and the bottom row of figures shows how the spectrum is

projected. Frequencies of the same color are projected onto the same point.

(a) Row projection; (b) column projection; (c) diagonal projection; (d) line

with slope = 2.

complex exponential.

AP ((u, v), (ωu, ωv)) = exp

(
2jπ

uωu + vωv

N

)
. (5)

Now our system of linear equations becomes

xS = AP x̂P , (6)

and we use the pseudo-inverse of AP to calculate the vector x̂∗
P

of coefficient values that minimize our error function (i.e., x̂∗
P =

A
†
P xS).
Recall that we did not specify the threshold used to determine

a “vote” in our initialization. Rather than using a fixed threshold,
we choose the smallest threshold such that the preceding system of
equations becomes well determined.

5.3.2 Gradient Descent. Recall from Section 3.2 that our gra-
dient descent algorithm minimizes the error function, which we can
now rewrite as

minimize e(P ) = ||xS − AP A
†
P xS ||

2. (7)

Fig. 7. Two examples of the voting approach used to recover the discrete

positions of the large frequencies from projections on discrete lines. The

2D spectrum is projected on a row, a column, and a diagonal. Each large

projection votes for the frequencies that map to it. Using only projections on a

row and column, many frequencies get two votes. By adding a 3rd projection

on the diagonal, only the large frequencies get 3 votes. (a) Frequencies (5,5),

(5,9), and (9,5) are large and only they get 3 votes; (b) some frequencies on

the diagonal are large and only these frequencies get 3 votes.

In the previous equation, the frequency positions in the list P are
continuous, but the input samples xS that we use to compute our
error are discrete. Thus, our optimization minimizes error in the dis-
crete reconstruction of our light field by finding optimal continuous
frequency positions.

In our gradient descent, each iteration of the algorithm updates
the list of frequency positions P . For each recovered frequency
position in P , we fix all other frequencies and shift the position of
this frequency by a small fractional step δ ≪ 1. We shift it in all
eight directions as shown in Figure 8 and compute the new error
e(P ) given the new position. We then pick the direction that best
minimizes the error e(P ) and change the position of the frequency
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Fig. 8. The gradient descent algorithm shifts the frequency by a small step

in every iteration. The frequency is shifted in the direction that minimizes

the error. (a) Frequency (4,5) is shifted to a noninteger position that best

minimizes the error; (b) the frequency is shifted again to minimize the error;

(c) the frequency position converges since shifting in any direction will

increase the error.

in this direction. If none of the directions minimizes the error, we do
not change the position of this frequency. We repeat this for every
frequency position in P .

Our gradient descent ensures that, from iteration i to iteration
(i + 1), we always reduce error, namely, e(P (i+1)) < e(P (i)). The
algorithm keeps iterating over the frequencies until the error e(P )
falls below a minimum acceptable error ǫ. Once we have a final list
of continuous frequency positions, we can recover their coefficients
as described in Section 5.3.1. Pseudocode of this gradient search
and sparse continuous recovery is provided in Appendix A.

5.4 Reconstructing the Viewpoints

As explained in Section 3.2, once we have the continuous positions
and values of our nonzero frequency coefficients, we can reconstruct
the missing viewpoints by expressing Eq. (1) in terms of our data.

Lωx ,ωy
(u, v) =

∑

(a,ωu,ωv )∈F

a ·
1

N
exp

(
2jπ

uωu + vωv

N

)
(8)

By setting (u, v) to the missing viewpoints, we are able to recon-
struct the full light fields. Figure 5 shows a flowchart of the entire
reconstruction.

Note that the previous equation lets us reconstruct any (u, v)
position. We can interpolate between input views and even extend
our reconstruction to images that are outside the convex hull of our
input. This would not be possible if our sparse coefficients were
limited to the discrete Fourier domain, since the preceding equa-
tion would be periodic modulo N . This would create a wrapping
effect, and attempting to reconstruct views outside the span of our
input would simply replicate views inside the span of our input.
In other words, the discrete spectrum assumes that our signal re-
peats itself outside of the sampling window, but, by recovering the
continuous spectrum, we can relax this assumption and extend our
reconstruction to new views.

6. RESULTS

We experimented with several datasets where full 4D coverage
of the light field was available for comparison. For each of these
datasets we extracted a small number of 1D segments that we then
used to reconstruct the full 2D set of viewpoints. We compare our
reconstructed light fields against the complete original datasets in
our accompanying videos.

Three of our datasets, the Stanford Bunny, the Amethyst, and
the Crystal Ball datasets, were taken from the Stanford light field

archive [Stanford 2008]. Each of the Stanford datasets consists of a
17 × 17 grid of viewpoints and was reconstructed using the box-and-
X pattern shown in Figure 4(a). On these datasets, we performed
our reconstruction in the YUV color space. The U and V channels
were reconstructed at half the resolution of the Y channel.

To show how our method scales with the number of input images
we are given, we captured a larger dataset (the Gnome) consisting
of 51 × 51 viewpoints. This dataset was captured using a robotic
gantry similar to the one from Stanford [2008], and the double X
pattern in Figure 4(b) was used to select our input. The total number
of input images is the same for both the single X pattern and the
double X pattern, as the effective spacing between input views along
diagonals is changed. For this dataset our input consists of less than
12% of the original images.

Our code was designed for flexible experimentation and is cur-
rently slow. However, the algorithm is highly parallelizable and we
run it on a PC cluster. The code is written in C++ using the Eigen
library. The ωu, ωv slices of a light field are divided among differ-
ent machines, and the results are collected once all of the machines
have finished.

Load balancing, variability in the number of machines used, and
different convergence characteristics for different inputs make it
difficult to estimate exact runtimes. Using a cluster of up to 14 ma-
chines at a time (averaging 5–6 cores each), typical runtimes ranged
from 2 to 3 hours for a colored dataset (three channels). There are
several ways to accelerate the method - for example, one could
leverage the coherence across slices or replace finite differences
with a method that converges faster, but we leave this for future
work.

6.1 Viewing Our Results

Our results are best experienced by watching the accompanying
videos, or by using our interactive light field viewer. Code for this
interactive viewer was downloaded from the Stanford light field
archive [Stanford 2008], but the datasets we provide are our own
reconstructions.

6.2 The Stanford Bunny

The Stanford Bunny dataset is our simplest test case. The scene is
Lambertian and therefore especially sparse in the frequency domain.
The spacing between input views is also very narrow, so there is
little aliasing. Each image is 512 × 512 pixels.

Our reconstruction of the Bunny is difficult to distinguish from
the full light field captured by Stanford [2008], as shown in Figure 9.
Figure 11 shows that the reconstruction error is small.

6.3 Amethyst

The Amethyst dataset is highly non-Lambertian. It exhibits both
specular reflections and refraction. Again, it is difficult to distinguish
our reconstruction from the full captured light field, as shown in
Figure 10. We reconstruct most of the reflected details, with the
exception of some undersampled features that move so fast they do
not appear at all in the input. Figure 15 gives an example.

6.4 Crystal Ball

The Crystal Ball scene is extremely non-Lambertian, exhibiting
caustics, reflections, specularities, and nonlinear parallax. We are
able to reproduce most of the complex properties that make this
scene shown in Figure 12 so challenging, as can be seen in our
accompanying video or interactive viewer.
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Fig. 9. The reconstruction of Stanford Bunny dataset from one (u, v) viewpoint. On the left and in the middle are the reference figure and the reconstruction

from Levin and Durand [2010] (courtesy of Levin). The sampling pattern we used is the box-and-X pattern shown in Figure 4(a). Though we used more

samples than Levin and Durand [2010] used, we did a much better job in terms of less blurring, preserving the textures, and having less noise.

Fig. 10. The reconstruction of Amethyst dataset (right), the reference figure (left), and the reconstruction from Levin and Durand [2010] (middle, courtesy

of Levin). We are using the box-and-X sampling pattern shown in Figure 4(a), which is more than the number of samples Levin and Durand used. However,

we are able to reconstruct this highly non-Lambertian view and it is hard to distinguish our reconstruction from the full captured light field.

Fig. 11. A color map of the difference in the Y channel between a reference

view and a reconstructed view from the Stanford Bunny dataset. In about

half of the pixels, the difference is zero. There is some unstructured noise,

but it is hard to tell whether this comes from the reference figure or our

reconstruction. There is also some structured noise on the edge of the bunny,

but again, it is difficult to tell whether this comes from reconstruction error

or an error in the pose estimate of the reference image.

If one looks closely, our reconstruction of this light field contains
a small amount of structured noise. We believe this happens because
the underlying spectrum is less sparse, which we discuss more in
Section 7.

6.5 Gnome

We acquired a new dataset consisting of 52 × 52 viewpoints. The
resolution of each image is 640 × 480, and we reconstructed all
channels at full resolution.

The Gnome scene is mostly Lambertian with a few specular
highlights. In terms of the subject being captured, the difficulty
of this scene sits somewhere between the Stanford Bunny and the
Amethyst datasets. However, what makes this data more challeng-
ing is the level of noise in our input. The captured images of the
Gnome have noticeable shot noise, flickering artifacts, and regis-
tration errors (“camera jitter”). Since these artifacts are not sparse
in the frequency domain, our algorithm does not reproduce them in
the output shown in Figure 13. For most of these artifacts, the result
is a kind of denoising, making our output arguably better than the
reference images available for comparison. This is especially clear
in the case of camera jitter, where the effect of denoising can be seen
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Fig. 12. One (u, v) view from the reconstruction of the Crystal Ball dataset. We are using the box plus diagonals sampling pattern (as shown in the blue box

in the center). The red dot shows the position of reconstructed view in the angular domain. Despite the fact that the scene is extremely non-Lambertian and has

complex structures, we are still able to reconstruct most details of the light field.

Fig. 13. One (u, v) view from our reconstruction of the Gnome dataset.

We use the sample pattern from Figure 4(b), as shown by the blue box in the

bottom right. The red marker shows where the view is in the angular domain.

Although the captured dataset is noisy, we are still able to reconstruct it in

good detail.

clearly in an epipolar image shown in Figure 16. However, some of
the shot noise in our input is reconstructed with greater structure.
We have a more general discussion of noise in Section 7.

6.6 Extending Views

Reversing the windowing effect in the second step of our algorithm
makes it possible to reconstruct views outside the original window of

Fig. 14. Extending views: We extend our reconstruction of the Stanford

Bunny dataset (Figure 9) and extend the camera views. The original view is

0 ≤ u ≤ 16 and 0 ≤ u ≤ 16, and here we show our extension to (−2, −2)

and (18, 18).

our input. To demonstrate, we extend each of the u and v dimensions
in our Bunny dataset by an additional 4 views, increasing the size
of our reconstructed aperture by 53% (see Figure 14). These results
are best appreciated in our accompanying video.

6.7 Informal Comparison with Levin and

Durand [2010]

Like us, Levin and Durand [2010] reconstruct light fields from a 1D
set of input images. Their technique is based on a Lambertian prior
with unknown depth. We provide an informal comparison with their
approach, but the different sampling patterns of the two techniques
make it difficult to hold constant the number of input views used
by each technique. Levin and Durand’s reconstruction uses fewer
images but is restricted to synthesizing views within the convex
hull of input viewpoints. Our sampling patterns use slightly more
images, but let us synthesize views outside the convex hull of our
input. Small differences in input aside, the comparison in Figure 9
and Figure 10 shows that our reconstruction is less blurry and does
not have some of the ringing artifacts that appear in their results.
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Fig. 15. One example of a reconstructed view from the Amethyst dataset

where we lose some reflection details. The missing specular reflection does

not appear in any of our input views, so it cannot be recovered.

Fig. 16. Top: We see noise in the u, v dimensions of our reference data

caused by registration errors. This error shows up as camera shake in the

reference images. Bottom: Our algorithm effectively removes this noise in

the reconstruction, essentially performing camera stabilization.

7. DISCUSSION

7.1 Viewpoint Denoising

One advantage of reconstruction based on a sparse prior is the
potential for denoising. Noisy input tends to create low-power high
frequencies that are not part of our scene. These frequencies make
the spectrum less sparse and are usually zeroed out by our algorithm.

Since our reconstruction is based on sparsity in the ωu, ωv do-
main, we remove noise in u, v. This noise corresponds to “jitter”
usually caused by registration errors or camera shake. We can see
the effect of this denoising by examining a v, y slice of our light
field, like the one in Figure 16. These slices are often referred to
as Epipolar Plane Images (EPIs) in computer vision. To observe
the visual effect of this denoising, the reader should watch our ac-
companying Gnome video. The reconstructed camera motion in this
video is much smoother than the reference camera motion. One way
to think of this effect is as a kind of video stabilization.

Our ability to denoise in u, v is limited by the number of input
slices we have and the sparsity of the spectrum we are reconstruct-
ing. If the noise affects the sparsity of our scene too much, some
of its power might be projected onto existing spikes from our sig-
nal, changing their estimated power. We can see some of this in
the Gnome dataset, where some of the shot noise in our input is
reconstructed with slight structure along the dominant orientation
of our scene.

7.2 Importance of Continuous Fourier Recovery

To better understand how operating in the continuous Fourier do-
main affects our reconstruction, we examine the impact of our con-
tinuous recovery on the reconstructed Bunny light field. We choose
this light field because our results are almost indistinguishable from
the reference data, so we can reasonably assume that the sparsity
estimated by our full algorithm reflects the true sparsity of the cap-
tured scene.

We first compare our sparse continuous recovery in Figure 17(c)
with the sparse discrete recovery used to initialize our gradient de-
scent (shown in Figure 17(a)). The error in Figure 17(a) shows how
existing sparse recovery theory is limited by the lack of sparsity
in the discrete light field spectrum. However, this result does not
necessarily isolate the effects of working in the discrete domain.
To better isolate these limits, we generate a third reconstruction in
Figure 17(b) by rounding the coefficients of our final reconstruc-
tion in Figure 17(c) to the nearest discrete frequency positions and
removing the sinc tails that result from this rounding. This recon-
struction approximates the discrete spectrum that is closest to our
continuous spectrum while exhibiting the same sparsity.

As we see in Figure 17, the effect of discretization predicted by
our experiment is a kind of ghosting. To understand why, recall that
the discrete Fourier transform assumes that signals are periodic in
the primal domain and that, given a finite number of frequencies,
our reconstruction will be band limited. As a result, the IDFT will
attempt to smooth between images at opposite ends of the primal
domain. If we look at Figure 18 we can see this effect across the set
of viewpoints in our light field. When viewpoints near the center
are averaged (smoothed) with their neighbors, the artifact is less
noticeable because their neighbors are very similar. However, when
this smoothing wraps around the edges of our aperture, we average
between more dissimilar images and the ghosting becomes more
severe.

7.3 Potential Applications

Our reconstruction from 1D viewpoint trajectories is directly appli-
cable to capture techniques that seek to acquire a dense 2D sampling
of viewpoints on a grid. One could, for instance, use it to signif-
icantly reduce the number of cameras needed by a camera array.
Alternatively, for applications where light fields are captured by a
single moving camera (such as Gortler et al. [1996], Buehler et al.
[2001], and Davis et al. [2012]), the algorithm could be used to
greatly increase the speed of capture. In both of these cases, the
sparse continuous spectrum we recover could also be used as a
highly compressed representation of the light field.

The theory of continuous recovery has many potential appli-
cations beyond our reconstruction from 1D viewpoint segments.
Sparsity in the continuous Fourier domain is a powerful prior more
general than Lambertianality, making it an exciting new direction
for research. While our choice of initialization uses viewpoint sam-
pling patterns that consist of discrete lines, one can imagine differ-
ent initialization strategies that work with different input. This input
could come from plenoptic or mask-based light field cameras, or
even some combination of multiview stereo and image-based ren-
dering algorithms. However, continuous recovery is not necessarily
convex, so proper initialization strategies will be an important and
possibly nontrivial part of applying our continuous recovery ap-
proach to different types of data. We believe this will be an exciting
area of future work.

ACM Transactions on Graphics, Vol. 34, No. 1, Article 12, Publication date: November 2014.



Light Field Reconstruction Using Sparsity in the Continuous Fourier Domain • 12:11

Fig. 17. Comparison of our final reconstruction in the continuous domain to two alternative reconstructions in the discrete domain. We compare our result

(right) with the output of only our initialization (left), as well as the discrete approximation of our result with sinc tails removed (middle).

Fig. 18. A demonstration of the ghosting that happens when we simply

remove sinc tails in the frequency domain. We removed the sinc tails from

the spectrum of the Stanford Bunny dataset and selected the same inset from

each u, v image (we chose the same inset as in Figure 17). This figure shows

how the inset changes across the (u, v) aperture (note that we subsampled

the 17 × 17 aperture by 2). Ghosting gets worse closer to the edge of the

input views.

8. CONCLUSION

We have made the important observation that natural signals like
light fields are much sparser in the continuous Fourier domain than
in the discrete Fourier domain, and we have shown how this differ-
ence in sparsity is the result of a windowing effect. Based on our
observations, we presented an approach to light field reconstruction
that optimizes for sparsity in the continuous Fourier domain. We
then showed how to use this approach to reduce sampling require-
ments and improve reconstruction quality by applying it to the task
of recovering high-quality non-Lambertian light fields from a small
number of 1D viewpoint trajectories. We believe our strategy of
optimizing for sparsity in the discrete spectrum will lead to exciting

new research in light field capture and reconstruction. Furthermore,
we hope that our observations on sparsity in the discrete versus
continuous domain will have an impact on areas of computational
photography beyond light field reconstruction.

APPENDIX

A. PSEUDOCODE

A.1. Initialization: Sparse Discrete Recovery

procedure SPARSEDISCRETERECOVERY(X|S)
ŷ1 = PROJECTLINE(X|S, 0, 1, 0, 0)
ŷ2 = PROJECTLINE(X|S, 1, 0, 0, 0)
ŷ3 = PROJECTLINE(X|S, 1, 1, 0, 0)
ŷ4 = PROJECTLINE(X|S, 0, 1, N − 1, 0)
ŷ5 = PROJECTLINE(X|S, 1, 0, 0, N − 1)
ŷ6 = PROJECTLINE(X|S, 1, −1, 0, N − 1)
P = RECOVERPOSITIONS(̂y1, ŷ2, ŷ3, ŷ3, ŷ4, ŷ5, ŷ6)
return P

procedure PROJECTLINE(X|S , αu, αv , τu,τv)
y(i) = X(iαu + τu, iαv + τv) for i ∈ [N ]}
ŷ = FFT(y)
return ŷ

procedure RECOVERPOSITIONS(̂y1, ŷ2, ŷ3, ŷ4, ŷ5, ŷ6)
V1 = VOTE(̂y1, 0, 1, 0, 0, θ ) ⊲ θ :Power threshold
V2 = VOTE(̂y2, 1, 0, 0, 0, θ )
V3 = VOTE(̂y3, 1, 1, 0, 0, θ )
V4 = VOTE(̂y4, 0, 1, N − 1, 0, θ )
V5 = VOTE(̂y5, 1, 0, 0, N − 1, θ )
V6 = VOTE(̂y6, 1, −1, 0, N − 1, θ )
P = V1

⋂
V2

⋂
V3

⋂
V4

⋂
V5

⋂
V6

return P

procedure VOTE(̂y, αu, αv, θ )
I = {i : ||̂y(i)|| > θ}

V = {(ωu, ωv) : αuωu + αvωv = i where i ∈ I }

return V
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A.2. Sparse Continuous Recovery Algorithm Using Gradient Search

procedure SPARSECONTINUOUSRECOVERY(X|S , P )
F (0), e(0) = RECOVERCOEFFICIENT(X|S, P )
i = 0
while e > ǫ do

F (i+1), e(i+1) = GRADIENTSEARCH(X|S, F
(i), e(i))

i + +

return F (i), e(i)

procedure GRADIENTSEARCH(X|S, F, e)
P = {(ωu, ωv) : (a, ωu, ωv) ∈ F }

for (ωu, ωv) ∈ P do
(	u, 	v) = GETGRADIENT(X|S, P , e, ωu, ωv)
(ωu, ωv) = (ωu, ωv) + (δ	u, δ	v)

F ′, e′ = RECOVERCOEFFICIENT(X|S, P )
return F ′, e′

procedure GETGRADIENT(X|S, P , e, ωu, ωv)
	 = {(-1,-1), (-1,0), (-1,1), (0,-1), (0,1), (1, -1), (1, 0), (1,1)}
for (du, dv) ∈ 	 do

P ′ = P − {(ωu, ωv)}
P ′ = P

⋃
{(ωu + δdu, ωv + δdv)}

F, e′ = RECOVERCOEFFICIENT(X|S, P
′)

dedu,dv = (e − e′)/||(du, dv)||

(du∗, dv∗) = argmax(du,dv)∈	dedu,dv

return (du∗, dv∗)

procedure RECOVERCOEFFICIENT(X|S, P )
A = 0|S|×|P |

xS = 0|S|×1

for i ∈ {0, . . . , |S| − 1} do
(u, v) = Si

xS(i) = X(u, v)
for k ∈ {0, . . . , |P | − 1} do

(ωu, ωv) = Pk

A(i, k) = exp
(
2jπ uωu+vωv

N

)

x̂P = A†xS ⊲ A† is the pseudo-inverse of A
e = ||xS − ÂxP ||2

F = {(a, ωu, ωv) : a = x̂P (k), (ωu, ωv) = Pk}
|P |

k=0

return F, e
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