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Abstract

A number of techniques have been proposed for flying

through scenes by redisplaying previously rendered or digitized

views. Techniques have also been proposed for interpolating

between views by warping input images, using depth information

or correspondences between multiple images. In this paper, we

describe a simple and robust method for generating new views

from arbitrary camera positions without depth information or fea-

ture matching, simply by combining and resampling the available

images. The key to this technique lies in interpreting the input

images as 2D slices of a 4D function - the light field. This func-

tion completely characterizes the flow of light through unob-

structed space in a static scene with fixed illumination.

We describe a sampled representation for light fields that

allows for both efficient creation and display of inward and out-

ward looking views. We hav e created light fields from large

arrays of both rendered and digitized images. The latter are

acquired using a video camera mounted on a computer-controlled

gantry. Once a light field has been created, new views may be

constructed in real time by extracting slices in appropriate direc-

tions. Since the success of the method depends on having a high

sample rate, we describe a compression system that is able to

compress the light fields we have generated by more than a factor

of 100:1 with very little loss of fidelity. We also address the issues

of antialiasing during creation, and resampling during slice extrac-

tion.

CR Categories: I.3.2 [Computer Graphics]: Picture/Image Gener-

ation — Digitizing and scanning, Viewing algorithms; I.4.2 [Com-

puter Graphics]: Compression — Approximate methods

Additional keywords: image-based rendering, light field, holo-

graphic stereogram, vector quantization, epipolar analysis

1. Introduction

Traditionally the input to a 3D graphics system is a scene

consisting of geometric primitives composed of different materials

and a set of lights. Based on this input specification, the rendering

system computes and outputs an image. Recently a new approach

to rendering has emerged: image-based rendering. Image-based

rendering systems generate different views of an environment

from a set of pre-acquired imagery. There are several advantages

to this approach:
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• The display algorithms for image-based rendering require

modest computational resources and are thus suitable for real-

time implementation on workstations and personal computers.

• The cost of interactively viewing the scene is independent of

scene complexity.

• The source of the pre-acquired images can be from a real or

virtual environment, i.e. from digitized photographs or from

rendered models. In fact, the two can be mixed together.

The forerunner to these techniques is the use of environ-

ment maps to capture the incoming light in a texture map

[Blinn76, Greene86]. An environment map records the incident

light arriving from all directions at a point. The original use of

environment maps was to efficiently approximate reflections of

the environment on a surface. However, environment maps also

may be used to quickly display any outward looking view of the

environment from a fixed location but at a variable orientation.

This is the basis of the Apple QuickTimeVR system [Chen95]. In

this system environment maps are created at key locations in the

scene. The user is able to navigate discretely from location to

location, and while at each location continuously change the view-

ing direction.

The major limitation of rendering systems based on envi-

ronment maps is that the viewpoint is fixed. One way to relax this

fixed position constraint is to use view interpolation [Chen93,

Greene94, Fuchs94, McMillan95a, McMillan95b, Narayanan95].

Most of these methods require a depth value for each pixel in the

environment map, which is easily provided if the environment

maps are synthetic images. Given the depth value it is possible to

reproject points in the environment map from different vantage

points to warp between multiple images. The key challenge in

this warping approach is to "fill in the gaps" when previously

occluded areas become visible.

Another approach to interpolating between acquired

images is to find corresponding points in the two [Laveau94,

McMillan95b, Seitz95]. If the positions of the cameras are

known, this is equivalent to finding the depth values of the corre-

sponding points. Automatically finding correspondences between

pairs of images is the classic problem of stereo vision, and unfor-

tunately although many algorithms exist, these algorithms are

fairly fragile and may not always find the correct correspon-

dences.

In this paper we propose a new technique that is robust and

allows much more freedom in the range of possible views. The

major idea behind the technique is a representation of the light

field, the radiance as a function of position and direction, in

regions of space free of occluders (free space). In free space, the

light field is a 4D, not a 5D function. An image is a two dimen-

sional slice of the 4D light field. Creating a light field from a set

of images corresponds to inserting each 2D slice into the 4D light

field representation. Similarly, generating new views corresponds

to extracting and resampling a slice.



Generating a new image from a light field is quite different

than previous view interpolation approaches. First, the new image

is generally formed from many different pieces of the original

input images, and need not look like any of them. Second, no

model information, such as depth values or image correspon-

dences, is needed to extract the image values. Third, image gener-

ation involves only resampling, a simple linear process.

This representation of the light field is similar to the epipo-

lar volumes used in computer vision [Bolles87] and to horizontal-

parallax-only holographic stereograms [Benton83]. An epipolar

volume is formed from an array of images created by translating a

camera in equal increments in a single direction. Such a represen-

tation has recently been used to perform view interpolation

[Katayama95]. A holographic stereogram is formed by exposing

a piece of film to an array of images captured by a camera moving

sideways. Halle has discussed how to set the camera aperture to

properly acquire images for holographic stereograms [Halle94],

and that theory is applicable to this work. Gavin Miller has also

recognized the potential synergy between true 3D display tech-

nologies and computer graphics algorithms [Miller95].

There are several major challenges to using the light field

approach to view 3D scenes on a graphics workstation. First,

there is the choice of parameterization and representation of the

light field. Related to this is the choice of sampling pattern for the

field. Second, there is the issue of how to generate or acquire the

light field. Third, there is the problem of fast generation of differ-

ent views. This requires that the slice representing rays through a

point be easily extracted, and that the slice be properly resampled

to avoid artifacts in the final image. Fourth, the obvious disadvan-

tage of this approach is the large amount of data that may be

required. Intuitively one suspects that the light field is coherent

and that it may be compressed greatly. In the remaining sections

we discuss these issues and our proposed solutions.

2. Representation

We define the light field as the radiance at a point in a

given direction. Note that our definition is equivalent to the

plenoptic function introduced by Adelson and Bergen [Adel-

son91]. The phrase light field was coined by A. Gershun in his

classic paper describing the radiometric properties of light in a

space [Gershun36]. 1 McMillan and Bishop [McMillan95b] dis-

cuss the representation of 5D light fields as a set of panoramic

images at different 3D locations.

However, the 5D representation may be reduced to 4D in

free space (regions free of occluders). This is a consequence of

the fact that the radiance does not change along a line unless

blocked. 4D light fields may be interpreted as functions on the

space of oriented lines. The redundancy of the 5D representation

is undesirable for two reasons: first, redundancy increases the size

of the total dataset, and second, redundancy complicates the

reconstruction of the radiance function from its samples. This

reduction in dimension has been used to simplify the representa-

tion of radiance emitted by luminaires [Levin71, Ashdown93].

For the remainder of this paper we will be only concerned with

4D light fields.

1 For those familiar with Gershun’s paper, he actually uses the term light field to

mean the irradiance vector as a function of position. For this reason P. Moon in a lat-

er book [Moon81] uses the term photic field to denote what we call the light field.

Although restricting the validity of the representation to

free space may seem like a  limitation, there are two common situ-

ations where this assumption is useful. First, most geometric

models are bounded. In this case free space is the region outside

the convex hull of the object, and hence all views of an object

from outside its convex hull may be generated from a 4D light

field. Second, if we are moving through an architectural model or

an outdoor scene we are usually moving through a region of free

space; therefore, any view from inside this region, of objects out-

side the region, may be generated.

The major issue in choosing a representation of the 4D

light field is how to parameterize the space of oriented lines.

There are several issues in choosing the parameterization:

Efficient calculation. The computation of the position of a line

from its parameters should be fast. More importantly, for the

purposes of calculating new views, it should be easy to compute

the line parameters given the viewing transformation and a

pixel location.

Control over the set of lines. The space of all lines is infinite,

but only a finite subset of line space is ever needed. For exam-

ple, in the case of viewing an object we need only lines inter-

secting the convex hull of the object. Thus, there should be an

intuitive connection between the actual lines in 3-space and line

parameters.

Uniform sampling. Given equally spaced samples in line

parameter space, the pattern of lines in 3-space should also be

uniform. In this sense, a uniform sampling pattern is one where

the number of lines in intervals between samples is constant

ev erywhere. Note that the correct measure for number of lines

is related to the form factor kernel [Sbert93].

The solution we propose is to parameterize lines by their

intersections with two planes in arbitrary position (see figure 1).

By convention, the coordinate system on the first plane is (u, v)

and on the second plane is (s, t). An oriented line is defined by

connecting a point on the uv plane to a point on the st plane. In

practice we restrict u, v, s, and t to lie between 0 and 1, and thus

points on each plane are restricted to lie within a convex quadrilat-

eral. We call this representation a light slab. Intuitively, a light

slab represents the beam of light entering one quadrilateral and

exiting another quadrilateral.

A nice feature of this representation is that one of the

planes may be placed at infinity. This is convenient since then

lines may be parameterized by a point and a direction. The latter

will prove useful for constructing light fields either from ortho-

graphic images or images with a fixed field of view. Furthermore,

if all calculations are performed using homogeneous coordinates,

the two cases may be handled at no additional cost.

u

v

s

t

L(u,v,s,t)

Figure 1: The light slab representation.
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Figure 2: Definition of the line space we use to visualize sets of light rays.

Each oriented line in Cartesian space (at left) is represented in line space

(at right) by a point. To simplify the visualizations, we show only lines in

2D; the extension to 3D is straightforward.

Figure 3: Using line space to visualize ray coverage. (a) shows a single

light slab. Light rays (drawn in gray) connect points on two defining lines

(drawn in red and green). (c) shows an arrangement of four rotated copies

of (a). (b) and (d) show the corresponding line space visualizations. For

any set of lines in Cartesian space, the envelope formed by the correspond-

ing points in line space indicates our coverage of position and direction;

ideally the coverage should be complete in
�

and as wide as possible in r.

As these figures show, the single slab in (a) does not provide full coverage

in
�

, but the four-slab arrangement in (c) does. (c) is, however, narrow in

r. Such an arrangement is suitable for inward-looking views of a small

object placed at the origin. It was used to generate the lion light field in

figure 14d.

A big advantage of this representation is the efficiency of

geometric calculations. Mapping from (u, v) to points on the plane

is a projective map and involves only linear algebra (multiplying

by a 3x3 matrix). More importantly, as will be discussed in sec-

tion 5, the inverse mapping from an image pixel (x, y) to

(u, v, s, t) is also a projective map. Methods using spherical or

cylindrical coordinates require substantially more computation.

Figure 4: Using line space to visualize sampling uniformity. (a) shows a

light slab defined by two lines at right angles. (c) shows a light slab where

one defining line is at infinity. This arrangement generates rays passing

through the other defining line with an angle between -45° and +45°. (b)

and (d) show the corresponding line space visualizations. Our use of (r,
�

)

to parameterize line space has the property that equal areas in line space

correspond to equally dense sampling of position and orientation in Carte-

sian space; ideally the density of points in line space should be uniform.

As these figures show, the singularity at the corner in (a) leads to a highly

nonuniform and therefore inefficient sampling pattern, indicated by dark

areas in (b) at angles of 0 and −✁ /2. (c) generates a more uniform set of

lines. Although (c) does not provide full coverage of
�

, four rotated

copies do. Such an arrangement is suitable for outward-looking views by

an observer standing near the origin. It was used to generate the hallway

light field in figure 14c.

Many properties of light fields are easier to understand in

line space (figures 2 through 4). In line space, each oriented line

is represented by a point and each set of lines by a region. In par-

ticular, the set of lines represented by a light slab and the set of

lines intersecting the convex hull of an object are both regions in

line space. All views of an object could be generated from one

light slab if its set of lines include all lines intersecting the convex

hull of the object. Unfortunately, this is not possible. Therefore,

it takes multiple light slabs to represent all possible views of an

object. We therefore tile line space with a collection of light

slabs, as shown in figure 3.

An important issue related to the parameterization is the

sampling pattern. Assuming that all views are equally likely to be

generated, then any line is equally likely to be needed. Thus all

regions of line space should have an equal density of samples.

Figure 4 shows the density of samples in line space for different

arrangements of slabs. Note that no slab arrangement is perfect:

arrangements with a singularity such as two polygons joined at a

corner (4a) are bad and should be avoided, whereas slabs formed
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from parallel planes (3a) generate fairly uniform patterns. In addi-

tion, arrangements where one plane is at infinity (4c) are better

than those with two finite planes (3a). Finally, because of symme-

try the spacing of samples in uv should in general be the same as

st. However, if the observer is likely to stand near the uv plane,

then it may be acceptable to sample uv less frequently than st.

3. Creation of light fields

In this section we discuss the creation of both virtual light

fields (from rendered images) and real light fields (from digitized

images). One method to create a light field would be to choose a

4D sampling pattern, and for each line sample, find the radiance.

This is easily done directly for virtual environments by a ray

tracer. This could also be done in a real environment with a spot

radiometer, but it would be very tedious. A more practical way to

generate light fields is to assemble a collection of images.

3.1. From rendered images

For a virtual environment, a light slab is easily generated

simply by rendering a 2D array of images. Each image represents

a slice of the 4D light slab at a fixed uv value and is formed by

placing the center of projection of the virtual camera at the sample

Figure 6: Tw o visualizations of a light field. (a) Each image in the array represents the rays arriving at one point on the uv plane from all points on the st

plane, as shown at left. (b) Each image represents the rays leaving one point on the st plane bound for all points on the uv plane. The images in (a) are off-

axis (i.e. sheared) perspective views of the scene, while the images in (b) look like reflectance maps. The latter occurs because the object has been placed

astride the focal plane, making sets of rays leaving points on the focal plane similar in character to sets of rays leaving points on the object.

Camera plane
        (uv)

Focal plane
       (st)

Field of view

Figure 5: The viewing geometry used to create a light slab from an

array of perspective images.

location on the uv plane. The only issue is that the xy samples of

each image must correspond exactly with the st samples. This is

easily done by performing a sheared perspective projection (figure

5) similar to that used to generate a stereo pair of images. Figure

6 shows the resulting 4D light field, which can be visualized either

as a uv array of st images or as an st array of uv images.
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Tw o other viewing geometries are useful. A light slab may

be formed from a 2D array of orthographic views. This can be

modeled by placing the uv plane at infinity, as shown in figure 4c.

In this case, each uv sample corresponds to the direction of a par-

allel projection. Again, the only issue is to align the xy and st

samples of the image with the st quadrilateral. The other useful

geometry consists of a 2D array of outward looking (non-sheared)

perspective views with fixed field of view. In this case, each

image is a slice of the light slab with the st plane at infinity. The

fact that all these cases are equally easy to handle with light slabs

attests to the elegance of projective geometry. Light fields using

each arrangement are presented in section 6 and illustrated in fig-

ure 14.

As with any sampling process, sampling a light field may

lead to aliasing since typical light fields contain high frequencies.

Fortunately, the effects of aliasing may be alleviated by filtering

before sampling. In the case of a light field, a 4D filter in the

space of lines must be employed (see figure 7). Assuming a box

filter, a weighted average of the radiances on all lines connecting

sample squares in the uv and st planes must be computed. If a

camera is placed on the uv plane and focussed on the st plane,

then the filtering process corresponds to integrating both over a

pixel corresponding to an st sample, and an aperture equal in size

to a uv sample, as shown in figure 8. The theory behind this filter-

ing process has been discussed in the context of holographic stere-

ograms by Halle [Halle94].

Note that although prefiltering has the desired effect of

antialiasing the light field, it has what at first seems like an unde-

sirable side effect — introducing blurriness due to depth of field.

However, this blurriness is precisely correct for the situation.

Recall what happens when creating a pair of images from two

adjacent camera locations on the uv plane: a given object point

will project to different locations, potentially several pixels apart,

in these two images. The distance between the two projected

locations is called the stereo disparity. Extending this idea to mul-

tiple camera locations produces a sequence of images in which the

object appears to jump by a distance equal to the disparity. This

jumping is aliasing. Recall now that taking an image with a finite

aperture causes points out of focus to be blurred on the film plane

by a circle of confusion. Setting the diameter of the aperture to

the spacing between camera locations causes the circle of confu-

sion for each object point to be equal in size to its stereo disparity.

This replaces the jumping with a sequence of blurred images.

Thus, we are removing aliasing by employing finite depth of field.

Pixel filter     +     Aperture filter    =     Ray filter

uv

st

Figure 7: Prefiltering a light field. To avoid aliasing, a 4D low

pass filter must be applied to the radiance function.

Camera plane
          (uv)

Film plane Aperture

Focal plane
       (st) 

Figure 8: Prefiltering using an aperture. This figure shows a cam-

era focused on the st plane with an aperture on the uv plane whose

size is equal to the uv sample spacing. A hypothetical film plane is

drawn behind the aperture. Ignore the aperture for a moment (con-

sider a pinhole camera that precisely images the st plane onto the

film plane). Then integrating over a pixel on the film plane is

equivalent to integrating over an st region bounded by the pixel.

Now consider fixing a point on the film plane while using a finite

sized aperture (recall that all rays from a point on the film through

the aperture are focussed on a single point on the focal plane).

Then integrating over the aperture corresponds to integrating all

rays through the uv region bounded by the aperture. Therefore, by

simultaneously integrating over both the pixel and the aperture, the

proper 4D integral is computed.

The necessity for prefiltering can also be understood in line

space. Recall from our earlier discussion that samples of the light

field correspond to points in line space. Having a finite depth of

field with an aperture equal in size to the uv sample spacing

insures that each sample adequately covers the interval between

these line space points. Too small or too large an aperture yields

gaps or overlaps in line space coverage, resulting in views that are

either aliased or excessively blurry, respectively.

3.2. From digitized images

Digitizing the imagery required to build a light field of a

physical scene is a formidable engineering problem. The number

of images required is large (hundreds or thousands), so the process

must be automated or at least computer-assisted. Moreover, the

lighting must be controlled to insure a static light field, yet flexible

enough to properly illuminate the scene, all the while staying clear

of the camera to avoid unwanted shadows. Finally, real optical

systems impose constraints on angle of view, focal distance, depth

of field, and aperture, all of which must be managed. Similar

issues have been faced in the construction of devices for perform-

ing near-field photometric measurements of luminaires [Ash-

down93]. In the following paragraphs, we enumerate the major

design decisions we faced in this endeavor and the solutions we

adopted.

Inward versus outward looking. The first decision to be made

was between a flyaround of a small object and a flythrough of a

large-scale scene. We judged flyarounds to be the simpler case,

so we attacked them first.
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Figure 9: Our prototype camera gantry. A modified Cyberware

MS motion platform with additional stepping motors from Lin-

Tech and Parker provide four degrees of freedom: horizontal

and vertical translation, pan, and tilt. The camera is a Panasonic

WV-F300 3-CCD video camera with a Canon f/1.7 10-120mm

zoom lens. We keep it locked off at its widest setting (10mm)

and mounted so that the pitch and yaw axes pass through the

center of projection. While digitizing, the camera is kept point-

ed at the center of the focal plane. Calibrations and alignments

are verified with the aid of a Faro digitizing arm, which is accu-

rate to 0.3 mm.

Human versus computer-controlled. An inexpensive

approach to digitizing light fields is to move a handheld camera

through the scene, populating the field from the resulting

images [Gortler96]. This approach necessitates estimating

camera pose at each frame and interpolating the light field from

scattered data - two challenging problems. To simplify the situ-

ation, we chose instead to build a computer-controlled camera

gantry and to digitize images on a regular grid.

Spherical versus planar camera motion. For flyarounds of

small objects, an obvious gantry design consists of two concen-

tric hemicycles, similar to a gyroscope mounting. The camera

in such a gantry moves along a spherical surface, always point-

ing at the center of the sphere. Apple Computer has con-

structed such a gantry to acquire imagery for Quick-Time VR

flyarounds [Chen95]. Unfortunately, the lighting in their sys-

tem is attached to the moving camera, so it is unsuitable for

acquiring static light fields. In general, a spherical gantry has

three advantages over a planar gantry: (a) it is easier to cover

the entire range of viewing directions, (b) the sampling rate in

direction space is more uniform, and (c) the distance between

the camera and the object is fixed, providing sharper focus

throughout the range of camera motion. A planar gantry has

two advantages over a spherical gantry: (a) it is easier to build;

the entire structure can be assembled from linear motion stages,

and (b) it is closer to our light slab representation. For our first

prototype gantry, we chose to build a planar gantry, as shown in

figure 9.

Field of view. Our goal was to build a light field that allowed

360 degrees of azimuthal viewing. To accomplish this using a

planar gantry meant acquiring four slabs each providing 90

yaw
pitch

horizontal

vertical

object platform

lights

rotating tripod

rotating hub

Figure 10: Object and lighting support. Objects are mounted

on a Bogen fluid-head tripod, which we manually rotate to four

orientations spaced 90 degrees apart. Illumination is provided

by two 600W Lowell Omni spotlights attached to a ceiling-

mounted rotating hub that is aligned with the rotation axis of the

tripod. A stationary 6’ x 6’ diffuser panel is hung between the

spotlights and the gantry, and the entire apparatus is enclosed in

black velvet to eliminate stray light.

degrees. This can be achieved with a camera that translates but

does not pan or tilt by employing a wide-angle lens. This solu-

tion has two disadvantages: (a) wide-angle lenses exhibit signif-

icant distortion, which must be corrected after acquisition, and

(b) this solution trades off angle of view against sensor resolu-

tion. Another solution is to employ a  view camera in which the

sensor and optical system translate in parallel planes, the former

moving faster than the latter. Horizontal parallax holographic

stereograms are constructed using such a camera [Halle94].

Incorporating this solution into a gantry that moves both hori-

zontally and vertically is difficult. We instead chose to equip

our camera with pan and tilt motors, enabling us to use a nar-

row-angle lens. The use of a rotating camera means that, in

order to transfer the acquired image to the light slab representa-

tion, it must be reprojected to lie on a common plane. This

reprojection is equivalent to keystone correction in architectural

photography.

Standoff distance. A disadvantage of planar gantries is that the

distance from the camera to the object changes as the camera

translates across the plane, making it difficult to keep the object

in focus. The view camera described above does not suffer

from this problem, because the ratio of object distance to image

distance stays constant as the camera translates. For a rotating

camera, servo-controlled focusing is an option, but changing the

focus of a camera shifts its center of projection and changes the

image magnification, complicating acquisition. We instead mit-

igate this problem by using strong lighting and a small aperture

to maximize depth of field.

Sensor rotation. Each sample in a light slab should ideally rep-

resent the integral over a pixel, and these pixels should lie on a

common focal plane. A view camera satisfies this constraint

because its sensor translates in a plane. Our use of a rotating

camera means that the focal plane also rotates. Assuming that
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we resample the images carefully during reprojection, the pres-

ence of a rotated focal plane will introduce no additional error

into the light field. In practice, we have not seen artifacts due to

this resampling process.

Aperture size. Each sample in a light slab should also represent

the integral over an aperture equal in size to a uv sample. Our

use of a small aperture produces a light field with little or no uv

antialiasing. Even fully open, the apertures of commercial

video cameras are small. We can approximate the required

antialiasing by averaging together some number of adjacent

views, thereby creating a synthetic aperture. Howev er, this

technique requires a very dense spacing of views, which in turn

requires rapid acquisition. We do not currently do this.

Object support. In order to acquire a 360-degree light field in

four 90-degree segments using a planar gantry, either the gantry

or the object must be rotated to each of four orientations spaced

90 degrees apart. Given the massiveness of our gantry, the lat-

ter was clearly easier. For these experiments, we mounted our

objects on a tripod, which we manually rotate to the four posi-

tions as shown in figure 10.

Lighting. Given our decision to rotate the object, satisfying the

requirement for fixed illumination means that either the lighting

must exhibit fourfold symmetry or it must rotate with the

object. We chose the latter solution, attaching a lighting system

to a rotating hub as shown in figure 10. Designing a lighting

system that stays clear of the gantry, yet provides enough light

to evenly illuminate an object, is a challenging problem.

Using this gantry, our procedure for acquiring a light field

is as follows. For each of the four orientations, the camera is

translated through a regular grid of camera positions. At each

position, the camera is panned and tilted to point at the center of

the object, which lies along the axis of rotation of the tripod. We

then acquire an image, and, using standard texture mapping algo-

rithms, reproject it to lie on a common plane as described earlier.

Table II gives a typical set of acquisition parameters. Note that

the distance between camera positions (3.125 cm) exceeds the

diameter of the aperture (1.25 mm), underscoring the need for

denser spacing and a synthetic aperture.

4. Compression

Light field arrays are large — the largest example in this

paper is 1.6 GB. To make creation, transmission, and display of

light fields practical, they must be compressed. In choosing from

among many available compression techniques, we were guided

by several unique characteristics of light fields:

Data redundancy. A good compression technique removes

redundancy from a signal without affecting its content. Light

fields exhibit redundancy in all four dimensions. For example,

the smooth regions in figure 6a tell us that this light field con-

tains redundancy in s and t, and the smooth regions in figure 6b

tell us that the light field contains redundancy in u and v. The

former corresponds to our usual notion of interpixel coherence

in a perspective view. The latter can be interpreted either as the

interframe coherence one expects in a motion sequence or as

the smoothness one expects in the bidirectional reflectance dis-

tribution function (BRDF) for a diffuse or moderately specular

surface. Occlusions introduce discontinuities in both cases, of

course.

Random access. Most compression techniques place some con-

straint on random access to data. For example, variable-bitrate

coders may require scanlines, tiles, or frames to be decoded at

once. Examples in this class are variable-bitrate vector quanti-

zation and the Huffman or arithmetic coders used in JPEG or

MPEG. Predictive coding schemes further complicate random-

access because pixels depend on previously decoded pixels,

scanlines, or frames. This poses a problem for light fields since

the set of samples referenced when extracting an image from a

light field are dispersed in memory. As the observer moves, the

access patterns change in complex ways. We therefore seek a

compression technique that supports low-cost random access to

individual samples.

Asymmetry. Applications of compression can be classified as

symmetric or asymmetric depending on the relative time spent

encoding versus decoding. We assume that light fields are

assembled and compressed ahead of time, making this an asym-

metric application.

Computational expense. We seek a compression scheme that

can be decoded without hardware assistance. Although soft-

ware decoders have been demonstrated for standards like JPEG

and MPEG, these implementations consume the full power of a

modern microprocessor. In addition to decompression, the dis-

play algorithm has additional work to perform, as will be

described in section 5. We therefore seek a compression

scheme that can be decoded quickly.

The compression scheme we chose was a two-stage

pipeline consisting of fixed-rate vector quantization followed by

entropy coding (Lempel-Ziv), as shown in figure 11. Following

similar motivations, Beers et al. use vector quantization to com-

press textures for use in rendering pipelines [Beers96].

4.1. Vector quantization

The first stage of our compression pipeline is vector quanti-

zation (VQ) [Gersho92], a lossy compression technique wherein a

vector of samples is quantized to one of a number of predeter-

mined reproduction vectors. A reproduction vector is called a

codeword, and the set of codewords available to encode a source

is called the codebook, Codebooks are constructed during a train-

ing phase in which the quantizer is asked to find a set of code-

words that best approximates a set of sample vectors, called the

training set. The quality of a codeword is typically characterized

codebook

light field

indices

LZ

bitstreamVQ

LZ

(402 MB)

(0.8 MB)

(16.7 MB)

(3.4 MB)

Figure 11 Tw o-stage compression pipeline. The light field is parti-

tioned into tiles, which are encoded using vector quantization to

form an array of codebook indices. The codebook and the array of

indices are further compressed using Lempel-Ziv coding. Decom-

pression also occurs in two stages: entropy decoding as the file is

loaded into memory, and dequantization on demand during interac-

tive viewing. Typical file sizes are shown beside each stage.
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using mean-squared error (MSE), i.e. the sum over all samples in

the vector of the squared difference between the source sample

and the codeword sample. Once a codebook has been constructed,

encoding consists of partitioning the source into vectors and find-

ing for each vector the closest approximating codeword from the

codebook. Decoding consists of looking up indices in the code-

book and outputting the codewords found there — a very fast

operation. Indeed, decoding speed is one of the primary advan-

tages of vector quantization.

In our application, we typically use 2D or 4D tiles of the

light field, yielding 12-dimensional or 48-dimensional vectors,

respectively. The former takes advantage of coherence in s and t

only, while the latter takes advantage of coherence in all four

dimensions. To maximize image quality, we train on a representa-

tive subset of each light field to be compressed, then transmit the

resulting codebook along with the codeword index array. Since

light fields are large, even after compression, the additional over-

head of transmitting a codebook is small, typically less than 20%.

We train on a subset rather than the entire light field to reduce the

expense of training.

The output of vector quantization is a sequence of fixed-

rate codebook indices. Each index is log N bits where N is the

number of codewords in the codebook, so the compression rate of

the quantizer is (kl) / (log N ) where k is the number of elements

per vector (i.e. the dimension), and l is the number of bits per ele-

ment, usually 8. In our application, we typically use 16384-word

codebooks, leading to a compression rate for this stage of the

pipeline of (48 x 8) / (log 16384) = 384 bits / 14 bits = 27:1. To

simplify decoding, we represent each index using an integral num-

ber of bytes, 2 in our case, which reduces our compression

slightly, to 24:1.

4.2. Entropy coding

The second stage of our compression pipeline is an entropy

coder designed to decrease the cost of representing high-

probability code indices. Since our objects are typically rendered

or photographed against a constant-color background, the array

contains many tiles that occur with high probability. For the

examples in this paper, we employed gzip, an implementation of

Lempel-Ziv coding [Ziv77]. In this algorithm, the input stream is

partitioned into nonoverlapping blocks while constructing a dic-

tionary of blocks seen thus far. Applying gzip to our array of code

indices typically gives us an additional 5:1 compression. Huffman

coding would probably yield slightly higher compression, but

encoding and decoding would be more expensive. Our total com-

pression is therefore 24 x 5 = 120:1. See section 6 and table III

for more detail on our compression results.

4.3. Decompression

Decompression occurs in two stages. The first stage —

gzip decoding — is performed as the file is loaded into memory.

The output of this stage is a codebook and an array of code

indices packed in 16-bit words. Although some efficiency has

been lost by this decoding, the light field is still compressed 24:1,

and it is now represented in a way that supports random access.

The second stage — dequantization — proceeds as follows.

As the observer moves through the scene, the display engine

requests samples of the light field. Each request consists of a

(u, v, s, t) coordinate tuple. For each request, a subscripting calcu-

lation is performed to determine which sample tile is being

addressed. Each tile corresponds to one quantization vector and is

thus represented in the index array by a single entry. Looking this

index up in the codebook, we find a vector of sample values. A

second subscripting calculation is then performed, giving us the

offset of the requested sample within the vector. With the aid of

precomputed subscripting tables, dequantization can be imple-

mented very efficiently. In our tests, decompression consumes

about 25% of the CPU cycles.

5. Display

The final part of the system is a real time viewer that con-

structs and displays an image from the light slab given the imag-

ing geometry. The viewer must resample a 2D slice of lines from

the 4D light field; each line represents a ray through the eye point

and a pixel center as shown in figure 12. There are two steps to

this process: step 1 consists of computing the (u, v, s, t) line

parameters for each image ray, and step 2 consists of resampling

the radiance at those line parameters.

As mentioned previously, a big advantage of the light slab

representation is the efficiency of the inverse calculation of the

line parameters. Conceptually the (u, v) and (s, t) parameters may

be calculated by determining the point of intersection of an image

ray with each plane. Thus, any ray tracer could easily be adapted

to use light slabs. However, a polygonal rendering system also

may be used to view a light slab. The transformation from image

coordinates (x, y) to both the (u, v) and the (s, t) coordinates is a

projective map. Therefore, computing the line coordinates can be

done using texture mapping. The uv quadrilateral is drawn using

the current viewing transformation, and during scan conversion

the (uw, vw, w) coordinates at the corners of the quadrilateral are

interpolated. The resulting u = uw/w and v = vw/w coordinates at

each pixel represent the ray intersection with the uv quadrilateral.

A similar procedure can be used to generate the (s, t) coordinates

by drawing the st quadrilateral. Thus, the inverse transformation

from (x, y) to (u, v, s, t) reduces essentially to two texture coordi-

nate calculations per ray. This is cheap and can be done in real

time, and is supported in many rendering systems, both hardware

and software.

Only lines with (u, v) and (s, t) coordinates inside both

quadrilaterals are represented in the light slab. Thus, if the texture

coordinates for each plane are computed by drawing each quadri-

laterial one after the other, then only those pixels that have both

valid uv and st coordinates should be looked up in the light slab

array. Alternatively, the two quadrilaterals may be simultaneously

scan converted in their region of overlap to cut down on unneces-

sary calculations; this is the technique that we use in our software

implementation.

u

v

s

t

x y

Figure 12: The process of resampling a light slab during

display.
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Figure 13: The effects of interpolation during slice extraction. (a)

No interpolation. (b) Linear interpolation in uv only. (c) Quadra-

linear interpolation in uvst.

To draw an image of a collection of light slabs, we draw

them sequentially. If the sets of lines in the collection of light

slabs do not overlap, then each pixel is drawn only once and so

this is quite efficient. To further increase efficiency, "back-facing"

light slabs may be culled.

The second step involves resampling the radiance. The

ideal resampling process first reconstructs the function from the

original samples, and then applies a bandpass filter to the recon-

structed function to remove high frequencies that may cause alias-

ing. In our system, we approximate the resampling process by

simply interpolating the 4D function from the nearest samples.

This is correct only if the new sampling rate is greater than the

original sampling rate, which is usually the case when displaying

light fields. However, if the image of the light field is very small,

then some form of prefiltering should be applied. This could eas-

ily be done with a 4D variation of the standard mipmapping algo-

rithm [Williams83].

Figure 13 shows the effect of nearest neighbor versus bilin-

ear interpolation on the uv plane versus quadrilinear interpolation

of the full 4D function. Quadralinear interpolation coupled with

the proper prefiltering generates images with few aliasing arti-

facts. The improvement is particularly dramatic when the object

or camera is moving. However, quadralinear filtering is more

expensive and can sometimes be avoided. For example, if the

sampling rates in the uv and st planes are different, and then the

benefits of filtering one plane may be greater than the other plane.

6. Results

Figure 14 shows images extracted from four light fields.

The first is a buddha constructed from rendered images. The

model is an irregular polygon mesh constructed from range data.

The input images were generated using RenderMan, which also

provided the machinery for computing pixel and aperture

buddha kidney hallway lion

Number of slabs 1 1  4 4

Images per slab 16x16 64x64 64x32 32x16

Total images 256 4096 8192 2048

Pixels per image 2562 1282 2562 2562

Raw size (MB) 50 201 1608 402

Prefiltering uvst st only uvst st only

Table I: Statistics of the light fields shown in figure 14.

antialiasing. The light field configuration was a single slab similar

to that shown in figure 3a.

Our second light field is a human abdomen constructed

from volume renderings. The two tan-colored organs on either

side of the spine are the kidneys. In this case, the input images

were orthographic views, so we employed a slab with one plane at

infinity as shown in figure 4c. Because an orthographic image

contains rays of constant direction, we generated more input

images than in the first example in order to provide the angular

range needed for creating perspective views. The images include

pixel antialiasing but no aperture antialiasing. However, the dense

spacing of input images reduces aperture aliasing artifacts to a

minimum.

Our third example is an outward-looking light field depict-

ing a hallway in Berkeley’s Soda Hall, rendered using a radiosity

program. To allow a full range of observer motion while optimiz-

ing sampling uniformity, we used four slabs with one plane at

infinity, a four-slab version of figure 4c. The input images were

rendered on an SGI RealityEngine, using the accumulation buffer

to provide both pixel and aperture antialiasing.

Our last example is a light field constructed from digitized

images. The scene is of a toy lion, and the light field consists of

four slabs as shown in figure 3c, allowing the observer to walk

completely around the object. The sensor and optical system pro-

vide pixel antialiasing, but the aperture diameter was too small to

provide correct aperture antialiasing. As a result, the light field

exhibits some aliasing, which appears as double images. These

artifacts are worst near the head and tail of the lion because of

their greater distance from the axis around which the camera

rotated.

Table I summarizes the statistics of each light field. Table

II gives additional information on the lion dataset. Table III gives

the performance of our compression pipeline on two representa-

tive datasets. The buddha was compressed using a 2D tiling of the

Camera motion

translation per slab 100 cm x 50 cm

pan and tilt per slab 90° x 45°
number of slabs 4 slabs 90° apart

total pan and tilt 360° x 45°
Sampling density

distance to object 50 cm

camera pan per sample 3.6°
camera translation per sample 3.125 cm

Aperture

focal distance of lens 10mm

F-number f/8

aperture diameter 1.25 mm

Acquisition time

time per image 3 seconds

total acquisition time 4 hours

Table II: Acquisition parameters for the lion light field. Distance

to object and camera pan per sample are given at the center of the

plane of camera motion. Total acquisition time includes longer

gantry movements at the end of each row and manual setup time

for each of the four orientations. The aperture diameter is the focal

length divided by the F-number.
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buddha lion

Vector quantization

raw size (MB) 50.3 402.7

fraction in training set 5% 3%

samples per tile 2x2x1x1 2x2x2x2

bytes per sample 3 3

vector dimension 12 48

number of codewords 8192 16384

codebook size (MB) 0.1 0.8

bytes per codeword index 2 2

index array size (MB) 8.4 16.8

total size (MB) 8.5 17.6

compression rate 6:1 23:1

Entropy coding

gzipped codebook (MB) 0.1 0.6

gzipped index array (MB) 1.0 2.8

total size (MB) 1.1 3.4

compression due to gzip 8:1 5:1

total compression 45:1 118:1

Compression performance

training time 15 mins 4 hrs

encoding time 1 mins 8 mins

original entropy (bits/pixel) 4.2 2.9

image quality (PSNR) 36 27

Table III: Compression statistics for two light fields. The buddha

was compressed using 2D tiles of RGB pixels, forming 12-dimen-

sional vectors, and the lion was compressed using 4D tiles (2D

tiles of RGB pixels from each of 2 x 2 adjacent camera positions),

forming 48-dimensional vectors. Bytes per codeword index in-

clude padding as described in section 4. Peak signal-to-noise ratio

(PSNR) is computed as 10 log10(2552/MSE).

light field, yielding a total compression rate of 45:1. The lion was

compressed using a 4D tiling, yielding a higher compression rate

of 118:1. During interactive viewing, the compressed buddha is

indistinguishable from the original; the compressed lion exhibits

some artifacts, but only at high magnifications. Representative

images are shown in figure 15. We hav e also experimented with

higher rates. As a general rule, the artifacts become objectionable

only above 200:1.

Finally, table IV summarizes the performance of our inter-

active viewer operating on the lion light field. As the table shows,

we achieve interactive playback rates for reasonable image sizes.

Note that the size of the light field has no effect on playback rate;

only the image size matters. Memory size is not an issue because

the compressed fields are small.

7. Discussion and future work

We hav e described a new light field representation, the

light slab, for storing all the radiance values in free space. Both

inserting images into the field and extracting new views from the

field involve resampling, a simple and robust procedure. The

resulting system is easily implemented on workstations and per-

sonal computers, requiring modest amounts of memory and

cycles. Thus, this technique is useful for many applications requir-

ing interaction with 3D scenes.

Display times (ms) no bilerp uv lerp uvst lerp

coordinate calculation 13 13 13

sample extraction 14 59 214

overhead 3 3 3

total 30 75 230

Table IV: Display performance for the lion light field. Displayed

images are 192 x 192 pixels. Sample extraction includes VQ de-

coding and sample interpolation. Display overhead includes read-

ing the mouse, computing the observer position, and copying the

image to the frame buffer. Timings are for a software-only imple-

mentation on a 250 MHz MIPS 4400 processor.

There are three major limitation of our method. First, the

sampling density must be high to avoid excessive blurriness. This

requires rendering or acquiring a large number of images, which

may take a long time and consume a lot of memory. Howev er,

denser sample spacing leads to greater inter-sample coherence, so

the size of the light field is usually manageable after compression.

Second, the observer is restricted to regions of space free of

occluders. This limitation can be addressed by stitching together

multiple light fields based on a partition of the scene geometry

into convex regions. If we augment light fields to include Z-

depth, the regions need not even be convex. Third, the illumina-

tion must be fixed. If we ignore interreflections, this limitation

can be addressed by augmenting light fields to include surface

normals and optical properties. To handle interreflections, we

might try representing illumination as a superposition of basis

functions [Nimeroff94]. This would correspond in our case to

computing a sum of light fields each lit with a different illumina-

tion function.

It is useful to compare this approach with depth-based or

correspondence-based view interpolation. In these systems, a 3D

model is created to improve quality of the interpolation and hence

decrease the number of pre-acquired images. In our approach, a

much larger number of images is acquired, and at first this seems

like a disadvantage. However, because of the 3D structure of the

light field, simple compression schemes are able to find and

exploit this same 3D structure. In our case, simple 4D block cod-

ing leads to compression rates of over 100:1. Given the success of

the compression, a high density compressed light field has an

advantage over other approaches because the resampling process

is simpler, and no explicit 3D structure must be found or stored.

There are many representations for light used in computer

graphics and computer vision, for example, images, shadow and

environment maps, light sources, radiosity and radiance basis

functions, and ray tracing procedures. However, abstract light rep-

resentations have not been systematically studied in the same way

as modeling and display primitives. A fruitful line of future

research would be to reexamine these representations from first

principles. Such reexaminations may in turn lead to new methods

for the central problems in these fields.

Another area of future research is the design of instrumen-

tation for acquisition. A large parallel array of cameras connected

to a parallel computer could be built to acquire and compress a

light field in real time. In the short term, there are many interest-

ing engineering issues in designing and building gantries to move
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a small number of cameras and lights to sequentially acquire both

inward- and outward-looking light fields. This same instrumenta-

tion could lead to breakthroughs in both 3D shape acquisition and

reflection measurements. In fact, the interaction of light with any

object can be represented as a higher-dimensional interaction

matrix; acquiring, compressing, and manipulating such represen-

tations are a fruitful area for investigation.
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