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Abstract Salient object detection (SOD) is a long-
standing research topic in computer vision with
increasing interest in the past decade. Since light
fields record comprehensive information of natural
scenes that benefit SOD in a number of ways, using
light field inputs to improve saliency detection over
conventional RGB inputs is an emerging trend. This
paper provides the first comprehensive review and a
benchmark for light field SOD, which has long been
lacking in the saliency community. Firstly, we introduce
light fields, including theory and data forms, and then
review existing studies on light field SOD, covering ten
traditional models, seven deep learning-based models,
a comparative study, and a brief review. Existing
datasets for light field SOD are also summarized.
Secondly, we benchmark nine representative light field
SOD models together with several cutting-edge RGB-
D SOD models on four widely used light field datasets,
providing insightful discussions and analyses, including
a comparison between light field SOD and RGB-D
SOD models. Due to the inconsistency of current
datasets, we further generate complete data and
supplement focal stacks, depth maps, and multi-view
images for them, making them consistent and uniform.
Our supplemental data make a universal benchmark
possible. Lastly, light field SOD is a specialised
problem, because of its diverse data representations and
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high dependency on acquisition hardware, so it differs
greatly from other saliency detection tasks. We provide
nine observations on challenges and future directions,
and outline several open issues. All the materials
including models, datasets, benchmarking results, and
supplemented light field datasets are publicly available
at https://github.com/kerenfu/LFSOD-Survey.

Keywords light field; salient object detection (SOD);
deep learning; benchmarking

1 Introduction
In Google I/O 2021, Google introduced its new
technology, Project Starline (https://blog.google/
technology/research/project-starline/), which
combines specialized hardware and computer vision
technology to create a “magic window” that can
connect two remote persons, making them feel as
if they are physically sitting in front of each other
during the conversation. Such immersive technology,
benefits from light field displays, and does not require
additional glasses or headsets. The three crucial
techniques involved are 3D imaging, real-time data
compression, and light field-based 3D displays, which
are very challenging but have had breakthroughs
according to Google. Salient object detection (SOD)
from the light field [1] may also benefit these three
stages.

Salient object detection (SOD) [2–4] is a funda-
mental task in computer vision, aiming to detect and
segment conspicuous regions or objects in a scene;
light field SOD [5, 6] studies the problem of how
to realize SOD using light field data. Numerous
applications of SOD cover, e.g., object detection
and recognition [7–11], semantic segmentation [12–
14], unsupervised video object segmentation [15, 16],
multimedia compression [17–20], non-photorealistic
rendering [21], re-targeting [22], and human–robot
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interaction [23, 24]. Generally, the abundant cues
and information within the light field help algorithms
better identify target objects and improve SOD
performance compared to conventional SOD that
processes single colour images [25–29].

Light field SOD explores how to detect salient
objects using light field data as input. In 3D space,
a light field [37] captures all the light rays at every
spatial location and in every direction. As a result,
it can be viewed as an array of images captured
by a grid of cameras. Compared to RGB images
captured by a regular camera or depth maps acquired
by a depth sensor, the light field data acquired by
a plenoptic camera records more comprehensive and
complete information about natural scenes, covering,
for example, depth information [38–44], focusness
cues [5, 42], and angular changes [42, 45]. Therefore,
light field data can benefit SOD in a number of
ways. Firstly, light fields can be refocused after
being acquired [42]. This enables a stack of images
focused at different depths to be produced, providing
focusness cues that are useful for SOD [46]. Secondly,
a light field can provide images of a scene from an
array of viewpoints [47]. Such images have abundant
spatial parallax and geometric information. Lastly,
depth information for a scene is embedded in light
field data and can be estimated from a focal stack or
multi-view images by different means, as described
in Refs. [38–41]. In this sense, RGB-D data can be
considered to be a special degenerate case of light
field data. Figure 1 shows example results obtained
using light field SOD methods on light field data (a
focal stack), as well as RGB-D SOD models on depth
data.

Although light field data bring great benefits
to SOD, and were first considered in 2014 [5], it
still remains somewhat under-explored. Specifically,
compared to RGB SOD or RGB-D SOD, there
are fewer studies on light field SOD. Despite this
sparsity of literature, existing models vary in technical
frameworks as well as light field datasets used.
However, to the best of our knowledge, there is no
comprehensive review or benchmark for light field
SOD. Although a comparative study was conducted
by Zhang et al. [48] in 2015, they only compared the
classic light field SOD model proposed by Li et al. [5]
to a set of 2D saliency models to demonstrate the
effectiveness of incorporating light field knowledge.
Besides, the evaluation was conducted on the LFSD

Fig. 1 Salient object detection on a sample scenario using three light
field SOD models: DILF [30], MoLF [31], and ERNet [32], and three
state-of-the-art RGB-D SOD models: JLDCF [33, 34], BBS [35], and
ATSA [36].

dataset, which only contains 100 light field images.
Recently, Zhou et al. [49] briefly summarized existing
light field SOD models and related datasets. However,
their work was mainly focused on RGB-D based SOD,
and only a small part was dedicated to reviewing light
field SOD, with insufficient consideration of model
details and related datasets. Furthermore, they did
not benchmark light field SOD models or provide
any performance evaluation. Thus, we believe that
the lack of a complete review of existing models and
datasets may hinder further research in this field.

Thus, in this paper, we conduct the first
comprehensive review and benchmark for light field
SOD. We review previous studies on light field SOD,
including ten traditional models [1, 5, 30, 50–56],
seven deep learning-based models [31, 32, 45, 57–
60], one comparative study [48], and one brief
review [49]. In addition, we also review existing
light field SOD datasets [5, 45, 53, 57, 59], and
statistically analyze them, covering object size,
distance between object and image center, number
of focal slices, and number of objects. Due to the
inconsistency of datasets (for example, some do
not provide focal stacks, while others lack depth
maps or multi-view images), we further generate
and complete data, including focal stacks, depth
maps, and multi-view images for several datasets,
to make them consistent and uniform. Furthermore,
we benchmark nine light field SOD models [5, 30–
32, 45, 50, 54, 58, 59] whose results/code are available,
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together with several cutting-edge RGB-D SOD
models [33, 35, 36, 61–66], discussing the connection
between the two and providing insight into challenges
and future directions. All the materials involved in
this paper, including collected models, benchmark
datasets, results, supplemental light field data, and
source code links, are publicly available at https:
//github.com/kerenfu/LFSOD-Survey. The main
contributions of this paper are intended to encourage
future research in this area, and are four-fold:
• The first systematic review of light field SOD,

including models and datasets. Such a survey has
long been lacking.

• Analyses of the properties of different datasets.
As some lack certain forms of data, e.g., focal
stacks, or multi-view images, we generate more
data from existing datasets to supplement them,
making them complete and uniform.

• A benchmark of nine light field SOD models
together with several cutting-edge RGB-D SOD
models, using these supplemented datasets,
accompanied by insightful discussions.

• An investigation into several challenges for light
field SOD and a discussion of its relation to other
topics, with directions for future work.

The remainder of the paper is organized as follows.
We review light fields, existing models and datasets
for light field SOD, with related discussions and
analyses in Section 2. In Section 3, we describe
evaluation metrics and benchmark results. We then
discuss future research directions and outline several
open issues in Section 4. Finally, we draw conclusions
in Section 5.

2 Preliminaries, models, and datasets
In this section, we first briefly introduce the theory of
light fields, its data forms, and how it has been used
for SOD. We then review previous works on light
field SOD, roughly categorizing them as traditional
models and deep learning-based models. Finally, we
summarize datasets intended for light field SOD and
review their detailed information.

2.1 Light fields

2.1.1 Light fields and light field cameras
A light field [37] consists of all the light rays flowing
through every point and in every direction of a 3D
space. In 1991, Adelson and Bergen [67] proposed

a plenoptic function P (θ, φ, λ, t, x, y, z) to represent
the light field information for wavelength λ at time
t in any direction (θ, φ) at any point (x, y, z). In
an imaging system, the wavelength and time can be
represented by RGB channels and different frames,
and light usually propagates along a specific path.
As a result, Levoy and Hanrahan [68] proposed the
two-plane parameterization of the plenoptic function
to represent the light field in an imaging system.
The two-plane parameterization of the plenoptic
function, illustrated in Fig. 2(b), can be formulated
as L(u, v, x, y). In this scheme, each ray in the light
field is determined by two parallel planes to represent
spatial (x, y) and angular (u, v) information. Based
on this theory, devices that can capture light fields
were invented, commercialised as the Lytro cameras
shown in Fig. 2(a). This kind of camera contains
the main lens and a micro-lens array placed before
the photosensor, where the former serves as the
u–v plane, which records the angular information
of rays, while the latter serves as the x–y plane,
which records the spatial information. Figure 2(b)
graphically represents the two-plane parameterization
for the light field. Due to the above four-dimensional
parameterization, such data are often called 4D light
field data [1, 5, 6, 30–32, 45, 48, 50–60].
2.1.2 Forms of light field data
Up to now, all public light field datasets for SOD
have been captured by Lytro cameras, the raw data of
which are LFP or LFR files (the former are obtained

Fig. 2 Lytro cameras (a) and representation of light field (b). For
(b), reproduced with permission from Ref. [59], c© IEEE 2020.
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from Lytro whereas the latter are from Lytro Illum).
All images in the current light field datasets were
generated by processing LFP or LFR files using Lytro
Desktop software (http://lightfield-forum.com/
lytro/lytro-archive/), or LFToolbox (http://code
.behnam.es/python-lfp-reader/, or https://
ww2.mathworks.cn/matlabcentral/fileexchange/
75250-light-field-toolbox). Since the raw data
cannot be readily utilized, the data forms of light
fields used by existing SOD models are diverse,
including focal stacks plus all-in-focus images
[1, 5, 30–32, 45, 50, 52–55, 58], multi-view images
plus center-view images [45, 53, 60], and micro-lens
image arrays [51, 59]. As mentioned, depth images
can also be synthesized from light field data [38–41],
and therefore can form RGB-D data sources for
RGB-D SOD models (see Fig. 1). Focal stacks and
all-in-focus images are shown in Fig. 3, whereas
multi-view images, center-view images, and depth
images are shown in Fig. 5.

Specifically, a focal stack (left three columns
in Fig. 3) contains a series of images focused at
different depths. Such images are generated by
processing the raw light field data using digital
refocusing techniques [42]. The refocusing principle
is demonstrated in Fig. 4, which only shows u and
x dimensions. Suppose a light ray enters the main
lens at location u, and the imaging plane’s position
F (the focal distance of the main lens) is changed
to F ′, where F ′ = αF . A refocused image can be
computed as follows. First, given the 4D light field
LF , the new light field Lα for the new imaging plane
at F ′ can be derived as

Lα(u, v, x, y) = LF

(
u, v, u +

x − u

α
, v +

y − v

α

)

(1)

Fig. 3 Focal stacks and all-in-focus images.

Next, after obtaining the new light field Lα(u, v, x, y),
a refocused image on the imaging plane can be
synthesized as

Iα(x, y) =
�

Lα(u, v, x, y)dudv (2)

One can see that by changing the parameter α,
a series of refocused images can be generated,
composing a focal stack. After obtaining the focal
stack, an all-in-focus image can be produced by photo-
montage [69]. For example, an all-in-focus image can
be generated by putting all the clear pixels together,
where the clarity of pixels can be estimated from
associated gradients. It can alternatively be acquired
by computing a weighted average of all focus slices.
More details can be found in Ref. [70].

In addition to focal stacks, multi-view images
(see Fig. 5) can also be derived from light field
data. As noted, in the 4D light field representation
LF (u, v, x, y), (u, v) encode angular information
about incoming rays. Thus, an image from a certain
viewpoint can be generated by sampling in a specific
angular direction (u∗, v∗), and the image can be
represented by LF (u∗, v∗, x, y). By varying (u∗, v∗),
multi-view images can be synthesized. In particular,
when the angular direction (u∗, v∗) is equal to that
of the central view, namely (u0, v0), the center-
view image is achieved. On the other hand, micro-
lens images can be generated by sampling the (x, y)
dimensions. Providing a micro-lens location (x∗, y∗)
leads to a micro-lens image LF (u, v, x∗, y∗), which
captures multiple perspectives of a scene point. Note
that by varying (x∗, y∗), different micro-lens images
can be obtained, which together compose a micro-
lens image array representing complete light field
information. Micro-lenses and multi-view images are
visualized in Ref. [59].

Moreover, depth maps containing scene depth
information can also be estimated from a light field.

Fig. 4 Refocusing principles. See also Refs. [42, 48].
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Fig. 5 Multi-view images (including the center-view image), the
depth map, and the ground-truth. Note the inconspicuous parallax
(disparity) conveyed by the multi-view images (close up at bottom-left
in each multi-view image).

Depth information is embedded in the focusness and
angular cues, and a depth map can be generated by
combining them [38–41, 43, 44].

2.2 Light field SOD models and reviews

We next review and discuss existing models proposed
for light field SOD, including ten traditional models
that employ hand-crafted features, and seven deep
learning-based models. Also, one comparative study
and one brief review are revisited. Details of all these
works are summarized in Table 1.
2.2.1 Traditional models
As summarized in Table 1, traditional light field SOD
models often extend various hand-crafted features and
hypotheses which are widely adopted in conventional
saliency detection [4], such as global or local color
contrast, background priors, and object location cues,
to the case of light field data. Some tailored features
like focusness, depth, and light-field flow, are also
incorporated. Furthermore, these traditional models
tend to employ some post-refinement steps, e.g., an
optimization framework [1, 30, 51, 53, 55] or CRF
[55], to achieve saliency maps with better spatial
consistency and more accurate object boundaries.
Regarding the data forms used, almost all traditional
models work with focal stacks, while depth is
incorporated into some of them. Only two traditional
models consider using the multi-view [53] and micro-
lens data [51]. Further, due to early dataset scarcity,
almost all traditional models were evaluated only
on the small LFSD dataset constructed by Ref. [5].

Despite early progress made by these traditional
models, due to general limitations of hand-crafted
features, they hardly generalize well to challenging
and complex scenarios compared to modern deep
learning models. Here below we briefly review the
key features of these traditional models without
taxonomy, because they adopt overlapping features
but quite diverse computational techniques.

LFS [5] was the earliest work on light field SOD,
where the first dataset was also proposed. LFS first
incorporated a focusness measure with location priors
to determine the background and foreground slices.
Then, in the all-in-focus image, it computed the
background prior and contrast cues to detect saliency
candidates. Finally, a saliency map was generated
by incorporating the saliency candidates in the all-in-
focus image with those in the foreground slices, where
objectness cues were used to weight the candidates.
An extension of this work was published in Ref. [6].

WSC [50] was proposed as a unified framework
for 2D, 3D, and light field SOD problems; it can
handle heterogeneous data. Based on a weighted
sparse coding framework, the authors first used a
non-saliency dictionary to reconstruct a reference
image, where patches with high reconstruction error
were selected as the saliency dictionary. This saliency
dictionary was later refined by iteratively running
the weighted sparse framework to achieve the final
saliency map. For light field data, features used for
dictionary construction were derived from the all-in-
focus RGB image, depth map, and also focal stacks.

DILF [30] computed depth-induced contrast
saliency and color contrast saliency from the all-
in-focus image and depth image, which were then
used to generate a contrast saliency map. It also
computed background priors based on a focusness
measure embedded in the focal stacks and used them
as weights to eliminate background distractions and
enhance saliency estimation.

RL [51] proposed to estimate the relative locations
of scene points using a filtering process. Such relative
locations, which convey scene depth information,
were then incorporated with the robust background
detection and saliency optimization framework
proposed in Ref. [71] to achieve enhanced saliency
detection.

BIF [52] used a Bayesian framework to fuse
multiple features extracted from RGB images, depth
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Table 1 Overview of light field SOD models and review works. FS = focal stacks, DE = depth maps, MV = multi-view images, ML =
micro-lens images, OP = open-source. FS, DE, MV, and ML indicate the data form input to a model. New datasets are highlighted in bold
under Main components

Model Pub. Year Training dataset(s) Testing dataset(s) Main components FS DE MV ML OP
LFS [5] CVPR 2014 — LFSD Focusness measure, location priors, contrast

cues, background prior, new dataset (LFSD)
� �

WSC [50] CVPR 2015 — LFSD Weighted sparse coding, saliency/non-
saliency dictionary construction

� � �

T
ra

di
ti

on
al

m
od

el
s

DILF [30] IJCAI 2015 — LFSD Depth-induced/color contrast, background
priors by focusness

� � �

RL [51] ICASSP 2016 — LFSD Relative locations, guided filter, micro-lens
images

�

BIF [52] NPL 2017 — LFSD Bayesian framework, boundary prior,
color/depth-induced contrast

� �

LFS [6] TPAMI 2017 — LFSD An extension of Ref. [5] � �

MA [53] TOMM 2017 — LFSD + HFUT-Lytro Superpixels intra-cue distinctiveness, light-
field flow, new dataset (HFUT-Lytro)

� � �

SDDF [56] MTAP 2018 — LFSD Background priors, gradient operator, color
contrast, local binary pattern histograms

�

SGDC [1] CVPR 2018 — LFSD Focusness cues, color, and depth contrast � �

RDFD [54] MTAP 2020 — LFSD Region-based depth feature descriptor, dark
channel prior, multi-layer cellular automata

�

DCA [55] TIP 2020 — LFSD Depth-induced cellular automata, object-
guided depth

� �

DLLF [57] ICCV 2019 DUTLF-FS LFSD + DUTLF-FS VGG-19, attention subnetwork, ConvL-
STM, adversarial examples, new dataset
(DUTLF-FS)

�

D
ee

p
le

ar
ni

ng
m

od
el

s

DLSD [45] IJCAI 2019 DUTLF-MV DUTLF-MV View synthesis network, multi-view de-
tection/attention, VGG-19, new dataset
(DUTLF-MV)

� �

MoLF [31] NIPS 2019 DUTLF-FS HFUT-Lytro + LFSD
+ DUTLF-FS

VGG-19, memory-oriented spatial fusion,
memory-oriented feature integration

� �

ERNet [32] AAAI 2020 DUTLF-FS
+ HFUT-Lytro

HFUT-Lytro + LFSD
+ DUTLF-FS

VGG-19, ResNet-18, multi-focusness recruit-
ing/screening modules, distillation

� �

LFNet [58] TIP 2020 DUTLF-FS HFUT-Lytro + LFSD
+ DUTLF-FS

VGG-19, refine unit, attention block, Con-
vLSTM

�

MAC [59] TIP 2020 Lytro Illum Lytro Illum + LFSD
+ HFUT-Lytro

Micro-lens images/image arrays, DeepLab-
v2, model angular changes, new dataset
(Lytro Illum)

� �

MTCNet [60] TCSVT 2020 Lytro Illum Lytro Illum
+ HFUT-Lytro

Edge detection, depth inference, feature-
enhanced salient object generator

�

R
ev

ie
w

s CS [48] NEURO 2015 — LFSD Comparative study between 2D vs. light field
saliency

RGBDS [49] CVM 2021 — — In-depth RGB-D SOD survey, brief review
of light field SOD

maps, and focal stacks. Inspired by image SOD
methods, this model utilized a boundary connectivity
prior, background likelihood scores, and color contrast
to generate background probability maps, foreground
slices, color-based saliency maps, and depth-induced
contrast maps, which are fused by a two-stage
Bayesian scheme.

MA [53] measured the saliency of a superpixel by
computing the intra-cue distinctiveness between pairs
of superpixels, where features considered included
color, depth, and flow inherited from different focal
planes and multiple viewpoints. The light-field flow
was first employed in this method, estimated from
focal stacks and multi-view sequences, to capture
depth discontinuities/contrast. The saliency measure
was later enhanced using a location prior and a

random-search-based weighting strategy. In addition,
the authors proposed a new light field SOD dataset,
which was the largest at that time.

SDDF [56] made use of depth information
embedded in focal stacks to conduct accurate saliency
detection. A background measurement was first
obtained by applying a gradient operator to focal
stack images, and the focal slice with the highest
measurement was chosen as the background layer. A
coarse prediction was generated by separating the
background and foreground in the all-in-focus image
using the derived background regions, and the final
saliency map was calculated globally from both color
and texture (local binary pattern histograms) contrast
based on the coarse saliency map.

SGDC [1] presented a contrast-enhanced saliency
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detection approach for optimizing a multi-layer
light field display. It first computed a superpixel-
level focusness map for each refocused image and
then chose the refocused image with the highest
background likelihood score to derive background
cues. These were then incorporated with color and
depth contrast saliency. The final results were optimized
by the optimization framework in Ref. [71].

RDFD [54] addressed the light field SOD problem
via a multiple cue integration framework. A region-
based depth feature descriptor (RDFD) defined over
the focal stack was proposed, based on the observation
that dark channel priors [72] can be used to estimate
the degree of defocusing or blur. The RDFD was
generated by integrating the degrees of defocusing
over all focal stack images, alleviating the limitation
of requiring accurate depth maps. RDFD features
were used to compute a region-based depth contrast
map and a 3D spatial distribution prior. These cues
were merged into a single map using a multi-layer
cellular automaton.

DCA [55] proposed a depth-induced cellular
automata (DCA) for light field SOD. Firstly, it
used the focusness and depth cues to calculate an
object-guided depth map and select background seeds.
Based on the seeds, a contrast saliency map was
computed and multiplied by the object-guided depth
map to achieve a depth-induced saliency map, which
was subsequently optimized by DCA. Finally, the
optimized map was combined with the depth-induced
saliency map. A Bayesian fusion strategy and CRF
were employed to refine the prediction.
2.2.2 Deep learning-based models
Due to the powerful learning ability of deep
neural networks, deep learning-based models can
achieve superior accuracy and performance [57]
over traditional light field SOD models. Another
advantage of deep models is that they can directly
learn from a large amount of data without hand-
crafted feature engineering. Therefore, as shown in
Table 1, the scarcity of datasets has been somewhat
alleviated in the deep learning era, as three new
datasets have been introduced to better train deep
neural networks. Still, most deep models take a focal
stack as network input. Due to the multi-variable
property of focal stacks, modules such as attention
mechanisms [31, 32, 45, 57, 58] and ConvLSTMs
[31, 32, 57, 58] are preferred. We argue that there

may be different ways to classify deep models. A
straightforward approach considers what kind of light
field data is utilized, as indicated in Table 1. While
four models, DLLF [57], MoLF [31], ERNet [32],
LFNet [58] resort to focal stacks, DLSD [45] and
MTCNet [60] utilize multi-view images, and MAC
[59] uses micro-lens images. Different input data
forms often lead to different network designs. Note
that for DLSD [45], multi-view images processed are
indeed rendered from an input single-view image,
so this method can be applied to cases no matter
whether multi-view images are available or not.

However, since using deep learning-based tech-
niques for light field SOD are the leading trend, in
this paper, we divide deep models into five categories
according to their architectures, including late-fusion
scheme, middle-fusion scheme, knowledge distillation-
based scheme, reconstruction-based scheme, and
single-stream scheme: see Fig. 6. Their descriptions
and associated models are briefly introduced as
follows.

Late-fusion models (Fig. 6(a), DLLF [57],
MTCNet [60]) aim to obtain individual predictions
from the input focal stack/multi-view images and
all-in-focus/center-view image, and then simply fuse
the results. Note that late fusion is a classical
strategy also widely adopted in previous multi-modal
detection (e.g., RGB-D SOD [49], RGB-D semantic
segmentation [34, 73]) due to its simplicity and ease
of implementation. However, the fusion process is
restrained to the last step with relatively simple
integrative computation.

DLLF [57] adopted a two-stream fusion framework
that explored focal stacks and all-in-focus images
separately. In the focal stack stream, DLLF
first extracted features from cascaded focal slices
through a fully convolutional network. Diverse
features from different slices were then integrated
by a recurrent attention network, which employed
an attention subnetwork and ConvLSTM [74] to
adaptively incorporate weighted features of slices and
exploit their spatial relevance. The generated map
was then combined with another saliency map derived
from the all-in-focus image. In addition, to address
the limitation of data for training deep networks, a
new large dataset was introduced.

MTCNet [60] proposed a two-stream multi-task
collaborative network, consisting of a saliency-aware
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Fig. 6 Architectures of existing deep light field SOD models. (a) Late-fusion: DLLF [57], MTCNet [60]. (b) Middle-fusion: MoLF [31], LFNet
[58]. (c) Knowledge distillation-based: ERNet [32]. (d) Reconstruction-based: DLSD [45]. (e) Single-stream: MAC [59]. Here, (a) utilizes the
focal stack/multi-view images and all-in-focus/center-view image, while (b, c) utilize the focal stack and all-in-focus image, and (d, e) utilize the
center-view image and micro-lens image array.

feature aggregation module (SAFA) and a multi-
view inspired depth saliency feature extraction (MVI-
DSF) module, to extract representative saliency
features with the aid of correlation mechanisms across
edge detection, depth inference, and salient object
detection. SAFA simultaneously extracted focal-
plane, edge, and heuristic saliency features from a
center-view image, while MVI-DSF inferred depth
saliency features from a set of multi-view images.
Finally, MTCNet combined the extracted features
using a feature-enhanced operation to obtain the final
saliency map.

Middle-fusion models (Fig. 6(b), MoLF [31],
LFNet [58]) extract features from the focal stack and
all-in-focus image in a two-stream manner. Fusion
across intermediate features is then done using an
elaborate and complex decoder. Compared to the
late-fusion strategy in Fig. 6(a), the main differences
are that the features fused are usually hierarchical
and intermediate, and the decoder is also a relatively
deep convolutional network to mine more complex
integration rules.

MoLF [31] featured a memory-oriented decoder
that consists of a spatial fusion module (Mo-SFM)
and a feature integration module (Mo-FIM), in
order to resemble the memory mechanism of human
information fusion. Mo-FSM utilized an attention
mechanism to learn the importance of different
feature maps and a ConvLSTM [74] to gradually
refine spatial information. In Mo-FIM, a scene
context integration module (SCIM) and ConvLSTM
were employed to learn channel attention maps and
summarize spatial information.

LFNet [58] proposed a two-stream fusion network

to refine complementary information and integrate
focusness and blurriness, which change gradually in
focal slices. Features extracted from the all-in-focus
image and focal stack are fed to a light field refinement
module (LFRM) and integration module (LFIM) to
generate a final saliency map. In LFRM, features
extracted from a single slice were fed to a refinement
unit to learn the residuals. In LFIM, an attention
block was used to adaptively weight and aggregate
slice features.

Knowledge distillation-based methods (Fig. 6(c),
ERNet [32]) attempt to transfer focusness knowledge
of a teacher network that handles focal stacks, to a
student network that processes all-in-focus images.
It uses both the features and prediction from the
focal stack stream to supervise those features and
prediction obtained from the all-in-focus stream,
effectively boosting the performance of the latter.
In this sense, the student network is actually an
RGB SOD network augmented by extra light field
knowledge during training.

ERNet [32] consisted of two-stream teacher–
student networks based on knowledge distillation.
The teacher network used a multi-focusness recruiting
module (MFRM) and a multi-focusness screening
module (MFSM) to recruit and distil knowledge from
focal slices, while the student network took a single
RGB image as input for computational efficiency and
was enforced to hallucinate multi-focusness features
as well as the prediction from the teacher network.

Reconstruction-based schemes (Fig. 6(d), DLSD
[45]) focuses on a different aspect as well, namely
reconstructing light field data and information
from a single input image. This is indeed another
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interesting topic as a light field may have various
data forms (see Section 2.1.2). With the assistance
of the reconstructed light field, an encoder–decoder
architecture with a middle- or late-fusion strategy
can then be employed to complete the light field
SOD. In other words, this scheme is similar to the
role of student network in the knowledge distillation-
based scheme, being essentially an RGB SOD network
augmented by extra light field knowledge during
training (in this case, learning to reconstruct light
field data).

DLSD [45] treated light field SOD as two
sub-problems: light field synthesis from a single-
view image and light-field-driven SOD. This model
first employed a light field synthesis network,
which estimated depth maps in horizontal and
vertical directions with two independent convolutional
networks. According to the depth maps, the single-
view image was warped into horizontal and vertical
viewpoints of the light field. A light-field-driven SOD
network, consisting of a multi-view saliency detection
subnetwork and multi-view attention module, was
designed for saliency prediction. Specifically, this
model inferred a saliency map from a 2D single-view
image, but utilized the light field (the multi-view
data) as a middle bridge. To train the model, a new
dataset containing multi-view images and pixel-wise
ground-truth for the central view was introduced.

Single-stream model (Fig. 6(e), MAC [59]) is
inspired by the fact that the light field can be
formulated in a single image representation, namely
the micro-lens image array [59]. Therefore, unlike
Figs. 6(a) and 6(b), this scheme processes the micro-
lens image array directly using a single bottom–up
stream, without explicit feature fusion.

MAC [59] was an end-to-end deep convolutional
network for light field SOD with micro-lens image
arrays as input. Firstly, it adopted an MAC (Model
Angular Changes) block tailored to model angular
changes in individual local micro-lens images and then
fed the extracted features to a modified DeepLab-v2
network [75], capturing multiscale information and
long-range spatial dependencies. Together with the
model, a new Lytro Illum dataset containing high-
quality micro-lens image arrays was proposed.
2.2.3 Other reviews
CS [48] provided a comparative study between light
field saliency and 2D saliency, showing the advantage

of conducting the SOD task on light field data over
single 2D images. It compared the classical model
LFS [5] with eight 2D saliency models on the LFSD
dataset [5]. Five evaluation metrics were used in
the paper to show that the light field saliency model
achieved better and more robust performance than
conventional 2D models.

RGBDS [49] conducted an in-depth and compre-
hensive survey of RGB-D salient object detection.
It reviewed existing RGB-D SOD models from
various perspectives, as well as the related benchmark
datasets, in detail. As light fields can also provide
depth maps, the authors also briefly reviewed light
field SOD models and datasets. However, as the
main focus of this paper was RGB-D SOD, little
space is devoted to reviewing light field SOD, and no
associated benchmarking was conducted.

2.3 Light field SOD datasets

2.3.1 Datasets
At present, five datasets exist for the light field SOD
task, including LFSD [5], HFUT-Lytro [53], DUTLF-
FS [57], DUTLF-MV [45], and Lytro Illum [59]. We
summarize details of these datasets in Table 2 and
show examples from four datasets (LFSD, HFUT-
Lytro, Lytro Illum, and DUTLF-FS) in Fig. 7. A
brief introduction to these datasets follows.

LFSD [5] (https://sites.duke.edu/nianyi/
publication/saliency-detection-on-light-
field/) was the first light field dataset collected for
SOD, and contains 60 indoor and 40 outdoor scenes.
This dataset was captured by a Lytro camera and
provides a focal stack, all-in-focus image, depth map,
and the corresponding ground-truth for each light field.
The image spatial resolution is 360 × 360. Raw light
field data were also available in LFSD. Most images
in this dataset contain one single centrally-placed
object with a relatively simple background.

HFUT-Lytro [53] (https://github.com/
pencilzhang/MAC-light-field-saliency-net)
contains 255 light fields for both indoor and outdoor
scenes. Each light field contains a focal stack with
1–12 slices. The angular resolution is 7 × 7 and
the spatial resolution is 328 × 328. Focal stacks,
all-in-focus images, multi-view images, and coarse
depth maps are all provided in this dataset. Several
challenges for SOD, e.g., occlusions, cluttered
background, and appearance changes, are present in
HFUT-Lytro.
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Table 2 Overview of light field SOD datasets. MOP = multiple-object proportion (fraction of images in the entire dataset that have more
than one object per image), FS = focal stacks, DE = depth maps, MV = multi-view images, ML = micro-lens images, GT = ground-truth,
Raw = raw light field data. Here, FS, MV, DE, ML, GT, and Raw indicate the data forms provided by the datasets

Dataset Number of images Spatial resolution Angular resolution MOP FS MV DE ML GT Raw Device

LFSD [5] 100 (no official split) 360 × 360 — 0.04 � � � � Lytro

HFUT-Lytro [53] 255 (no official split) 328 × 328 7 × 7 0.29 � � � � Lytro

DUTLF-FS [57] 1462 (1000 train, 462 test) 600 × 400 — 0.05 � � � Lytro Illum

DUTLF-MV [45] 1580 (1100 train, 480 test) 590 × 400 7 × 7 0.04 � � Lytro Illum

Lytro Illum [59] 640 (no official split) 540 × 375 9 × 9 0.15 � � � Lytro Illum

Fig. 7 Examples of RGB images, depth maps, and ground-truth (GT) from four datasets: LFSD [5], HFUT-Lytro [53], Lytro Illum [59], and
DUTLF-FS [57]. In each group, RGB images, depth maps, and GT are shown from left to right.

DUTLF-FS [57] (https://github.com/OIPLab-
DUT/ICCV2019\_Deeplightfield\_Saliency) is
one of the largest light field SOD datasets to date,
containing 1462 light fields. Both indoor and outdoor
scenes were acquired by a Lytro Illum camera. The
entire dataset is divided into 1000 training samples
and 462 testing samples. All-in-focus images, focal
stacks, and the corresponding ground-truth are
provided for different light fields. The number of
slices in a focal stack ranges from 2 to 12, and the
image spatial resolution is 600 × 400. It is worth
noting that DUTLF-FS covers various challenges,
including different types of objects, low contrast
between salient objects and the background, and
varied object locations.

DUTLF-MV [45] (https://github.com/OIPLab-
DUT/IJCAI2019-Deep-Light-Field-Driven-
Saliency-Detection-from-A-Single-View) is
another large-scale light field dataset for SOD, which
was generated from the same database as DUTLF-FS
(with 1081 identical scenes). In contrast to other
datasets, this dataset was proposed to better exploit
angular cues. Therefore, only multi-view images

with respect to horizontal and vertical viewpoints
are available, together with the ground-truth for the
center view image. DUTLF-MV holds 1580 light
fields in total, and is divided into training and test
sets with 1100 and 480 samples, respectively. The
spatial resolution of each image is 400 × 590 and the
angular resolution is 7 × 7.

Lytro Illum [59] (https://github.com/
pencilzhang/MAC-light-field-saliency-net)
contains 640 high-quality light fields captured by a
Lytro Illum camera. These images vary significantly
in object size, texture, background clutter, and
illumination. Lytro Illum provides center-view
images, micro-lens image arrays, raw light field data,
and corresponding ground-truths of the center-view
images. The resolution of the micro-lens image
arrays is 4860 × 3375, while center-view images
and ground-truths are 540 × 375, and the angular
resolution can be inferred to be 9 × 9.
2.3.2 Dataset analysis
From the summary in Table 2, we can observe two
issues in current datasets, namely limited number
of images and non-uniform data representations.
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Compared to the large datasets constructed for
conventional SOD, such as DUT-OMRON (5168
images) [76], MSRA10K (10,000 images) [2], and
DUTS (15,572 images) [77], the existing light field
SOD datasets are still small, making it somewhat
difficult to evaluate data-driven models and train
deep networks. Furthermore, their data forms are not
always consistent. For example, Lytro Illum does not
provide focal stacks, while DUTLF-FS and DUTLF-
MV only provide focal stacks and multi-view images
without offering raw data. This makes comprehensive
benchmarking very difficult, because a model using
focal stacks as input cannot run on DUTLF-MV and
Lytro Illum. We will show how we alleviate this
problem in Section 3.2, and discuss future directions
in Section 4.

To better understand the above-mentioned
datasets, we have conducted statistical analyses,
including size ratios of salient objects, distributions
of normalized object distances from image centers,
numbers of focal slices, and numbers of objects.
Results are shown in Figs. 8 and 9. Figure 8(a) shows
that most objects have size ratios lower than 0.6.
HFUT-Lytro and Lytro Illum have relatively small
objects, while LFSD has objects that are relatively
larger. Figures 8(b) and 9 clearly show the spatial
distributions of objects. All five datasets present
strong center bias; Fig. 8(b) reveals that objects from
Lytro Illum are generally the closest to the image
centers.

In addition, numbers of focal slice are summarised
in Fig. 8(c). Only three datasets, LFSD, HFUT-
Lytro, and DUTLF-FS, provide focal slices. The
number of slices varies from 1 to 12 and there
are notable differences between different datasets.
The distribution peaks for LFSD, HFUT-Lytro, and
DUTLF-FS come at 12, 3, and 6 slices respectively.
All three datasets have varying numbers of slices,

indicating that a light field SOD model using focal
stacks should be able to handle differing numbers of
input slices. Lastly, from Fig. 8(d), we can see that
most images in these datasets have a single object;
HFUT-Lytro and Lytro Illum have some images with
multiple objects (with higher MOP in Table 2), which
could be useful for validating models on detecting
multiple objects.

3 Model evaluation and benchmark
In this section, we first review five popular evaluation
metrics, and then provide a pipeline for dataset
completion. Moreover, we carry out a benchmarking
evaluation and provide an analysis of the results.

3.1 Evaluation metrics

In benchmarking light field SOD models, we employ
nine widely used metrics, as follows.

Precision–recall curve (PR) [2, 3, 78]. Preci-
sion P and recall R are defined as

P (T ) =
|MT ∩ G|

|MT | , R(T ) =
|MT ∩ G|

|G| (3)

where MT is a binary mask obtained by thresholding
the saliency map with threshold T , and | · | is the
total area of the mask. G denotes the ground-truth.
A comprehensive precision–recall curve is obtained
by changing T from 0 to 255.

F-measure (Fβ) [2, 3, 78] is defined as the
harmonic-mean of precision and recall:

Fβ =
(1 + β2)PR

β2P + R
(4)

where β is the weight between precision and recall,
and β2 is often set to 0.3 to give more emphasis to
precision. Since different F-measure scores can be
obtained according to different precision–recall pairs,
in this paper, we report the maximum F-measure
(F max

β ) and mean F-measure (F mean
β ) computed from

Fig. 8 Statistical summaries of light field datasets, including LFSD [5], HFUT-Lytro [53], Lytro Illum [59], DUTLF-FS [57], and DUTLF-MV
[45]. Left to right: distributions of (a) normalized object size, (b) normalized distance between object and image center, (c) number of focal
slices, and (d) number of objects.
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Fig. 9 Object location distribution maps for the five datasets (warmer
color means higher probability), computed by averaging ground-truth
masks.

the PR curve. We further report the adaptive F-
measure (F adp

β ) [78], whose threshold is twice the
mean of a saliency map.

Mean absolute error (M) [79] is defined as

M =
1
N

N∑
i=1

|Si − Gi| (5)

where Si and Gi denote values at the i-th pixel in
the saliency map and ground-truth map. N is the
total number of pixels in both maps.

S-measure (Sα) [80, 81] was proposed to measure
the spatial structural similarities between the saliency
map and ground-truth. It is defined as

Sα = α ∗ So + (1 − α) ∗ Sr (6)
where So and Sr denote object-aware and region-
aware structure similarity, respectively, and α

balances So and Sr. In this paper, we set α = 0.5, as
recommended in Ref. [80].

E-measure (Eφ) [82] is a recently proposed metric
which considers both local and global similarity
between the prediction and ground-truth. It is defined
as

Eφ =
1

wh

w∑
i=1

h∑
j=1

φ(i, j) (7)

where φ(·) denotes the enhanced alignment matrix
[82], w and h are the width and height of the
ground-truth map respectively, and (i, j) indexes
pixels. Since Eφ also compares two binary maps,
we treat it similarly to the F-measure, thresholding
a saliency map with all possible values and reporting
the maximum and mean Eφ, denoted as Emax

φ and
Emean

φ respectively; an adaptive Eφ, namely Eadp
φ ,

is computed similarly to the adaptive F-measure
mentioned above, with threshold twice the mean
saliency value [78].

Note that, higher PR curves, Fβ , Sα, and Eφ, and
lower M indicate better performance.

3.2 Dataset completion

As shown in Section 2.3 and Table 2, existing light
field SOD datasets face the limitation of having
non-uniform data representations. This makes
comprehensive benchmarking difficult: due to the
lack of specific data, some models cannot be evaluated
on certain datasets. To alleviate this issue, we have
generated supplementary data for existing datasets,
making them complete and uniform, as shown in
Table 3, marked by �. This data is on our project
site: https://github.com/kerenfu/LFSOD-Survey
to facilitate future research in this field.

Generally, we can synthesize various data forms
using the raw light field data provided by two
datasets, i.e., LFSD and Lytro Illum. For Lytro
Illum, we generated focal stacks (including all-in-focus
images) and depth maps using the Lytro Desktop
software. For focal stack generation, we estimated
the approximate focus range for each image scene,
and then sampled the focal slices within the focus
range in equal steps. All-blurred or duplicate slices
were removed. The final number of generated focal
slices for Lytro Illum ranges from 2 to 16 for each
scene, with about 74% of scenes having more than 6
slices. Figure 10 shows an example of the generated
focal stack. As mentioned in Section 2.1.2, multi-view
images and micro-lens image arrays are generated
by angular and spatial sampling of the light field
data, respectively. Thus, these two data forms can
be transformed into each other. In this way, we
generated multi-view images for Lytro Illum from
its micro-lens image arrays. We can also synthesize
micro-lens image arrays for HFUT-Lytro through the
reverse operation. However, we could not synthesize
micro-lens image arrays for DUTLF-MV since the
authors have only released the multi-view images in
the vertical/horizontal direction. By using the raw
data, we complemented multi-view images and micro-

Table 3 Dataset completion for light field SOD; compare to Table 2.
FS = focal stacks, DE = depth maps, MV = multi-view images,
ML = micro-lens images, Raw = raw light field data. � indicates data
that we have completed

Dataset FS MV DE ML Raw

LFSD [5] � � � � �

HFUT-Lytro [53] � � � �

DUTLF-FS [57] � �

DUTLF-MV [45] �

Lytro Illum [59] � � � � �
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Fig. 10 An example of generated focal slices for Lytro Illum [59], together with the synthesized all-in-focus image.

lens image arrays for LFSD (Fig. 11). The completed
data make more comprehensive model evaluation
possible. For example, models based on focal stacks,
such as MoLF and ERNet, can now be tested on the
Lytro Illum dataset. For DUTLF-FS/DUTLF-MV,
supplementing the data would be possible in future
if the authors were to release the raw (or other) data.
If done, DUTLF-FS/DUTLF-MV has the potential
to be the standard training dataset for future models
thanks to its large scale.

3.3 Benchmarking and analysis

3.3.1 Testing
To provide an in-depth understanding of the
behaviour of different models, we conducted the first
comprehensive benchmarking of nine light field SOD

Fig. 11 An example of generated multi-view images (360 × 360)
and the micro-lens image array (1080 × 1080) from the LFSD dataset
[5]. The bottom-left of each image shows close up details to better
reflect the parallax. The micro-lens image array is composed of many
micro-lens images [59].

models: LFS [5], WSC [50], DILF [30], RDFD [54]
DLSD [45], MoLF [31], ERNet [32], LFNet [58], MAC
[59], and nine SOTA RGB-D based SOD models: BBS
[35], JLDCF [33, 34], SSF [61], UCNet [62], D3Net
[63], S2MA [64], cmMS [65], HDFNet [66], and ATSA
[36]) on four existing light field datasets, including the
entire LFSD (100 light fields), HFUT-Lytro (255 light
fields), Lytro Illum (640 light fields) datasets, and
the test set (462 light fields) of DUTLF-FS. Sample
images from these datasets are shown in Fig. 7.

Note the RGB-D SOD models benchmarked here
were those that came top in a recent survey [49]
and also the latest open-source models in ECCV-
2020. All depth maps fed to each model were
optionally reversed on an entire dataset to fit the best
performance of this model. All benchmarked models
have either publicly available source or executable
code, or results provided by the authors (authors of
RDFD [54] and LFNet [58] have sent us their saliency
map results). The nine evaluation metrics described
previously: PR, S-measure, max/mean F-measure,
max/mean E-measure, adaptive F-measure and E-
measure, mean absolute error were used, and the
results are reported in Table 4. PR curves, max F-
measure curves, and visual comparisons are shown in
Figs. 12–15.

Evaluation was not conducted on the DUTLF-
MV dataset [45] since it only provides multi-view
images, which are incompatible with the input data
forms of most light field SOD models. Furthermore,
DLSD [45] was not tested on the DUTLF-FS test set
because it used about 36% of the testing images from
this dataset for training. Also, MAC [59] was not
evaluated on Lytro Illum since the authors conducted
five-fold cross-validation on this dataset, and so it is
not directly comparable to other models. As DUTLF-
FS has no micro-lens image arrays after dataset
completion (see Table 3), and the quality of micro-lens
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Table 4 Quantitative measures: S-measure (Sα) [80], max F-measure (F max
β ), mean F-measure (F mean

β ) [78], adaptive F-measure (F adp
β

) [78],
max E-measure (Emax

φ ), mean E-measure (Emean
φ ) [82], adaptive E-measure (Eadp

φ
) [78], and MAE (M) [79] of nine light field SOD models

(i.e., LFS [5], WSC [50], DILF [30], RDFD [54], DLSD [45], MoLF [31], ERNet [32], LFNet [58], MAC [59]) and nine SOTA RGB-D based SOD
models (i.e., BBS [35], JLDCF [33], SSF [61], UCNet [62], D3Net [63], S2MA [64], cmMS [65], HDFNet [66], and ATSA [36]). Light field SOD
models are marked by †. N/T indicates that a model was not tested. The best three models for light field and RGB-D based SOD models are
highlighted in red, blue, and green, separately. ↑/↓ denotes that a larger/smaller value is better

Traditional Deep learning-based

Metric
LFS†

[5]
WSC†

[50]
DILF†

[30]
RDFD†

[54]
DLSD†

[45]
MoLF†

[31]
ERNet†

[32]
LFNet†

[58]
MAC†

[59]
BBS
[35]

JLDCF
[33]

SSF
[61]

UCNet
[62]

D3Net
[63]

S2MA
[64]

cmMS
[65]

HDFNet
[66]

ATSA
[36]

L
F

SD
[5

]

Sα ↑ 0.681 0.702 0.811 0.786 0.786 0.825 0.831 0.820 0.789 0.864 0.862 0.859 0.858 0.825 0.837 0.850 0.846 0.858
F max

β ↑ 0.744 0.743 0.811 0.802 0.784 0.824 0.842 0.824 0.788 0.858 0.867 0.868 0.859 0.812 0.835 0.858 0.837 0.866
F mean

β ↑ 0.513 0.722 0.719 0.735 0.758 0.800 0.829 0.794 0.753 0.842 0.848 0.862 0.848 0.797 0.806 0.850 0.818 0.856
F adp

β
↑ 0.735 0.743 0.795 0.802 0.779 0.810 0.831 0.806 0.793 0.840 0.827 0.862 0.838 0.788 0.803 0.857 0.818 0.852

Emax
φ ↑ 0.809 0.789 0.861 0.851 0.859 0.880 0.884 0.885 0.836 0.900 0.902 0.901 0.898 0.863 0.873 0.896 0.880 0.902

Emean
φ ↑ 0.567 0.753 0.764 0.758 0.819 0.864 0.879 0.867 0.790 0.883 0.894 0.890 0.893 0.850 0.855 0.881 0.869 0.899
Eadp

φ
↑ 0.773 0.788 0.846 0.834 0.852 0.879 0.882 0.882 0.839 0.889 0.882 0.896 0.890 0.853 0.863 0.890 0.872 0.897

M ↓ 0.205 0.150 0.136 0.136 0.117 0.092 0.083 0.092 0.118 0.072 0.070 0.067 0.072 0.095 0.094 0.073 0.086 0.068

H
F

U
T

-L
yt

ro
[5

3]

Sα ↑ 0.565 0.613 0.672 0.619 0.711 0.742 0.778 0.736 0.731 0.751 0.789 0.725 0.748 0.749 0.729 0.723 0.763 0.772
F max

β ↑ 0.427 0.508 0.601 0.533 0.624 0.662 0.722 0.657 0.667 0.676 0.727 0.647 0.677 0.671 0.650 0.626 0.690 0.729
F mean

β ↑ 0.323 0.493 0.513 0.469 0.594 0.639 0.709 0.628 0.620 0.654 0.707 0.639 0.672 0.651 0.623 0.617 0.669 0.706
F adp

β
↑ 0.427 0.485 0.530 0.518 0.592 0.627 0.706 0.615 0.638 0.654 0.677 0.636 0.675 0.647 0.588 0.636 0.653 0.689

Emax
φ ↑ 0.637 0.695 0.748 0.712 0.784 0.812 0.841 0.799 0.797 0.801 0.844 0.778 0.804 0.797 0.777 0.784 0.801 0.833

Emean
φ ↑ 0.524 0.684 0.657 0.623 0.749 0.790 0.832 0.777 0.733 0.765 0.825 0.763 0.793 0.773 0.756 0.746 0.788 0.819
Eadp

φ
↑ 0.666 0.680 0.693 0.691 0.755 0.785 0.831 0.770 0.772 0.804 0.811 0.781 0.810 0.789 0.744 0.779 0.789 0.810

M ↓ 0.221 0.154 0.150 0.214 0.111 0.094 0.082 0.092 0.107 0.089 0.075 0.100 0.090 0.091 0.112 0.097 0.095 0.084

L
yt

ro
Il

lu
m

[5
9]

Sα ↑ 0.619 0.709 0.756 0.738 0.788 0.834 0.843 N/T N/T 0.879 0.890 0.872 0.865 0.869 0.853 0.881 0.873 0.883
F max

β ↑ 0.545 0.662 0.697 0.696 0.746 0.820 0.827 N/T N/T 0.850 0.878 0.850 0.843 0.843 0.823 0.857 0.855 0.875
F mean

β ↑ 0.385 0.646 0.604 0.624 0.713 0.766 0.800 N/T N/T 0.829 0.848 0.836 0.827 0.818 0.788 0.839 0.823 0.848
F adapt

β
↑ 0.547 0.639 0.659 0.679 0.720 0.747 0.796 N/T N/T 0.828 0.830 0.835 0.824 0.813 0.778 0.835 0.823 0.842

Emax
φ ↑ 0.721 0.804 0.830 0.816 0.871 0.908 0.911 N/T N/T 0.913 0.931 0.913 0.910 0.909 0.895 0.914 0.913 0.929

Emean
φ ↑ 0.546 0.791 0.726 0.738 0.830 0.882 0.900 N/T N/T 0.900 0.919 0.907 0.904 0.894 0.873 0.907 0.898 0.919

Eadapt
φ

↑ 0.771 0.797 0.812 0.815 0.855 0.876 0.900 N/T N/T 0.912 0.914 0.917 0.907 0.907 0.878 0.915 0.904 0.917
M ↓ 0.197 0.115 0.132 0.142 0.086 0.065 0.056 N/T N/T 0.047 0.042 0.044 0.048 0.050 0.063 0.045 0.051 0.041

D
U

T
L

F
-F

S
[5

7]

Sα ↑ 0.585 0.656 0.725 0.658 N/T 0.887 0.899 0.878 0.804 0.894 0.905 0.908 0.870 0.852 0.845 0.906 0.868 0.905
F max

β ↑ 0.533 0.617 0.671 0.599 N/T 0.903 0.908 0.891 0.792 0.884 0.908 0.915 0.864 0.840 0.829 0.906 0.857 0.915
F mean

β ↑ 0.358 0.607 0.582 0.538 N/T 0.855 0.891 0.843 0.746 0.867 0.885 0.907 0.854 0.820 0.806 0.893 0.841 0.899
F adapt

β
↑ 0.525 0.617 0.663 0.599 N/T 0.843 0.885 0.831 0.790 0.872 0.874 0.903 0.850 0.826 0.791 0.887 0.835 0.893

Emax
φ ↑ 0.711 0.788 0.802 0.774 N/T 0.939 0.949 0.930 0.863 0.923 0.943 0.946 0.909 0.891 0.883 0.936 0.898 0.943

Emean
φ ↑ 0.511 0.759 0.695 0.686 N/T 0.921 0.943 0.912 0.806 0.908 0.932 0.939 0.904 0.874 0.866 0.928 0.889 0.938

Eadapt
φ

↑ 0.742 0.787 0.813 0.782 N/T 0.923 0.943 0.913 0.872 0.924 0.930 0.942 0.905 0.895 0.870 0.931 0.895 0.936
M ↓ 0.227 0.151 0.156 0.191 N/T 0.051 0.039 0.054 0.102 0.054 0.043 0.036 0.059 0.069 0.079 0.041 0.065 0.039

image arrays in HFUT-Lytro is fairly low due to the
low-quality multi-view images, we followed Ref. [59]
and instead tested MAC on single up-sampled all-in-
focus images from these two datasets. In addition,
for ERNet [32], we only evaluated the teacher model
since its pre-trained student model is not publicly
available. A comprehensive analysis of the results now
follows.
3.3.2 Traditional vs. deep models
Compared to the four traditional models shown in
Table 1, the deep learning-based SOD models clearly
have provide better results on all datasets. The
best traditional model evaluated, namely DILF, is
generally inferior to any deep light field model. This
confirms the power of deep neural networks when
applied to this task.

3.3.3 Deep learning models
As shown in Table 1, MoLF, ERNet, and LFNet
adopt focal stacks and all-in-focus images as input
data, while DLSD and MAC use center-view images
and micro-lens image arrays. From Table 4 and
Fig. 12, it is clear that MoLF, ERNet, and LFNet
are better than DLSD and MAC. It is also worth
noting that MoLF and ERNet are the best two
methods, probably because they were trained on the
large-scale DUTLF-FS dataset with 1000 light fields,
with superior network structures. These results also
indicate that models based on multi-view or micro-
lens images are not as effective as those based on focal
stacks. This is probably because that the former are
less studied, and the effectiveness of multi-view and
micro-lens images is still underexplored. Moreover,
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Fig. 12 PR curves for four datasets: (a) LFSD [5], (b) HFUT-Lytro [53], (c) Lytro Illum [59], and (d) DUTLF-FS [57], for nine light field
SOD models: LFS [5], WSC [50], DILF [30], RDFD [54], DLSD [45], MoLF [31], ERNet [32], LFNet [58], MAC [59], and nine SOTA RGB-D
based SOD models: BBS [35], JLDCF [33, 34], SSF [61], UCNet [62], D3Net [63], S2MA [64], cmMS [65], HDFNet [66], and ATSA [36]. Solid
lines and dashed lines represent the PR curves of RGB-D based SOD models and light field SOD models, respectively.

the training data may also matter because MAC was
trained only on Lytro Illum, which is about half the
scale of DUTLF-FS. Among the above five models
compared, ERNet gave best accuracy.
3.3.4 Light field and RGB-D SOD models
From the quantitative results in Table 4 and Fig. 12, it
can be observed that, the latest cutting-edge RGB-D
models achieve comparable or even better results
than the light field SOD models. In particular,
JLDCF, SSF, and ATSA, are generally better than
ERNet on most datasets. The underlying reasons
may be two-fold. Firstly, RGB-D based SOD has
recently drawn extensive research interest and many
powerful and elaborate models have been proposed.
Inspired by previous research on the RGB SOD
problem [28, 83, 84], these models often pursue edge-
preserving results from deep neural networks and

employ functional modules and architectures, such
as a boundary supplement unit [61], a multi-scale
feature aggregation module [36], or a UNet-shaped
bottom–up/top–down architecture [33, 64, 85]. In
contrast, light field SOD has been less explored and
the models and architectures evolve slowly. Edge-
aware properties have not yet been considered by
most existing models. For example, although the
attention mechanism and ConvLSTM are adopted in
ERNet, no UNet-like top–down refinement is used to
generate edge-aware saliency maps. As evidenced in
Figs. 1 and 14, the RGB-D SOD models tend to detect
more accurate boundaries than existing deep light
field SOD models. Secondly, another reason could be
that RGB-D SOD models are trained on more data.
For instance, the universally agreed training set for
the RGB-D SOD task contains 2200 RGB-D scenes
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Fig. 13 F-measure curves for four datasets: (a) LFSD [5], (b) HFUT-Lytro [53], (c) Lytro Illum [59], and (d) DUTLF-FS [57], for nine light
field SOD models: LFS [5], WSC [50], DILF [30], RDFD [54], DLSD [45], MoLF [31], ERNet [32], LFNet [58], MAC [59], and nine SOTA
RGB-D based SOD models: BBS [35], JLDCF [33, 34], SSF [61], UCNet [62], D3Net [63], S2MA [64], cmMS [65], HDFNet [66], and ATSA [36].
Solid lines and dashed lines represent F-measure curves for RGB-D based SOD models and light field SOD models, respectively.

[33], while ERNet [32] was trained only on about 1000
light fields. Thus, the former is more likely to have
better generalization.

However, we can still hardly deny the potential
of light fields to boost the performance of SOD, as
recently RGB-D SOD has been much more active,
with many new competitive models proposed [49],
than light field SOD. Furthermore, the performance
of ERNet and MoLF is only slightly lower than that of
the RGB-D models on the benchmark datasets, which
further implies the effectiveness of light fields for SOD
[48]. We believe that there is still considerable room
for improving light field SOD, because light fields
can provide more information than paired RGB and
depth images.

Furthermore, in order to eliminate training discre-
pancies, we conducted experiments by retraining

these RGB-D models on a unified training set, namely
the training set of DUTLF-FS that contains 1000
scenarios. We also retrained ERNet to remove
its extra HFUT-Lytro training data as shown in
Table 1. Comparative results are given in Table 5,
where all models generally incur certain performance
degeneration. Interestingly, after retraining, SSF*
can no longer outperform ERNet*, while ATSA*
becomes inferior to ERNet* on LFSD and DUTLF-
FS. Only JLDCF* and HDFNet* are consistently
superior to ERNet* by a noticeable margin.
3.3.5 Accuracy across datasets
It is clearly shown in Table 4 and Fig. 12 that
the models tested perform differently on different
datasets. Generally, the models achieve better results
on LFSD than on the other three datasets, indicating
that LFSD is the easiest dataset for light field
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Table 5 Quantitative measures: S-measure (Sα) [80], max F-measure (F max
β ), max E-measure (Emax

φ ), and MAE (M) [79] of one retrained
light field SOD model (ERNet [32]) and seven retrained RGB-D based SOD models (i.e., BBS [35], SSF [61], ATSA [36], S2MA [64], D3Net [63],
HDFNet [66], and JLDCF [33]). Results of original models are taken from Table 4, and the retrained models are marked by ∗. The best results
of retrained models are highlighted in bold. ↑/↓ denotes that a larger/smaller value is better

Model
LFSD [5] HFUT-Lytro [53] Lytro Illum [59] DUTLF-FS [57]

Sα ↑ F max
β ↑ Emax

φ ↑ M ↓ Sα ↑ F max
β ↑ Emax

φ ↑ M ↓ Sα ↑ F max
β ↑ Emax

φ ↑ M ↓ Sα ↑ F max
β ↑ Emax

φ ↑ M ↓
BBS [35] 0.864 0.858 0.900 0.072 0.751 0.676 0.801 0.089 0.879 0.850 0.913 0.047 0.894 0.884 0.923 0.054
SSF [61] 0.859 0.868 0.901 0.067 0.725 0.647 0.778 0.100 0.872 0.850 0.913 0.044 0.908 0.915 0.946 0.036
ATSA [36] 0.858 0.866 0.902 0.068 0.772 0.729 0.833 0.084 0.883 0.875 0.929 0.041 0.905 0.915 0.943 0.039
ERNet [32] 0.831 0.842 0.884 0.083 0.778 0.722 0.841 0.082 0.843 0.827 0.911 0.056 0.899 0.908 0.949 0.039
S2MA [64] 0.837 0.835 0.873 0.094 0.729 0.650 0.777 0.112 0.853 0.823 0.895 0.063 0.845 0.829 0.883 0.079
D3Net [63] 0.825 0.812 0.863 0.095 0.749 0.671 0.797 0.091 0.869 0.843 0.909 0.050 0.852 0.840 0.891 0.069
HDFNet [66] 0.846 0.837 0.879 0.086 0.763 0.690 0.801 0.095 0.873 0.855 0.913 0.051 0.868 0.857 0.898 0.065
JLDCF [33] 0.862 0.867 0.902 0.070 0.789 0.727 0.844 0.075 0.890 0.878 0.931 0.042 0.905 0.908 0.943 0.043
BBS* [35] 0.739 0.738 0.812 0.123 0.708 0.622 0.773 0.102 0.825 0.788 0.878 0.065 0.873 0.870 0.919 0.051
SSF* [61] 0.790 0.793 0.861 0.097 0.687 0.612 0.781 0.099 0.833 0.799 0.886 0.059 0.881 0.889 0.930 0.050
ATSA* [36] 0.816 0.823 0.873 0.087 0.727 0.673 0.805 0.094 0.844 0.822 0.905 0.054 0.880 0.892 0.936 0.045
ERNet* [32] 0.822 0.825 0.885 0.085 0.707 0.632 0.766 0.117 0.840 0.810 0.900 0.059 0.898 0.903 0.946 0.040
S2MA* [64] 0.827 0.829 0.873 0.086 0.672 0.572 0.735 0.120 0.839 0.802 0.885 0.060 0.894 0.893 0.934 0.046
D3Net* [63] 0.827 0.821 0.877 0.086 0.720 0.645 0.801 0.092 0.859 0.835 0.906 0.051 0.906 0.911 0.947 0.039
HDFNet* [66] 0.849 0.850 0.891 0.073 0.747 0.673 0.801 0.085 0.874 0.854 0.915 0.045 0.922 0.931 0.955 0.030
JLDCF* [33] 0.850 0.860 0.900 0.071 0.755 0.694 0.823 0.086 0.877 0.855 0.919 0.042 0.924 0.931 0.958 0.030

SOD, on which the traditional model DILF can even
outperform some deep models like DLSD and MAC.
In contrast, HFUT-Lytro, Lytro Illum, and DUTLF-
FS are more challenging. Note that MoLF, ERNet,
ATSA work well on DUTLF-FS, probably because
they were trained on DUTLF-FS’s training set or
training data (see Table 1). Besides, as mentioned
in Section 2.3, HFUT-Lytro has many small salient
objects, with multiple objects per image. The reduced
performance of these models on this dataset tells that
detecting small/multiple salient objects is still very
challenging for existing schemes, both RGB-D based
models and light field models. This makes HFUT-
Lytro the most challenging among existing light field
datasets.
3.3.6 Result visualization
Figure 14 visualizes some sample results from five
light field models, including two traditional methods,
LFS and DILF, three deep learning-based models,
DLSD, MoLF, and ERNet, and three latest RGB-D
based models, JLDCF, BBS, and ATSA. The top
two rows in Fig. 14 show easy cases while the third
to fifth rows show cases with complex backgrounds
or sophisticated boundaries. The last row gives an
example with low color contrast between foreground
and background. As can be seen, RGB-D models
perform comparably to or even better than light
field models, which indicates that this field is still
insufficiently studied. Figure 15 further shows several

scenarios with small and multiple salient objects,
where the first three rows show cases with multiple
salient objects and others show cases with small
objects. Both RGB-D based and light field models are
more likely to make erroneous detections in such cases,
confirming the poor abilities of existing techniques to
handle small or multiple objects.

4 Challenges and open directions
This section highlights several future research
directions for light field SOD and outlines several
open issues.

4.1 Dataset collection and unification

As demonstrated in Section 2.3, existing light field
datasets are limited in scale and have non-uniform
data representations, making it somewhat difficult
to evaluate different models and generalize deep
networks. This non-uniformity issue is particularly
severe for light field SOD because of its diverse data
representations and high dependency on special
acquisition hardware, unlike other SOD tasks such
as RGB-D SOD [33, 36, 61] and video SOD [86, 87].
Therefore, developing large-scale and unified datasets
is essential for future research. We urge researchers to
take this issue into consideration when constructing
new datasets. Moreover, collecting complete data
forms, including raw data, focal stacks, multi-view
images, depth maps, and micro-lens image arrays,
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Fig. 14 Visual comparison of five light field SOD methods (green box): LFS [5], DILF [30], DLSD [45], MoLF [31], and ERNet [32], and three
SOTA RGB-D based SOD models (red box): JLDCF [33, 34], BBS [35], and ATSA [36].

Fig. 15 Comparison of five light field SOD models (green box): LFS [5], DILF [30], DLSD [45], MoLF [31], and ERNet [32], and three SOTA
RGB-D based SOD models (red box): JLDCF [33, 34], BBS [35], and ATSA [36], when detecting small and multiple objects.



Light field salient object detection: A review and benchmark 527

would definitely facilitate and advance research on
this topic. However, we also note that there is a
challenge in data storage and transmission, since raw
light field data is quite large in size (e.g., the 640
light fields of Lytro Illum occupy 32.8 gigabytes), not
to mention a large-scale dataset. The scale of the
dataset makes it a bit difficult to spread. In this case,
it will still be great if a subset of any data form is
available for the public.

4.2 Developing light field SOD

As noted, there are currently fewer studies on SOD
for light fields than for other tasks in the saliency
community. Thus, this field is still under-explored.
From the benchmarking results in Section 3.3, it
can be observed that the SOTA performance is still
far from satisfactory, especially on the HFUT-Lytro
dataset. There is considerable room for further
improvement of light field SOD algorithms and
models. In addition, we note that only seven deep
learning-based models appeared between 2019 and
2020. We attribute such a scarcity of light field SOD
research to the aforementioned data problems, as
well as the lack of a comprehensive survey of existing
methods and datasets for this topic.

4.3 Multi-view images and micro-lens image
arrays

Most existing models work with focal stacks and
depth maps, as shown in Table 1, while multi-
view images and micro-lens image arrays are two
other types of light field data representations that
are rarely considered (in only five models). The
benchmarking results in Section 3.3 show that the
latter do not perform as well as models utilizing
other data forms, so the use of these two data
forms has not yet been fully explored. Thus, more
work on light field SOD models is needed to explore
the effectiveness of multi-view images and micro-
lens image arrays. Alternatively, these two data
representations themselves may be less informative
than focal stacks and depth maps: Scene depth
information may be more implicitly conveyed. This
may make it difficult to find effective mappings and
mine underlying rules using deep neural networks,
especially when the training data is sparse. It would
be interesting to compare the effectiveness and
redundancy of saliency detection using different data
representations.

4.4 Incorporating high-quality depth estima-
tion

It has been shown that accurate depth maps are
conducive to discovering salient objects from complex
backgrounds. Unfortunately, the quality of depth
maps varies greatly in several existing datasets, since
depth estimation from light fields is a challenging
task [38–41, 43, 44]. The challenge stems from the fact
that although the light fields can be used to synthesize
images focused at any depth through digital refocusing
technology, the depth distribution of each scene point is
unknown. Besides, it is necessary to determine whether
the image area is in focus, which itself is a difficult
issue [88, 89]. Imperfect depth maps often negatively
impact the detection accuracy of models using depth
maps. Therefore, incorporating high-quality depth
estimation algorithms from light fields is likely to be
beneficial.

4.5 Edge-aware light field SOD

Accurate object boundaries are essential for high-
quality saliency maps, as SOD is a pixel-wise
segmentation task [3]. In the RGB SOD field, edge-
aware SOD models are drawing increasing research
attention [28, 83, 84]. Currently, as shown in our
experimental results, existing deep light field SOD
models rarely consider this issue, resulting in saliency
maps with coarse boundaries and edges. Thus, edge-aware
light field SOD should be a future research direction.

4.6 Acquisition technology and hardware

The first generation light field camera, Lytro, was
invented in 2011, while its successor, Lytro Illum, was
introduced in 2014. The latter is more powerful but is
much larger than the former, and is also much more
expensive. However, in general, the development
of light field acquisition technology and hardware
has been slower than that of, e.g., computers and
mobile phones. Since 2014, there have been few
commercial light field cameras. There is an urgent
need for the development of acquisition and hardware
technology for light field photography. Currently,
light field cameras are far from replacing traditional
RGB cameras in terms of image quality, price, and
portability. If in future light field cameras were
to become affordable and small, they could easily
be integrated into mobile phones, allowing everyone
to try light field photography in daily life. This
would provide a vast increase in user data and post-
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processing application requirements, paving the way
for significant improvements in light field SOD.

4.7 Supervision strategies

Existing deep light field models learn to segment
salient objects in a fully supervised manner,
which requires sufficient annotated training data.
Unfortunately, the size of the existing datasets is
limited: DUTLF-FS and DUTLF-MV provide 1000
and 1100 samples for training, respectively, while
other datasets contain fewer than 640 light fields.
On one hand, a small amount of training data
limits the generalizability of models. On the other
hand, acquiring a large amount of annotated data
requires extreme manual effort for data collection
and labelling. Recently, weakly- and semi-supervised
learning strategies have attracted extensive research
attention, largely reducing the annotation effort.
Being data-friendly, they have been introduced into
RGB SOD, and some encouraging attempts [8, 90, 91]
have been made. Thus, one future direction is
to extend these supervision strategies to light field
SOD, to overcome the shortages of training data.
Additionally, several works [92, 93] have shown that
pre-training models in a self-supervised manner can
effectively improve performance, which could also be
introduced to light field SOD in future.

4.8 Linking RGB-D SOD to light field SOD

There is a close connection between light field SOD
and RGB-D SOD, since both tasks explore scene
depth information for saliency detection, while depth
information can be derived from light field data using
a variety of techniques. This is why RGB-D SOD
can be regarded as a solution to the degradation
of light field SOD. As shown in Table 4, applying
RGB-D SOD models to light fields is straightforward,
whereas we believe the reverse could also be possible.
For example, intuitively, reconstructing light field
data such as focal stacks or multi-view images from
a pair of RGB and depth images is possible [45]. If
this bridge is realized, mutual transfer between the
models of these two fields becomes feasible, and then
light field models can be applied to RGB-D data.
Such a link would be an interesting issue to explore
in the near future.

4.9 Other potential directions

Inspired by recent advances in the saliency com-
munity, there are several other potential directions

for future research. For example, high-resolution
salient object detection [94] aims to deal with salient
object segmentation in high-resolution images, and
achieving high-resolution details could be considered
in light field SOD. Besides, while existing light field
datasets are labelled at an object-level, instance-level
annotation and detection, which aim to separate
individual objects [95–99], could also be introduced
into this field. There are many instance-sensitive
application scenarios, e.g., image captioning [100],
and multi-label image recognition [101], as well
as various weakly supervised/unsupervised learning
scenarios [102, 103]. Recent work has attempted to
address weakly-supervised salient instance detection
[104]. Similarly, more effort could be spent on
instance-level ground-truth annotation and designing
instance-level light field SOD models. Furthermore,
eye-fixation prediction [3, 105, 106] is another subfield
of saliency detection. So far, there has been no
research on eye-fixation prediction using light field data.
As abundant natural scene information is provided
by the light field, we hope that the various data
representations of the light field could provide useful
cues to help eliminate ambiguous eye-fixation. Lastly,
light field data could benefit other tasks closely related
to SOD, such as camouflaged object detection (COD)
[107] and transparent object segmentation [108], where
objects often borrow texture from their background
and have similar appearances to their surroundings.

Finally, there is an unanswered question remaining:
How can light field information be more beneficial
to SOD than depth information? Depth information
can be derived from and is a subset of light field
data. Different forms of light field data, e.g., focal
stacks and multi-view images, somewhat imply depth
information, indicating that existing models may
implicitly leverage such depth information. So what is
the difference between using depth in an explicit way
(like RGB-D SOD models) and in an implicit way?
This is an interesting question, but unfortunately,
since the problem of light field SOD was proposed
in 2014, no study has shown any direct answer or
evidence. This is worthy of further investigation and
understanding in future.

5 Conclusions

We have provided the first comprehensive review
and benchmark for light field SOD, reviewing and
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discussing existing studies and related datasets. We
have benchmarked representative light field SOD
models and compared them to several cutting-
edge RGB-D SOD models both qualitatively and
quantitatively. As existing light field datasets are
somewhat inconsistent in data representations, we
have generated supplemental data for existing datasets,
making them complete and uniform. Moreover, we
have discussed several potential directions for future
research and outlined some open issues. Although
progress has been made over the past several years,
there are still only seven deep learning-based works
on this topic, leaving significant room to design
more powerful network architectures incorporating
effective modules like edge-aware designs and top–
down refinement, to improve SOD performance. We
hope this survey will serve as a catalyst to advance
this area and promote interesting work in future.
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