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Abstract

Light field (LF) images acquired by hand-held devices

usually suffer from low spatial resolution as the limited

sampling resources have to be shared with the angular di-

mension. LF spatial super-resolution (SR) thus becomes an

indispensable part of the LF camera processing pipeline.

The high-dimensionality characteristic and complex geo-

metrical structure of LF images make the problem more

challenging than traditional single-image SR. The perfor-

mance of existing methods is still limited as they fail to

thoroughly explore the coherence among LF views and are

insufficient in accurately preserving the parallax structure

of the scene. In this paper, we propose a novel learning-

based LF spatial SR framework, in which each view of an

LF image is first individually super-resolved by exploring

the complementary information among views with combi-

natorial geometry embedding. For accurate preservation

of the parallax structure among the reconstructed views, a

regularization network trained over a structure-aware loss

function is subsequently appended to enforce correct par-

allax relationships over the intermediate estimation. Our

proposed approach is evaluated over datasets with a large

number of testing images including both synthetic and real-

world scenes. Experimental results demonstrate the advan-

tage of our approach over state-of-the-art methods, i.e., our

method not only improves the average PSNR by more than

1.0 dB but also preserves more accurate parallax details, at

a lower computational cost.

1. Introduction

4D light field (LF) images differ from conventional 2D

images as they record not only intensities but also directions

of light rays [38]. The rich information enables a wide range
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Figure 1. Comparisons of the running time (in second) and recon-

struction quality (PSNR/SSIM) of different methods. The running

time is the time for super-resolving an LF image of spatial resolu-

tion 94 × 135 and angular resolution 7 × 7 with the scale factor

equal to 4. The PSNR/SSIM value refers to the average over 57

LF images in Stanford Lytro Archive (Occlusions) dataset.

of applications, such as 3D reconstruction [15, 39, 27, 40],

refocusing [9], and virtual reality [13, 36]. LF images can

be conveniently captured with commercial micro-lens based

cameras [1, 2] by encoding the 4D LF into a 2D photo de-

tector. However, due to the limited resolution of the sensor,

recorded LF images always suffer from low spatial resolu-

tion. Therefore, LF spatial super-resolution (SR) is highly

necessary for further applications.

Some traditional methods for LF spatial SR have been

proposed [31, 23, 20]. Due to the high dimensional-

ity of LF data, the reconstruction quality of these meth-

ods is quite limited. Recently, some learning-based meth-

ods [34, 28, 37] have been proposed to address the prob-

lem of 4D LF spatial SR via data-driven training. Although

these methods have improved both performance and effi-

ciency, there are two problems unsolved yet. That is, the

complementary information within all views is not fully uti-

lized, and the structural consistency of the reconstruction is

not well preserved (see more analyses in Sec. 3).

In this paper, we propose a learning-based method for
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LF spatial SR, focusing on addressing the two problems of

complete complementary information fusion and LF par-

allax structure preservation. As shown in Fig. 3, our ap-

proache consists of two modules, i.e., an All-to-One SR via

combinatorial geometry embedding and a structural consis-

tency regularization module. Specifically, the All-to-One

SR module separately super-resolves individual views by

learning combinatorial correlations and fusing the comple-

mentary information of all views, giving an intermediate

super-resolved LF image. The regularization module ex-

ploits the spatial-angular geometry coherence among the in-

termediate result, and enforces the structural consistency in

the high-resolution space. Extensive experimental results

on both real-world and synthetic datasets demonstrate the

advantage of our proposed method. That is, as shown in

Fig. 1, our method produces much higher PSNR/SSIM at a

higher speed, compared with state-of-the-art methods.

2. Related Work

Two-plane representation of 4D LFs. The 4D LF is

commonly represented using two-plane parameterization.

Each light ray is determined by its intersections with two

parallel planes, i.e., a spatial plane (x, y) and a angular

plane (u, v). Let L(x,u) denote a 4D LF image, where x =
(x, y) and u = (u, v). A view, denoted as Lu

∗ = L(x,u∗),
is a 2D slice of the LF image at a fixed angular position u

∗.

The views with different angular positions capture the 3D

scene from slightly different viewpoints.

Under the assumption of Lambertian, projections of the

same scene point will have the same intensity at different

views. This geometry relation leads to a particular LF par-

allax structure, which can be formulated as:

Lu(x) = Lu
′(x+ d(u′ − u)), (1)

where d is the disparity of the point L(x,u). The most

straightforward representation of the LF parallax structure

is epipolar-plane images (EPIs). Specifically, each EPI is

the 2D slice of the 4D LF at one fixed spatial and angular

position, and consists of straight lines with different slops

corresponding to scene points at different depth.

LF spatial SR. For single image, the inverse problem of

SR is always addressed using different image statistics as

priors [22]. As multiple views are available in LF images,

the correlations between them can be used to directly con-

strain the inverse problem, and the complementary infor-

mation between them can greatly improve the performance

of SR. Existing methods for LF spatial SR can be classed

into two categories: optimization-based and learning-based

methods.

Traditional LF spatial SR methods physically model the

relations between views based on estimated disparities, and

then formulate SR as an optimization problem. Bishop and

Favaro [4] first estimated the disparity from the LF image,

and then used it to build an image formation model, which

is employed to formulate a variantional Bayesian frame-

work for SR. Wanner and Goldluecke [30, 31] applied struc-

ture tensor on EPIs to estimate disparity maps, which were

employed in a variational framework for spatial and angu-

lar SR. Mitra and Veeraraghavan [20] proposed a common

framework for LF processing, which models the LF patches

using a Gaussian mixture model conditioned on their dis-

parity values. To avoid the requirement of precise disparity

estimation, Rossi and Frossard [23] proposed to regularize

the problem using a graph-based prior, which explicitly en-

forces the LF geometric structure.

Learning-based methods exploit the cross-view redun-

dancies and utilize the complementary information between

views to learn the mapping from low-resolution to high-

resolution views. Farrugia [8] constructed a dictionary of

examples by 3D patch-volumes extracted from pairs of low-

resolution and high-resolution LFs. Then a linear map-

ping function is learned using Multivariate Ridge Regres-

sion between the subspace of these patch-volumes, which

is directly applied to super-resolve the low-resolution LF

images. Recent success of CNNs in single image super-

resolution (SISR) [6, 18, 29] inspired many learning-based

methods for LF spatial SR. Yoon et al. [35, 34] first pro-

posed to use CNNs to process LF data. They used a net-

work with similar architecture of that in [6] to improve the

spatial resolution of neighboring views, which were used

to interpolate novel views for angular SR next. Wang et

al. [28] used a bidirectional recurrent CNN to sequentially

model correlations between horizontally or vertically adja-

cent views. The predictions of horizontal and vertical sub-

networks are combined using the stacked generalization

technique. Zhang et al. [37] proposed a residual network

to super-resolve the view of LF images. Similar to [26],

views along four directions are first stacked and fed into dif-

ferent branches to extract sub-pixel correlations. Then the

residual information from different branches is integrated

for final reconstruction. However, the performance of side

views will be significantly degraded compared with the cen-

tral view as only few views can be utilized, which will result

in undesired inconsistency in the reconstructed LF images.

Additionally, this method requires various models suitable

for views at different angular positions, e.g., 6 models for a

7× 7 LF image, which makes the practical storage and ap-

plication harder. Yeung et al. [32] used the alternate spatial-

angular convolution to super-resolve all views of the LF at

a single forward pass.

3. Motivation

Given a low-resolution LF image, denoted as Llr ∈
R

H×W×M×N , LF spatial SR aims at reconstructing a

super-resolved LF image, close to the ground-truth high-
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Figure 2. Illustration of different network architectures for the fu-

sion of view complementary information. (a) LFCNN [34], (b)

LFNet [28], (c) ResLF [37], (d) an intuitive All-to-All fusion (see

Sec. 3 ), and (e) our proposed All-to-One fusion. Colored boxes

represent images or feature maps of different views. Among them,

red-framed boxes are views to be super-resolved, and blue boxes

are views whose information is utilized.

resolution LF image Lhr ∈ R
αH×αW×M×N , where H×W

is the spatial resolution, M × N is the angular resolution,

and α is the upsampling factor. We believe the following

two issues are paramount for high-quality LF spatial SR:

(1) thorough exploration of the complementary information

among views; and (2) strict regularization of the view-level

LF structural parallax. In what follows, we will discuss

more about these issues, which will shed light on the pro-

posed method.

(1) Complementary information among views. An

LF image contains multiple observations of the same scene

from slightly varying angles. Due to occlusion, non-

Lambertian reflections, and other factors, the visual infor-

mation is asymmetric among these observations. In other

words, the information absent in one view may be captured

by another one, hence all views are potentially helpful for

high-quality SR.

Traditional optimization-based methods [30, 31, 23,

20] typically model the relationships among views us-

ing explicit disparity maps, which is expensive to com-

pute. Moreover, inaccurate disparity estimation in occluded

or non-Lambertian regions will induce artifacts and the

correction of such artifacts is beyond the capabilities of

these optimization-based models. Instead, recent learning-

based methods, such as LFCNN [35], LFNet [28] and

ResLF [37], explore the complementary information among

views through data-driven training. Although these meth-

ods improve both the reconstruction quality and compu-

tational efficiency, the complementary information among

views has not been fully exploited due to the limitation

of their view fusion mechanisms. Fig. 2 shows the ar-

chitectures of different view fusion approaches. LFCNN

only uses neighbouring views in a pair or square, while

LFNet only takes views in a horizontal and vertical 3D LF.

ResLF considers 4D structures by constructing directional

stacks, which leaves views not located at the ”star” shape

un-utilized.

Remark. An intuitive way to fully take advantage of the

cross-view information is by stacking the images or fea-

tures of all views, feeding them into a deep network, and

predicting the high-frequency details for all views simulta-

neously. We refer to this method All-to-All in this paper.

As illustrated in Fig. 2(d), this is a naive extension of the

classical SISR networks [16]. However, this method will

compromise unique details that only belong to individual

views since it is the average error over all views which is

optimized during network training. See the quantitative ver-

ification in Sec. 5.2. To the end, we propose a novel fusion

strategy for LF SR, called All-to-One SR via combinatorial

geometry embedding, which super-resolves each individual

view by combining the information from all views.

(2) LF parallax structure. As the most important prop-

erty of an LF image, the parallax structure should be well

preserved after SR. Generally, existing methods promote

the fidelity of such a structure by enforcing corresponding

pixels to share similar intensity values. Specifically, tradi-

tional methods employ particular regularization in the opti-

mization formulation, such as the low-rank [11] and graph-

based [23] regularizer. Farrugia and Guillemot [7] first used

optical flow to align all views and then super-resolve them

simultaneously via an efficient CNN. However, the disparity

between views need to be recovered by warping and inpaint-

ing afterwards, which will cause inevitable high-frequency

loss. For most learning-based methods [28, 37], the cross-

view correlations are only exploited in the low-resolution

space, while the consistency in the high-resolution space is

not well modeled. See the quantitative verification in Sec.

5.1.

Remark. We address the challenge of LF parallax struc-

ture preservation with a subsequent regularization module

on the intermediate high-resolution results. Specifically, an

additional network is applied to explore the spatial-angular

geometry coherence in the high-resolution space, which

models the parallax structure implicitly. Moreover, we use

a structure-aware loss function defined on EPIs, which en-

forces not only view consistency but also models inconsis-

tency on non-Lambertian regions.

4. The Proposed Method

As illustrated in Fig. 3, our approach consists of an All-

to-One SR module, which super-resolves each view of an

LF image individually by fusing the combinatorial embed-

ding from all other views, and followed by a structural con-

sistency regularization module, which enforces the LF par-

allax structure in the reconstructed LF image.
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Figure 3. The flowchart of our proposed approach and illustration of the detailed architecture of the All-to-One SR and structural consistency

regularization modules. The All-to-One SR module takes full advantage of the complementary information of all views of an LF image

by learning their combinatorial correlations with the reference view. At the same time, the unique details of each individual view are also

well retained. The structural consistency regularization module recovers the view consistency among the resulting intermediate LF image

by exploring the spatial-angular relationships and a structure-aware loss.

4.1. AlltoOne SR via Combinatorial Geometry
Embedding

Let Llr
ur

denote the reference view to be super-resolved.

The remaining views of an LF image except Llr
ur

are de-

noted as auxiliary views {Llr
ua

}. The All-to-One SR module

focuses on extracting the complementary information from

auxiliary views to assist the SR of the reference view. As

shown in Fig. 3, there are four sub-phases involved, i.e., per-

view feature extraction, combinatorial correlation learning,

all-view fusion and upsampling.

Per-view feature extraction. We first extract deep fea-

tures, denoted as F 1

u
, from all views separately, i.e.,

F 1

u
= f1(L

lr
u
). (2)

Inspired by the excellent performance of residual

blocks [10, 16], which learn residual mappings by in-

coporating the self-indentity, we use them for deep feature

extraction. The feature extraction process f1(·) contains

a convolutional layer followed by rectified linear units

(ReLU), and n1 residual blocks. The parameters of f1(·)
are shared across all views.

Combinatorial correlation learning. The geometric

correlations between the reference view and auxiliary views

vary with their angular positions ur and ua. To enable our

model to be compatible for all views with different ur in

the LF, we use the network f2(·) to learn the correlations

between the features of a pair of views {F 1

u1
, F 1

u2
}, where

the angular positions u1 and u2 can be arbitrarily selected.

Based on the correlations between F 1

u1
and F 1

u2
, f2(·) is

designed to extract information from F 1

u2
and embed it into

the features of F 1

u1
. Here, u1 is set to be the angular posi-

tion of the reference view, and u2 can be the position of any

auxiliary view. Thus the output can be written as:

F 2,ua

ur

= f2(F
1

ur

, F 1

ua

), (3)

where F 2,ua

ur

is the features of the reference view Llr
ur

in-

corporated with the information of an auxiliary view Llr
ua

.

The network f2(·) consists of a concatenation operator to

combine the features F 1

ur

and F 1

ua

as inputs, and a convolu-

tional layer followed by n2 residual blocks. f2(·)’s ability

of handling arbitrary pair of views is naturally learned by

accepting the reference view and all auxiliary views in each

training iteration.

All-view fusion. The output of f2(·) is a stack of fea-

tures with embedded geometry information from all auxil-

iary views. These features have been trained to align to the

reference view, hence they can be fused directly. The fusion

process can be formulated as:

F 3

ur

= f3(F
2,ua1

ur
, · · · , F

2,uam

ur
), (4)

where m = MN − 1 is the number of auxiliary views.
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Instead of concatenating all features together, we first

combine them channel-wise, i.e. combine the feature maps

at the same channel across all views. Then, all channel

maps are used to extract deeper features. The network f3(·)
consists of one convolutional layer, n3 residual blocks for

channel-wise view fusion and n4 residual blocks for chan-

nel fusion.

Upsampling. We use a similar architecture with resid-

ual learning in SISR [16]. To reduce the memory consump-

tion and computational complexity, all feature learning and

fusion are conducted in low-resolution space. The fused

features are upsampled using the efficient sub-pixel convo-

lutional layer [25], and a residual map is then reconstructed

by a subsequent convolutional layer f4(·). The final recon-

struction is produced by adding the residual map with the

upsampled image:

Lsr
ur

= f4(U1(F
3

ur

)) + U2(L
lr
ur

), (5)

where U1(·) is the sub-pixel convolutional layer and U2(·)
is the bicubic interpolation process.

Loss function. The objective of the All-to-One SR mod-

ule is to super-resolve the reference view individually L̂sr
ur

to approach the ground truth high-resolution image Lhr
ur

.

We use the ℓ1 error between them to define the loss func-

tion:
ℓv = ||L̂sr

ur

− Lhr
ur

||1. (6)

4.2. Structural Consistency Regularization

We apply structural consistency regularization on the in-

termediate results by the All-to-One SR module. This reg-

ularization module employs the efficient alternate spatial-

angular convolution to implicitly model cross-view corre-

lations among the intermediate LF images. In addition, a

structure-aware loss function defined on EPIs is used to en-

force the structural consistency of the final reconstruction.

Efficient alternate spatial-angular convolution. To

regularize the LF parallax structure, an intuitive method

is using the 4D or 3D convolution. However, 4D or 3D

CNNs will result in significant increase of the parameter

number and computational complexity. To improve the effi-

ciency, but still explore the spatial-angular correlations, we

adopt the alternate spatial-angular convolution [21, 32, 33],

which handles the spatial and angular dimensions in an al-

ternating manner with the 2D convolution.

In our regularization network, we use n5 layers of alter-

nate spatial-angular convolutions. Specifically, for the in-

termediate results L̂sr ∈ R
αH×αW×M×N , we first extract

features from each view separately and construct a stack of

spatial views, i.e., Fs ∈ R
αH×αW×c×MN , where c is the

number of feature maps. Then we apply 2D spatial convolu-

tions on Fs. The output features are reshaped to the stacks

of angular patches, i.e., Fa ∈ R
M×N×c×α2HW , and then

angular convolutions are applied. Afterwards, the features

Table 1. The datasets used for evaluation.

Dataset category #scenes

Real-world
Stanford Lytro Archive [3]

General 57

Occlusions 51

Kalantari et al. [14] testing 30

Synthetic
HCI new [12] testing 4

Inria Synthetic [24] DLFD 39

min: 37.74 max: 39.14

ResLF

min: 39.36 max: 39.89

Ours

Figure 4. Comparison of the PSNR of the individual reconstructed

view in Bedroom. The color of each grid represents the PSNR

value.

are reshaped for spatial convolutions, and the previous ’Spa-

tial Conv-Reshape-Angular Conv-Reshape’ process repeats

n5 times.

Structure-aware loss function. The objective function

is defined as the ℓ1 error between the estimated LF image

and the ground truth:

ℓr = ||L̂rf − Lhr||1, (7)

where L̂rf is the final reconstruction by the regularization

module.

A high-quality LF reconstruction shall have strictly lin-

ear patterns on the EPIs. Therefore, to further enhance the

parallax consistency, we add additional constraints on the

output EPIs. Specifically, we incorporate the EPI gradi-

ent loss, which computes the ℓ1 distance between the gra-

dient of EPIs of our final output and the ground-truth LF,

for the training of the regularization module. The gradients

are computed along both spatial and angular dimensions on

both horizontal and vertical EPIs:

ℓe = ‖∇xÊy,v −∇xEy,v‖1 + ‖∇uÊy,v −∇uEy,v‖1

+‖∇yÊx,u −∇yEx,u‖1 + ‖∇vÊx,u −∇vEx,u‖1,
(8)

where Êy,v and Êx,u denote EPIs of the reconstructed LF

images, and Ey,v and Ex,u denote EPIs of the ground-truth

LF images.

4.3. Implementation and Training Details

Training strategy. To make the All-to-One SR mod-

ule compatible for all different angular positions, we first

trained it independently from the regularization network.

During training, a training sample of an LF image was fed

into the network, while a view at random angular posi-
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Table 2. Quantitative comparisons (PSNR/SSIM) of different methods on 2× and 4× LF spatial SR. The best results are in bold, and the

second best ones are underlined. PSNR/SSIM refers to the average value of all the scenes of a dataset.

Bicubic PCA-RR [8] LFNet [28] GB [23] EDSR [19] ResLF [37] Ours

Stanford Lytro General [3] 2 35.93/0.940 36.44/0.946 37.06/0.952 36.84/0.956 39.34/0.967 40.44/0.973 42.00/0.979

Stanford Lytro Occlusions [3] 2 35.21/0.939 35.56/0.942 36.48/0.953 36.03/0.947 39.44/0.970 40.43/0.973 41.92/0.979

Kalantari et al. [14] 2 37.51/0.960 38.29/0.964 38.80/0.969 39.33/0.976 41.55/0.980 42.95/0.984 44.02/0.987

HCI new [12] 2 33.08/0.893 32.84/0.883 33.78/0.904 35.27/0.941 36.15/0.931 36.96/0.946 38.52/0.959

Inria Synthetic [24] 2 33.20/0.913 32.14/0.885 33.90/0.921 35.78/0.947 37.57/0.947 37.48/0.953 39.53/0.963

Stanford Lytro General [3] 4 30.84/0.830 31.24/0.841 31.30/0.844 30.38/0.841 33.15/0.882 33.68/0.894 34.99/0.917

Stanford Lytro Occlusions [3] 4 29.33/0.794 29.89/0.813 29.81/0.813 30.18/0.855 31.93/0.860 32.48/0.873 33.86/0.895

Kalantari et al. [14] 4 31.63/0.864 32.57/0.882 32.14/0.879 31.86/0.892 34.59/0.916 35.55/0.930 36.90/0.946

HCI new [12] 4 28.93/0.760 29.29/0.776 29.31/0.773 28.98/0.789 31.12/0.819 31.38/0.838 32.27/0.859

Inria Synthetic [24] 4 28.45/0.795 28.71/0.792 28.91/0.809 29.12/0.836 31.68/0.865 31.62/0.872 32.72/0.890

Ground Truth Bicubic PCA-RR LFNet

GB EDSR ResLF Ours

Ground Truth Bicubic PCA-RR LFNet

GB EDSR ResLF Ours

Figure 5. Visual comparisons of different methods on 2× reconstruction. The predicted central views, the zoom-in of the framed patches,

the EPIs at the colored lines, and the zoom-in of the EPI framed patches in EPI are provided. Zoom in the figure for better viewing.

tion was selected as the reference view. After the All-to-

One SR network training was complete, we fixed its pa-

rameters and used them to generate the intermediate in-

puts for the training of the subsequent structural consis-

tency regularization module. The code is available at

https://github.com/jingjin25/LFSSR-ATO.

Parameter setting. In our network, each convolutional

layer has 64 filters with kernel size 3× 3, and zero-padding

was applied to keep the spatial resolution unchanged. In

the per-view SR module, we set n1 = 5, n2 = 2, n3 = 2
and n4 = 3 for the number of residual blocks. For struc-

tural consistency regularization, we used n5 = 3 alternate

convolutional layers.

During training, we used LF images with angular res-

olution of 7 × 7, and randomly cropped LF patches with

spatial size 64 × 64. The batch size was set to 1. Adam

optimizer [17] with β1 = 0.9 and β2 = 0.999 was used.

The learning rate was initially set to 1e−4 and decreased by
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Ground Truth Bicubic PCA-RR LFNet

GB EDSR ResLF Ours

Ground Truth Bicubic PCA-RR LFNet

GB EDSR ResLF Ours

Figure 6. Visual comparisons of different methods on 4× reconstruction. The predicted central views, the zoom-in of the framed patches,

the EPIs at the colored lines, and the zoom-in of the EPI framed patches in EPI are provided. Zoom in the figure for better viewing.

a factor of 0.5 every 250 epochs.

Datasets. Both synthetic and real-world LF datasets

were used for training (180 LF images in total, which in-

cludes 160 images from Stanford Lytro LF Archive [3] and

Kalantari e.g. [14], and 20 synthetic images from HCI [12]).

5. Experimental Results

4 LF datasets containing totally 138 real-world scenes

and 43 synthetic scenes were used for evaluation. Details of

the datasets and categories were listed in Table 4.2. Only Y

channel was used for training and testing, while Cb and Cr

channels were upsampled using bicubic interpolation when

generating visual results.

5.1. Comparison with Stateoftheart Methods

We compared with 4 state-of-the-art LF SR methods,

including 1 optimization-based method, i.e., GB [23], 3

learning-based methods, i.e., PCA-RR [8], LFNet [28], and

ResLF [37], and 1 advanced SISR method EDSR [19].

Bicubic interpolation was evaluated as baselines.

Quantitative comparisons of reconstruction quality.

PSNR and SSIM are used as the quantitative indicators for

comparisons, and the average PSNR/SSIM over different

testing datasets were listed in Table 2. It can be seen that our

method outperforms the second best method, i.e. ResLF, by

around 1 - 2 dB on both 2× and 4× SR.

We also compared the PSNR of individual views be-

tween ResLF [37] and ours, as shown in Figure 4. It can be

observed that the gap between the central and corner views

of our method is much smaller than that of ResLF. The sig-

nificant degradation of the corner views in ResLF is caused

by decreasing the number of views used for constructing di-

rectional stacks. Our method avoids this problem by utiliz-

ing the information of all views. Therefore, the performance

degradation is greatly alleviated.

Qualitative comparisons. We also provided visual

comparisons of different methods, as shown in Fig. 5 for

2× SR and Fig. 6 for 4× SR. It can be observed that

most high-frequency details are lost in the reconstruction

results of some methods, including PCA-RR, LFNet and

GB. Although EDSR and ResLF could generate better re-

sults, some extent of blurring effects occurs in texture re-

gions, such as the characters in the pen, the branches on the

ground and the digits on the clock. In contrast, our method

can produce SR results with sharper textures closer to the

ground truth ones, which demonstrates higher reconstruc-

tion quality.

Comparisons of the LF parallax structure. As we dis-
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Figure 7. Quantitative comparisons of the LF parallax structure of

the reconstruction results of different methods via LF edge paral-

lax PR curves. The closer to the top-right corner the lines are, the

better the performance is.

Table 3. Investigation of the effectiveness of the structural consis-

tency regularization. The comparisons of the reconstruction qual-

ity before and after the regularization are listed. The top two rows

show the average PSNR/SSIM over three datasets, and the rest

rows show the comparisons on several LF images.

w/o regularization w/ regularization

Stanford Lytro Occlusions 41.62/0.978 41.92/0.979

HCI new 38.24/0.956 38.52/0.959

Occlusion 43 eslf 33.87/0.986 34.53/0.987

Occlusions 51 eslf 42.14/0.987 42.60/0.988

Antiques dense 46.31/0.987 46.83/0.988

Blue room dense 40.19/0.978 40.66/0.979

Coffee time dense 35.09/0.977 35.65/0.979

Rooster clock dense 42.45/0.979 42.90/0.981

Cars 38.89/0.986 39.33/0.987

IMG 1554 eslf 37.02/0.989 37.46/0.991

Table 4. Comparisons of running time (in second) of different

methods.

Bicubic
PCA-RR GB EDSR ResLF

Ours
[8] [23] [19] [37]

2× 1.45 91.00 17210.00 0.025 8.98 23.35

4× 1.43 89.98 16526.00 0.024 8.79 7.43

cussed in Sec. 3, the straight lines in EPIs provide direct

representation for the LF parallax structure. To compare the

ability to preserve the LF parallax structure, the EPIs con-

structed from the reconstructions of different methods were

depicted in Fig. 5 and Fig. 6. It can be seen that the EPIs

from our methods show clearer and more consistent straight

lines compared with those from other methods.

Moreover, to quantitatively compare the structural

consistency, we computed the light filed edge parallax

precision-recall (PR) curves [5], and Fig. 7 shows the re-

sults. The PR curves of the reconstructions by our method

are closer to the top-right corner, which demonstrates the

advantage of our method on structural consistency.

Efficiency comparisons. We compared the running time

of different methods, and Table 4 lists the results of 4× re-

Table 5. Comparisons of the intuitive All-to-All fusion strategy and

our All-to-One.

All-to-All (image) All-to-All (feature) Ours All-to-One

General 41.25/0.977 41.25/0.977 41.81/0.979

Kalantari 43.18/0.985 43.13/0.985 43.79/0.987

HCI new 37.12/0.946 37.04/0.946 38.24/0.956

construction. Among them, learning-based methods were

accelerated by a GeForce RTX 2080 Ti GPU. SISR meth-

ods, i.e., EDSR and bicubic, are faster than other compared

methods, as all views can be processed in parallel. Although

our method and ResLF are slightly slower than these SISR

methods, much higher reconstruction quality is provided.

5.2. Ablation Study

All-to-One vs. All-to-All. We compared the reconstruc-

tion quality of our proposed All-to-One fusion strategy with

the intuitive All-to-All one, which simultaneously super-

resolves all views by stacking the images or features of all

views as inputs to a deep network. These networks were

set to contain the same number of parameters for fair com-

parisons. Table 5 lists the results, where it can be seen that

our All-to-One improves the PSNR by more than 0.6 dB on

real-world data and 1.0 db on synthetic data, respectively,

validating its effectiveness and advantage.

Effectiveness of the structural consistency regulariza-

tion. We compared the reconstruction quality of the inter-

mediate (before regularization) and final results (after reg-

ularization), as listed in Table 3. It can be observed that

around 0.2-0.3 dB improvement is achieved on average over

various datasets. For certain scenes, the contribution of the

regularization is more obvious, such as ’Occlusion 43 eslf’

and ’Antiques dense’, which obtain more than 0.5dB im-

provement by the regularization.

6. Conclusion and Future Work

We have presented a learning-based method for LF spa-

tial SR. We focused on addressing two crucial problems,

which we believe are paramount for high-quality LF spa-

tial SR, i.e., how to fully take advantage of the complemen-

tary information among views, and how to preserve the LF

parallax structure in the reconstruction. By modeling them

with two sub-networks, i.e., All-to-One SR via combina-

torial geometry embedding and structural consistency reg-

ularization, our method efficiently generates super-resolved

LF images with higher PSNR/SSIM and better LF structure,

compared with the state-of-the-art methods.

In our future work, other loss functions, such as the ad-

versarial loss and the perceptual loss which have proven to

promote realistic textures in SISR, and their extension to

high-dimensional data can be exploited in LF processing.
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