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Figure 1. From left to right: Light field image captured with a plenoptic camera (detail); the light field image on the left is rearranged as

a collection of several views; central view extracted from the light field, with one pixel per microlens, as in a traditional rendering [23];

central view superresolved with our method.

Abstract

Light field cameras have been recently shown to be very

effective in applications such as digital refocusing and 3D

reconstruction. In a single snapshot these cameras provide

a sample of the light field of a scene by trading off spatial

resolution with angular resolution. Current methods pro-

duce images at a resolution that is much lower than that

of traditional imaging devices. However, by explicitly mod-

eling the image formation process and incorporating pri-

ors such as Lambertianity and texture statistics, these types

of images can be reconstructed at a higher resolution. We

formulate this method in a variational Bayesian framework

and perform the reconstruction of both the surface of the

scene and the (superresolved) light field. The method is

demonstrated on both synthetic and real images captured

with our light-field camera prototype.

1. Introduction
Recently, we have seen that not only it is possible to

build practical integral imaging and mask enhanced systems

based on commercial cameras [1, 12, 23, 28], but also that

such cameras provide an advantage over traditional imaging

systems by enabling, for instance, digital refocusing [23]

and the recovery of transparent objects in microscopy [18]

from a single snapshot.

The performance of such systems, however, has been

limited by the resolution of the camera sensor and of the
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Figure 2. Left: One view captured by our plenoptic camera. In

Figures 1 and 7 we restore the red and green highlighted regions.

Right: The estimated depth map in meters.

microlens array. These define, according to the sampling

theorem, the tradeoff between spatial and angular resolution

of the recovered light field [23, 17]. Furthermore, due to

diffraction, the image resolution of the system is restricted

by the size of the microlenses [13].

Instead of increasing pixel density, we enhance detail

by designing superresolution (SR) algorithms which ex-

tract additional information from the available data (see Fig-

ure 1). More specifically, we exploit the fact that light fields

of natural scenes are not a collection of random signals.

Rather, they generally satisfy models of limited complex-

ity [17]. A general way to describe the properties of such

light fields is via the bidirectional reflectance distribution

function (BRDF), e.g., Ward’s model [29]. We are inter-

ested in exploring different BRDF models of increasing or-
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der of complexity. In this paper we focus on the Lambertian

model, which is the simplest instance.

Our main contribution is two-fold: First, we provide an

image formation model by characterizing the point-spread

function (PSF) of a plenoptic camera under Gaussian op-

tics assumptions for a depth varying scene; second, we for-

mulate the reconstruction of the light field in a Bayesian

framework by explicitly introducing Lambertian reflectance

priors in the image formation model. The Bayesian formu-

lation allows us to design a SR algorithm which recovers

more information than the one predicted by the basic sam-

pling theorem. In particular, we show that, in the Lamber-

tian case, the captured light field is equivalent to capturing

several low resolution images with unknown optic flow. We

formulate the problem of recovering the light field as an op-

timization problem where we first recover a depth map of

the scene and then superresolve the light field in a varia-

tional Bayesian framework.

1.1. Prior Work and Contributions

This work relates to computational photography, a new

emerging field encompassing several methods to enhance

the capabilities and overcome limitations of standard digital

photography by jointly designing an imaging device and a

reconstruction algorithm.

One of the first devices based on the principles of integral

photography [20] is the plenoptic camera, first proposed in

computer vision by Adelson and Wang [1] to infer depth

from a single snapshot and then more recently engineered

into a single package chip [11]. In its original design, the

plenoptic camera consists of a camera body with a single

main lens and a lenticular array replacing the conventional

camera sensor, as well as an additional relay lens to form the

image on the sensor. Ng et al. [23] present a similar design,

but produced in a portable hand-held device. They propose

digital refocusing, i.e., the ability to change the focus setting

after the image has been taken. While their method yields

impressive results, there is one caveat: The refocused im-

ages possess a spatial resolution that is lower than that of

the image sensor, and equivalent to just the number of mi-

crolenses in the camera — e.g., as low as 60K pixels from a

16MP camera.

An alternative to the plenoptic camera is the pro-

grammable aperture camera [19]. This device captures light

field data by exploiting multiplexing of views of the scene.

While this approach allows to exploit the full resolution of

the camera sensor, the price to pay is a long exposure time

or a low signal to noise ratio. Another interesting design

proposed by Veeraraghavan et al. [28] is that of the het-

erodyne camera, where the light field is modulated using

an attenuating mask close to the sensor plane. While the

authors mention that the advantage of this system is the re-

construction of high resolution images at the plane in fo-

cus in addition to the sampled light field, there is a consid-

erable limitation: The mask blocks much of the light that

could reach the sensor and thus reduces the signal-to-noise

ratio (SNR). Finally, Georgiev and Intwala [12] suggest a

variety of different camera designs to capture the light field.

Instead of internal microlens arrays, they use additional ex-

ternal optical elements, such as multiple prisms or an array

of positive/negative lenses placed in front of the main lens.

Unfortunately whilst appealing in their simplicity, these de-

signs tend to suffer from higher order optical aberrations.

Ben-Ezra et al. [2] propose a novel camera design to en-

hance the resolution of images where a randomly moving

sensor collects multiple frames from slightly different po-

sitions and is synchronized to be motion-less during image

capture so as to avoid motion-blur. The multiple frames are

then combined to reconstruct a single high resolution frame.

As in [19], this method needs to trade off exposure time for

spatial resolution.

In contrast to the above approaches, one could aim at

improving the resolution of the measured light field by de-

signing algorithms, rather than hardware, that exploit prior

knowledge about the scene. Stewart et al. [26] propose a

method for recovering light fields for the purpose of render-

ing, based on combining the band-limited reconstruction in

[7] with the wide-aperture reconstruction of [15]. These

methods, however, do not consider using the depth map in

the reconstruction of the light field. However, the recov-

ery of a high-resolution image that is focused everywhere

requires knowing the depth map (for instance, see the re-

constructions obtained by moving the focal plane in Figure

7c and 7e in [26]).

We rely on the reconstruction of the depth map and pose

the problem as that of superresolving the light field by

starting from multiple low resolution images with unknown

translational misalignment. This approach relates to a large

bulk of literature in image processing [24, 16, 5, 22, 9, 10,

14]. While this problem has been extensively investigated

in image processing, prior work in the context of compu-

tational photography is limited to work by Chan et al. [8],

where a compound eye system is only simulated, to work by

Lumsdaine and Georgiev [21], that propose a method to su-

perresolve images captured with a plenoptic camera, and to

work by Levin et al. [17], that describe trade-offs between

different camera designs in recovering the light field of a

scene.

Lumsdaine and Georgiev detect whether subimages un-

der each microlens are flipped (telescopic) or not (binocu-

lar), and then scale up their central part by assuming that the

scene is an equifocal plane at a user-defined depth. Their

approach does not fully address SR of a light field. First,

they do not reconstruct the depth map of the scene, which

corresponds to finding the alignment between the subim-

ages. Second, they do not use a deconvolution method to re-



store the light field, but only interpolation. This means that

overlapping pixels in the subimages are dropped instead of

being fused. Moreover, their results are not performed un-

der a globally consistent restoration model, and there is no

regularization in their algorithm.

In concurrent work, Levin et al. [17] describe analysis

and algorithms that are closely related to our method. They

focus on the trade-offs in recovering the light field of a scene

by comparing different camera designs and consider the use

of priors in a Bayesian framework. Our approach differs in

several ways: First, we derive and fully analyze an image

formation model of a plenoptic camera and verify its valid-

ity on real images; second, we explicitly enforce Lamber-

tianity and make use of image texture priors that are unlike

their mixture of Gaussians derivative priors.

In the case of light field images obtained from the

plenoptic camera, the unknown translational misalignment

between the image views is due to the unknown depth map

of the scene. The estimation of such depth map is therefore

a fundamental step in our SR algorithm. Vaish et al. [27]

perform multiview depth estimation from an array of about

a hundred cameras, a system that is structurally similar to a

plenoptic camera. Their method addresses the rejection of

outliers by employing robust multiview matching, a strategy

that we also employ in our depth estimation method.

2. Image Formation of a Light-Field Camera

In this section we derive the image formation model of

a plenoptic camera and then analyze under what conditions

SR can be best addressed. To arrive at a practical compu-

tational model suitable for our algorithm (section 3), we in-

vestigate the imaging process with tools from geometrical

optics [6]. Our basic approximation is to ignore effects due

to diffraction and use the thin lens model for both the main

lens and each lens in the microlens array. We start by defin-

ing the basic parameters in our camera and establish their

relationship in the image formation model (section 2.1). We

summarize the model by characterizing the light field cam-

era PSF (section 2.2). Then, we analyze such model and

study its behavior under different modalities of operation

(section 2.3).

2.1. Imaging Model

In our investigation we rebuilt the same light field cam-

era that was used by Ng et al. [23], but did not restrict our

analysis to the same camera parameters. Functionally, the

light field camera is approximately equivalent to a cam-

era with two types of optical elements: a main lens and a

microlens array. As in [21], we consider the imaging sys-

tem under a general configuration of these optical elements;

however, unlike in any previous work, we determine the im-

age formation model of the camera so that it can be used for
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Figure 3. Schematic of a 2D section of a light field camera. By

starting from the left in each diagram, the plenoptic camera con-

sists of a main lens, a microlens array, and a sensor. The light

emitted by a point in space p is deflected by the main lens and then

split into several beams by the microlens array. The size of some

microlenses has been exaggerated only for visualization purposes.

Top row: Case of multiple repetitions with no flipping (main lens

out of focus). Middle row: Case with no repetitions (main lens

in focus). Bottom row: Case of multiple repetitions with flipping

(main lens out of focus).

SR or more general tasks. Due to symmetry and for simplic-

ity, we visualize our analysis of the model in 2D sections as

shown in Figure 3.

We summarize all the symbols and their meaning in Ta-

ble 1. As shown in Figure 3, the image of a 3D point in

space p
.
= [x y z]T ∈ R

3 results in a collection of blur

discs whose shape depends on three factors: the blur intro-

duced by the main lens, the masking due to the microlens

array, and the blur introduced by the microlenses. We will

see all of these effects in the following analysis and, in par-

ticular, in section 2.2. By applying the thin lens law1 to the

main lens, we can find that the point p is brought into fo-

cus inside the camera at the position p′ .
= [x′ y′ z′]T ∈ R

3

1The thin lens law establishes that a point in space at a distance z from

the lens is imaged in focus at a distance
Fz

z − F
from the lens (inside the

camera) where F is the lens focal length [6].



Table 1. Light field camera symbols and their description.

Camera parameters

D Main lens diameter

d Microlens diameter

F Main lens focal length

f Microlens focal length

c Microlens center in 3D space

v′ Microlenses to CCD sensor distance

µ Size of a CCD sensor element

Scene parameters

p 3D point in space

p′ Focused image of p inside the camera

p′′ Projection of p onto the CCD sensor

Point spread function parameters

pb Main lens blur center in 3D space

B Main lens blur radius

b Microlens blur radius

where

p′ =
F

z − F





−1 0 0
0 −1 0
0 0 1



p. (1)

By using similar triangles, we can easily find that the pro-

jection pb of p′ onto the microlens array plane is

pb = p′ z − F

F

cz

z
. (2)

The projection pb is the center of the blur generated by the

main lens blur. If we approximate the blur generated by the

main lens with a Pillbox function2 the main lens blur radius

B is

B =
Dcz

2

∣

∣

∣

∣

1

F
−

1

z
−

1

cz

∣

∣

∣

∣

. (3)

Finally, the projection of p onto the sensor plane through

a microlens centered in c = [cx cy cz]
T ∈ R

3 is instead

computed as

p′′ = c +
v′

cz − z′

(

p
z′

z
+ c

)

(4)

and this microlens generates a small blur disc with radius

b =
dv′

2

∣

∣

∣

∣

1

f
−

1

cz − z′
−

1

v′

∣

∣

∣

∣

. (5)

We are now ready to analyze two important effects intro-

duced by the use of a microlens array. First, the main lens

may cause a vignetting effect on the microlenses. Second,

each microlens might flip the image of an object in the

scene, depending on the camera parameters and the posi-

tion of the object in space.

2The Pillbox function is defined as the unit area cylinder with base the

disc generated by the aperture.

2.1.1 Main Lens Vignetting

As one can observe in Figure 3 a microlens may only be

partially hit by the blur disc cast by the main lens. This

will then affect the shape of the blur disc generated by the

microlens on the sensor plane/Furthermore, because each

microlens has a finite aperture, the main lens blur disc will

be masked by discs of the size of each microlens. Due to

the Pillbox model for the main lens, microlenses that are

completely or partially hit by light emitted from a point p

satisfy

‖pb − c‖ < B +
d

2
. (6)

2.1.2 Image Flipping

The pattern generated by each microlens may not only vary

in position and blur, but it might also appear flipped along

both the abscissa and ordinate axes (third row of Figure 3).

Flipping can be easily characterized as follows. Let us con-

sider a point moving in space of ∆ along either the abscissa

or the ordinate axis. If this movement generates a shift ∆′′

on the sensor plane in the same direction (i.e., with the same

sign) then there is no flipping. In formulas, we have that

∆′′ = ∆
v′z′

z(cz − z′)
(7)

and, therefore, there is no flipping when

cz − z′ > 0 (8)

if we assume that z′ > 0 (i.e., when objects in space are at

a distance from the camera of at least the main lens focal

length F ). This scenario is shown on both the first and sec-

ond row of Figure 3. If instead we have cz < z′ then there

is flipping (third row of Figure 3).

Remark 1 Notice that the subimage flipping that we have

analyzed in this section does not correspond to the flipping

of the blur generated by a single point in space through a

single microlens (that instead occurs when v′ >
(cz−z′)f
Cz−z′−f

).

The microlens blur inversion is usually insignificant be-

cause the PSF is usually symmetric.

2.2. Light Field Camera Point Spread Function

If we combine the analysis carried out in the previous

sections we can determine the PSF of the light field camera,

which will be a combination of the blur generated by the

main lens and the blur generated by the microlens array. In

our notation, we define the PSF of the light field camera as a

function hLI such that the intensity at a pixel3 (i, j) caused

3For simplicity, we assume that the pixel coordinates have their zero

in the center of the sensor plane, which we assume to coincide with the

optical axis. Also, i follows the abscissa axis and j follows the ordinate

axis.



by a unit radiance point p in front of the camera

hLI(p, i, j) = hML(p, i, j)hµL(p, i, j) (9)

so that in a Lambertian scene the image l captured by the

light field camera is

l(i, j) =

∫

hLI(p, i, j)r(p)dp (10)

where r is the light field defined at each point in space.4

hML is the main lens PSF and it is defined as

hML(p, i, j) =

{

1
πB2 ‖ps − pb‖ < B

0 otherwise
(11)

where

ps
.
=









iµ

jµ

v′z′



 − p
v′z′

z





cz − z′

cz − z′ + v′
(12)

if there is no microlens blur inversion5 (i.e., v′ <
(cz−z′)f
Cz−z′−f

);

otherwise if the microlens blur is inverted, the inverted coor-

dinates p̂s can be obtained directly from the previous ones

via

p̂s
.
= d

⌊

ps

d
+

1

2

⌋

−

(

ps +
d

2

)

% d +
d

2
(13)

where ⌊.⌋ denotes the closest lower integer and a % b de-

notes a modulo b. Finally, the microlens array PSF hµL is

defined as

hµL(p, u, v) =

{

4
πb2

∥

∥(ps + d
2 )% d − d

2

∥

∥ < b

0 otherwise.
(14)

To arrive at a computational model, we discretize the

spatial coordinates as pn = [xn yn zn]T with n = [1, N ]
and order the pixel coordinates as [im, jm] with m = [1, M ]
so that eq. (10) can be rewritten in matrix-vector notation as

l = Hr (15)

where l ∈ R
M is the captured image rearranged as a col-

umn vector, r ∈ R
N is the unknown reflectance of the

discretized volume also rearranged as a column vector, and

H ∈ R
M×N is a (sparse) matrix representing the PSF of the

light field camera. As we assume that the scene can be de-

scribed by a single discretized depth map s : R
2 7→ [0,∞),

we define

r(n)
.
= r([xn yn s(xn, yn)]T )

l(m)
.
= l(im, jm)

H(m, n)
.
= hLI([xn yn s(xn, yn)]T , im, jm).

(16)

4Because illumination is constant and we assume that the scene is Lam-

bertian (within the field of view of the camera) the light field does not de-

pend on the emitting direction and can be represented by a function of a

3D point in space
5Notice that, as mentioned in Remark 1, the microlens blur inversion is

not the flipping of a subimage.

2.3. Analysis of the Imaging Model

Although the PSF of the light field camera obtained in

the previous sections fully characterizes how a light field

is imaged on the sensor, it also does not provide an intu-

itive tool to analyze the imaging process. In this section

we will see that more insight can be gained by isolating de-

focusing due to the main lens from defocusing due to the

microlenses.

2.3.1 Main Lens Defocus

The blur disc generated by a point in space p onto the mi-

crolens array determines the number of microlenses that

capture light from p. Under the Lambertian assumption,

p casts the same light on each microlens, and this results in

multiple copies of p in the light field (see first and third row

of Figure 3).

To characterize the number of repetitions of the same

pattern in the scene, or, equivalently, the number of mi-

crolenses that simultaneously image the same points in

space, we need to count how many microlenses fall inside

the main lens blur disc, i.e., we need to pick the ratio be-

tween the main lens blur diameter 2B and the microlens

diameter d

#repetitions =
2B

d
=

Dcz

d

∣

∣

∣

∣

1

F
−

1

z
−

1

cz

∣

∣

∣

∣

. (17)

In our SR framework, the number of repeating patterns is

extremely important as it determines the number of sub-

sampled images that we can use to superresolve the light

field. It is also immediate to conclude that objects that are

brought into focus by the main lens (i.e., with a single rep-

etition such as on the second row in Figure 3) will have the

least accuracy in the reconstruction process, and vice versa

in the case of objects that are brought out of focus by the

main lens.

2.3.2 Focused Subimages

A necessary condition to superresolve the light field is that

the input views are subject to aliasing so that they carry dif-

ferent information about the scene, i.e., they are not merely

shifted and interpolated versions of the same image. To sat-

isfy this condition, we need to work away from the plane

in the scene that the main lens brings in focus on the sen-

sor plane. Also, we need the microlens blur to be as small

as possible, otherwise pixels from different views blend to-

gether thus reducing the high frequency content of the light

field. The condition corresponds to the microlens blur ra-

dius satisfying b = 0, which is verified by points p in space

at a distance (see left plot in Figure 4)

z =
F (cz −

v′f
v′−f

)

cz −
v′f

v′−f
− F

. (18)
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Figure 4. Left: Plot of the microlens blur for several camera settings as we vary the depth of a point in space. Each curve shows a different

value of the microlens-to-CCD spacing v
′ with focal length of the microlenses equal to 0.35mm (note that Ng [23] uses v

′ equal to the

focal length of the microlenses). The x axis shows the object depth z with the plane in focus at 700mm (in log scale). Middle: The same

plot as on the left with v
′ values greater than the focal length of the microlenses. In our setting we use v

′
= 0.4mm (dashed plot) and

work in the range 800mm − 1000mm, which results in a microlens blur below 1 pixel. Right: Magnification factor between image that

would form at microlens plane, and the actual image that forms under each microlens, under the same settings.

In practice, due to the finite pixel size and diffraction, the

views will be in focus for blur radii that are sufficiently

small. In addition to the microlens blur, one needs to take

into account the magnification factor z′

cz

v′

cz−z′
which tells

us the scaling between the image that would form at the mi-

crolens plane, and the actual image that forms under each

microlens. Notice that this factor is directly related to the

magnification factor in Lumsdaine and Georgiev [21].

The simplest scenario is when the magnification factor

does not change much depending on the depth range. This

immediately suggests to work with depths about or larger

than z = 1000mm (see right plot in Figure 4). In addition,

as one can see in the plots to the left in Figure 4, this depth

range corresponds to the flipped region (dotted line) and it

leads to a maximum of 1 pixel blur. Notice that Ng’s set-

tings (solid line) yield the smallest blur radius over a general

depth range, but that is not needed if we limit the working

volume as we do.

3. Light Field Superresolution

In order to restore the images obtained by the plenoptic

imaging model at a resolution that is higher than the number

of microlenses, we employ superresolution by estimating r

directly from the observations. Due to the fact that the prob-

lem may be particularly ill-posed depending on the extent of

the complete system PSF, proper regularisation of the solu-

tion through prior modeling of the image data is essential.

We pose the estimation of r in the Bayesian framework,

where we treat all the unknowns as stochastic quantities.

We begin by noting that under the typical assumption of

additive Gaussian observation noise w, the model becomes

l = Hr + w, and the probability of observing a given

light field l in (15) may be written as p
(

l
∣

∣ r,H, σ2
w, s

)

=

N
(

l
∣

∣ Hs, r, σ2
wI

)

, where w ∼ N (0, σ2
wI). We note here

the depth dependence of the matrix Hs (i.e., it is a non-

stationary operator).

We then introduce priors on the unknown variables. Here

we have focused on the SR restoration and thus we de-

fine the imaging model on r, whilst we assume that Hs is

known (i.e., we already have an estimate of the depth map).

Many recent approaches in image restoration have made use

of nonstationary priors, which have edge preserving prop-

erties. For example, total variation restoration or model-

ing the heavy-tailed distributions of the image gradients or

wavelet subbands are popular methods [25]. Here we ap-

ply a recently developed Markov random field prior [4, 3]

which extends these ideas by incorporating higher-order in-

formation rather than just differences between neighboring

pixels. As such, in addition to smooth and edge regions in

the image, it is able to locally model texture.

The prior takes the form of a local autoregressive (AR)

model, whose parameters we estimate as part of the whole

inference procedure. The AR model correlates pixels within

a region, and is written

rω(i, j) =
∑

∀(k,l∈Sa)

rω(i − k, j − l)aω(k, l) + uω(i, j) (19)

where uω is a white noise excitation signal with local vari-

ance σ2
uω

. This model is written for all regions ω from a

given segmentation of the image, in matrix form as u =
(I − A)r = Cr, where the matrix C represents the non-

stationary regularisation operator, or equivalently the syn-

thesis model for the image, parameterized by a. The as-

sumed independence of the excitation signal uω in each

region allows the joint probability density function to be

found as pu (u |σu ) = N (u |0,Qu ), where Qu is a di-

agonal matrix. Thus via a probability transformation we

obtain the image prior

p (r |a,σu ) = N (r |0,Σr ) , (20)

where Σr = E
[

rrT
]

= C−1QuC
−T ; so we see that the

model for r depends on both the local variances and au-



toregressive parameters across the image which are concate-

nated as a and σu respectively. Under the proposed model

we also estimate these parameters by employing standard

conjugate priors: Gaussian and inverse-gamma distribu-

tions, which let us set a confidence on the likely values of

the parameters. Moreover, the Gaussian—inverse-gamma

combination used for modeling the local variances also rep-

resents inference under a heavy-tailed Student-t if we con-

sider the marginal distribution.

The inference procedure for SR therefore involves find-

ing an estimate of the parameters r,a,σu given the

observations l and an estimate of Hs. Direct max-

imization of the posterior p (r,a,σu, σw | l,Hs ) ∝
p (l |Hs )p (r |a,σu )p (a,σu) is intractable; hence, we

use variational Bayes estimation with the mean field ap-

proximation to obtain an estimate of the parameters.

3.1. Numerical Implementation

In practice, the variational Bayesian procedure requires

alternate updating of approximate distributions of each of

the unknown variables. By far the main burden is in up-

dating r at each iteration. The mean of the approximate

distribution is found in a standard form as

E
k [r] = covk [r]σ−2

w HT l (21)

covk [r]
−1

= CT Q−1
u C + σ−2

w HT
s Hs (22)

This system is linear conditional on the previous estimate

of the image model parameters. However it is too large in

size to minimize it directly, especially given the nonstation-

ary structures of Hs and C. Therefore, we use conjugate

gradients least squares (CGLS) minimization to estimate r

at each step. Due to the factorization of the image prior, we

can solve the least square system

MT Mr = MT y (23)

where Q−1
u = LT L, M =

[

σ−1
w Hs

LC

]

, and y =

[

σ−1
w l

0

]

. These iterations require multiplying by both Hs

and its transpose once at each step, which we implement

using a look-up table of precomputed PSFs from each po-

sition in 3D space. The image restoration procedure is run

in parallel tasks across restored tiles of size 200x300 pixels,

which are seamlessly joined due to full boundary conditions

being used. The size is limited such that the columns of

Hs for all the required depths can be preloaded into mem-

ory, avoiding disk access during restoration. We run our ex-

periments in MATLAB on an 8-core Intel Xeon processor

with 2GB of memory available per task. Pre-calculating the

look-up table for Hs requires up to 10 minuites per depth

plane we use, however restoration is faster with each conju-

gate gradients (CG) iteration takeing around 20 seconds (the

actual complexity depends on the depth), and good conver-

gence is achieved after typically 30 to 50 iterations. The

image model parameters are recomputed every few CG it-

erations, taking around 30 seconds. Notice that since the

model is linear in the unknown r, convergence is guaran-

teed by the convexity of the cost functional.

We consider that the depth estimation is performed as

an initial step. In our real data experiments we have imple-

mented a multi-view block matching procedure, which min-

imizes an error term across all the views extracted from the

light field. We use a robust norm to help eliminate outliers;

first results show that we can obtain a useful initial depth

estimate from our data, however we plan to consider incor-

porating the depth estimation as part of the entire inference

procedure, and obtaining a super-resolved depth map.

4. Experiments

4.1. Equipment Description and Calibration

For our experiments we use a Hasselblad H2 medium

format camera with an 80mm f/2.8 lens. We use a Megavi-

sion E4 digital back. The 16MP color CCD has 4096×4096

pixels and a surface of about 3.68cm × 3.68cm (the side

of one pixel is 9µm). A custom-fabricated adapter enables

us to fit a microlens array very close to the sensor. The

array has approximately 250 × 250 circular lensets, each

with a diameter of 135µm, giving about 15×15 pixels per

microlens. The focal length of the microlenses is approxi-

mately 0.35mm, and we used a distance v′ of 0.4mm.

Our microlenses have an f /4 aperture, although for our

experiments we use a smaller main-lens f -number (f /6.8),

and just the central 7×7 pixels under each microlens. This

is because our current prototype microlenses do not have

a chromium mask in the gaps, as opposed to Ng et al.’s

system [23]; absence of this mask means light leaks into

the outer views from the corners between each microlens,

making these views currently unusable for SR.

To obtain useful results an important task is the cali-

bration of the whole system, both mechanical and in post-

processing. It is very important to have the microlenses

centered with respect to the sensor so that we can use the

maximum resolution available from the light field. Our mi-

crolens adapter enables full 3D repositioning and rotation

without requiring removal of the back, simply by adjusting

screws on the 4 support’s edges. After the initial manual

correction, post-processing is done on the captured images

to compensate for any residual error that is not easily ap-

preciable by eye, including 3D rotation of the microlens

images, distortion correction, and photometric calibration.



Figure 5. Synthetic experiment. Left: True Lambertian light field

used in first experiment. Right: True depth map.

4.2. Results on Synthetic and Real Data

In Figures 5 and 6, we work with simulated plenoptic

camera data. We use our image formation model (15) to

compute the light field that would be obtained by a cam-

era similar to our prototype, then apply the SR restora-

tion algorithm to recover a high resolution focussed image

from the observation. The simulated scene lies in the range

800mm − 1000mm, each of the 49 views (i.e., we use the

7×7 pixel central subimage under each microlens) may be

rearranged as a 19 × 29 pixel image. We use the true depth

parameters in the light field reconstruction. The magnifica-

tion gain is about 7 times along each axis as one can appre-

ciate by comparing the third image from the left with the

rightmost image in Figure 6.

We perform a similar experiment with real data obtained

from our camera (Figure 2) in Figures 1 and 7. First we

estimate a depth map using the multi-view disparity esti-

mation procedure [27], and then we restore a region of the

high resolution image. Note that there are still some arti-

facts visible due to the imperfect calibration of the camera

and hence errors in the model; as such the restoration relies

heavily on the priors which have been set to perform addi-

tional smoothing. Also, the depth map is not updated based

on the restored image, and improvements in accuracy are

likely to be seen with a simultaneous depth estimation and

SR algorithm. Finally, note that we should achieve higher

resolution gains by making use of more views, once our

hardware allows it.

5. Conclusions

We have presented a formal methodology for the restora-

tion of high resolution images from light field data captured

from a plenoptic camera, which is normally limited to out-

putting images at the lower resolution of the number of mi-

crolenses in the camera. This procedure makes the plenop-

tic camera more useful for traditional photography applica-

tions, as well as vision tasks such as depth estimation that

we also demonstrate. In the future we hope to incorporate

simultaneous depth estimation to improve the process on

real scenes.
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