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Abstract: Light field reconstruction and synthesis algorithms are essential for improving the lower
spatial resolution for hand-held plenoptic cameras. Previous light field synthesis algorithms produce
blurred regions around depth discontinuities, especially for stereo-based algorithms, where no
information is available to fill the occluded areas in the light field image. In this paper, we propose a
light field synthesis algorithm that uses the focal stack images and the all-in-focus image to synthesize
a 9 × 9 sub-aperture view light field image. Our approach uses depth from defocus to estimate a
depth map. Then, we use the depth map and the all-in-focus image to synthesize the sub-aperture
views, and their corresponding depth maps by mimicking the apparent shifting of the central image
according to the depth values. We handle the occluded regions in the synthesized sub-aperture
views by filling them with the information recovered from the focal stack images. We also show
that, if the depth levels in the image are known, we can synthesize a high-accuracy light field image
with just five focal stack images. The accuracy of our approach is compared with three state-of-the-
art algorithms: one non-learning and two CNN-based approaches, and the results show that our
algorithm outperforms all three in terms of PSNR and SSIM metrics.

Keywords: light field synthesis; focal stack; depth map

1. Introduction

In conventional photography, only limited information from the light passing through
the camera lens is captured. In general, each point in the captured images is the sum of the
light ray intensities striking that point, not the total amount of light traveling along different
directions that contribute to the image [1]. In contrast, light field imaging technology can
capture rich visual information by representing the distribution of light in free space [2],
which means capturing the pixel intensity and the direction of the incident light. Light
fields can be captured using either an array of cameras [3] or a plenoptic camera [4].
However, capturing a light field with high spatial and angular resolution is challenging
because plenoptic cameras have a spatial-angular resolution trade-off [4], and the set-up
for a dense camera array is complex.

The additional dimensions of data captured in light field images enable generating
images with extended depth of field and images at different focal lengths using ray-tracing
techniques. Light field images also allow researchers to explore depth estimation techniques
such as depth from defocus and correspondence, stereo-based matching, and using epipolar
images from a single light field image. Depth estimation is crucial in computer vision
applications such as robot vision, self-driving cars, surveillance, and human–computer
interactions [5]. Stereo-based matching algorithms for light field images are mainly based
on energy minimization and graph cut techniques. Kolmogorov and Zabih [6] combine
visibility and smoothness terms for energy minimization. On the other hand, Bleyer et al. [7]
consider the pixel appearance, global MDL (Minimum Description Length) constraint,
smoothing, soft segmentation, surface curvature, and occlusion. However, the stereo-
based depth estimation methods suffer from ambiguities while dealing with noisy and
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aliased regions. The narrow baseline makes it difficult for these algorithms to solve the
occlusion problem [8]. In their work, Schechner and Kiryati [9] study the advantages
and disadvantages of depth from defocus and correspondence techniques. While depth
from stereo and depth from defocus and correspondence techniques can also be used for
non-light field images, depth from epipolar images can only be used for light field images.
Epipolar images (EPI) are formed by stacking the light field sub-aperture images in the
horizontal and vertical directions, and a slice through this 4D representation reveals the
depth of the pixels in terms of the slope of the line. However, due to the noise present in
images, basic line fitting techniques do not produce robust results [10]. Zhang et al. [8] use
a spinning parallelogram operator and estimate the local direction of a line in an EPI. They
consider pixels on either side of the line separately to avoid the problem of the inconsistency
of the pixel distribution. This also makes their depth estimation algorithm more robust to
occlusions and noise compared to the EPI algorithm presented by Criminisi et al. [11] and
Wanner and Goldluecke [12]. The techniques explored for depth estimation of light field
images form the building blocks for light field image reconstruction and synthesis.

Light field reconstruction and synthesis algorithms can solve the problem of lower
spatial resolutions for hand-held plenoptic cameras, and the ability to convert 2D RGB
images to 4D light field images will change how we perceive traditional photography.
Many algorithms that propose light field reconstruction techniques use a sparse set of light
field views to reconstruct novel views [13–16]. However, the input data for these algorithms
are a set of sub-aperture images, which is not easy to capture because the camera needs to
be moved to capture the sub-aperture views using a 2D camera, and this is time-consuming
and introduces issues of alignment. In contrast, for capturing a focal stack and all-in-focus
images, we only need to change the focus and aperture of the camera without physically
moving the camera. Thus, these algorithms cannot be used for light field synthesis but can
be used for either increasing the spatial and angular resolution of light field images or for
light field image compression. In this paper, the term ‘light field synthesis’ is considered
an approach to creating an entire light field image with fewer input images, and we are
not trying to synthesize the views with a large or small baseline. We are only focusing on
mimicking the light field sub-aperture views using characteristics of the EPI of the light
field images while using the central all-in-focus image and depth map.

On the other hand, light field synthesis can also be classified into two main categories:
non-learning-based and learning-based approaches. Non-learning-based light field synthe-
sis algorithms use a deterministic approach, where the same rules are used to synthesize
the view for every image. These synthesis algorithms can be further divided into two
categories based on the input data used: focal stack images or stereo image pairs. Stereo
image pair-based algorithms either use micro-baseline image pairs or an image pair with a
large baseline. Zhang et al. [17] propose a micro-baseline image pair-based view synthesis
algorithm. Since the disparity between the stereo pair is small, the images can be captured
by vibrating a static camera. Chao et al. [18], on the other hand, use a large baseline
stereo pair. As the algorithm uses a large baseline, the horizontal views are synthesized by
interpolating the stereo pair. In contrast, the main advantage of using focal stack images
for light field synthesis is that the focal stack images can provide information to fill the
gaps created near occluded regions in the synthesized views; key recent algorithms are
in [14,19,20].

Learning-based light field synthesis uses a probabilistic approach, where the training
input images are used to fit a model that can map the output. The two main drawbacks of
learning-based light field synthesis approaches are that, first, a large amount of training data
are required to train the network adequately; second, that the algorithm’s accuracy directly
relates to the training data quality. Some learning-based algorithms [18,21,22] synthesize
the entire 9 × 9 sub-aperture light field images using two, four, and one input image,
respectively. Although these algorithms use fewer images as input, the Convolutional
Neural Network (CNN) must be trained on a significant amount of training data to ensure
high accuracy.
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Our work thus uses a non-learning-based light field synthesis approach that does
not require training data, yet can use varying sizes of focal stacks to synthesize light field
images with high accuracy. We use the focal stack images and the all-in-focus image to
synthesize the light field image: first, estimating a depth map using depth from defocus;
then, refining the depth map using maximum likelihood for pixels estimated to incorrect
depths. The depth map and the all-in-focus image are then used to synthesize the sub-
aperture views and their corresponding depth maps by shifting the regions in the image.
In our work, we show that, without using input images with a large baseline, we can still
mimic the apparent disparity of the objects at different depths in sub-aperture views by only
using the depth map and all-in-focus image. The missing information in the synthesized
views is only where the foreground object moves more than the background objects for
occluded regions. We handle these occluded regions in the synthesized sub-aperture views
by filling them with the information recovered from the focal stack images. We compare
our algorithm accuracy with one non-learning and two learning-based (CNN) approaches,
and show that our algorithm outperforms all three in terms of PSNR and SSIM metrics.

Our Contributions

Our proposed non-learning-based light field synthesis approach improves synthesis
accuracy by:

1. Synthesizing high-accuracy light field images with varying sizes of focal stacks as
input, filling the occluded regions with the information recovered from the focal
stack images;

2. Using the frequency domain to mimic the apparent movement of the regions at
different depths in the sub-aperture view, ensuring sub-pixel accuracy for small
depth values.

2. Related Work

A well-known method for image synthesis using intermediate views of a scene is
image interpolation [23]. View interpolation is then the process of estimating intermediate
views given a set of images of the scene from different viewpoints. In an earlier key work
on image synthesis [24], pixel correspondences are established using the range data and
the camera transformation parameters between a pair of two consecutive images. A pre-
computed morph map is then used to interpolate the intermediate views. In their work,
they also talk about the holes that are generated in the estimated intermediate views. As the
foreground regions in the estimated views move more than the background regions, these
holes are filled by interpolating the adjacent pixels near the holes. However, this causes the
filled regions to be blurry.

Building on these early image synthesis views, non-learning light field synthesis
approaches either use a sparse set of perspective views to synthesize the view inside of the
image baseline, or use a focal stack or the central view to extrapolate the perspective views.
As mentioned previously, light field synthesis can be more broadly classified into two main
categories: non-learning based and learning based approaches. Whilst we use focal stack
images in a non-learning approach, below, we review both learning and non-learning light
field synthesis methods as our results are compared to both types of approaches.

2.1. Non-Learning Based Light Field Synthesis

Kubota et al. [19] use focal stacks captured from multiple viewpoints to synthesise
intermediate views. They assume that the scene has only two focus regions: a background
and a foreground. The inputs for their approach are four images, two images captured by
each camera for the background and foreground regions. The drawback of the approach
is that it requires images to be captured from two viewpoints, which is a complex setup,
and the resultant synthesized image only has only two focal planes.

In their work, Mousnier et al. [20] propose partial light field reconstruction from a
focal stack. They use the focal stack images captured by a Nikon camera to estimate the
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disparity map and an all-in-focus image, and then use the camera parameters to estimate
the depth map. They use the depth map and all-in-focus image to synthesise only one set
of nine horizontal and nine vertical perspective views, but since the algorithm requires
data from the camera parameters, it is difficult to implement the algorithm to check the
accuracy against light field sub-aperture images.

Levin et al. [14] also use focal stack images, but, instead of using depth estimation
for the synthesis, show that using a focal stack, the 4D light field can be rendered in a
linear and depth-invariant manner. They argue that a focal stack is a slice of the 4D light
field spectrum; thus, the focal stack directly provides the set of slices that comprise the
3D focal manifold that can be used to construct the 4D light field spectrum. However,
their dimensionality gap model is unreliable at depth boundaries, which results in the
background pixels leaking into the foreground pixels.

Pérez et al. [25] propose a light field recovering algorithm from its focal stack that is
based on the inversion of the Discrete Focal Stack transform. They show that the inversion
using the Discrete Focal Stack transform needs many images in the focal stack. They
then show practical inversion procedures for general light fields with various types of
regularizers, such as L2 regularization of 0th order and 1st order, and L1 isotropic TV
regularization. The two main drawbacks of the algorithm proposed by Pérez et al. [25] are
that inversion using the Discrete Focal Stack transform requires a large number of images
in the focal stack, and they need to use regularization approaches to stabilize the transform.

Zhang et al. [17] in their work use one micro-baseline image pair to synthesize the
4D light field image, where the disparity between the stereo images is less than 5 pixels.
They propose that the small-baseline image pair can be captured using vibration in a static
camera or by a slight movement of a hand-held camera. There are two limitations of the
approach: first, the depth estimation algorithm used reduces in accuracy as the distance
between the input views is increased; second, since no information is available to fill in
the gaps generated by the difference in the movement of the background and foreground
regions in the sub-aperture images, the accuracy of the edge sub-aperture images is reduced
considerably compared to the sub-aperture images closer to the central view.

Shi et al. [13] use a sparse set of light field views to predict the views inside the
boundary light field images used, but since the approach requires a specific set of sub-
aperture views as input data from the light field images, applying the algorithm to different
types of data is non-trivial. The approach can be used for applications such as light field
compression, but not for light field synthesis as they require a set of sub-aperture views as
input data.

2.2. Learning-Based Light Field Synthesis

Kalantari et al. [21] propose a two-network learning based light field synthesis ap-
proach that uses a sparse set of four corner sub-aperture images. The first network estimates
the depth map and then the second network estimates the missing RGB sub-aperture im-
ages. Gul et al. [26] propose a three-stage learning-based light field synthesis approach that
also uses a sparse set of four corner sub-aperture images. The first stage is the stereo feature
extraction network, the second stage is a depth estimation network, and the third stage
uses the depth map to warp the input corner view to have them registered with the target
view to be synthesized. One drawback of both the proposed algorithm is that capturing the
four corner sub-aperture images is not straightforward, and would either require moving
the camera manually or a special apparatus with multiple cameras. However, the approach
can be used for light field compression as the approach uses corner sub-aperture views as
input data.

Srinivasan et al. [22] propose a CNN that estimates the geometry of the scene for a
single image and renders the Lambertian light field using that geometry, with a second
CNN stage that predicts the occluded rays and non-Lambertian effects. The network is
trained on a dataset containing 3300 scenes of flowers and plants captured by a plenoptic
camera. However, since the algorithm predicts the 4D light field image using a single
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image, filling the regions in the sub-aperture image at large discontinuities will only be an
approximation as that information is not available from a single image. They extend their
network by training it on 4281 light fields of various types of toys including cars, figurines,
stuffed animals, and puzzles, but their results show that the images are perceptually not
quite as impressive as the images synthesized for the flower dataset [22].

Wang et al. [27] propose a two-stage position-guiding network that uses the left-
right stereo pair to synthesize the novel view. They first estimate the depth map for the
middle/central view and then check the consistency for the synthesized left and right
view. The second CNN is the view rectifying network. They train their network on the
Flyingthings3D dataset [28] that contains 22,390 pairs of left-right views and their disparity
maps for training and 4370 pairs for testing. The main limitation of the approach is that,
since their research focuses on dense view synthesis for light field display, they only
generate the central horizontal views and not the entire light field image.

Wu et al. [29] present a “blur restoration-deblur” framework for light field reconstruc-
tion using EPIs. They first extract the low-frequency components of the light field in the
spatial dimensions using a blur kernel on each EPI slice. They then implement a CNN
to restore the angular details of the EPI, and they use a non-blind “deblur” operation on
the blurred EPI to recover the high spatial frequencies. In their work, they also show the
effectiveness of their approach on challenging cases like microscope light field datasets [29].
The main drawback of their approach is that they need at least three views for both angular
dimensions for the initial interpolation, and their framework cannot handle extrapolation.

Yeung et al. [30] propose a learning-based algorithm to reconstruct a densely-sampled
light field in one forward pass from a sparse set of sub-aperture views. Their approach first
synthesises intermediate sub-aperture images with spatial-angular alternating convolutions
using the characteristics of the sparse set of input views, and they then use guided residual
learning and stride 2 4D convolutions to refine the intermediate sub-aperture views. They
suggest that the proposed algorithm can not-only be used for light field compression but
also applications such as spatial and angular super-resolution and depth estimation.

Zhou et al. [31] train a deep network that predicts the Multi-Plane Image (MPI) using
an input stereo image pair. A multi-plane image is a set of images where each plane
encodes the RGB image and an alpha/transparency map at each depth estimated by the
stereo image pair. The MPIs can be considered as a focal stack representation of the scene,
predicted using only the stereo image as input. If the stereo baseline is large enough,
the parts of the image that are visible due to the lateral shift give information that can be
used to fill in the gaps generated by the difference in region depths in the perspective views
(horizontal direction). Chao et al. [18] in their work propose a lightweight CNN that uses
a single stereo image pair that enforces the left-right consistency constraint on the light
fields synthesized from left and right stereo views. The light field synthesized by right and
left stereo views is then merged by using a distance-weighted alpha blending operation.
However, since the input stereo pair used is only in the horizontal direction, gaps in the
vertical perspective views can only be filled by using a prediction model as no information
is available in the vertical direction.

3. Methodology

The methodology presented in this paper exploits the characteristics of focal stack
images and the all-in-focus image to generate a light field image with an angular resolution
of 9 × 9. The 9 × 9 resolution is chosen to have the same angular resolution and the images
in the dataset; thus, the accuracy of the algorithm can be calculated for the entire light
field image. The flow of the algorithm is represented in Figure 1. As shown in Figure 1,
the methodology can be divided into three main stages: depth estimation, sub-aperture
view synthesis, and RGB and depth map filling for occluded regions.
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Figure 1. Light field synthesis algorithm flow.

3.1. Depth Estimation

We exploit the characteristics of focal stack images to generate a disparity map that
is used to synthesize the light field image. The flow of the depth estimation algorithm is
shown in Figure 2. Our algorithm uses the concept of depth from defocus by a one-to-
one comparison between each focal stack image and the central all-in-focus image. This
estimation approach is also noise-resilient and outperforms the current state-of-the-art
benchmark algorithms in the presence of noise [5]. Note that the below only provides an
overview of our depth estimation approach; more details are presented in our previous
publication [5]. There are other algorithms such as [32–35] that use stereo matching for
depth estimation, but there are two main reasons why we do not compare our depth
estimation approach to these algorithms. First, this paper focuses on light field synthesis
using focal stacks as they can be used to extract the information used to fill the gaps in
the synthesized sub-aperture views. Second, these techniques use sub-aperture views,
which are difficult to capture using a 2D camera without physically moving the camera; in
contrast, focal stacks can be captured by only adjusting the focal point of the camera lens.

Figure 2. Depth estimation algorithm flow.
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3.1.1. Focal Stack Generation and Image Pre-Processing

Our depth estimation algorithm works with a focal stack image captured by a camera,
or generated using the light field image. For the purpose of our work, we use the focal
stack images generated using the light field image as we are able to validate the accuracy
of the synthesized light field view by using a similarity index metric with the original light
field image views.

The focal stack is generated from the light field image by using a shift-sum filter, which
is a depth-selective filter that functions like a planar focus. The filter works by shifting
the sub-aperture images of the light field image to a common depth and then adding the
images together to obtain the 2D image. The average of the shifted sub-aperture pixels
values is used for refocusing, as it replicates the blur around depth discontinuities in focal
stacks captured by a camera.

To minimize the number of misdetections, the gradient of the image is added to
itself to ensure that all the edges and textured regions in the image are well defined in
both the central all-in-focus image and the focal stack images. The advantage of gradient
addition relies on the fact that, in focal stack images, the textured regions in the image
that are in focus maximally contribute to the gradient image, while the out-of-focus objects
contribute the least. This pre-processing step ensures that the object boundaries and
textured regions are exaggerated in the focal stack images. This drastically reduces the
number of misdetections, in turn reducing the dependence on the post-processing steps.

3.1.2. Patch Generation and Comparison

The focal stack images from the previous stage are divided into smaller image patches,
with the individual patches then compared with the corresponding patches in the all-
in-focus image. For depth estimation, we use the two patches of size 4 × 4 pixels as
shown in Figure 3, the squares outlined by red and green lines. The results for depth
map accuracy with different window sizes showed that smaller window sizes covered the
image regions and boundaries more accurately. We can also reduce the patch size to lower
than 4 × 4 pixels; however, experimental tests revealed that using a patch smaller than
4 × 4 pixels does not improve the depth map accuracy and increases the computational
time. Figure 3 shows the two 4 × 4 image patches in the red and green squares that are
considered for matching. Since we use overlapping windows, we only use the pixels
highlighted in the red square and green square for the depth map estimation as shown
in Figure 3.

Figure 3. The red and green squares are the two overlapping 4 × 4 pixel patches used to cover the
entire image. As the patches overlap, only the highlighted red and the green pixels from the red and
green squares are used to estimate the depth.

We compared the FFT of the image patches, so we no longer look at individual pixel
values when comparing the image patches but a frequency domain representation of those
patches, which makes the comparison more noise resilient. Figures 4 and 5 illustrate the
proposed approach. Figure 4a shows the central sub-aperture image of the LF image,
and Figure 4b,c show a 4 × 4 pixel patch taken from the image and the FFT of the patch,
respectively. The depth levels for the depth map depend on the number of images in the
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focal stack images. In Figure 5, only 9 refocused images are considered from −4 to +4 slope
at an interval of 1. It is clearly seen that the FFT of the fifth patch in Figure 5 is the most
similar to the FFT of the reference patch.

(a) (b) (c)

Figure 4. (a) Central sub-aperture image of a LF image, (b) a magnified 4 × 4 RGB image patch
and (c) FFT of the image patch.

(a)

(b)

(c)

Figure 5. (a) The RGB image patch and (b) the FFT patch at different focal lengths. The patch with
the red boundary is the closest match to the reference patch in Figure 4. (c) The graph shows the MSE
values for the central image in Figure 4, with the corresponding focal stack image patch.

3.1.3. Depth Estimation and Refining

The estimated depth map still has a few errors, and these are refined in two steps using
an iterative approach. Firstly, the histogram of the depth map is checked for the number
of pixels that are present at each depth. If the number of pixels at a particular depth falls
below a threshold value, those pixels are filled with the maximum likelihood value of the
pixels in the depth map at that position, i.e., using the pixel value that occurs the most
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times in the neighbouring pixels. The second step is similar, but instead of considering
individual pixels, the patches are considered. This step checks for any isolated patches in
the image that have different surrounding depth patches. Once these patches are isolated,
and the patch is then filled with the value of pixels with maximum likelihood in the depth
map at that patch position (similar to the above).

3.2. Sub-Aperture View Synthesis Using FFT-Shift

Epipolar images are formed by stacking the sub-aperture images in the horizontal and
vertical directions, and a representative slice through this 4D block is shown in Figure 6b,c,
respectively. The red, green and blue parallelograms show that the slope of the line reflects
the depth of the pixels. The pixels that do not appear to move in between the sub-aperture
views are seen as a straight line; this is shown by the blue parallelograms in Figure 6b
that have a zero slope. The pixels shown by the green parallelograms in Figure 6c that
are closer to the camera incline to the right, and the pixels that are further away from the
camera incline to the left, as shown by the red parallelograms in Figure 6. The pixels in the
sub-aperture view depict the depth as they appear to be moving toward or away from the
central view. In turn, if the depth is known, the pixels in all of the sub-aperture views can
be filled by using pixels from the central view or the all-in-focus image.

(a) (b)

(c)

Figure 6. (a) The sub-aperture image view; (b) the EPI for the vertical line represented in (a); (c) the
EPI for the horizontal line represented in (a).

The amount by which the pixels appear to move from the central view in the sub-
aperture views is the product of the depth value and the distance of the sub-aperture view
from the central view. Since the product of the depth value and the distance of the sub-
aperture view from the central view can have small decimal values, we use the frequency
domain to fill the sub-aperture views.

The relationship between the image shift in the spatial and frequency domains is
shown in Equation (1), where x0 and y0 are the depth value and u, v are the sub-aperture
location. The amount by which the central view pixels shift to mimic the apparent shift of
pixels between sub-aperture views is the product of x0, u and y0, v.

f (x + x0, y + y0) = F(u, v)e−j2π(
u∗x0+v∗y0

N ) (1)
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Using the frequency domain to mimic the apparent shift of pixels between sub-aperture
views ensures the accuracy of synthesized views at the sub-pixel level. The pixels in the
sub-aperture views are thus filled from the minimum depth to the maximum depth in the
depth map. As we move through different perspective views, the regions in the image
closer to the camera cover the background pixels, and filling the views from the minimum
depth values ensures that the regions in the image that overlap the other depths in the
sub-aperture views are correctly filled.

3.3. RGB and Depth Map Filling of Occluded Regions

Once we fill the pixels in the separate sub-aperture views using the all-in-focus image
and depth maps, due to the difference in the depth between different regions, some parts
of the image that are not visible in the central view are exposed. This also occurs in the
perspective depth map views as shown in Figure 7a.

(a) (b)

Figure 7. (a) Gaps generated in the depth image due to occlusion, and (b) Depth map after the gaps
are filled.

3.3.1. Depth Map Filling of Occluded Regions

In a depth map, if there are two regions at different depths and a gap is thus created,
the region will always be filled by the depth value which is farther away, as the apparent
movement of the foreground objects is more than the background objects between sub-
aperture views as shown in Figure 7b.

3.3.2. Filling Occluded RGB Regions Using the Focal Stack

Filling the occluded regions in the RGB images is more complex than filling the
occluded regions in the depth map, as the depth map values have only two possible values
to choose from: the foreground or the background depth values. In our approach, the depth
values and the focal stack images are used to estimate the pixel values for the gap generated
near depth discontinuities. Due to the defocus blur in focal stack images, when focusing
on the background, parts of the background are revealed that are not visible in the all-in-
focus image. The amount of blur is also dependent on the depth difference between the
foreground and background object. As the pixels in the sub-aperture images also move
in accordance with their depth values, the focal stack image reveals the exact amount of
information required to fill the gaps, as shown in Figure 8. Figure 8c is obtained by blurring
the foreground objects by the amount equivalent to the depth difference between the object
and subtracting it from the image focused on the background. However, since the induced
blur can only approximate the lens blur, the extracted image region still contains the color
tone of the foreground region.
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(a) (b) (c)

Figure 8. (a) The all-in-focus image, (b) the image in the focal stack focused on the background,
and (c) background region minus the effect of the foreground object blur.

3.3.3. RGB Image Refinement

Figure 9 represents a light field image with an angular resolution of 9 × 9 views.
The blue square represents the starting point for the proposed light field synthesis algorithm.
We use the all-in-focus image and the estimated depth map to synthesize the central
horizontal and vertical sub-aperture views, which in this depth map is represented by the
green and yellow squares in Figure 9. Each of the generated central horizontal views and
its corresponding depth map are then used to synthesize the sub-aperture views above
and below the green squares, while each of the generated central vertical views and its
corresponding depth map is then used to synthesize the sub-aperture views to the right
and left of the yellow squares. All of the orange squares thus are synthesized using the
central horizontal and vertical sub-aperture views, and its depth map is represented by the
green and yellow squares. Both of the sub-aperture views generated from the horizontal
and vertical views are then averaged as the final light field image.

Figure 9. The figure shows the order in which the sub-aperture images are generated.

4. Results
4.1. Dataset

The results of the proposed algorithm were evaluated on a synthetic 4D light field
image dataset [36]. The dataset is widely used to validate depth estimation and recon-
struction/synthesis algorithms for light field images as it contains ground-truth disparity
and depth maps. The depth range for the synthetic data lies within the range of −4 to
+4, and the number of focal stack images can be increased or decreased by reducing or
increasing the focus interval between consecutive focal stack images.

The proposed algorithm is compared to three benchmark techniques from Kalan-
tari et al. [21], Chao et al. [18], and Zhang et al. [17]. We have chosen these three techniques
because they are state-of-the-art for light field synthesis, and each uses a different approach.
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Zhang et al. [17] use a micro stereo pair, Chao et al. [18] use a stereo pair with a large
baseline, while Kalantari et al. [21] use the four corner sub-aperture views for light field
synthesis. The Structural Similarity Index Measure (SSIM) [37] and Peak-Signal-to-Noise-
Ratio (PSNR) metrics were used for evaluation.

For Kalantari et al. [21], we have used the trained network used by the authors to
synthesize the light field images, and for Chao et al. [18], we trained the network using the
code provided by the authors. For the SSIM metric, we compare the top-left sub-aperture
views for the algorithms that synthesize a 9 × 9 or 8 × 8 light field image. We can use any of
the four corner images for evaluation. We use the corner views for evaluation as they show
the maximum parallax from the central view. For the algorithm that only synthesizes the
horizontal sub-aperture views, we use the central left-most horizontal view for evaluation.
For the PSNR metric, we convert the sub-aperture light field image to the lenslet view and
calculate the PSNR.

Kalantari et al. [21] synthesize the light field image using four corner sub-aperture
images with an angular resolution of 8 × 8, whereas we synthesize the light field image
with an angular resolution of 9 × 9. We thus evaluate the results for comparison by using
only the inner-most 8 × 8 sub-aperture views. Chao et al. [18] use two horizontal corner
sub-aperture images with an angular resolution of 9 × 9. As they train their network
on 20 images from the dataset, only four light field images remain for testing, so we
evaluate the average PSNR and SSIM for the four test images. The algorithm proposed by
Zhang et al. [17] only synthesizes horizontal sub-aperture views using two micro baseline
stereo pairs, so we evaluate the results for only the horizontal views.

The images in Figure 10 show the synthesized leftmost horizontal view and the SSIM
error map for three dataset images. The pixels in the SSIM map most similar to the ground-
truth sub-aperture view appear white, where the similarity index is close to 1. In contrast,
the regions in the image least similar appear red, where the similarity index is close to 0,
as shown in Figure 11.

For depth estimation, we use a depth from defocus technique that uses the focal stack
images and an all-in-focus image to estimate the depth map. As the number of images in
the focal stack govern the resolution of the depth map, the accuracy of the synthesized
light field images reduces as the number of focal stack images reduces. Table 1 shows
the average PSNR and SSIM for the proposed algorithm for different numbers of focal
stack images used for light field synthesis for all images in the dataset [36]. It should be
noted that, for the sake of generalization, the focal stack images are captured over the
entire depth range for the synthetic data; that is, from −4 to +4 irrespective of the depth
range of individual images in the dataset. Thus, even though the number of focal stack
images for light field synthesis are 41, 21, and 17 in Table 1, the focal stack images that have
regions in focus are less than the total number of images in the focal stack. We chose the
number of focal stack images as 41, 21 and 17, as these values generate consecutive focal
stack images at a depth difference of 0.2, 0.4, and 0.5, respectively, for the depth range of
−4 to +4. Furthermore, only the images that have regions in focus are constituted in the
estimation of the depth map. For a focal stack with five images marked with a ’*’ in Table 1,
the focal stack images are captured between the maximum and minimum depth values for
the depth range of each image.

Table 1. Average PSNR and SSIM for all images in the dataset using focal stacks of varying sizes.
For focal stacks with five images, the focal stack images used are captured between the maximum
and minimum depth value for the depth range of each image.

41 21 17 5 *

PSNR 33.69 32.23 31.5 29.63
SSIM 0.9588 0.9461 0.9395 0.9052
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(a) Boxes

(b) Cotton

(c) Dino
Our result Zhang (2015) Kalantari (2016) Chao (2021)

Figure 10. Visual comparison for the ’Boxes’, ’Cotton’, and ’Dino’ image synthesized leftmost
horizontal sub-aperture view and the SSIM with the ground-truth sub-aperture view for the proposed
algorithm, Zhang et al. [17], Kalantari et al. [21] and Chao et al. [18].
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Figure 11. SSIM error map colorbar.

4.2. Quantitative Analysis Synthetic Images

The quantitative results are divided into two parts, as the method of Zhang et al. [17]
only generates the central horizontal sub-aperture views. Figure 10 and Table 2 show the
visual comparison and quantitative results for the leftmost horizontal view for the Boxes,
Cotton and Dino image for Zhang et al. [17], Kalantari et al. [21] and Chao et al. [18] using
the PSNR and SSIM metrics. Table 3 shows the average PSNR and SSIM for Zhang et al. [17]
and the proposed algorithm for the central horizontal views for all the images in the
dataset [36]. Table 4 shows the average PSNR and SSIM for Kalantari et al. [21] and the
proposed algorithm for 8 × 8 views for all the images in the dataset [36]. For Chao et al. [18],
since 20 images are used for training the network, Table 5 shows the average PSNR and
SSIM for the four test images in the dataset [36].

Table 2. Quantitative comparison for leftmost central horizontal synthesized view comparison with
different algorithms for images shown in Figure 10.

Boxes Cotton Dino

Our result
PSNR 28.41 44.99 38.42
SSIM 0.9313 0.9953 0.9901

Zhang et al. [17]

PSNR 21.50 25.72 23.15
SSIM 0.6362 0.7390 0.6801

Kalantari et al. [21]

PSNR 19.74 17.21 19.16
SSIM 0.8139 0.8902 0.9207

Chao et al. [18]

PSNR 27.34 24.85 19.67
SSIM 0.9260 0.9357 0.9355

Table 3. For comparison with Zhang et al. [17], we evaluate the average PSNR and SSIM for only
horizontal for all images in the dataset as the algorithm only synthesizes horizontal views.

Our Result Zhang et al. [17]

PSNR 32.23 21.1
SSIM 0.9313 0.7592

Table 4. For comparison with Kalantari et al. [21], we evaluate the average PSNR and SSIM for all
images in the dataset.

Our Result Kalantari et al. [21]

PSNR 33.69 18.6
SSIM 0.9588 0.8834
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Table 5. For comparison with Chao et al. [18], we evaluate the average PSNR and SSIM for four test
images in the dataset as the remaining 20 images are used to train their network.

Our Result Chao et al. [18]

PSNR 38.08 20.02
SSIM 0.9672 0.8901

4.2.1. Quantitative Analysis for Central Leftmost Horizontal Sub-Aperture View

The ’Boxes’ image in Figure 10 consists of a crate with books in the foreground
and bags in the background. None of the algorithms can accurately synthesize the fine
criss-cross pattern on the crate, as shown by the yellow and red regions in the SSIM
error map of Figure 10a. While our algorithm can still maintain the criss-cross pattern
of the crate, the results for Zhang et al. [17] show distortion for this foreground pattern.
For Kalantari et al. [21], the criss-cross pattern is invisible in some regions in the synthesized
view, whereas, for Chao et al. [18], the pattern appears to be doubled. The results for
Zhang et al. [17] also show distortion around the edges of the crate and the box placed
on the crate. For the view synthesized by Kalantari et al. [21], the thread pattern on the
box placed on the crate is synthesized inaccurately, and the pattern appears twice in some
regions. For Chao et al. [18], the boundaries of the bags in the background appear to be
shifted and superimposed on the image, making it appear blurred.

The ’Cotton’ image in Figure 10b is relatively simple as it only consists of a statue
and a plain colored wall in the background. Our results show that, except at depth
discontinuities, our algorithm can synthesize the image accurately for all the other regions
in the image: for PSNR and SSIM in Table 2, the accuracy is 44.99 and 0.9953, respectively.
For Zhang et al. [17], the synthesized image and SSIM error map show that, near the head
of the statue on the left side, the boundaries are pixelated, and on the right side, part of
the head is stretched. It is also be seen in the SSIM error map in Figure 10b that most of
the depth discontinuities within the statue and the shadow regions in the figure are also
incorrectly synthesized. For Kalantari et al. [21], we can see from Figure 10b that the area
within the statue is synthesized accurately, except for the regions where a shadow is cast
on the statue. Some texture near the top of the head is missing, represented by the red area
in the SSIM error map. The image background region is synthesized inaccurately, shown
by the yellow areas in the SSIM error map. For Chao et al. [18], even though the SSIM score
is 0.9357, the structure of the eyes, nose, and hair appear to be perceptually shifted and
superimposed on the image, making it appear blurred near those regions in the figure.

The ‘Dino’ image in Figure 10c is relatively complex as it consists of a textured wooden
background, the cast of a dinosaur shadow on the wall, and wooden toys and boxes. Our
results show a similar trend as the ‘Boxes’ and ‘Cotton’ images, where our algorithm can
synthesize the image accurately for all the regions in the image except at depth discontinu-
ities: the PSNR and SSIM results show the accuracy to be 38.42 and 0.9901, respectively,
as shown in Table 2. For Zhang et al. [17], the resultant image and SSIM error map show
that most of the depth discontinuities in the figure are also incorrectly synthesized. It can
also be seen in the synthesized view in Figure 10c that the open wooden shelves on the
left and the wooden boxes on the right have jagged edges. For Kalantari et al. [21], we can
see that the synthesized view from Figure 10c has no visual errors. Still, the SSIM error
map shows that most regions in the image appear yellow, implying that the accuracy of the
synthesized views compared to the actual light field view is between 80–90% (as indicated
by the color bar in Figure 11). For Chao et al. [18], we see a similar trend as the ‘Boxes’ and
‘Cotton’ images, where the synthesized view has regions in the image that appear to be
shifted and superimposed on the image, making it appear blurred near those regions in the
figure. This effect is visible near the dinosaur shadow on the wall, and the wooden toys
near the bottom of the image, where the image appears blurred.
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4.2.2. Quantitative Analysis for Top-Leftmost Sub-Aperture View

Since Kalantari et al. [21] and Chao et al. [18] synthesise the light field image with
angular resolution on 8 × 8 and 9 × 9, respectively, we can compare the appropriate
corner sub-aperture view to measure the algorithm’s accuracy. Figure 12 and Table 6
show the visual comparison and quantitative results for the top left sub-aperture view.
The results for our algorithm for the top corner sub-aperture views reduce in accuracy
compared to the horizontal views. As our algorithm uses depth maps to synthesize the
sub-aperture views, the error in the depth map for horizontal views is amplified for the top
and bottom sub-aperture views, which reduces the synthesized image accuracy for the top
and bottom views. For all images in the dataset, the accuracy is reduced for the top left
view compared to the horizontal view for our algorithm: the PSNR reduces from 33.55 to
31.24 and the SSIM reduces from 0.9713 to 0.9525. For Chao et al. [18], the accuracy for the
top corner sub-aperture views also reduces compared to their synthesized horizontal views,
but the drop in accuracy is quite significant for SSIM. For the four test images evaluated,
the accuracy for the top left view compared to the horizontal view in terms of PSNR
reduces from 23.74 to 21.8, whereas the SSIM reduces from 0.9093 to 0.7902. In contrast,
for Kalantari et al. [21], as the input images used are the four corner sub-aperture views,
the accuracy of the synthesized views reduces as we move towards the central views from
the four corner views. For all images in the dataset, the average reduction in accuracy for
the horizontal view compared to the top-left view is a PSNR reduction from 19.21 to 18.62
and SSIM reduction from 0.8872 to 0.8071.

Table 6. Quantitative comparison for top left synthesized view comparison with different algorithms
for images shown in Figure 12.

Boxes Cotton Dino Sideboard

Our result

PSNR 27.52 43.07 35.92 25.83
SSIM 0.9137 0.9925 0.9808 0.9431

Kalantari et al. [21]

PSNR 19.77 17.40 19.44 20.04
SSIM 0.8417 0.9150 0.9420 0.9324

Chao et al. [18]

PSNR 23.72 24.63 19.32 19.51
SSIM 0.7938 0.8955 0.8614 0.6102

For the ‘Boxes’ image in Figure 12a, as in the case of horizontal views, the top left
sub-aperture view also struggles with the fine criss-cross pattern on the crate, as seen in
the yellow and red regions in the SSIM error map. For our algorithm, the depth map
inaccuracies cause some regions to be synthesized incorrectly. This effect is visible above
the box near the upper left part of the image, where the boundaries of the bags are shifted
slightly to the right. The results for Kalantari et al. [21] and Chao et al. [18] show errors in
similar regions as seen in Figure 12a, which is near the top edge of the box and the crate.

For the ‘Cotton’ image in Figure 12b, our results show similar high accuracy for the top
left view as the horizontal view, where the algorithm can synthesize the image accurately
for all the regions except at depth discontinuities. The PSNR and SSIM results shown in
Table 6 show the accuracy to be 43.07 and 0.9925, respectively. For Kalantari et al. [21], we
can see from Figure 12b that the background region in the image is synthesized inaccurately,
as shown by the orange regions in the SSIM error map. Areas in the image with shadows
near the neck and shoulder are also inaccurately synthesized. For Chao et al. [18], similar
to the horizontal view, the structure of the eyes, nose, and hair appear to be shifted and
superimposed on the image, making it appear blurred near those regions in the figure.
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In the ‘Dino’ image in Figure 12c, our algorithm accurately synthesizes the image
for all the regions in the image except at depth discontinuities, where the SSIM error
map appears yellow. For Kalantari et al. [21], we can see that the synthesized view from
Figure 12c has no visual errors with an SSIM of 0.9420, but this high accuracy is also because
the corner sub-aperture views are used as input images for the synthesis. Still, the SSIM
error map shows that most regions in the image appear yellow, implying that the accuracy
of the synthesized views compared to the actual light field view is between 80–90% (see
color bar in Figure 11). For Chao et al. [18], near the dinosaur shadow on the wall and the
wooden toys near the bottom of the image, parts of the image appear to be shifted and
superimposed on the image, making it appear blurred near those regions in the figure.

(a) Boxes

(b) Cotton

Figure 12. Cont.
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(c) Dino

(d) Sideboard

Our result Kalantari (2016) Chao (2021)

Figure 12. Visual comparison for the ’Boxes’, ’Cotton’, ’Dino’ and ’Sideboard’ image synthesized
top left sub-aperture view and the SSIM with the ground-truth sub-aperture view for the proposed
algorithm, Kalantari et al. [21] and Chao et al. [18].

In the ‘Sideboard’ image in Figure 12d, our synthesized view shows errors in two
regions in the image. As our depth estimation algorithm cannot distinguish the depth for
thin objects, the ceiling wires on which the lights hang from are incorrectly synthesized.
The other error is near the bottom of the image, where the legs of the sideboard appear
distorted. Again, this is because the depth estimation algorithm misdetected the depth of
the legs. For Kalantari et al. [21], we can see that the sideboard and the objects placed on
the sideboard are accurately synthesized as these regions in the SSIM error map appear
white, whereas all other regions appear yellow. For Chao et al. [18], the pattern of the wall
and the objects placed on the sideboard appear to be blurred, which is again because it
appears as a shifted image superimposed on the image.
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4.3. Quantitative Analysis for Real Light Field Image

To test the accuracy of our algorithm on real light field images, we use the 30-scene
dataset [21]. We compare the accuracy of our algorithm with Wu et al. [29], Yeung et al. [30]
and Kalantari et al. [21]. Table 7 shows the PSNR and SSIM results averaged over all
30 images in the dataset. We synthesize 7 × 7 sub-aperture views for the real light field
images using the focal stack images and the central all-in-focus image. The results for
Wu et al. [29], Yeung et al. [30] and Kalantari et al. [21] have been taken from the results
presented by these authors in their work. For the real images, the depth values range from
+2 to −2, as opposed to synthetic images, which have depth values ranging from +4 to
−4. Since our algorithm is a non-learning-based approach, the only change we make to
synthesize real light field images is to change the depth range, which shows the flexibility of
our approach. It can be seen from the results shown in Table 7 that our approach produces
on par results in terms of the similarity index(SSIM) but reduces in accuracy in terms of the
PSNR values. The reduction is because Wu et al. [29] takes 3 × 3 input images and only
interpolates one image between their input views. Kalantari et al. [21] use the corner images
as input and interpolate all the internal views, while Yeung et al. [30] in their 2 × 2–8 × 8
set-up only extrapolate two views in both directions, while the other views are interpolated
within the baseline of the input images. On the other hand, we only use the central image
as input and extrapolate three images in both directions to synthesize a 7 × 7 light field
image. We mainly use the focal stack image and the all-in-focus image as input instead of
sub-aperture views because sub-aperture views are comparatively more difficult to capture.
In addition, while extrapolating to synthesize the views using sub-aperture images, we do
not have any information to fill the occluded regions.

Table 7. Comparison with Wu et al. [29], Yeung et al. [30] and Kalantari et al. [21] for the 30-
scenes dataset.

30 Scenes Dataset Our Result Wu et al. [29] Yeung et al. [30] Kalantari et al. [21]

PSNR 36.24 41.02 40.93 37.50
SSIM 0.9922 0.9968 0.98.27 0.97

Figure 13 shows the visual comparison for the left-topmost sub-aperture image with
the ground truth for four images from the 30-Scenes dataset [21]. Table 8 shows the PSNR
and SSIM results for the four images shown in Figure 13 from the 30-Scenes dataset [21]. We
have chosen these images as there is a significant depth difference between the foreground
and background regions in these images. In Figure 13a, the tree’s bark covers part of the
road and the car. It can be seen from the magnified images that the bark in the synthesized
image shows no blurring around the edges near the road or the car, as seen in the red and
green magnified images, respectively. The flower scene in Figure 13b consists of plants
and trees in the foreground and cars, houses and a man in the background. The magnified
images in Figure 13b show that the edges of the leaves are sharp, and even the bark with the
house in the background is synthesized correctly. However, closer inspection of the image
reveals that just to the left of the green magnification window, the edges of the window on
the house in the background slant a little to the right. An error of the depth map causes this
abnormality in the synthesized view. A similar aberration can be seen in Figure 13c in the
magnified green window, but this irregularity is due to the incorrect filling of the occluded
region of the image. This irregularity can also be seen in the SSIM map, highlighted by the
dark red spots. In Figure 13d, the red magnification window shows no blurring effect near
the seahorse’s snout, but if we look closely at the green magnification window, we notice
that the gap between the seahorse and the chair handle is less than seen in the ground truth
image. This is again due to an error with the depth map, as the car in the background or
the seahorse is estimated at a slightly incorrect depth, causing the objects to appear closer.
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Table 8. PSNR and SSIM for the four images shown in Figure 13 from the 30-scenes dataset.

30 Scenes Dataset Car Flower Leaves Seahorse

PSNR 30.02 30.98 28.27 31.04
SSIM 0.9921 0.9877 0.9786 0.9923

(a) Car

(b) Flower

Figure 13. Cont.
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(c) Leaves

(d) Seahorse
Ground Truth Our result

Figure 13. Visual analysis for the ‘Car’, ‘Flower’, ‘Leaves’ and ‘Seahorse’ images’ synthesized leftmost
horizontal sub-aperture view and the SSIM map with the ground-truth sub-aperture view for the
proposed algorithm.

4.4. Results Overview

It is clear from the visual comparison shown in Figure 10, Figure 12 and comparative
quantitative results presented in Tables 2 to 6 that our proposed algorithm outperforms
the three algorithms for both PSNR and SSIM metrics. One main disadvantage of Kalan-
tari et al. [21] is that they use four corner sub-aperture views for synthesis, and it is not
easy to capture the corner views without moving the camera. Chao et al. [18] uses a large
baseline horizontal stereo pair and interpolates the other horizontal views within that
baseline. Still, as no information is available for the extrapolated vertical views, the algo-
rithm’s accuracy reduces for the corner sub-aperture views. Furthermore, for our algorithm,
the final resolution of the light field image mainly depends on the resolution of the central
all-in-focus image. The precision of the depth map only ensures parallax accuracy in the
sub-aperture views. Thus, even if the depth map precision is reduced, this will only reduce
the amount of parallax of the synthesized light field image. Still, the resolution of the light
field will correspond to the central view’s resolution.
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Wu et al. [29] and Kalantari et al. [21] only interpolate images within the baseline of
the input image to synthesize the internal views. Yeung et al. [30] in their 2 × 2–8 × 8 set-up
only extrapolate two views in each direction, while the other views are interpolated within
the baseline of input images. Since these algorithms interpolate most of the synthesized
views between the baseline of the input views, they achieve higher accuracy than our
approach, but as these algorithms require sub-aperture views as input, these algorithms are
not practical for light field synthesis using 2D cameras. In contrast, focal stack images can
be captured relatively easily as we do not need to use any additional equipment to move
the camera to capture different viewpoints; instead, we only need to change the camera’s
focal point.

5. Future Work

In our approach proposed here, the number of depth levels in the depth map is
dependent on the number of images in the focal stack. Thus, with fewer images in the
focal stack, if an object in the image has two or more depth levels, the object shows an
abrupt discontinuity in the synthesized view, as shown in Figure 14 (highlighted by the
red squares). In our future work, we intend to use the focal stack images to estimate the
amount of blur for the same defocus regions between consecutive focal stack images and
use that information to increase the depth levels of the depth map. Increasing the depth
levels using fewer focal stack images will reduce the effect of abrupt discontinuities for
objects with two or more depths in the synthesized view, increasing the synthesized view
accuracy with fewer focal stack images. In our future work, for light field synthesis using
focal stack images captured by a 2D camera, we intend to compare our algorithm accuracy
with RVS and VSRS view synthesis algorithms [38] that use DIBR.

Figure 14. Error in light field synthesis using fewer images in the focal stack.

Some commercial cameras such as Lumix [39] and Olympus [40] already have a feature
called focus stacking that can take high-resolution focal stack images and merge them to
create a sharper all-in-focus image. These cameras also allow the user to save the individual
focal stack images in the raw format. Thus, with further development, our algorithm
can help to enable light field creation. In our future work, we intend to use these focal
stack images and all-in-focus images to synthesize the light field image with an angular
resolution of 15 × 15 with a high spatial resolution of the individual sub-aperture views.
We also intend to capture the focal stack with a 2D camera and align the light field camera
with the 2D camera to capture a light field of the same scene and use that as reference views
to check the accuracy of our approach.

6. Conclusions

We propose a light field synthesis algorithm that uses the focal stack images and
the all-in-focus image to synthesize high-accuracy light field images with varying sizes
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of focal stacks as input with an angular resolution of 9 × 9. We fill the occluded regions
with the information recovered from the focal stack images. The depth map and the all-
in-focus image synthesize the sub-aperture views and their corresponding depth maps by
mimicking the apparent shifting of the central image according to the depth values. We
ensure sub-pixel accuracy for small depth values by using the frequency domain to mimic
the apparent movement of the regions at different depths in the sub-aperture view. Our
algorithm’s accuracy is compared with three state-of-the-art algorithms: one non-learning
and two CNN-based approaches. The results show that our algorithm outperforms all
three in terms of PSNR and SSIM evaluation metrics. We also show that, if the depth levels
in the image are known, we can synthesize high-accuracy light field images with just five
focal stack images.
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