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From a theoretical point of view, the use of the shading cue involves estimates of the light field and thus observers need to
judge the light field and the shape simultaneously. The conventional stimulus in perceptual experiments, a circular disk filled
with a monotonic gradient on a uniform surround, represents a local shading or tonal gradient. In typical scenes, such
gradients vary smoothly from point to point over large areas, whereas light fields are globally defined and tend to be
invariant over large parts of the scene. Hence, it is hardly surprising that multi-local shape estimates tend to synchronize
although previous reports of such synchronies involved uniform, homogeneous light fields. Here, we consider more
complicated and more realistic light fields. We present extensive, highly structured, quantitative observations using novel
paradigms. Human observers are able to deal with some structured light fields but totally fail in others, even though these
may be formally similar (like radial and circular fields). Observers respond very differently in some cases where the light
fields differ only by sign, like converging and diverging fields. These results can be qualitatively understood on the basis of a
few simple assumptions, mainly global top-down template matching of peripheral local data.
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Introduction

“Shape from shading” is a term that derives from
algorithmic or machine vision (Forsyth & Ponce, 2002;
Horn & Brooks, 1989; van Diggelen, 1959; Zhang, Tsai,
Creyer, & Shah, 1999). It refers to a class of algorithms
that computes three-dimensional shape on the basis of
image structure. Of course, this involves numerous
assumptions, some generic, some limiting, some incoherent
(i.e., in conflict with physics). Typical assumptions
include uniform, homogeneous light fields, Lambertian
surfaces of uniform albedo, and the absence of both
vignetting and multiple scattering. Light fields are often
confined to a collimated beam, such as direct sunlight.
Lambertian surfaces (Lambert, 1760) do not exist in the
strict sense, though white plaster or paper comes close.
Vignetting (Forsyth & Zisserman, 1991; Koenderink &
van Doorn, 1983, 2003b) is the result of occlusion of the
source by the scene itself. Cast and body shadows are the
simplest examples. More complicated, and often impor-
tant, cases involve extended sources and non-convex
objects. Similar constraints apply to multiple scattering,

which depends upon the possibility of disjunct surface
elements to “see each other.” In order to get rid of
vignetting and multiple scattering, one would have to limit
the scene to a single convex objectVsay an egg in outer
spaceVand consider only the illuminated side. Of course,
this is rarely of much interest. More realistic instances
include shallow reliefs; in such cases, both vignetting and
multiple scattering become negligible. Many scenes
contain areas of this type because smoothly curved
surfaces approximate flattish relief when considered in
sufficiently small areas. Given these assumptions, the
luminance sampled by the camera will reflect the
illuminance of the surfaces in the scene (though the factor
of proportionality is undefined), and one may invoke
Lambert’s cosine law (Lambert, 1760) to make the con-
nection with scene geometry. The angle at which the beam
strikes a surface determines its illuminance, thus the
sampled luminance variations reflect surface attitude
variations with respect to the direction of the illuminating
beam. Although the shading is insufficient to specify scene
geometry fully in this way, one at least finds solutions
modulo a group of ambiguities (Belhumeur, Kriegman, &
Yuille, 1999). These ambiguities include absolute distance,
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overall spatial attitude (“additive plane”), and depth
of relief (“bas-relief ambiguity”; Belhumeur et al.,
1999). Such ambiguities also occur in human perception
(Brewster, 1832; Hill & Bruce, 1994; Kleffner &
Ramachandran, 1992; Ramachandran, 1988a, 1988b;
Rittenhouse, 1786).
In the case of human vision, one speaks of the “shading

cue” (Palmer, 1999). The first (proto-) scientific treat-
ments originate from the visual arts (Baxandall, 2005).
The eighteenth and nineteenth art academies invariably
had a “cast room” with white plaster casts of antique
sculpture. Students were required to spend several years
sketching on a daily basis in order to master the art of
chiaroscuro (or clair-obscur), that is, the art of shading.
They would also receive some verbal instruction and
lectures from some master to get them on their way.
Eventually, they would graduate to the life drawing
classes. Nude models are less convenient study objects
than casts because they move (at least somewhat) and
have non-Lambertian surfaces. (Most real surfaces are
non-Lambertian; Dana, van Ginneken, Nayar, & Koenderink,
1999.) The posing stage would be illuminated in various
standard, well-designed manners, a bit like modern
Hollywood studios. The “shading cue” was indispensable
because of a certain way to add “relief” to otherwise
flattish (cartoon) drawings. Literature on the “reception of

the light” starts with Alberti’s “De Pictura” (http://www.
noteaccess.com/Texts/Alberti) and Leonardo’s notebooks
(http://www.gutenberg.org/etext/5000). The truly scien-
tific literature dates from the early twentieth century and
is mainly in the phenomenological, Gestalt tradition
(Luckiesh, 1916; Metzger, 1975; Turhan, 1935). Modern
work (Palmer, 1999; Ramachandran, 1988a, 1988b) has
adopted this. Perhaps unfortunately, attempts to use shape-
from-shading algorithms as models for human visual
abilities have proved unsuccessful.
The conventional stimulus in experimental psychology

of human perception of shape from shading has been the
linear gradient, contained in a circular disk (Figure 2, left).
Such a pattern represents shading in its utmost abstraction,
a mere local, linear gradient; it is a well-considered,
though extreme, form of stimulus reduction.1 The one
feature that detracts from its success is the sharp circular
outline that has nothing to do with shading but represents
a cue in its own right (Cate & Behrmann, 2010;
Hayakawa, Nishida, Wada, & Kawato, 1994; Humphrey,
Symons, Herbert, & Goodale, 1996, Norman & Raines,
2002). Depending on whether it is seen as an occluding
contour, a dihedral edge, or a surface boundary, one is
aware of a sphere (necessarily convex), a local depression
(“cup”) or protrusion (“cap”) in a plane, or a hemi-
spherical cup with free surface boundary (Figure 1). One
way to remove this confounding cue is to blur the edge,
but the result is that most observers fail to see a well-
defined surface then (Erens, Kappers, & Koenderink,
1993).
The drawing by Rimmer (1970; Figure 2, right), a fine

example of an academical nude, is made up as a
juxtaposition of standard stimuli, blended to a coherent
undulating surface. It is an example of the technique of
“ovoid drawing” (Hatton, 1904), in common use since the
Renaissance. A careful study of the drawing reveals that
Rimmer assumed (the drawing was most likely done
without reference to a model) a light source from the top-
left-front, but that he artfully changed the (local) light
direction from place to place, no doubt in the interest of
the overall composition, and clear delineation of muscle
groups.
Such local changes in light direction are common in

drawing. It is often necessary because the shading is
unable to reveal “valleys” or “mountain ridges” that run
along the direction of light flow (Imhof, 1965) and is one
reason why realistic drawings are often preferred over
photographs in anatomy or cartography. It is assumed that
the human observer will tolerate such local changes
without complaints.
Remarkably, relatively little is known regarding the

ability of human observers to estimate the spatial
distribution of light flow over articulated surfaces.
Observers are certainly able to estimate overall light
direction fairly precisely (Koenderink & Pont, 2003;
Koenderink, Pont, van Doorn, Kappers, & Todd, 2007;
Koenderink & van Doorn, 2003a, 2003b; Koenderink, van

Figure 1. An inventory of edges and outlines. The viewing

direction is along the red arrow; thus, one sees an object with

circular boundary against a uniform background in all cases.

However, the nature of the boundary can vary a lot. From left to

right, top to bottom, one has an “occluding contour” (sphere in

front of a plane), a “surface boundary” (cup in front of a plane), a

“dihedral edge” (a protrusion rising from a plane, the “cap”), and a

“dihedral edge” (a depression in a plane; the “cup”).
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Doorn, Kappers, te Pas, & Pont, 2003; Koenderink, van
Doorn, & Pont, 2004), but it remains uncertain whether
observers are sensitive to spatial variations.
Human observers are also able to locate light sources in

scenes even if these are occluded, that is to say, on the
basis of global shading patterns (Koenderink et al., 2007).
Well-known examples include Nativity scenes since the
middle ages, where the Christ Child occurs as a “light
source” (of divine light) at the center of the painted scene
(e.g., http://collectorofechoes.files.wordpress.com/2010/
02/thenativityatnight.jpg). The Utrecht School of Cara-
vaggio followers often painted brothel scenes in which a
light source (candle) was occluded by the hand or body of

one of the protagonists (e.g., http://upload.wikimedia.org/
wikipedia/commons/d/d6/Gerrit_van_Honthorst_-_De_
koppelaarster.jpg). Since these paintings tend to be very
effective, we conclude that human observers are quite
likely sensitive to a divergent structure of light fields.
Various types of light fields occur frequently in the

daily environment (see Figure 3). The generic possibilities
are explored in some detail in Appendix A.
In this paper, we investigate the ability of observers to

distinguish various types of light fields: unidirectional
homogeneous fields (henceforth called “uniform”); cen-
trally organized or “vergent” fields, where we distinguish
between “convergence” and “divergence”; circularly

Figure 2. (Left) The “standard” stimulus configuration from psychophysics. (Right) A detail from a drawing by William Rimmer (1816–

1879), a good example of “ovoid shading.” Note that it is largely an arrangement of standard stimuli.

Figure 3. Examples of structured light fields in the daily environment. (Left) A person posed against a transilluminated curtain. This is an

example of a convergent light field, the light “creeping around the sitter” as photographers say. (Bottom right) An example of a divergent

light field, due to a bunch of candles. In this case, the light field fills the space; in the previous example, it flowed over the surface. (Top

right) An example of an (approximately) unidirectional field. Notice that all corn grains are illuminated in roughly the same way.

Journal of Vision (2011) 11(3):21, 1–21 van Doorn, Koenderink, & Wagemans 3

http://collectorofechoes.files.wordpress.com/2010/02/thenativityatnight.jpg
http://collectorofechoes.files.wordpress.com/2010/02/thenativityatnight.jpg
http://upload.wikimedia.org/wikipedia/commons/d/d6/Gerrit_van_Honthorst_-_De _koppelaarster.jpg
http://upload.wikimedia.org/wikipedia/commons/d/d6/Gerrit_van_Honthorst_-_De _koppelaarster.jpg
http://upload.wikimedia.org/wikipedia/commons/d/d6/Gerrit_van_Honthorst_-_De _koppelaarster.jpg


organized or “cyclical” fields, where we distinguish
clockwise and counterclockwise rotation; and “randomly”
organized (or disorganized) fields, where the light direc-
tion varies unpredictably from place to place. In order to
study these patterns, we have designed a simple, sym-
metrical arrangement of standard stimuli (Figure 4),
emulating Rimmer’s method, though without any attempt
at artful “blending” (Jacobs, 1988).

The light fields used in our experiments are illustrated
in Figure 5. These choices do not exhaust the possibilities
(Appendix A). For instance, we decided not to include the
deformation case,2 mainly because it did not conveniently
fit our experimental paradigm. The most common light
fields in nature are the uniform and divergent cases, with
the convergent case as a rare third (Mury, Pont, &
Koenderink, 2007). Other fields (like the deformation)
are extremely rare. Sunlight exemplifies the uniform case,
a local source exemplifies the divergent case (this could
be due to a local light spot, common on forests), and a
convex object seen against a broad, diffuse source
(portrait taken against translucent curtains) exemplifies
the convergent case. The other cases are not ruled out by
physics but require skillful laboratory setups (Mury, Pont, &
Koenderink, 2009a). We included the cyclical cases as
typical examples of light fields with negligible ecological
importance.

Design of experimental
paradigms

Stimulus and procedure

Stimulus

As one looks at the conventional stimulus for some
time, one notices spontaneous reversals between convex
(“cap”) and concave (“cup”) pictorial surfaces. As one
looks at a stimulus like our array, one notices spontaneous
reversals of groups (sometimes all) of the standard stimuli.
Such reversals are common enough in perception, the
well-known Necker cube perhaps being the most familiar
(Metzger, 1975). This can be seen in Figure 4, where all
standard stimuli tend to appear similar (usually caps, but

Figure 4. The stimulus pattern used in the experiments. It is

composed of a circular, equispaced arrangement (at 60- intervals)

of standard stimuli, placed on a circular disk of the average

luminance. The disk helps combat the influence of the rectangular

desktop window; we refer to it as the “pedestal.” The central

fixation cross was used in all cases. In this example, the light field

is uniform; if the standard stimuli are assumed convex, the

illumination is from the right.

Figure 5. The light fields used in this study. Notice that the random case is only one instance out of a great many alternatives. Likewise, in

the case of the unidirectional field, the direction was chosen randomly.
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sometimes cups), and in Figure 6, where this also happens
for the center (diverging) case (at least for many
observers). On the other hand, in the random configuration
(Figure 6, left), one tends to become aware of a fluctuating
pattern of cups and caps. For a cyclical pattern (Figure 6,
right), one also tends to experience a mixture: a fixated
disk tends to appear as a cap, whereas its antipode on the
circle tends to be of the opposite type. This makes it hard
to design a viable paradigm. Evidently, exposure times
should be made short enough to avoid too high a
frequency of spontaneous reversals. Moreover, fixation
should be controlled somehow, since fixated disks tend to
appear as caps.

Procedures

Eventually, we converged on two paradigms that yield
different but mutually complementary observations. We
indicate them as the “simultaneous” or “global” and the
“successive” paradigms.
In the global paradigm, the observer is confronted with

the following sequence of events:

1. In the initial condition, only the large, uniformly
gray pedestal with fixation cross appears. The
observer is free to choose the time to trigger the
next event, after having established strict fixation of
the center mark. After triggering the next event, the
image does not change for a fixed (short) period
(250 ms).

2. The actual configuration appears and remains on for
a short period (2 s). The observer maintains fixation
and notices whether either one of three mutually
exclusive cases enters visual awareness: All disks
appear as caps (response “convex”), all disks appear
as cups (response “concave”), or a mixture of caps
and cups appears (response “different”).

3. After the set period of 2 s, the six disks disappear
and the observer is left with the pedestal with
fixation cross. In the interface, a group of three radio
buttons marked “convex,” “concave,” and “differ-
ent” appears. The observer selects the appropriate

one and next hits the “done” button, which con-
cludes the trial. The duration of this period is up to
the observer.

4. The system has returned to the initial condition, and
the observer may take a rest or trigger the next trial.

Thus, the observer has to attend to the pattern as a
whole, which is why the paradigm is called “global.”
In the successive paradigm, the fixation mark is also

present. The observer is confronted with the following
sequence of events:

1. In the initial condition, only the large, uniformly
gray pedestal with fixation cross appears. The
observer fixates the mark and triggers the next
event.

2. The actual configuration appears and remains on for
a short period (1 s). The observer keeps on fixating.
This period is used to allow the generation of a
visual awareness of the pattern.

3. The configuration stays on, but a red mark appears
in one of the disks so as to mark it as the first target.
The observer is supposed to remember the shape
(cap or cup) of the marked disk. This period is only
short (500 ms).

4. The configuration stays on, but the first red mark
disappears and a second blue mark appears in one of
the disks so as to mark it as the second target. The
observer is supposed to remember the shape (cap or
cup) of this disk. It may occasionally happen that
the first and second targets are the same. This period
is again a short one (500 ms).

5. After the set period, the six disks (as well as the
second mark) disappear and the observer is left with
the pedestal with fixation cross. In the interface, two
groups of two radio buttons marked “convex” and
“concave” appear. The groups are marked “first”
and “second.” The observer selects the appropriate
button in each group and next hits the “done”
button, which concludes the trial. The duration of
this period is up to the observer.

Figure 6. From left to right: random, diverging, and clockwise cyclical patterns.
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6. The system has returned to the initial condition, and
the observer may take a rest or trigger the next trial.

In this paradigm, the observer has to attend to two of the
disks in succession, which is why we denote the paradigm
“successive.”
The choice of the duration of the various periods is

important and was decided on the basis of pilot experi-
ments. The observer needs some time to develop visual
awareness of the pattern, yet spontaneous reversals should
be minimized. We experimented with a number of
obvious variations of these paradigms; the present choice
seems optimal to us. It is easily possible to conceive of
variations that would allow one to collect more detailed
information from a trial, but we found that this renders the
task an impossible one for most observers. The paradigms
described here allow for hundreds of trials to be
completed in a session of an hour. We did many trials in
order to ensure statistically reliable results.

Experiment

Methods

Procedure

The stimuli were presented on the LCD screen of a
Macintosh notebook (332-mm width screen, 1400 �
900 pixels, Macintosh LCD screen profile) in a darkened
room. The observers were fully aware that they were
looking at a computer screen. The user interface was
presented on the same screen. Observation distance was
50 cm, and viewing was binocular. The pedestal sub-
tended 11.4- of visual angle.
Observers were members of the different laboratories

who volunteered to participate. Fourteen participated in
the global paradigm, and eight participated in the
successive paradigm. Two of them were authors, and the
remaining observers were naive with regard to the details
of the methods and the goals of the study. In addition,
some others were given a few practice trials, but they
were not tested formally because they appeared unable to
reach satisfactory “monocular stereopsis” (i.e., three-
dimensional spatial vision on the basis of monocular
cues) at all.
Observers were instructed by way of a few demo trials

presented by the instructor. The (simple) interface was
explained to them and the instructor made sure the
observers understood both the task and the interface.
Trials were randomly generated and data collection
continued until the observer was ready to quit and the
total data volume was at least 500. For the global
paradigm, the median number of trials in a session was
734 (inter-quartile range: 580–800). For the successive

paradigm, the median number of trials was 558 (inter-
quartile range: 502–605).
Whenever statistical tests were needed to support the

claims below about differences between conditions or
deviations from either no correlation (correlation 0) or
perfect correlation (correlation 1), we used non-parametric
bootstrapping as a technique (see Efron & Tibshirani,
1993). In short, we started from the raw responses per
trial, per observer, and per condition, and resampled these
10,000 times with replacement. Using these empirically
simulated distributions (rather than theoretically assumed
distributions in parametric tests), we then calculated
simple pairwise differences and confidence intervals. In
case of multiple comparisons on the same sample, we
used Bonferroni correction for standard p G 0.05 (unless
reported otherwise).

Results

Results from the global paradigm

In the global paradigm, we collect fractions of “con-
vex,” “concave,” and “different” responses for all cases.
The response times were about 1 s (median value: 1112 ms,
inter-quartile range: 752–1277 ms). Since the fractions
add to one, the responses can be summarized conveniently
in the form of pie charts. In Figure 7, we show the mean
data over all observers (N = 14).
The results are clear cut with respect to the random and

uniform categories. For the random category, almost all
responses (86%) are “different,” much as expected. In the
case of coherent responses, we find twice as many
“convex” as “concave” responses (9 and 5%, respec-
tively). For the uniform category, only 7% of the
responses are “different.” There are many more “convex”
than “concave” responses (68 and 25%, respectively, thus
almost three quarters (73%) of all convex or concave
responses are convex). One might expect a fifty–fifty
distribution here since all light directions occur equally.
Apparently, observers are strongly biased toward caps as
opposed to cups (Langer & Bülthoff, 2001). There is quite a
wide spread over the group of observers though, some
being quite symmetric with respect to cap or cup responses,
others reporting essentially only caps (Figure 8). No
observer had a preference for reporting cups.
The responses for the cyclical categories are not

significantly different from those for the random category:
88% different, 8% convex, and 4% concave for the
clockwise rotation and 85% different, 10% convex, and
5% concave for the counterclockwise rotation.
The vergence categories reveal a very significant differ-

ence for the category of divergence and that of convergence.
For the category of divergence, we find 41% different, 57%
convex, and 2% concave responses. The category of
convergence has a very different convex–concave ratio; we
find 18% different, 37% convex, and 45% concave responses
(all p G 0.0001).
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For the random, uniform, and cyclical categories, we
find that observers behave similarly, but for the vergence
cases, we find very significant inter-observer variations.
For the uniform category, we can check the classical

preference for “light from above” (Metzger, 1975). That is
to say, one expects standard stimuli that are light on top
and dark at bottom to appear convex, whereas one expects
the opposite orientation to look concave. This is indeed
the case for almost all observers (Figures 9 and 10). We
defined an index U that is zero for the case of no
preference.3 Positive values imply a preference for light
from above, and negative ones imply a preference for light
from below. There were only two observers in the latter
category. The median index value was 1.435, a very
significant preference for light from above, and the inter-
quartile range is 0.707–2.80, with the extremes j0.771
and 3.138. Thus, there is a rather broad spectrum of
preferences among our observers.
The light from above and the convex over concave

preferences are distinct preferences. In this study, we
essentially average out the former, but we cannot
neutralize the latter preference.
The light from above preference is actually slightly

shifted toward the left, as has been suggested various
times in the literature (Adams, 2007, 2008; Adams, Graf,
& Ernst, 2004; Mamassian & Goutcher, 2001; Sun &
Perona, 1998). In order to determine this deviation, we
calculated the first-order terms of the Fourier spectrum
and determined the phase from that (Figure 10, right). For
the observers with a U index above the median value, the

median direction indicated a slight preference for direc-
tions toward the left, 16- for the convex, and 6- for the
concave responses.

Results from the successive paradigm

In the case of the successive paradigm, we can find the
probability of the first and second targets being seen as the
same (cap–cap or cup–cup, both coded as +1) or different

Figure 8. Histogram of the fraction of convex responses over all

observers for the uniform category. For a fraction 0, observers

would respond all cups; for a fraction 1, all caps; for a fraction 0.5,

fifty–fifty caps–cups. The median value is 0.71, quartile range is

0.68–0.82, and extremes are 0.496 and 0.973.

Figure 7. The mean responses over all observers. The meaning of the colors is given as follows: Black: different; yellow: convex; red:

concave.
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(cap–cup or cup–cap, both coded as j1) as a function of
the mutual angular distance of the targets. That is to say,
we can summarize the data through the autocorrelation
function4 over the circle of targets (i.e., mean values
across the same or different pairs). This autocorrelation
function over the pooled data is shown in Figure 11 (all
observers, N = 8).
The self-correlations (first and second targets identical)

are all very near unity (i.e., never significantly different
from 1), the median value is 0.992, and the quartile range
is 0.983–1. This indicates that the probability of a
spontaneous reversal during a trial was very small and
can be largely ignored in the analysis (but see below).
The autocorrelation functions for the various categories

are qualitatively different from one another. The random
and uniform categories again yield the most clear-cut
results. In the case of the random category, the autocorre-
lations are never significantly different from zero (very

small values of either sign) except for the self-correlation,
which is equal to one (i.e., never differs from 1). Thus, the
targets at different locations are fully independent,
irrespective of their mutual distance. This is, of course,
much as expected. For the uniform category, all values are
very significantly positive (i.e., always significantly differ-
ent from 0 at p G 0.0001; median value: 0.90, inter-
quartile range: 0.86–0.94). Thus, the response to the first
target has a high predictive value for the response to the
second target independent of the mutual distance. This
clearly reflects the informal observations.
The case of the cyclical categories is qualitatively

different. Here, the correlations are generally low (except
for the self-correlation) and of both signs, butVdifferent
from the case of the random categoryVthey show a clear
pattern: nearby locations are positively correlated,
whereas far (roughly antipodal) locations are negatively
correlated (or anti-correlated). For the counterclockwise

Figure 10. (Left) A histogram of the preference for light from above index U. (Note that negative values imply a preference for light from

below; 1 count means 1 subject.) (Right) The preferred directions of the convex (red) and concave (blue) responses, as determined from

the first-order Fourier components, for the observers having a U index above the median value.

Figure 9. The fraction of “all cap” (red) and “all cup” (blue) responses as a function of the orientation of the gradient. In the left-hand plot,

the top represents “light from above.” This plot is for the “median observer.” On the right, we show the full data, including the “different”

responses, plotted in gray.

Journal of Vision (2011) 11(3):21, 1–21 van Doorn, Koenderink, & Wagemans 8



condition, this is the case for the exact antipodal position
only (p G 0.0001); for the clockwise condition, this is true
for the antipode and its two neighbors (all p G 0.0001).
This again reflects the informal observation (Figure 6,
right) that the disk that is opposite to the fiducial one tends
to be of opposite type (cap or cup as the case may be).
In the case of the vergence categories, we find very

significant positive correlations, roughly uniformly dis-
tributed, only slightly dependent on mutual distance. The
correlations are lower than for the uniform case
though: for the divergence case, we have a median
correlation of 0.53 (inter-quartile range: 0.49–0.56)
and for the convergence case, a median correlation of
0.42 (inter-quartile range: 0.39–0.59). All these correla-
tions are significantly lower than those in the uniform
condition (p G 0.005), except at the fiducial position where
none of the values differ.
The values of the correlations are shown in Figure 12.

Here, the two cyclical categories have been pooled, as
there is no particular reason (unlike the vergence
categories) to expect them to be different. The differences
between observers are strongest for the vergence categories.

Further analyses of the results

There are a number of mutually related issues to
consider. We will analyze them separately in this section
and only attempt an integration in our conclusions.

Rate of spontaneous reversals

The rate of spontaneous reversals is clearly very low,
given that the inter-quartile range of the autocorrelation
for zero distance is 0.983–1. It implies a probability of at
most 0.0085 to encounter a spontaneous reversal within a
1-s interval (the total duration of the two intervals that
have the markers) in case caps and cups reverse with
equal probability.5 The half-life of a certain awareness
(cap or cup) then would amount to at least 82 s.6 This
seems reasonable given our observations. Informal obser-
vations appear to suggest a much shorter half-life time,

Figure 12. The values of the correlations (ignoring the self-

correlation) for the various categories, with the variation between

observers. The two cyclical categories have been combined.

Figure 11. The autocorrelation function over the pooled data (all observers, N = 8), split with respect to category. The height of the bars

denotes the correlation with respect to the location indicated by the yellow arrow. The tip of the yellow arrow indicates a value of 1, the red

bars denote positive correlation, and the blue bars denote negative correlation.
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but this is no doubt due to eye movements. With strict
fixation, the spontaneous reversal rate is much slower.
Note, however, that the estimate of the rate of sponta-
neous reversals is rather uncertain. The lowest value of the
self-correlation is 0.8333, implying a rate of 0.0833 sj1 (a
half-life time of 8.3 s), which is an order of magnitude
larger than the earlier estimate of 0.0085 sj1.

Light fields as entities in visual awareness

Although light fields can be estimated successfully in
actual scenes (albeit with some marked exceptions),
observers are typically only subsidiarily aware of them
(Koenderink et al., 2007). For instance, light fields are
rarely mentioned in verbal accounts of scenes, except in
the context of the visual arts (photography, painting, I).
One usually makes do with an overall appraisal of the
“luminous atmosphere” (“sunny day,” “gloomy sky,” I).
In psychological research, such integrative frameworks
are detected as tendencies of spatially separated entities to
somehow synchronize visual qualities. They often come
under headings like “common fate” (Metzger, 1975) and
“spatial integration” (Palmer, 1999). In our experiment,
we find striking examples of such integrative frameworks
that may be taken as an operational definition of “light
fields.”
In the case of the random configuration, the six disks

are rarely seen as all cups or all caps, whereas if each disk
was shown in isolation, it would more probably be seen as
a cap. Let the probability of any disk in isolation to be
seen as a cap beQ. Then, the probability to see all six disks
as the same (either cup or cap) is P = Q6 + (1 j Q)6.7

Empirically, the value of Q (from the mean over all
observers) is approximately 3/4, implying P = 0.1782.
Empirically, we find P = 0.136, which would correspond
to Q = 0.717. Given the spread in individual observer data,
this is close enough to conclude that the six disks are
essentially independent in visual awareness. This is, of
course, fully corroborated by the autocorrelation function,
which is not significantly different from zero for finite
separations.
In the case of the uniform configuration, we observe a

completely different pattern. Observers tend to see all
cups or all caps with high probability (0.9291). Suppose
the “ideal” response would be all caps or all cups, subject
to deterioration due to spontaneous reversals occurring
during the trial. Here, “ideal” simply means that such a
response would have “explained” the input perfectly.
Assume that spontaneous reversals might start at any of
the locations. Then, one would expect from the rate of
spontaneous reversals to find a probability of 0.9745 if
caps and cups are assumed to flip with equal probability of
0.0085 sj1. The probability of 0.9291 would imply a
spontaneous reversal rate of 0.0236 sj1.8 Given the
uncertainty in these estimates (see above), these values
appear reasonable.

The median value of the autocorrelation is 0.90, which
is somewhat lower than the self-correlation that is close to
1.0. Apparently, the probability to see two different
entities as equal (cap–cap or cup–cup) in the uniform
configuration is about 0.95. This is much larger than an
estimate on the basis of independency, which is 0.625.9

Apparently, there is a strong tendency to “synchronize” in
the case of the uniform light field.
We apparently see a tendency for the “ideal” response,

perturbed through the spontaneous reversal mechanism, to
which each location is subjected individually. Here, we
assume the system to move closer to an ideal state soon
after a reversal (which might be “all caps” instead of “all
cups” and vice versa), implying that a spontaneous
reversal at one location might perhaps lead to reversals
at other locations. This is certainly the subjective
impression.
The two vergence configurations are rather different.

This asymmetry essentially rules out linear models
because formally the two vergence cases differ only by a
sign. Apparently, there is a preference for divergence over
convergence. Notice that the convergence stimulus with
caps can just as well be interpreted as a divergent one with
cups. Thus, the convexity preference and the divergence
preferences are in constant interaction. The asymmetry
between the vergence cases can possibly be traced to the
convex over concave preference.
In the case of the cyclical configurations, it seems clear

from the autocorrelation function that the visual system
attempts to “explain” the input by way of a uniform light
field. Since there can be no global success, the config-
uration splits up into two opposite uniform halves. This is
evident from the fact that the correlation for antipodal
locations is negative. However, remarkably, this happens
only in the rotation case, not in the otherwise very similar
vergence cases. A linear mechanism is unable to explain
this. We take it as a strong indication that the visual
system uses a form of template matching, having
templates for uniform and vergence configurations but
not for rotations. We explore a simple example (we opted
for utmost simplicity rather than data fitting in order to
maximize the conceptual power of the formalism) of such
a model in Appendix B. The model results indicate that
such a template model is at least possible and coherent.

Differences between the categories

In Figure 13, we plot the coherency for all categories.
The coherency is defined as the fraction of “all cup or all
cap” responses minus the fraction of “different” responses.
It varies between minus one (all different) and plus one
(either all caps or all cups). Not surprisingly, the uniform
configuration leads to the highest coherency, close to the
theoretical maximum of +1, whereas the random config-
uration leads to the lowest coherency, close to the
theoretical minimum of j1. These cases can be regarded
as paradigmatic.
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The cyclical configurations evidently fall in the same
class as the random one; the coherency is as low as it can
be. The vergence configurations are in between, though
the converging configuration is actually very close to the
uniform one, except for a single outlier. The diverging
configuration is really “in between,” its extreme values
spanning much of the theoretical full range. This is the
category where very significant inter-observer variations
are found.
A more detailed insight is obtained by summarizing the

pie charts (Figure 7) as points in a parameter space, by
using the triple of fractions (always adding to the full disk)
as barycentric coordinates in an equilateral triangle
(Figure 14).
The vertices of the triangle are “all caps” (bottom right),

“all cups” (bottom left), and all “different” (top). Since
any pie chart maps on a point in the interior of the
triangle, this enables one to take a global view of groups
of such pie charts. For instance, one may plot the results
of all observers for a certain category. The resulting point
cloud yields a convenient overview of all responses for
that category. We summarize the results even more
conveniently by representing the point clouds with
quartile and median contours. Some examples are shown
in Figure 15.
In Figure 15 (left), we use this method to display the

responses for the random and uniform configurations for
the global paradigm and all observers. Notice that the
regions are very well separated. The uniform region is
located near the horizontal, lower edge, indicating very
high coherency. It is located at a convexity of about 0.5,
indicating a very pronounced preference of convex over
concave responses. In contradistinction, the region for the
random configuration is located near the top vertex,
indicating very low coherency, though somewhat elon-
gated toward the location of the region for the uniform

category. This indicates that the preference of convex over
concave is still in effect.
In Figure 15 (middle), we plot the region for the

combined clockwise and counterclockwise cyclical con-
figurations. The region looks much like that obtained for
the random configuration, though there seems to be a
slightly greater preference for convexities.
The most interesting plot is that for the vergences

(Figure 15, right). These regions have very different
locations, and very different shapes, in the sense that the
directions of elongation are markedly different. In the
divergent case, responses are predominantly convex, and

Figure 14. Barycentric coordinates allow one to represent a pie

chart (as in Figure 7; same color scheme used) as a point in the

interior of a triangle. This enables one to take a global view of

many such pie charts simultaneously.

Figure 13. The coherency (the whisker–box plot shows median, quartile range, and extremes) for all categories pooled over all observers.
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the elongation is in the direction of increased incoherency.
In the convergent case, the responses are predominantly
concave, and the elongation is in the direction of increased
convexity. This is very interesting because it implies that
in the convergence configuration the preference for
convexity is relaxed and overridden by a preference for
divergence. If the observer treats the disks as concave, the
light comes apparently from the inside, not from the
outside. One may speculate that in cases where convex-
ities are reported, the light field is blackness from the
inside, but this is not something we can test on the basis of
the data.

Inter-observer variability

Inter-observer variability can be judged from Figures 8,
10, 12, 13, and 15, from the numbers given for the “light
from above” preferences. It is evidently appreciable,
though not enough, to mask a number of important trends.
It is difficult to analyze these variations in detail. There is
no doubt structure in them, variations being much more
pronounced into some direction than into others. Here, we
are handicapped by the fact that some observers seem to
be unable to reach satisfactory “monocular stereopsis” at
all. In this respect, our sample is biased, because we
decided not to run persons in the experiment that
appeared (from a cursory examination) to fail in
monocular stereopsis. We (very roughly) estimate that the
fraction of such cases might be as large as one in five.

Conclusions

This investigation yields a number of unexpected
findings. Moreover, it corroborates some established
beliefs and perhaps suggests that others might be less
clear cut than usually made out.
The “light from above” preference (Metzger, 1975),

mention of which never fails in even popular accounts of

the shading cue (Baxandall, 2005), is very evident in the
data for the uniform configuration. It is very outspoken in
many observers (e.g., Figures 9 and 10), though hardly
present at all in some. There evidently exists a broad
spectrum of preferences.
We find that an array of conventional stimuli (Figure 2,

left) tends to be perceived as all concave (or convex) if all
lined up. This is already known from Ramachandran’s
(1988a, 1988b) demonstrations; the data presented here
merely put it in a quantitative, objective format. What is
new, and perhaps surprising, is that this also applies to
divergent light fields and to convergent light fields but not
at all to cyclical light fields. A reverse gradient in a field
in the company of mutually lined up gradients tends to
look opposite (e.g., a cup, as the majority is likely to look
caps). However, in the context of a divergent light field,
there are many opposite gradients, yet all of them look
like caps. Perhaps surprisingly, this does not work out the
same way for cyclical arrangements, for then the percept
tends to split up, the fixated item tends to be a cap,
whereas simultaneously its antipode would be a cup.
These findings are very constricting for formal accounts.

We present a simple interpretation in Appendix B,
based on a template model. The model, even in
itsVintentionallyVmost simple form captures the struc-
ture of the data qualitatively and even semi-quantitatively
quite well. To model this behavior in a more generally
appreciated manner (most probably a neural network
emulating a driven Ising model; Ising, 1925) is likely to
involve an overdose of ad hoc tweaks. We conclude that
the data can, by and large, be understood in terms of only
a few principles, namely, the template matching scheme,
the convex–concave asymmetry, and the generation of
spontaneous reversals.
In order to make progress beyond what we have

presented here, we believe that it would be absolutely
necessary to study a much larger group of observers. This
will be required because of the rather large inter-observer
variability. It implies a major undertaking though. Such
variability is very useful because it yields a valuable handle
on the structure of the underlying mechanism. One should
be able to trace inter-observer variability to different

Figure 15. Inter-quartile regions and medians for the distributions of observer responses in the cases of (left) the random and uniform

configurations, (middle) the cyclical configurations, and (right) the vergence configurations.
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“settings” of a few parameters of a formal model. The
present work has offered the first empirical and conceptual
building blocks of such a more extensive endeavor.

Appendix A

Ecology of illumination patterns

“Generic” in the mathematical sense means “structur-
ally stable” (Poston & Stewart, 1996), that is to say, small
changes in conditions do not lead to qualitative changes.
One expects to encounter generic phenomena as a matter
of course, whereas non-generic phenomena occur once in
a lifetime.
This is why it makes sense to limit the discussion to

generic cases. (It is similar to the geometer’s use of “in
general position.” Two points on a line may be assumed to
be distinct, and they coincide only “once in a lifetime.”)
In discussing generic illumination patterns, one needs to

distinguish a few categories. Most important are:

1. the light field (Gershun, 1936/1939; Moon &
Spencer, 1981), a flow in three-dimensional space;

2. the surface illuminance flow, a flow over (two-
dimensional) surfaces (Pont & Koenderink, 2003,
2004).

Moreover, one needs two subcategories of the first
category:

1. the light field due to a point source (“collimated
beam”);

2. the light field due to arbitrarily extended sources
(“diffuse beam”).

The first category is standard in simple computer
graphics and formal discussions of “shape from shading,”
and the second is the typical choice of professional
photographers and portrait painters.
In discussing generic illumination patterns, one also

needs some basic radiometry (Boyd, 1983). The simplest
setting implies Lambertian surfaces and the absence of
multiple scattering. It is common in the literature on shape
from shading in computer vision and experimental
psychology. Corrections for more general cases are well
understood (Koenderink & van Doorn, 1983, 1996, 1998a,
2003a, 2003b; Koenderink et al., 2003, 2004).
For Lambertian surfaces, “shading” can be traced to

local surface irradiance. Both viewing and illumination
geometries are irrelevant once the irradiance is known.
This is why the “Lambertian assumption” is the obvious
first approximation. For collimated beams, the irradiance
is given by Lambert’s cosine law; in cases where the beam
is parallel (in computer graphics jargon “point source at

infinity”), the irradiance is proportional to the cosine of
the angle subtended by the surface normal and the
direction of the beam. For general (diffuse) beams, this
does not work. One defines the “light vector” such that
Lambert’s cosine law pertains to the light vector instead
of the beam direction. The light vector describes the
average transport of radiant flux. The field lines of the
light field then replace the rays of the collimated beam.
The difference is important. In empty space, the rays are
straight lines, whereas the field lines are generally curved
and may even be closed (Mury et al., 2007, 2009a).
The field lines of the light field figure prominently in

the jargon used by lighting professionals. Thus, profes-
sional photographers speak of light “creeping around” an
object (Figure 3 (left) is a case in point), something that
appears nonsensical in a pure ray description. The light
field is what counts, and only in rare cases do the field
lines approximate “rays.” Perhaps unfortunately, this is
rarely understood in computer vision and experimental
psychology. An illustrative example involves a Lambertian
sphere illuminated by a luminous half-space (the overcast
sky approximates this case; see Figure A1). Because the
sphere itself occludes the source, the light field is due to
both the source and the object. Both direction and
magnitude of the light field vary over the surface of
the sphere. All of the surface is illuminated, except for
the single point where the surface does not face the
source. This is in contradistinction to a sphere illumi-
nated by a parallel, collimated beam. In that case, half
of the object is in shadow (think of the moon
illuminated by the sun). This is exactly the reason
why most portrait photographers prefer extended sour-
ces and avoid collimated beams. Computer graphics
“solves” this problem with collimated beams by adding
an “ambient component.” This formally works, though
only for convex objects, and at the cost of a violation
of physics. It is a source of frequent misunderstandings
(Koenderink & van Doorn, 1996).
The light field can be almost arbitrarily complicated.

Its singular points (the points where the light vector
vanishes) include cases of divergence, convergence,
shear, and rotation. Because the geometry is in three
dimensions, various combinations occur. Such cases can
indeed be constructed theoretically, and they can be
found empirically (Mury et al., 2007, 2009a; Mury, Pont, &
Koenderink, 2009b; see Figures A2 and A3). The structure
of the light field is an important factor in human visual
awareness and of much interest in practical settings like
interior architecture. Human observers are sensitive to the
structure of light fields in space (Koenderink et al., 2007).
Surfaces interact with the light field in two ways that

deserve to be distinguished. First, surfaces interact with
the light field by way of Lambert’s cosine law. This
involves only the component of the light vector that is
normal to the surface, and it causes the irradiance, that is
to say, the shading proper. Second, surfaces interact with
the tangential component of the light vector. This

Journal of Vision (2011) 11(3):21, 1–21 van Doorn, Koenderink, & Wagemans 13



component, along the surface, causes the structure of
illuminance-induced texture due to surface irregularities
(Koenderink & van Doorn, 1996). Human observers are
sensitive to this and perceive both the three-dimensional
surface corrugations and the direction of the tangential
component (Koenderink & Pont, 2003; Pont & Koenderink,
2003, 2004). We refer to the latter as the “surface irradiance
flow.”
The surface irradiance flow has a simple structure. An

intuitive picture is the surface flow of water over a surface
(Koenderink & van Doorn, 1998b). Hilltops yield diverg-
ing patterns of flow, valley bottoms yield converging
patterns of flow, and passes yield shear patterns of flow.
These are the only generic singular points (Guillemin &
Pollack, 1974). Singular points are mutually isolated; on
generic surface points, the flow is locally uniform. In
radiometry, the singular points occur where the light
vector hits the surface head on. On a convex object (say a
sphere or an egg), one finds two singular points, one a
convergence and the other a divergence (Figure A1).
These are the only cases conventionally considered in the
experimental psychology of shading. The convergence
only occurs for diffuse sources. The standard computer
graphics “point source at infinity with ambient compo-
nent” approximation is insufficient to explain it, because it
is inconsistent (Koenderink & van Doorn, 1996).

Thus, one has a simple overview of the generic
possibilities:

1. uniform light flow is the dominating pattern, both in
space and on surfaces (the corncob scene in Figure 3
(upper right) is a case in point);

2. the probability of a single object being at a space
singularity of the flow is very low, but an extended
configuration of objects is not unlikely to straddle
such a location (the candle scene in Figure 3 (lower
right) is a case in point);

3. convergence and divergence patterns in surface
flows are typical (the window scene in Figure 3
(left) shows a convergent flow pattern), whereas
whirl patterns are impossible.

Shears are rather less likely but possible on non-convex
objects. In the case of non-convex objects that can be well
approximated by convex objects (“potato-like” shapes),
the shear cases will be much less dominant than the radial
patterns.
In summary, one expects vision to be able to deal

routinely with uniform flows, ignore rotational flows, and
be able to cope with radial flow patterns and perhaps
somewhat with shear patterns. Of course, none of these
can be expected to occur over the full visual field but only

Figure A1. The light flow over the surface of a spherical object, illuminated from above (the orange arrow). For the image at bottom right,

the illumination is by a collimated, parallel beam (“point source at infinity”), for all other images by an infinitely extended luminous plane

(“overcast sky”). Notice that in the case of the diffuse beam all of the surface is illuminated, whereas in the case of the collimated beam, a

hemisphere remains in shadow. In the former case, one has a divergent singular point (top left) and a convergent singular point (top right),

whereas the typical flow pattern is uniform (bottom left). The convergent pattern is evident in the example of Figure 3 (left).
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in specific partitions of it. For instance, the illuminated
and shadow sides of a face are necessarily illuminated by
different sources.

Appendix B

A template model

In this appendix, we consider a simple template-based
model. The model is only designed as a conceptual aid,
and we do not attempt any data fitting. We are convinced
that many, conceptually diverse models might serve to
explain the data in a coarse approximation. The present
model is perhaps of some interest because of its extreme
simplicity.
In this model, the agent essentially generates “halluci-

nations” and probes the front end to see whether these fit
the input. Such hallucinations are by their very nature

meaningful, the meaning being imposed by the agent. The
“hallucinations” have the same format as the data in the
buffer, thus the probing is a simple matter of comparison.
In the model, the format is simply an ordered list of six
directions, and the comparison finds the mean of the
matches, a match being defined as the cosine of the
relative directions, a number between +1 (same directions)
and j1 (opposite directions). The agent comes up with
many hallucinations and, at any moment, favors the one
that fits best (Selfridge, 1959). This competition among
generations of hallucinations is akin to biological “sur-
vival of the fittest.” The survivors make up “visual
awareness” (Hoffman, 2009). From an algorithmic point
of view, the model is similar to the “harmony search”
algorithm of “soft computing” (Geem, Kim, & Loganathan,
2001).
The hallucinations can be based on what is in the data

buffer or can be generated in a fully autogenous manner.
In the first case, the agent may pick an item from the data
buffer (say the observer fixates an item) and use a vector
of six identical copies as the hallucination. When

Figure A2. Two simple cases of singular points of the light field. These cases involve a cubical room, with black floor and ceiling and black

vertical walls on which diffuse luminous panels are affixed, from floor to ceiling. The picture shows cross sections of the room at half-

height. The luminous panels are indicated by the thick red lines. The whole room is shown in the left column, with the flow vectors in the

center part magnified four times and shown separately in the right column. The top row illustrates a shear, and the bottom row illustrates a

whirl pattern. Since radiometry is scale-invariant, the size of the room is not indicated. Such cases have been measured in actual

situations (we used the light laboratory of Philips Company; Mury et al., 2009a, 2009b).
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generating autogenously, the agent mayVin cases of
minimal situational awarenessVgenerate sextuples at
random or select one from a database of templates. The
selection criterion will depend on situational awareness.
Such templates are akin to “Gestalts” (Lorenz, 1973;
Metzger, 1975; Tinbergen, 1951; for an extensive dis-
cussion of this point, see Riedl, 1984). The database might
be innate, or be the result of experience, hallucinations
that frequently led to efficacious actions.
Notice that this is not a dynamical system, there being no

actual coupling between the front end and the agent. The
front end acts like a volatile memory, and it is continuously
overwritten by the world and intermittently addressed by
the agent’s probing. The function of the front end is
analogous to the “function” of the beach as a memory for
footprints. The topography of depressions in the sand is
meaningless, except to the beachcomber momentarily
interested in human activity. There is no data transfer from
world to awareness, meaning (“data”) being internally
generated. This cannot be otherwise because meaning
cannot be computed from structure. It is only the constant
checking against the data buffer that renders this system a
viable “optical user interface.” This model is biologically
inspired and fits seamlessly in an evolutionary framework.
In the model, we use two types of template, one for

diverging patterns and a continuous set tuned to uniform

patterns of any direction. The agent tries them all and
retains the one that fits best. Given a best fit, the agent
constructs the response (visual awareness) from the local
fits (six numbers between j1 and +1). Since fits near 0
lead to ambiguity, the agent uses a threshold (cos(45-) in
the model) and interprets fits above the threshold as
“convex” and those below minus the threshold as
“concave.” In the ambiguous cases, the observer first
checks the nearest neighbors to see whether these agree
(cap–cap or cup–cup), and if so conforms to these
neighbors. In case of remaining ambiguity, the agent
finally flips a coin. Thus, any stimulus as seen from the
perspective of any hallucination yields a response that is a
vector of six “cap” or “cup” decisions (no ambiguity in
the response). Notice that there is some non-trivial
dynamics in the response forming act, the tendency to
conform to the neighbors, reminiscent of the Ising model.
There are two sources of indeterminacy in the model, one
in the mapping of the stimulus on the front end (an
additive noise source) and one in the response forming act
where the agent occasionally needs to flip a coin.
Thus far in the discussion, we have not incorporated a

mechanism for spontaneous flips nor for the empirically
found convexity above concavity preference. We have
implemented both at the same time by adding a final stage
to the response forming mechanism. We simply flip cups

Figure A3. A ceiling ventilator lamp during (left column) day and (right column) night. (Top row) Straight photographs with a circular inset

showing a four times enlargement of the texture of the plastered ceiling. (Bottom row) The raw output of a local illumination flow estimate

based on second-order edge detector statistics. This is the algorithm that accounts well for human detection of illuminance flow

(Koenderink et al., 2004). Ignoring the perturbations by the strong edges due to the fan blades, the daylight flow field is uniform (vertical in

the image), illumination being due to daylight streaming in from a window on one side. At night, the surface illuminance flow is due to the

four light bulbs and the flow is radial. Such phenomena are easy to see once one starts noticing.
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to caps with a certain probability (0.1 in the model
examples). This is a third source of indeterminacy.
This simple model contains only a few parameters, the

only ones being important being the level of additive
noise at the input stage (we perturbed directions with a
normal distribution with a standard deviation of 20-) and
the spontaneous flip rate.
Obviously, the model is far too simple so as to catch all

structures present in the empirical data. For instance, there
is no such thing as the light from above preference in the
model, since the model is fully isotropic. “Above” is
simply meaningless as applied to the model.
Figure B1 shows model sessions of a hundred trials

each run with the parameter values mentioned above.
Notice how different the responses are for the various
configurations. The responses for the random configura-
tion are indeed random. Although the responses for the
rotation appear random too, there is actually a structure in
them that appears in the autocorrelation function (see
below). The uniform configuration gives rise to mainly
coherent responses, all cups or all caps. Even the mixed
responses are not really random, there being typically only
a single outlier. The divergence configuration leads to
mere “all cap” responses in this session; in longer
sessions, one sees occasional (single) cup outliers. The
convergence configuration gives rise to essentially “all
cup” responses, though with numerous “cap” outliers. The
asymmetry between the two vergence cases is due to the
spontaneous transitions, which are all “cup-to-cap” flips.
By introducing distinct probabilities for “cup-to-cap” and

“cap-to-cup” flips, one could make the model more
“realistic.”
The autocorrelation functions for these sessions are

shown in Figure B2. They are much like the empirical
results shown in Figure 11. For the random configuration,
the correlations are low. They are due to the neighborhood
interaction. Adding weights (or even a neighborhood
weighting function) to the model would allow one to
“tune” to resemble the empirical results even more. For
the uniform configuration, the correlations are high. The
value below unity is due to the input perturbation and to
the spontaneous flip mechanism. The latter is the more
important cause, as can be seen from the vergence
configurations. The divergence configuration leads to
perfect correlations because there are no spontaneous
cap-to-cup flips; on the other hand, the correlations for the
convergence are lower than those for the uniform case
because here the cup-to-cap flips have a huge influence,
most responses being of the “cup” type. The autocorrela-
tion for the cyclical configurations are especially interest-
ing since we see an anti-correlation peaked at the
antipodal of the fiducial position. This is due to the fact
that the best the model can do is apply a uniform template,
with the result that the configuration perceptually splits
into two parts.
There are a number of simple ways to amend the model

so as to mimic the data in more detail. However, this
moves one into the domain of “fitting,” whereas the model
is meant to be conceptual. Even with the model in its
present, simplest form, we already capture the structure of

Figure B1. Examples of model responses for trials with the various configurations. Each column contains a hundred trials; each trial is

plotted as a row of six abutting white or black rectangles. White indicates “cup,” and black indicates “cap.”
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the data quite satisfactorily. The value of the model’s
simplicity is then that it allows one to reason about the
various trends on the basis of only a few general
mechanisms.
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Footnotes

1Formally, “local” structure refers to the infinitesimal
domain. In applications, any structure that is described by
entities defined at a point is “local”. A key example is the
gradient. Thus, “local shading” is a point property even
though the image intensity spatially varies. It is formally
similar to the notion of “velocity,” which is a measure of
temporal change at a single moment. In contradistinction,
“multi-local properties” depend on the structures simulta-
neously encountered at mutually distinct points. Mathe-
matical analysis in the local and multi-local cases has to
be categorically different. Similarly, in neurophysiology,
“local” may be taken to refer to the single receptive field
case, whereas “multi-local” would refer to receptive field
assemblies. Thus, “multi-local” presupposes local sign,
whereas “local” does not. These distinctions are crucial in
any formal account of spatiotemporal phenomena.

2
Near the origin, a vector field in the plane can be

developed to first order as a unidirectional, uniform field
with a superimposed linear perturbation. The perturbation
can be split into symmetric and anti-symmetric parts. The
anti-symmetric part describes rotations. The symmetric
part can again be split into an isotropic part that describes
vergences and an anisotropic part that describes a pure
deformation or shear. Whereas rotations and vergences are
isotropic, the deformation has an orientation, the axis of
elongation. Although this exhausts the generic structures,
it fails to address the issue of ecological validity (see
Appendix A).

3
The data are at 60- intervals, such that 90- indicates

“light from above,” that is to say the top of the standard
stimulus is light and its bottom is dark. Let R60-

+ denote
the number of “convex” responses at 60-, R30-

j the number
of concave responses at 30- and so forth. Then, we define
the “preference for light from above index U” as
U ¼ 2logf½ðRþ

30: þ 2Rþ
90:þ þ Rþ

150:
Þ þ ðRj

210: þ 2Rj

270:þ þ Rj

330:Þ�=
½ðRþ

210: þ 2Rþ
270:þ þ Rþ

330:Þ þ ðRj

30: þ 2Rj

90:þ þ Rj

150:Þ�g. This
index is essentially a ratio of “votes” for the respective
categories and is symmetric in “above” and “below”
preferences. A value of +1 implies twice as many votes
for light from above as for light from below.

4The autocorrelation function R(8) is defined as the
expectation ofF(E + 8)F(E) over 0 e E G 360-, where F(E) =
+1 for convex responses and F(E) = j1 for concave
responses. Of course, the parameter is periodic, thus E + 8
is reckoned modulo 360-. We reckonj180- e 8 G +180-; in
the experiment, the angle 8 takes only the discrete values of
j180-, j120-, j60-, 0-, +60-, and +120- (where +180-
repeats j180-).

5Suppose the ab initio probability to see a cap is Q, and
that of seeing a cup is 1 j Q. Empirically, Q , 3/4. Let
the probability that a cap will spontaneously flip to a cup
within the exposure period of 1 s be A; likewise, let the
probability that a cup will spontaneously flip into a cap be
A. The probability of reversal A is evidently very small;
reversals are rarely noticed under conditions of strict
fixation. The self-correlation R is the mean of four
possible events, namely cap–cap, cup–cup, cap–cup, and
cup–cap. The former two events lead to a value of +1, and
the latter two events lead to a value ofj1. The probabilities
of the four events are Q(1 j A), (1 j Q)(1 j A), QA,
and (1 j Q)A, respectively, thus one has R = Q(1 j A) +
(1 j Q)(1 j A) j QA j (1 j Q)A = 1 j 2A.
Empirically, R = 0.983I 1 (inter-quartile range), leading
to A G 0.0085 sj1.

6Assuming exponential decay exp(jt/T) , 1 j t/T, we
have t/T , A, with t = 1 s, thus T = 1/A. The half-life time
is log 2 , 0.693 times as large. One finds a half-life time
of at least 82 s in case spontaneous reversal occurs
symmetrically (see Footnote 5).

7We have six locations. Let the ab initio probability to
see a cap be Q and that to see a cup be (1 j Q). The
probability to see six caps is Q6, and that to see six cups is
(1 j Q)6. Thus, the probability to see six equal entities is
P = Q6 + (1 j Q)6, a symmetrical function of Q, being
2j5

, 0.03125 at Q = 0.5 and 1 at Q = 0 or 1.
8We have a duration of t = 1/2 s. If the probability of a

spontaneous reversal in 1 s is A, the probability of any
reversal in a period t is 6tA. If one initially sees six equal
entities, the probability to see them for the full interval is
(1 j 6tA) = (1 j 3A).

9Consider two different locations and let the probability
to see two cups or two caps be S. The correlation is
expected to be R = S j (1 j S) = 2S j 1. Empirically,
R = 0.9, implying S = 0.95. Let the probability to see a
single item as cap be Q, and assume the two locations are
independent. Then, the probability of cap–cap is Q2, and
that of cup–cup is (1 j Q)2; thus, the probability to see
the two as equals is P = Q2 + (1 j Q)2. Empirically, Q ,

3/4, implying P = 0.625. This is much smaller than the
value of S (which is 0.95, see above).
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