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Abstract 

 

Shape transformation of thin two-dimensional sheets into three-dimensional structures 

using light is of great interest for remotely-controlled fabrication, surface modulation, and 

actuation. Over the last few decades, significant efforts have been made to develop 

materials systems incorporating photochemical or photothermal elements to drive 

deformation in response to illumination. However, the full extent of the interplay between 

chemistry, optics, and mechanics in these materials is poorly understood. In this Review, 

we introduce principles of shape morphing in these systems by considering the underlying 

physics of photo-induced stresses and how these have been used in recent literature. In 

addition, we provide a critical overview of the important design characteristics of both 

photochemical and photothermal system and offer our view on the open opportunities 

and challenges in this rapidly growing field. 
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1. Introduction 

The out-of-plane buckling of thin elastic sheets in response to non-uniform stresses is a 

powerful method to control both the form and function of synthetic materials. While such 

‘morphogenesis’ of two-dimensional membranes into three-dimensional shapes can be 

driven by many cues including mechanical, chemical, and electrical stimuli [1], light 

represents a particular powerful means of control thanks to the ability to deliver photons 

wirelessly and rapidly over long-distances. Just as photons from the sun travel millions of 

miles to power life on Earth, photons from incoherent or coherent sources can be similarly 

delivered through free-space or optical fibers to drive the response of a photoactive 

material. Additionally, spatio-temporal control over the wavelength, mode, and 

polarization of the light provides a number of independent degrees-of-freedom that can 

be exploited to define complex and dynamic optomechanical responses. However, the 

efficient and practical transformation of light energy into prescribed shape changes 

remains challenging. 

 

Two main approaches have typically been exploited to generate deformation in 

photoactive materials: photochemical transformations and photothermal heat generation. 

While many examples of the synthesis and actuation of photomechanical materials exist 

in the literature, there remain large gaps in our understanding of how to rationally engineer 

these materials to achieve a desired photoresponse. The aim of this review is to 

demonstrate the state-of-the-art in photomechanical materials through specifically 

selected examples and to critically examine the distinct physics that govern the response 
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of photochemical versus photothermal materials. We do not intend this review to be a 

historical nor comprehensive overview of the field; for this, we direct the reader to a 

number of recent publications that cover several decades of work [2–5]. We begin by 

presenting general strategies for shape control by engineering strain fields and leveraging 

optical properties in thin sheets (2). We follow with an overview of canonical examples 

and recent advances in photomechanical materials, as well as a critical analysis of the 

underlying physics in photochemical versus photothermal systems (3-5).  Finally, we 

close by offering our perspective on the important design characteristics and future 

avenues for development in this exciting class of materials (6).   

 

2. Basics of Shape Programming with Light 

In this section, we present an overview of how elastic energy, geometry, and optics couple 

to generate dynamic shape change in thin sheets. 

 

2.1 Patterned Bending and Mean Curvature 

A thin elastic sheet subjected to stress will tend to buckle out of plane to lower its elastic 

energy, thanks to the stronger scaling of bending (EB ~ t3) compared to stretching (Es ~ t) 

energy with thickness t. Bending provides a route to alter the mean curvature of the sheet, 

defined as H = (k1 + k2)/2, where k1 and k2 are the principle (maximum and minimum) 

curvatures at any given point. As illustrated in Fig. 1 this can be achieved by non-uniform 

strains through the thickness of the film, as described by Stoney [6] and Timoshenko for 

bilayers [7]. This variation in strain can be pre-programmed into a thin film in any number 
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of ways including through-thickness variations in the thermal expansion, degree of 

swelling, or ordering/orientation of a liquid crystalline moiety, either as a smooth gradient 

or due to a contrast between discrete layers. However, in photomechanical materials, the 

decay of light intensity I through the thickness of a film provides a natural method to 

generate non-uniform strain, even for an otherwise homogeneous material. Specifically, 

for an absorbing layer one expects that I(y) = Io exp(-µty), where Io is the incident intensity, 

y is the spatial coordinate along the direction of light propagation, and µt is the attenuation 

coefficient. For a film of thickness t > µt
-1, most photons are initially absorbed at the 

surface of the film, generating a gradient in deformation and therefore a spontaneous 

curvature. 

 

An important consideration in programmed bending is that of “incompatible curvatures”. 

In the case of materials with in-plane isotropy, such as many hydrogels, the preferred 

curvature defined by a through-thickness variation is the same along every direction. 

However, satisfying this preference to curve isotropically would require a change in 

Gaussian curvature into a spherical shape, and therefore significant stretching (as 

described in more detail below). Thus, under most conditions the bilayer will instead bend 

along only one direction, as selected by its in-plane geometry. For example, a rectangular 

sheet will generally have an equilibrium configuration with curvature along its longer 

direction, due to edge effects (Figure 1B) [8], although kinetic factors can often lead to 

mechanically stable states that bend along other directions. The introduction of anisotropy 

into the material, as in liquid crystalline polymers or many photomechanical crystals, 



 5 

inherently breaks this symmetry, such that the ground state generally corresponds to 

bending along the principal direction with the larger magnitude preferred curvature. For 

example, a thin ribbon with principle curvatures oriented at ± 45° relative to its long axis 

will generally adopt a helical shape as shown in Figure 1C. 

  

2.1 Patterned Stretching and Gaussian Curvature 

Achieving more complex shapes that simultaneously curve along both directions requires 

programming of the Gaussian curvature K = k1k2 , which geometrically requires that there 

be non-uniform in-plane stretching, compression, or shear [9-11]. For example, in an 

isotropic material such as a hydrogel, an appropriate gradient from large swelling in the 

 
Figure 1. Overview of mean and Gaussian curvature. (A) In a photomechanical strip, mean curvature 
is generated via non-uniform expansion through the thickness of the strip. Deformation gradients can 
be pre-programmed through variations in material properties (i.e. swelling, thermal expansion, or 
molecular ordering) or it can arise spontaneously as a result of light absorption through the film 
thickness. (B) To avoid stretching, an isotropic material will bend along a single direction, usually 
specified by its in-plane geometry. (C) Introduction of anisotropy specifies bending along the axis with 
the largest magnitude of preferred curvature, often generating helical shapes. (D) Patterning of 
Gaussian curvature in thin films can be achieved through in-plane variations in deformation. In the 
case of high expansion in the middle and low expansion at the edges, the film will buckle into an 
elliptical shape with positive Gaussian curvature. (C) In the opposite case, the film with buckle into a 
hyperbolic (saddle-like) shape with negative Gaussian curvature. 
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middle of a sheet to low swelling at the edges (controlled, e.g., by patterning the crosslink 

density or hydrophilicity of the gel) can yield a spherical cap with K > 0 (Figure 1D), 

whereas the opposite configuration generates a saddle with K < 0. Similar principles hold 

for anisotropic materials such as liquid crystal elastomers (LCEs), although in this case 

the orientation of the material can also be varied along the in-plane directions to pattern 

shape. For example, a circular disk that contracts more along the azimuthal direction than 

the radial direction (e.g., an LCE with the director oriented azimuthally around a +1 defect) 

will buckle into a conical shape that possesses a K > 0 singularity at its tip, while the 

opposite configuration will yield a saddle-like ‘excess’-cone with a K < 0 singularity at the 

origin. 

 

Light-induced patterning of Gaussian curvature can generally be approached in one of 

two basic ways: (1) uniform illumination of a film with a “blue-printed” 3D shape defined 

by pre-programmed in-plane variations in deformation, or (2) non-uniform illumination of 

a homogeneous film using spatially-patterned light. Although the latter approach offers 

the possibility to continuously reprogram a single sheet of material into an arbitrarily large 

number of 3D shapes, the design rules for programming shapes in this manner remain 

far less established. In addition, the possibilities offered by combining elements of these 

two approaches remain largely unexplored.   

 

Notably, specifying K alone is insufficient to fully dictate three-dimensional shape. For 

example, a spherical cap can either buckle upwards with H > 0 or downwards with H < 0 
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but have the same Gaussian curvature in either case; for more complex geometries, this 

can yield a multitude of mechanically stable configurations with qualitatively different 

shapes. Thus, fully general strategies for shape programming require routes to 

simultaneously prescribe both mean and Gaussian curvature, a challenge that has so far 

been met in only a very few cases for thermally actuated materials [10–13], and to our 

knowledge has not yet been addressed in light-responsive systems.  

 

3. Photochemical Materials 

Photochemical materials undergo a 

chemical transformation in response to 

light, often leading to a change in 

geometry and/or connectivity at the 

molecular level, as shown in Figure 2 for 

several major classes of materials. If 

these molecules can be organized to 

rearrange in a cooperative fashion, 

these Angstrom-level chemical changes 

can be harnessed to drive macroscopic 

deformation. Typical strategies include 

incorporating photochemical molecules  
 

Figure 2. Examples of photochemical elements 
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Figure 3. Examples of photochemically-driven shape change. (A) Actuation of nematic LCN ribbons 
(reproduced from ref.[18]; copyright 2017 Wiley). (B) Reversible light-driven shape morphing of an array of 
+1 defects in an azobenzene-containing LCE (reproduced from ref. [19]; copyright 2016 Wiley). (C) 
Simulation of photopatterned actuation of spiropyran-containing gels (reproduced from ref. [25]; copyright 
2013 Wiley). (D) Photo-directed curling of a diarylethene ribbon (reproduced from ref. [30]; copyright 2018 
American Chemical Society). (E) Bending and twisting of anthracene nanoplatelets with different molecular 
orientations (reproduced from ref. [33]; copyright 2018 Wiley). (F) Dimerization-induced curling (top) and 
relaxation (bottom) of a cinnamate-containing amorphous polymer (reproduced from ref. [35]; copyright 2005 
Springer Nature). (G) Photo-induced folding of a pre-strained thiol-ene polymer  (reproduced from ref. [37]; 
copyright 2012 American Institute of Physics. (H) Surface feature development in an allyl sulfide-containing 
LCN (reproduced from ref. [38]; copyright 2017 Wiley). 
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into matrices capable of undergoing thermodynamic phase transitions involving changes 

in size or shape, growing single crystals of photomechanical molecules, or exploiting 

changes in covalent bonding to generate or dissipate stress. In this section, we review 

photochemical systems based on four photochemical mechanisms: 1) cis-trans 

isomerization, 2) ring opening and closing, 3) cycloadditions, and 4) bond exchange. 

 

3.1 Cis-trans Isomerization 

Cis-trans isomerization corresponds to the transformation of a molecular configuration by 

rotation about a double bond. Azobenzene is among the most widely studied 

photochromes of this class and can switch reversibly from a thermally-stable extended 

trans-state to a bent cis-state upon absorption of a photon (Figure 2). The reverse cis to 

trans isomerization can happen either by thermal relaxation or absorption of a photon at 

another wavelength. The photophysics of these processes can be tailored through ortho 

and para substitutions of the phenyl rings, as will be addressed in Sections 5 and 6. While 

early work on azobenzene-containing materials primarily made use of amorphous 

matrices doped with photoactive units, the use of ordered matrices, in particular liquid 

crystalline networks (LCNs), provides a more powerful means to drive large shape 

changes. Upon conversion from the trans to cis forms, the change in azobenzene shape 

tends to disrupt the local ordering of the surrounding nematic network, resulting in a 

contraction along the director. Importantly, light absorption and repeated photo-

isomerization also inevitably generate heat (as will be addressed in detail in Section 4.1), 

and while photomechanical effects in many azobenzene-functionalized LC materials are 
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largely attributed to isomerization, it can often be difficult to fully deconvolute the 

photochemical and photothermal contributions to the observed photoresponse [14].   

 

Pioneering efforts by Finkelmann’s group established the amplification of 

photomechanical shape change that could be achieved via isomerization-induced 

disordering using azobenzene-containing side-chain liquid crystal elastomer with a 

siloxane backbone, yielding a ~ 20% linear contraction along the director upon exposure 

to UV light [15]. Ikeda’s group realized reversible 3D shape changes in  polydomain LCN-

azobenzene films [16] through selective absorption of polarized light at the film surface 

by azobenzene units aligned along the polarization direction, leading to a slight 

contraction along this direction at the top surface, and therefore bending along a defined 

axis. Beyond the linear actuation and bimorph-like bending demonstrated in this 

pioneering work, prescription of director orientation can be exploited to control helical 

twisting or formation of shapes with non-zero Gaussian curvature. Following their seminal 

work in the photoactuation of twisted nematic LCN ribbons into helices of controlled pitch 

and handedness using a chiral dopant [17], Katsonis and co-workers recently introduced 

a particularly elegant method for fabricating bio-inspired photoresponsive chiral helices 

from achiral substituents [18]. In this work, azobenzene-containing LCNs were 

polymerized with alternating stripes of ordered and unordered regions with a through-

thickness gradient in crosslinking density introduced during photopolymerization. 

Isotropic and anisotropic polymerization-induced shrinkage in the disordered and ordered 

regions, respectively, gives rise to incompatible curvatures that are satisfied by buckling 
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into helices. As shown in Figure 3A, when the stripes were offset by 45° from the long 

axis of a ribbon, the material twisted into a helix to satisfy one of the curvatures, with the 

direction of buckling and handedness dictated by the through-thickness gradient. When 

exposed to UV light, azobenzene isomerization caused the ordered stripes to contract 

significantly along the director but the disordered stripes to deform isotropically, and the 

helices coiled more tightly. Finally, inspired by seed pod mechanics, helices of opposite 

handedness were coupled to form a tube that spontaneously burst open due to the build-

up of photo-induced strain. 

 

To achieve dynamic optical control of shapes with K ≠ 0, complex in-plane director 

orientation in photo-responsive LCEs can be coupled with spatiotemporally-patterned 

light. Recently, White et al. extended their approach to dictate arbitrary director fields with 

photo-patterned alignment layers to photo-responsive azobenzene-containing LCE 

matrices [19]. Azobenzene-containing LCE samples were prepared with +1 azimuthal, +1 

radial, and -1 defects. At steady-state, uniform UV light absorption through the film 

thickness drove out-of-plane buckling into cone-like, saddle-like, and hemisphere-like 

shapes due to contraction along the director. As shown in Figure 3B, when multiple +1 

defects were patterned in the same sheet, flood illumination of the entire film drove the 

formation of an array of conical domes, due to the more extensive contraction in the 

azimuthal direction around each defect, as described in Section 2. Finally, local 

illumination of the region surrounding just one of the defects was shown to yield selective 

activation of only that cone, providing dynamic reconfiguration into several different 
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shapes. 

 

In addition to incorporation in polymer matrices, efforts have also been made to assemble 

azobenzene derivatives into photomechanical crystals, although there is less work in this 

area. This approach has proven challenging because it is difficult to accommodate the 

large shape change necessitated by isomerization in tightly packed crystal lattices.  One 

successful approach is to localize isomerization to the surface of the crystal, as shown by 

Uchimoto and co-workers in micron-scale plate-like crystals of 4-

(dimethylamino)azobenzene, giving rise to reversible bending  [20].  Other examples of 

photomechanical azobenzene crystals include perhalogenated systems [21] and ‘push-

pull’ pseudostilbenes [22]. Finally, a particularly promising involves the use of co-

crystallization to engineer the crystal properties. For example, Bushuyev et al. have 

shown that azobenzenes functionalized with halogen bond donors and pyridine-based 

acceptors form co-crystals with a wide range of photomechanical behaviors [23]. Thus, 

while incorporation of azobenzene into polymer matrices remains the most common 

method to generate photomechanical responses from these compounds, photomorphing 

of azo-based molecular crystals is also possible and worthy of further study. 

3.2 Ring Opening and Closing 

Unlike cis-trans isomerization, where the molecular conformation is distorted but the bond 

connectivity is unchanged, photochemical changes can also occur through the formation 

and breaking of covalent bonds.  The first class of these reactions we will consider are 

intramolecular ring opening and closing reactions. While many examples of these 
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molecules exist in the literature, we will only consider two particularly widely used 

molecules of this class: spiropyran and diarylethene.  

 

Spiropyran reversibly ring-opens upon exposure to UV light to a highly polar merocyanine 

form. This change in polarity is often exploited in hydrogel systems to drive 

photoresponsive swelling [24]. When incorporated into poly(N-isopropylacrylamide) 

(PNIPAAm) gels and placed in acidic aqueous solutions, spiropyran is primarily in the 

hydrophilic protonated open-ring form. Upon exposure to visible light, the ring closes and 

becomes hydrophobic, driving deswelling. While early work demonstrated the utility of 

this platform to drive homogeneous volumetric swelling changes, pioneering simulations 

by Balazs and co-workers demonstrated the possibilities for complex, reconfigurable 

shape changes of thin spiropyran-doped gels under spatiotemporal light patterns [25].  As 

shown in Figure 3C, a single stripe down the center of the sheet was shown to generate 

in-plane variations in swelling between illuminated and non-illuminated regions, driving 

reversible buckling into hourglass-like shapes that could be tailored by the size and 

location of the stripe as the gel seeks to relieve interfacial strain between swelled and 

deswelled regions. Similarly, square patterns of light drove more complex twisting and 

curvature, as demonstrated by the saddle-like shape adopted by a gel with one corner 

illuminated. Remarkably, the authors also predicted that directed motion could be 

achieved using spatiotemporally-controlled light patterns. For example, periodically 

rastering a stripe of light along the gel in a consistent direction was found to yield 

translation of the gel sheet as a result of peristalsis-like deformation. (While this approach 
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has not to our knowledge been experimentally demonstrated in spiropyran-containing 

gels, work in our group on photothermally responsive gels [26] has shown similar 

behaviors, as described in the next section.) Additional experimental work by Schenning 

and co-workers demonstrated the utility of spiropyran-containing gels to drive non-trivial 

and on-demand shape change [27]. By exploiting polymerization-induced diffusion, they 

prepared light-responsive gels with spatially-patterned crosslink densities. By 

polymerizing the gels directly on pre-structured substrates such that the gels were 

constrained, they made block-like, wave-like, and ratchet-like topographies upon photo-

driven deswelling. Furthermore, the magnitude of the protrusions could be controlled by 

light intensity. This work demonstrates that in addition to exploiting geometrical changes 

of molecular photoswitches to drive shape change, similar effects can also be achieved 

through the use of photoresponsive additives that dynamically switch their chemical 

properties. 

 

Another commonly used class of molecules in ring opening and closing reactions are 

diarylethene derivatives, which contain three heterocyclic rings that switch between ring 

open and closed isomers upon exposure to distinct wavelengths of light. Significantly, 

both isomers are thermally stable, making these molecules particularly well-suited to 

shape fixing. While diarylethenes have been employed in LCNs to drive photoactuation 

[28], they are more commonly assembled into photomechanical crystals that undergo 

shape changes in response to photochemical reactions. Importantly, assembly into 

crystals results in precise, long-range ordering of a high density of photoactive molecules 
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that can be harnessed to produce highly concerted responses difficult to achieve in 

polymer matrices with dilute concentrations of chromophores. The first demonstration of 

photoactive diarylethene crystals was by Irie and coworkers, who demonstrated that upon 

ring-closing in diarylethene derivatives they could reversibly transform 100 µm square 

single crystals into a rhombus shape or bend micron-sized rods depending on molecular 

substituents [29]. The crystal deformation is driven by changes in molecular packing due 

to planarization of the diarylethene upon ring-closing, driving contraction along one 

crystallographic axis and expansion along another. In the diarylethene rods, a gradient of 

photoisomerization through the thickness of the rod drives generates inhomogeneous 

contraction that drives bending in accordance with bilayer mechanics. Since then, rich 

mechanical behavior has been demonstrated in these systems and the observed mode 

of deformation can be tailored by crystal geometry and molecular substituents. Recently, 

Kobatake’s group demonstrated that the dynamic response of these materials can be 

tuned by the direction of illumination in a similar fashion to azobenzene-LCN systems 

[30]. They prepared ribbon-like diarylethene crystals via sublimation that organized with 

alternating layers of molecules organized at 20° and -20° with respect to the axis of the 

ribbon. When uniformly illuminated, these crystals twisted as a result of orthogonal 

contractions of the two oriented sub-populations, introducing similar mechanics to that of 

twisted nematic LCN ribbons. Remarkably, as the illumination angle with respect to the 

top of a diarylethene ribbon changed, the ribbon gradually transformed from a helicoid to 

a cylindrical helix shape and the handedness of the twist could also be controlled (Fig. 

3D). Shape selection was attributed to selective activation of molecules whose dipole 
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moments were aligned parallel to the direction of light propagation, thus generating 

different stress tensors and preferred curvatures with respect to the long axis of the 

ribbon. Significantly, while systems like twisted-nematic ribbons generate a single 

selected shape based on the prescription of director orientation, this system can 

dynamically switch between a helicoid or a cylindrical helix via selective activation of 

differently-oriented photoactive populations. 

 

3.3 Cycloaddition 

Similar to ring opening and closing, cycloaddition reactions drive changes in spatial 

conformations of molecules upon ring formation. However, unlike the intramolecular 

reactions considered above, cycloadditions involve the intermolecular reaction of 

unsaturated molecules to form cyclic adducts. Of particular interest are [2+2] and [4+4] 

reactions, where dimerization results in the formation of four- and eight-membered rings, 

respectively. In this section, we consider two canonical molecules employed in 

photomechanical systems: anthracene and cinnamate. 

  

Anthracene derivatives form thermally-reversible dimers via a [4+4] cycloaddition upon 

UV light absorption. Similar to diarylethene, these molecules can be self-assembled into 

crystals that undergo shape change in response to photodimerization, the shape selection 

of which are highly sensitive to the crystal morphology, packing, and molecular 

substituents. While different anthracene derivatives vary in their kinetic responses, 

forwards/backwards efficiencies, and molecular packing, crystal morphology largely 
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determines the macroscopic shape change of these crystals. As shown in Figure 3E, work 

by Bardeen and co-workers showed that microneedles bend while microribbons twist in 

derivatives of anthracene containing methyl or carboxylic acid groups, the extent of which 

is controlled by illumination conditions [31,32]. They studied the shape evolution of such 

microneedles and microribbons of 9-methylanthracene, and found that at intermediate 

illumination times, the needles bend and the ribbons twist due to stress build-up between 

distinct regions of photoreactants and products [31]. However, as illumination continues, 

more dimers are formed and the crystals gradually straighten out to their original shape 

as interfacial strain between photo-populations is relieved. To explain these observations, 

they developed a simple model to deduce the distribution of strain within the crystal as a 

function of dimer population and used this to trace the curvature evolution over time using 

bilayer bending mechanics. While the twisting behavior was not considered in detail, 

presumably it arises due to curvature induced by distinct populations of monomer and 

dimers, the orientation of which leads to a maximum contraction off-axis. Recently, Tong 

et al. have exploited curling of anthracene nanoplatelets upon UV exposure to achieve 

directed motion [33]. The nanoplatelets reached a maximum curvature at an intermediate 

point in the light-induced reaction when the internal strain mismatch is at a maximum. By 

ceasing illumination at this point, the authors used this shape change to trap aggregates 

of superparamagnetic nanoparticles. Subsequent application of a magnetic field caused 

the crystals with trapped aggregates to translate while uncurled microplatelets remained 

stationary. Further UV exposure caused the nanoplatelets to uncurl and released their 

cargo as the reaction went to completion and the internal strain due to distinct populations 
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of monomers and dimers was relieved. 

 

Cinnamates, which undergo a [2+2] cycloaddition upon exposure to wavelengths in the 

UV and revert back to the monomeric form upon exposure to wavelengths in the extreme-

UV, are also commonly employed for photoinduced shape change. When assembled into 

photomechanical crystals, they behave similarly to diarylethene and anthracene-based 

systems. For example, Kim et al. demonstrated that [2+2] dimerization of 4-

chlorocinammic acid drives twisting in sub-µm thick microribbons composed of oriented 

1-D stacks [34] due to a mismatch strain between regions populated by dimers and 

monomers. Interestingly, while microribbons were shown to twist, rectangular prisms and 

plate-like crystals with the same crystal packing motifs but of µm-scale thicknesses were 

not photoactive. The authors postulated that this is could be due to a difference in the 

density of defects between thinner and thicker crystals, incomplete photoexcitation in 

thicker crystals due to a greater ratio of thickness to penetration depth, decreased heat 

dissipation leading to melting in larger crystals, or decreased flexibility compared to 

thinner ribbons.   

In addition to its use in photomechanical crystals, cinnamic acid is also widely used for 

dynamic crosslinking of shape-memory polymers to spatially program stress. After 

elastically stretching a film of material, dynamic cross-links can be photo-patterned to 

“lock–in” strains locally. When the material is released, the film buckles due to the 

mismatch in strain between crosslinked and uncrosslinked regions. As a demonstration 

of this strategy, Lendlein and co-workers synthesized networks containing cinnamic acid 
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[35]. As shown in Fig. 3F, shapes were fixed by stretching the film, selectively crosslinking 

certain regions through a photomask, and allowing the rest of the film to relax to create 

‘temporary’ shapes such as arches and spirals. Arches were programmed by exploiting 

non-uniform light absorption through the film such that the equilibrium length of the 

exposed side is greater than the opposite side due crosslinking, resulting in curling 

towards the shorter side. Spirals, however, were patterned by selectively crossing-linking 

stripes offset from the long axis of the film such that incompatible curvatures are 

introduced, similar to the mechanics of LCN ribbons presented earlier. Upon exposure to 

shorter wavelengths, the de-dimerization allowed the stressed regions to relax and the 

film to assume its original ‘permanent’ shape. Significantly, in this work, multiple 

temporary shapes can be maintained without the need for constant illumination through 

photoreversible dimerization. 

 

3.4 Bond Exchange 

Light-induced homolysis of covalent bonds into radicals is among the most common and 

useful classes of photochemical reactions. In the context of shape-programmable 

materials, a widely used method of this type is the addition-fragmentation chain transfer 

of allyl sulfides for photo-reversible cleavage and rearrangement of network chains within 

shape memory polymers [36]. In this method, a photoinitiator generates a propagating 

thiyl radical which can subsequently add to an allyl sulfide, producing an unstable 

intermediate that cleaves to generate a new thiyl radical. When polymer networks with 

incorporated allyl sulfides are placed under strain and illuminated, this bond exchange 
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process relaxes stress as a result of rearrangements in network topology. Thus, instead 

of exploiting photo-crosslinking to lock-in stress as is the case with cycloadditions, shape 

is programmed in these systems by using photochemical reactions to relieve stress.  

Because light absorption, and thus radical formation, varies through the film thickness, a 

gradient of stress is induced that causes out-of-plane bending. In one particularly elegant 

example (shown in Fig. 1G), Ryu et al. used exploited this method in polymer sheets to 

create folded structures by selectively irradiating a uniaxially strained film to define fold 

regions [37]. The fold angle could be controlled by varying the width of the illuminated 

region with wider rectangular region giving tighter fold angles because of increased 

curvature. In this way, a closed 3-D cube was realized. This technique can also be 

extended to other materials systems. In a recent example, McBride et al. polymerized 

liquid crystal networks containing allyl sulfides for dynamic control over nematic ordering 

[38]. When an allyl sulfide is incorporated into an aligned LCN, exposure to spatially 

patterned light locally disrupts nematic ordering in the exposed region, allowing for 

spatially controlled programming of ordered and disordered regions. As shown in Figure 

3H, they exploited this effect to spatially control sample topography. 

 4. Photothermal Materials 

Photothermal materials generate heat when illuminated with light. To generate shape 

change, photothermal heaters are typically combined with polymer matrices that undergo 

a dimensional change in response to a thermal transition. For example, driving expansion 

or contraction upon crossing the glass transition temperature (Tg) in a polymer network, 

thermal de-swelling of hydrogels exhibiting lower critical solution temperature (LCST) 
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behavior, or contraction along the director due to a reduction in order parameter of LCNs. 

In this section, we review light-driven shape programming based on three main types of 

photothermal heaters: 1) organic dyes, 2) carbon materials, and 3) metallic nanoparticles. 

 

4.1 Dyes 

In addition to their utility for transforming light into chemical changes, chrompophores can 

also drive shape change through the dissipation of heat into a matrix. Pioneering work 

using dyes as heat generators was conducted by Suzuki and Tanaka [39]. When 

chlorophyllin sidechains where incorporated into PNIPAAm gels, exposure to visible light 

produced heat that drove the gel to collapse.  In the intervening thirty years, dyes have 

been incorporated into a variety of matrices to drive complex shape changes.  
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Figure 4. Examples of photothermal-driven shape change. (A) Wave formation in an LCN from heat 
generation via trans-cis-trans cycling of azobenzene (reproduced from ref. [41]; copyright 2017 Springer 
Nature). (B) Sequential bending of absorbing colored dyes in pre-stretched polystyrene (reproduced from 
ref. [43]; copyright 2017 AAAS). (C) Localized actuation of a graphene-functionalized gel (reproduced from 
ref. [44]; copyright 2013 American Chemical Society). (D) One-way shape memory of 3D printed 
polyurethane/carbon black composites (reproduced from ref. [45]; copyright 2017 Wiley). (E) Local 
deswelling of gold nanocomposite gel sheets (reproduced from ref. [26]; copyright 2015 Wiley). (F) Spatially-
controlled buckling of glassy LCNs with incorporated gold nanoparticles (reproduced from ref. [48]; copyright 
2016 American Chemical Society).  
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Isomerizable dyes, often based on azobenzene, are among the most widely used 

photothermal dyes. So-called “push-pull” azobenzenes, where the phenyl rings are 

functionalized with opposite electron-withdrawing and electron-donating groups, generate 

heat by rapidly isomerizing between trans and cis isomers under blue-green light due to 

overlapping absorbance bands of the two isomers. In particular, two recent examples 

demonstrate the utility of this approach using DR1, an azobenzene-based dye, to drive 

photoinduced shape change in LCNs. Priimagi and co-workers spatially programmed the 

orientation of DR1-containing LCNs to fabricate multi-legged structures with splay director 

alignments, where rotation of the director from laying in to out of plane of the film through 

the film thickness drives the film to  contract and expands orthogonally on opposite sides 

[40]. When exposed to light, the legs of these structures bend out-of-plane due to 

expansion and contraction along the same axis on opposite sides of the film, yielding 

light-responsive grippers and ‘octopods’. In another recent example, Broer’s group 

exploited the heat generation of DR1 to drive propagation of waves in LC films as shown 

in Fig. 3A [41]. By incorporating azo-dyes with increasingly short cis half-lives into a splay 

aligned film a transition from a stationary arc-like configuration to a continuous wave-like 

deformation when a film was illuminated from one side. Remarkably, due to the rapid 

cycling of the incoporated azo-compounds and self-shadowing effects in the film, 

stationary uniform illumination drives continuously regenerating motion and oscillatory 

shape change. Despite the utility of azobenzene in these contexts, prediction and 

characterization of the photoresponse are complicated by contributions to 

photomechanical work through both photochemical and photothermal mechanism, as 
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alluded to in Section 3.1. However, recent work by Priimagi and co-workers using 

cooperative effects of azobenzene isomerization to program strain profiles and 

photoheating to deploy shape change demonstrates that the combination of 

photochemical and photothermal effects can be synergistically exploited under the right 

conditions [42]. 

 

Non-isomerizable visible and IR absorbers can also be used to drive actuation in non-LC 

films through purely photothermal means. For example, Dickey and co-workers used ink 

jet printers to deposit colored ink on the surface of pre-strained polystyrene sheets to 

absorb light in spatially defined regions to drive self-folding due to localized shrinkage 

[43]. Significantly, different colored inks produce heat in response to different wavelengths 

of light. When exposed to light of the correct wavelength, localized heat absorption in 

printed areas drives folding due to non-uniform heating – and thus incompatible strains - 

through the film thickness. By locally inscribing hinges of different colors, origami and 

kirigami structures were folded sequentially according to the order of light exposure, as 

shown in Figure 4B. While folding is irreversible in this system, it allows for the 

programming of a wide variety of complex shapes with temporal control of structural 

evolution. 

 

4.2 Carbon Materials 

 
Due to their strong absorbance in the IR region, sp2-hybridized carbon materials such as 

carbon black, carbon nanotubes (CNT), and graphene are highly effective as 

photothermal materials. Polymer nanocomposites containing carbon-based materials 
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have been demonstrated in a wide variety of systems to control shape, including 

thermoplastics, elastomers, LCNs, and gels.  Here, we highlight a few recent and 

important examples of these systems.  

 

As seen throughout this review, LCST hydrogels provide a useful platform for 

incorporating photoactive additives for photo-driven changes. For example, Wang et al. 

interfaced reduced graphene oxide (rGO) within porous thermoresponsive elastin-like 

peptides for near-IR responsive bending [44]. In their system, hydrogels were engineered 

with one side that was highly porous and one side that was relatively non-porous. The 

high porosity side swelled much faster than the low porosity side due to faster diffusion 

of water, leading to a through-thickness swelling gradient that drove bending towards the 

low-porosity side. When exposed to spatially-defined near-IR light, de-swelling of the gel 

caused localized bending to create a variety of curled shapes, leading to bending of 

fingers in an artificial hand (Figure 4C), directional curling of a gel disk, and motion of a 

light-driven crawler. More recently, Yang et al. used 3D printing of carbon black loaded 

polyurethane shape memory polymers to prepare 3D objects consisting of thin composite 

plates or struts [45]. The objects could be deformed into a new 3D shape at high 

temperature and cooled to set a distinct temporary shape. Upon exposure to IR light, the 

carbon black particles heat the object above the Tg and return it to the initial printed shape. 

Remarkably, sunlight was sufficient to drive this transformation. As a proof-of-concept the 

authors demonstrated the printing, deformation, and recovery of cubic frames and 

“blooming” flowers, as shown in Fig. 4D. 
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4.3 Plasmonic Nanoparticles 

 
 
Among the most efficient and versatile photothermal heaters are metallic nanoparticles. 

In particular, gold nanoparticles can have a photothermal conversion efficiency 

approaching unity for small nanoparticles and have a much greater absorption cross-

sections than dyes [46]. Heat generation in these materials occurs due to dissipation of 

heat from the collective oscillation of free electrons on the metal lattice surface—the 

surface plasmon resonance (SPR)—driven by resonant wavelengths of light. The 

wavelength at which maximum absorption occurs is determined by nanoparticle geometry 

and can be tuned through various synthetic methods. For example, the SPR of gold 

nanospheres can be tuned within the visible region by varying the wall thickness from 

solid spheres to thin-walled hollow nanoshells. Additionally, gold nanorods exhibit an 

additional SPR corresponding to the long axis of the particle that increases from the 

visible to the IR with increasing aspect ratio. While a variety of metals including gold, 

silver, cobalt, and palladium can be used, gold nanoparticles are perhaps the most widely 

studied due to their widely tunable SPRs and their ability to be functionalized with thiol 

ligands to promote colloidal stability.  

 

The utility of gold nanoparticles in photothermal systems is illustrated by a number of 

examples in the literature. Sukhishvili et al. used layer-by-layer assembly of PNIPAAM-

grafted gold nanospheres and nanoshells with non-responsive polymer to drive 

wavelength-selective deswelling in stratified structures [47]. Because of the different 

SPRs of these particles, distinct shapes were realized in response to specific 



 27 

wavelengths. For example, when a trilayer was fabricated with the outer layers containing 

IR-responsive nanoshells and the inner layer containing visible light-responsive 

nanospheres, a cross-like and hour-glass like shape were individually realized upon 

deployment with IR and visible light, respectively. Instead of using spatially-defined 

regions of wavelength-specific absorption to pattern multiple shape transitions in a single 

material, Hauser et al. used localized light exposure to deform PNIPAAm gels containing 

uniformly-dispersed gold nanospheres (Fig 4E) [26]. When exposed to spatially 

programmed patterns of white light, non-uniform strains caused by localized deswelling 

drove the formation of axisymmetric bottle-like shapes, helical rolls, domes, and wrinkled 

surfaces. Additionally, smooth swelling gradients could be achieved using grayscale 

patterns and directed motion was possible by sweeping stripes of light across the gel, as 

predicted by Balazs and co-workers [25]. Critically, this system is dynamically 

reconfigurable, as the gels rapidly reswell upon light removal. Expanding on this work, 

Hauser et al. incorporated gold nanoparticles into LCNs [48], and demonstrated buckling 

of films in hourglass shapes, helices, and cantilevers by combining patterns of light with 

different director orientations (Fig. 4F).  

 

5. Important Parameters Governing Light-Induced Shape Programming 

In this section, we discuss the principles governing the kinetics, efficiency, and spatial 

resolution of shape change in photochemical and photothermal materials.   
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5.1 Kinetics 

The photophysical processes underlying the responses of both photochemical and 

photothermal materials occur on very short time scales (e.g., a few ps or less). However, 

the observed timescale of deformation in photoactive materials is typically on the order of 

seconds or longer. Here we consider why these timescales are so different. 

 

Photochemical transformations are ultimately limited by the rate of excited state 

relaxation, which is typically of order picoseconds for singlet-singlet transitions [49]. 

However, under typical light intensities used for addressing light responsive materials at 

least on the macroscopic scale, e.g., I ~ 104 W/m2, the photon flux and small absorption 

cross-section of a typical photochrome mean that the characteristic time-scale for 

absorption of a photon is much longer, e.g., ~ 1 s. Further, the kinetics of shape 

transformation depend on the interplay between isomerization kinetics, light propagation, 

and mechanical properties of the matrix, often resulting in a lagged response. To 

understand these effects, we will consider isomerization of azobenzene, as it is among 

the most widely studied photochromes, though many of the general trends can be 

extended to other systems. In polymer solutions and in the rubbery state, illuminated 

samples will reach a photostationary state composed of both trans and cis isomers due 

to competing photoisomerization and thermal relaxation, the details of which are strongly 

influenced by molecular structure and matrix polarity, but only weakly dependent on 

viscosity [50].  However, in glassy matrices, trans-cis isomerization is generally slower 

due to the hindrance of molecular motion by the reduced free volume; the rate of reverse 
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cis-trans thermal isomerization can also increase in the glassy state due to ‘trapping’ of 

the photogenerated cis  isomers in a strained state [51]. Beyond single molecule 

isomerization, the shape evolution of an entire film is more complicated. For typical films 

were the thickness is much greater than the penetration depth, response times in both 

glassy and rubbery azobenzene systems can range from several seconds to several 

minutes due to progressive photobleaching through the film thickness [19,52]. Finally, 

while their role is not fully understood, viscoeleastic properties of the film also determine 

the response kinetics of the surrounding matrix. For example, while the timescale for cis-

trans thermal relaxation can be tuned from seconds to hours through molecular 

substitutions [53], a kinetic mismatch between azobenzene thermal relaxation and the 

observed mechanical response is often observed. Experiments by Broer [54,55] and 

White [19] suggest that crosslink density and Tg influence the timescale of mechanical 

relaxation relative to chemical relaxation, though greater insight into the interplay of 

network relaxation and photoswitching kinetics is needed to fully understand and predict 

these phenomena. 

 

For photothermal materials, the kinetics of macroscopic material response depends on 

heat transfer, which occurs on time scales that are highly dependent on the length-scales 

of interest, the material properties of the system, and the dominating heat transfer 

mechanism (i.e. conduction, convection, or radiation). We consider two simplified limits 

with relevance for shape-programming that are straightforward to understand. In the first 

case, we consider conduction-dominated transport for thin films embedded in an infinite 



 30 

medium of constant thermal conductivity, which is a reasonable approximation for 

hydrogel films in water with ~ 10 – 100 µm thicknesses and mm-scale lateral dimensions 

[26]. Illumination of a light-absorbing gel gives rise to a steady-state spatial variation in 

temperature within a time-scale of a few seconds, while the resulting change in shape is 

limited by the material response—in this case, the poroelastic swelling kinetics of the gel. 

In the second case, we consider heat transfer to the medium dominated by convection 

(or radiation), with negligible in-plane diffusion, a limit approached for  very thin films with 

cm-scale lateral dimensions in air, as studied e.g. for LCN nanocomposites [48]. Here 

again, the time scale to reach thermal steady-state is typically a few seconds, while the 

viscoelastic material relaxation time may range from considerably faster to much slower.    

 

5.2 Efficiency 

The efficiency of work output from photomechanical systems, relative to either the 

incident or absorbed intensity of light, has not been well-characterized for many systems, 

but in general has so far been very low. This is due to a number of factors and is 

complicated by the interplay between optical and mechanical properties of photoactive 

materials. Here we examine several important factors governing work output in 

photochemical and photothermal systems and what is currently achievable. 

 

The efficiency of the transduction of photochemical processes to mechanical work is 

complicated and is dependent on how the chromophore is incorporated into the matrix 

and the matrix properties itself. Single molecule AFM studies on azobenzenes 
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incorporated into a polymer chain suggest that an energy conversion efficiency of ~10% 

should be possible  with a quantum yield of unity for trans to cis isomerization [56]. 

However, although quantum yields for photochemical reactions can approach unity in 

solution, these values generally decrease in solid matrices [51].  Beyond single molecule 

studies, where polymer chains are well-aligned into a configuration that should maximize 

force transduction, efficiencies in bulk materials are generally much lower due to the 

imperfect coordination between the responses of different photochromes. One 

consequence of low efficiencies is that the specific work output of photochemical 

actuators is also quite low. For example, while glassy azo-LCNs have elastic moduli on 

the order of GPa, and photo-induced stresses of up to ~1 GPa have been predicted [57], 

photomechanical stresses that can typically be achieved are only several MPa. 

Additionally, matrix properties play a non-trivial role in determining the resulting work 

output: main-chain LC polymer generate more photo-work compared to side-chain LCs 

[58], higher Tg materials generate greater stresses while lower Tg materials transduce 

greater strains [59], and semi-crystallinity decreases work output [60].  

 

Photothermal systems developed to date exhibit similarly limited efficiencies. The upper 

limit of efficiency that can be achieved by a system in converting heat to work is set by 

the Carnot efficiency 𝜂 = 1 −
!!

!"

, where TC and TH are the temperatures of the cold and 

hot reservoirs, respectively. Within this constraint, a primary consideration is the 

temperature increase that can be achieved. While high intensity illumination can lead to 

temperature increases of many hundreds of degrees Kelvin in the local vicinity of 
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individual chromophores or metallic nanoparticles [61], steady state temperature 

increases in bulk materials are generally far lower, typically ~ 10 – 100 K. As nanoparticle 

size increases, the efficiency of light conversion to heat can also decrease due to 

increased scattering [62]. Further, only a small amount of heat is actually converted into 

work, while the large majority is used to increase the internal energy of the matrix material, 

or lost to the surrounding environment, generally causing practical efficiencies to be far 

below the Carnot limit.   

 

5.3 Pattern Resolution 

While the spatial resolution of a pattern of light can ultimately reach the diffraction limit, 

the practical resolution with which deformation can be patterned may be substantially 

more limited. In the case of photochromes, if the photochemical transitions are assumed 

to be uncorrelated (i.e. transformation of one molecule has no effect on the transformation 

of neighboring molecules) then in principle, the boundaries between regions with 

differential photo-strains are limited by the optical resolution. In the case of photothermal 

materials, however, heat transfer will inevitably lead to some broadening. Again, we 

consider the two simple limits described in Section 5.1. For the conduction-dominated 

case, the steady-state temperature profile will be broadened compared to the pattern of 

illumination over a distance similar to the characteristic lateral dimensions of the heat 

producing regions. For the convection-dominated case, lateral broadening occurs over a 

length (tk/h)1/2, where h is the convective heat transfer coefficient and k the thermal 

conductivity of the thin film. For a polymer film with t ~ 100 µm in air, this length-scale is 
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of order 1 mm, which is modest at least for patterning of cm-scale films. However, even 

if the temperature field or distribution of photochemical transformations can be defined 

with very high resolution, elasticity of the film will limit the sharpness of deformations that 

can be achieved to those with radii of curvature at least several times the thickness of the 

film.       

 

6. Future Directions 

In this last section, we offer our perspective on the rational design of photomechanical 

materials and avenues for further development in the field. 

 

6.1 Design of Photoactive Elements 

The fundamental unit of any photoresponsive material is the element that transduces 

photon energy into a chemical or thermal response. Thus, the design of new 

photochemical or photothermal agents specifically engineered for the desired wavelength 

selectivity, efficiency, and reaction kinetics is necessary for the realization of novel 

photomechanical properties. While it is well-established that the optical properties and 

heat generation characteristics of nanoparticles are determined by their size and 

geometry, they are generally less easily tailored than organic chromophores. Organic 

chemistry provides a large toolbox for tailoring photochromes through chemical 

modifications such that variations are essentially limitless. For example, the effects of 

single substitutions on the spectroscopic characteristics and switching kinetics of 

azobenzene are well-studied. While unsubstituted azobenzene has an absorbance in the 
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UV and a thermal relaxation time on the order of hours, both of these characteristics can 

be tailored through the addition of electron withdrawing or donating groups at the ortho 

and para positions.  Halogenation at the ortho or para position results in absorption in the 

visible and thermal half-lives on the order of years [63] while addition of an electron donor 

and an acceptor group at the 4 and 4’ positions, respectively, decreases the thermal 

relaxation time to the order of seconds [64]. While long relaxation times are desirable for 

shape persistence and all-optical control as recent work by Katsonis’ group and White’s 

group shows [65,66], short relaxation times are useful for rapid switching and 

photoinduced  motion  [41,67] and the ability to design photoswitches with responses 

tailored for the desired application is critical.

Beyond azobenzene, however, rational design of existing chromophores to demonstrate 

a desired photoresponse remains a challenge. In many cases, researchers rely on trial-

and-error approaches to empirically define the effects of molecular substitutions on 

photoswitching properties. However, empirical studies of large libraries of photoswitches 

is synthetically time-consuming and even thoughtful molecular design can often be little 

better than a shot in the dark. To circumvent these issues, computational tools can be 

used for the targeted design of photoactive compounds [68]. Thus, while synthesizing 

and characterizing multitudes of photoswitch derivatives is slow and cumbersome, 

quantum mechanical simulations of large libraries of chromophores can be used to inform 

targeted synthesis.  
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6.2 Solid State Engineering of Bulk and Composite Materials 

Photochemical or photothermal agents must be assembled into bulk materials or 

incorporated into matrices to translate molecular changes into macroscopic shape 

changes. However, how best to engineer the organization of such materials to generate 

the desired photoresponses is still an open question. For example, while 

photomechanical crystals can be grown into plates [29,34], microribbons [32], and 

nanorods [69] on the micron scale, it remains a challenge to grow crystals in other 

geometries and on larger length scales. Additionally, while efforts have been made to 

incorporate photomechanical crystals in to polymer matrices for larger energy densities 

without fracture [70,71], it remains an engineering challenge to successfully generalize 

this approach to other systems. 

 

 While incorporation of photoactive materials into polymer films has a number of 

advantages including synthetic control of matrix properties, established processing 

protocols, and the ability to fabricate arbitrary geometries, there remain large gaps in the 

general understanding of how photoresponse is affected by the matrix properties. For 

example, azobenzene switching is known to be sensitive to viscosity, polarity, crystallinity, 

free volume, and segmental motion of the surrounding matrix [72]. Additionally, photo-

softening in photoactive materials further complicates prediction and analysis of the 

resulting shape as the matrix properties dynamically change upon illumination [73]. In the 

case of gold or carbon nanomaterials, high loadings can stiffen the surrounding matrix 

and dampen the photoresponse. Understanding how all of these effects combine to 
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generate a meaningful photoresponse is necessary for tailoring material actuation to 

specific applications. 

 

6.3 Patterning of Arbitrary Shapes 

Should all the challenges presented above be met, there would still remain the issue of 

how to rationally design arbitrary shape change in photomechanical materials. While the 

relatively simple case of designing materials with mean curvature via through-thickness 

strain gradients is well-understood, it is a much harder problem to design materials that 

deform into arbitrary 3D shapes with targeted distributions of mean and Gaussian 

curvature. As discussed in Section 2, light propagation and absorption through a 

photomechanical sheet couple with geometry and elasticity to further complicate this 

design problem. For example, light propagation and deformation are often coupled due 

to the effects of photobleaching, which has been shown to yield non-monotonic changes 

in shape with progressive illumination [74]. Thus, to fully capture the interplay of these 

effects, improved models capturing optical, photochemical, mechanical, and thermal 

effects are needed. In addition, optimization of these materials for practical applications 

require figures of merit to evaluate both the fidelity of realized shape change to the target 

design as well as the efficiency of light conversion to shape change and mechanical work.  

 

6.4 Light Delivery 

Finally, the ease with which light can be spatially, temporally, spectrally, and 

orientationally modulated presents possibilities for a high degree of dynamic and remote 
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control of shape. As demonstrated in work by Hauser et al. and others [15,35], digital 

micromirror devices (DMDs) are a facile way to spatially control light delivery. However, 

higher resolution systems are needed to pattern light at smaller length scales for the 

miniaturization of photomechanical devices. One promising method for photoactuation on 

smaller length scales is through the use of two-photon excitation (2PE) to drive a highly 

localized response. For example, Bardeen and co-workers used 2PE to illuminate ~1 µm 

spots on anthracene nanorods of 35-200 nm in diameter (Figure 5A) to control the 

location, rate, and magnitude of bending [75]. Furthermore, 2PE can be used to control 

the depth of illumination in addition to the lateral dimensions of illumination, and this could 

potentially be exploited to drive rich, dynamic shape change in thick materials.  

 

One drawback of using spatially patterned light to drive shape change is that it typically 

requires direct line-of-site illumination which, in some applications, is impractical or 

impossible. To circumnavigate these effects, waveguiding can be exploited to deliver light 

over long distances with a near-constant intensity or in confined spaces. For example, 

 
Figure 5. Photomechanical responses to different modes of light delivery. (A) Control of bending 

location in an anthracene-based photomechanical nanorod using 2PE (reproduced from ref. [75]; 
copyright 2009 Wiley). (B) Waveguiding actuation of a gel-photopolymer nanocomposite bilayer 

(reproduced from ref. [76]; copyright 2016 Wiley). (C) Actuation of a Venus fly trap-inspired LCN 

controlled by optical feedback (reproduced from ref. [77]; copyright 2017 Wani, Zeng, and Priimagi).  
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Zhou et al. exploited waveguiding to control optical fiber microactuators [76]. In this work, 

nanocomposite PNIPAAm gels were incorporated into bilayers with a photopolymer with 

excellent light transmission properties. When light was waveguided down the length of 

the fiber, photothermal deswelling of the nanocomposite gel drove bilayer bending (Figure 

5B). To our knowledge, this method of light delivery has been demonstrated in very few 

photoactuation systems despite its advantages over flood illumination. 

 

Finally, a major challenge in photomechanical systems is exploiting optical feedback for 

autonomous actuation. In these systems, modulation of illumination conditions due to 

external control or in response to shape change provides feedback to the systems to 

dynamically alter its response.  In a recent example of this strategy, Wani et al. fabricated 

a Venus fly trap-inspired LCN actuator that spontaneously closed when a small object 

enters its field of view [77]. The splay-aligned LCN is initially flat and situated on top of an 

optical fiber. When a “fly” enters the field of view, the light is reflected back on the actuator 

and the small gripper closes around the object (Figure 5C). Once closed, the light is 

blocked and the gripper re-opens to release the object. Thus, harnessing optical feedback 

to trigger between multiple stable states is an important step towards autonomous 

devices and remains an open challenge in the field.  

 

7. Conclusions 

In this review, we have presented general strategies for shape control in synthetic 

systems, an overview of literature examples of photochemical and photothermal 
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actuators, and offered our viewpoints on future work in this field. Photochemical actuators 

benefit from nearly limitless possible molecular structures, but their utility is limited by the 

properties of current generation photoswitches as well as limited ability to control their 

self-assembled structures. Photothermal actuators provide robust means for reversible 

actuation but require heat-responsive matrices and are generally limited to low 

efficiencies due to heat dissipation. Moving forward, new design rules are needed for the 

realization of arbitrary shapes driven by photoactuation and will require contributions from 

physics, chemistry, and engineering to realize the great potential of these materials. 
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