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Light intensity dependence of open-circuit voltage of polymer:fullerene
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The open-circuit voltageVoc of polymer:fullerene bulk heterojunction solar cells is investigated as
a function of light intensity for different temperatures. Devices consisted of a blend of a poly
sp-phenylene vinylened derivative as the hole conductor and 6,6-phenyl C61-butyric acid methyl
ester as the electron conductor. The observed photogenerated current andVoc are at variance with
classicalp–n junction-based models. The influence of light intensity and recombination strength on
Voc is consistently explained by a model based on the notion that the quasi-Fermi levels are constant
throughout the device, including both drift and diffusion of charge carriers. ©2005 American
Institute of Physics. fDOI: 10.1063/1.1889240g

Organic photovoltaic elements are a promising alterna-
tive to conventional inorganic solar cells because of their
low-cost fabrication of large areas. The best performance is
currently obtained with polymer:fullerene bulk heterojunc-
tion solar cells,1 yielding power conversion efficiencies of
typically 2.5% under AM1.5 illumination. One of the key
parameters of photovoltaic devices is the open-circuit volt-
agesVocd, which is the voltage for which the current in the
external circuit equals zero. In polymer:fullerene solar cells
limitations of the open-circuit voltage have been attributed to
Fermi level pinning2 and to band bending at the contact due
to the injection of charges.3 For further optimization of solar
cell performance fundamental understanding of the mecha-
nisms governing the photovoltaic performance is indispens-
able.

For a conventionalsSid p–n junction solar cell the cur-
rent density under illuminationJL is given by4

JL = JsseqV/nkT− 1d − Jph, s1d

whereJs is thesreverse biasd saturation current density,V is
the applied voltage,q is the elementary charge,k is Boltz-
mann’s constant,T is temperature, andn is the ideality fac-
tor. The photogenerated current density is denoted byJph.
Subsequently, the open-circuit voltage is given bysJL=0d

Voc = snkT/qdlnsJsc/Js + 1d, s2d

where Jsc is the short-circuit current density. It should be
noted that Eq.s2d is only valid for an ideal solar cell since it
has been assumed that the photogenerated current density is
voltage independent, meaning thatJph=Jsc at any applied
voltage. Recently, Eq.s2d has also been applied to explain
the temperature dependence ofVoc of polymer:fullerene bulk
heterojunction solar cells.5,6 However, it is not clear whether
such an analysis in terms of an ideal solar cell is justified for
the case of polymer:fullerene bulk heterojunctions. More-
over, the fact that bothJsc andJs are also temperature depen-
dent further complicates the applicability of Eq.s2d to the
effects of temperature on the device characteristics of or-
ganic bulk heterojunction devices. A more direct way of test-
ing the applicability of Eq.s2d toward organic solar cells is to
investigate the dependence ofVoc on light intensity at differ-

ent temperatures. Since it has been demonstrated thatJsc is
nearly linearly dependent on light intensity,7,8 it follows from
Eq. s2d that Voc should exhibit a slope ofnkT/q, when plot-
ted as a function of the logarithm of light intensity. In this
study we demonstrate that the light intensity dependence of
Voc of polymer:fullerene bulk heterojunction solar cells is in
contradiction with the predictions of the conventionalp–n
junction based modelfEq. s2dg. An alternative expression for
Voc is presented that is based on the fact that at zero current
the quasi-Fermi levels are constant throughout the device,
which incorporates both drift and diffusion of charge carri-
ers. This expression consistently explains the experimental
dependence ofVoc on light intensity for bulk heterojunction
devices.

The solar cells addressed in this study are bulk hetero-
junctions consisting of a blend of polyf2-methoxy-5-s38 ,78
-dimethyloctyloxyd-p-phenylenevinyleneg sMDMO-PPVd as
electron donor and 6,6-phenyl C61-butyric acid methyl ester
sPCBMd as electron acceptor in a 1:4 weight ratio. This
blend is sandwiched between a hole-conducting layer
of polys3,4-ethylenedioxythiophened/polysstyrenesulfonated
sPEDOT:PSSd, and an evaporated lithium fluoridesLiFd
s1 nmd /aluminums100 nmd top electrode. After fabrication
the current–voltage characteristics of these devices were
measured in a nitrogen atmosphere, both in dark and under
illumination. A white light halogen lamp set at 800 W/m2

sspectral range 450–750 nmd was used to illuminate the de-
vices. Incident light power dependent measurements were
performed by using a set of six neutral density filters with a
constant optical density in the involved spectral range. The
generation rate of electrons and holes is assumed to be pro-
portional to the intensity.

In Fig. 1 the dark current densityJdark is shown as a
function of voltageV for a MDMO-PPV:PCBM based solar
cell at different temperatures. From the slope of the exponen-
tial part of theJ–V characteristics the ideality factors are
determined. The results are summerized in Table I. At room
temperature the ideality factorn typically amounts to 1.4 and
then further increases to 2.0 at 210 K, in agreement with
other observations.9 Subsequently, the current–voltage char-
acteristic sJL–Vd of an illuminateds800 W/m2d device at
room temperature is shown in Fig. 2, together with the cur-
rent predicted by Eq.s1d. It is clear that there is a largeadElectronic mail: l.j.a.koster@rug.nl
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discrepancy between the predictions of the model and the
experimental data: nearVoc the predicted current is much too
high. This already strongly indicates that thep–n junction
model is not applicable to polymer:fullerene bulk heterojunc-
tion devices. Figure 3 showsVoc as a function of the loga-
rithm of light intensity at various temperatures, the highest
intensity corresponds to 800 W/m2 sno filterd. The experi-
mental data are fitted with a linear function with slopeS
which is given in Table I in units ofkT/q. Suprisingly, the
experimental slopes are within experimental error equal to
kT/q instead ofnkT/q fEq. s2dg for all temperatures. Thus,
next to the photocurrentsFig. 2d the light intensity depen-
dence ofVoc is also not in agreement with the classical
model. It should be mentioned that we have also verified this
for other PPV derivatives.

The main reason for this disagreement is that, as stated
previously, Eq.s2d is based on the assumption of a voltage-
independent photogenerated currentJph. Recently, it has been
shown by Mihailetchiet al.10 that the photogenerated current
of MDMO-PPV:PCBM devices shows a very different be-
havior: In the inset of Fig. 2 the photogenerated current of
such a device is plotted as a function of effective applied
voltage,Voc−V, whereVoc has been corrected for dark cur-
rent. Near the open-circuit voltage, a linear dependence of
the photogenerated current upon applied voltage is observed.
This behavior is caused by the opposite effect of drift and
diffusion of charge carriers.11 At Voc drift and diffusion bal-
ance and the current is zero. At higher effective voltage
Voc−V.0.1 V the drift contribution is dominant and the
photogenerated current tends to saturate. However, due to an
increased dissociation efficiency of photogenerated bound
electron–hole pairs, the photocurrent further increases before
it reaches full saturation atVoc−V.10 V.10 Consequently,
the assumption of a constant photogenerated current is not
valid. When the photocurrent near the open-circuit voltage is

equated toJsc sinset of Fig. 2, lined the photocurrent is
strongly overestimated, hence Eq.s2d cannot be expected to
meticulously reproduce the experimental data. We note that
the fit of Eq. s1d to experimental photocurrent data is often
improved by including series and shunt resitivities.9 How-
ever, the physical meaning of these quantities is not clear
though.

We suggest an alternative expression for the open-circuit
voltage, based on the metal–insulator–metal picture.12 In this
approach, the device is described as one semiconducting ma-
terial with the highest occupied molecular orbitalsHOMOd
of the polymer functioning as the valence band and the low-
est unoccupied molecular orbitalsLUMOd of PCBM acting
as conduction band. The energy difference between the
HOMO and LUMO levels will be denoted by the band gap
Egap. As a first step, the quasi-Fermi levelswn,p are intro-
duced as13

nspd = nint expfs− dqsV − wnspdd/skTdg, s3d

wherenspd is the electronsholed concentration under illumi-
nation andnint is the intrinsic concentration of both electrons
and holes. The intrinsic carrier concentrationnint is given by

nint = Nc exps− Egap/s2kTdd, s4d

whereNc is the effective density of states, which is equal to
2.531025 m−3.14 The productnp is known to statisfynp
=nint

2 in equilibrium,15 however,

np= nint
2 expfqswp − wnd/skTdg, s5d

when the system is not in equilibrium. The familiar expres-
sion for the electronsholed current density, including both
drift and diffusion, is,6

Jnspd = qmnspdnspdE + s− dkTmnspd
]

]x
nspd, s6d

wheremnspd is the electronsholed mobility andE is the elec-
tric field strength. Equations6d can be rewritten in terms of
the quasi-Fermi levels as6

TABLE I. Overview of ideality factorsn obtained from Fig. 1 and slopesS
obtained from Fig. 3.

295 K 250 K 210 K

n 1.34 1.62 1.98
SskT/qd 1.03 1.01 0.90

FIG. 2. Experimental current under illumination of an MDMO-PPV:PCBM
device at 295 Kssymbolsd and the current density predicted by Eq.s2d
slined. Inset: The photogenerated current densityJph of an MDMO-
PPV:PCBM devicessymbolsd as a functionVoc−V. The line denotes the
short-circuit current density corresponding to the assumption ofJph being
constant.

FIG. 3. Voc of a MDMO-PPV:PCBM devicessymbolsd as a function of light
intensity, the solid lines denote linear fits to the experimental data, and the
dotted line represents the prediction at room temperature of Eq.s12d. The
inset shows the spectrum of the white light halogen lamp used to illuminate
the devices.

FIG. 1. Experimental dark current of a MDMO-PPV:PCBM devicessym-
bolsd and fit to the exponential partslinesd at various temperatures.
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Jnspd = − qmnspdnspd
]

]x
wnspd. s7d

At open circuit the current densities aresvirtuallyd zero, con-
sequently, the quasi-Fermi levels are constant. Since the
sohmicd contacts are in thermal equilibrium, the quasi-Fermi
levels have to be equal to the potential at the contacts. This
implies that the differencewp−wn is constant throughout the
device and equal to the applied voltage at open-circuit, there-
fore

np= nint
2 expfqVoc/skTdg. s8d

We have recently developed a numerical model succes-
fully describing the current–voltage characteristics of poly-
mer:fullerene solar cells which includes drift and diffusion of
charge carriers, bimolecular recombination, and the effect of
field- and temperature-dependent generation of free charge
carriers.16 In this model the continuity equation for electrons
is given by

1

q

]

]x
Jnsxd = PG− s1 − PdR, s9d

whereP is the dissociation probability of a bound electron–
hole pair into free charge carriers,G is the generation rate of
bound electron-hole pairs, andR the Langevin recombination
rate of free electrons and holes given by

R= gsnp− nint
2 d, s10d

whereg is the Langevin recombination constant. The gen-
eration rate of free charge carriers is then represented byPG.
The recombination rate can be written as, to a very good
approximation,R=gnp, since the photogenerated charges
outnumber the thermally excited charge carriers by many
orders of magnitudefsee Eq.s8dg. Since the current densities
are zero, so are their derivatives and hence recombination
and generation cancel everywhere in the device. Subse-
quently, it follows from Eq.s9d that,

G = gnps1 − Pd/P. s11d

Therefore, using Eq.s8d and solving forVoc one has

Voc =
Egap

q
−

kT

q
lnS s1 − PdgNc

2

PG
D . s12d

This formula predicts the right slopeS of Voc versus light
intensity, viz.,kT/q, sinceP andg do not depend on inten-
sity. Further, Eq.s12d is consistent with the notion of a field-
dependent photogenerated current, in contrast to Eq.s2d,
since both drift and diffusion have been taken into account
through the use of Eqs.s6d and s7d. Using the appropriate
values for the electron and hole mobility for an MDMO-
PPV:PCBM device,16 Egap=1.3 eV scorresponding to an en-
ergy difference between the HOMO of MDMO-PPV and the
LUMO of PCBM of 1.3 eV16d, P=0.474,16 Nc=2.5
31025 m−3,16 and G=2.731027 m−3 s−1 for the generation
rate, corresponding to illumination by a white light halogen
lamp sspectrum shown in inset of Fig. 3d set to 800 W/m2,9

Eq. s12d preditsVoc=0.8 V at room temperature. This is in
good agreement with the corresponding experimental value
of 0.77 V as shown in Fig. 3. Figure 3 also shows the pre-
dicted light intensity dependence ofVoc as predicted by Eq.

s12d sdotted lined. It should be noted that the analysis of the
temperature dependence ofVoc of polymer:fullerene solar
cells by using Eq.s12d is strongly complicated by the ab-
sence of a sharply defined band gap. Due to the presence of
energetic disorder in both materials, their HOMO and
LUMO levels exhibit a Gaussian broadenings of typically
0.1 eV.17,18 Since the exact distribution of energy levels in-
side the PPV:PCBM blend is not known, the uncertainty in
Egap is of the same order of magnitude as the variation ofVoc
with temperature, thereby prohibiting an exact quantitative
analysis. For further analysis temperature-dependent charge
transport measurements performed on blends are necessary.

In summary, we have investigated the open-circuit volt-
age at various temperatures and demonstrated that the open-
circuit voltage, when plotted as a function of light intensity,
has a slope equal tokT/q. This cannot be explained by using
a formula derived fromp–n junction-based models for
current–voltage characteristics in dark and under illumina-
tion. The main cause of this discrepancy lies in the fact that
the strong voltage dependence of the photogenerated current
is not taken into account. An alternative model for the open-
circuit voltage has been presented, based on the notion that
the quasi-Fermi levels are constant throughout the device.
This model consistently explains the light intensity depen-
dence of the open-circuit voltage of polymer:fullerene bulk
heterojunction devices.

The work of one of the authorssL.J.A.K.d forms part of
the research program of the Dutch Polymer Institutes#323d.
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