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Abstract: Interactions between cluster chiral nanoparticles and a high-order Bessel beam (HOBB)
with arbitrary illuminations are investigated. The generalized Lorenz–Mie theory (GLMT) is applied
to derive the expansions of HOBB. Based on the additional theorem, multiple scattering results of
cluster chiral nanoparticles are obtained by taking into account the tangential continuous boundary
conditions. The present theory and codes proved to be effective when confronted with the simulations
obtained from the Computer Simulation Technology (CST) software. Numerical results concerning
the effects of beam order, beam conical angle, incident angles, beam polarization state, the chirality,
and the material loss on the scattering of various types of aggregated chiral particles are displayed
in detail, including the linearly chiral sphere chain, the chiral cube array, and the complex models
composed of aggregated chiral spheres. This study may provide critical support to analytically
understand the optical scattering characteristics with aggregated chiral particles of complex shapes,
and may find important applications in manipulating collective chiral particles.

Keywords: multiple scattering; collective chiral particles; high-order Bessel beam; spherical vector
wave functions

1. Introduction

Chiral media are important subjects for researchers due to their unique properties
and their wide applications in many fields, including physical detection, biological manip-
ulation, communication, and particle sizing. In the microwave region, researchers have
fabricated chiral materials by randomly integrating micro-chiral objects, such as metal
spirals, into ordinary dielectrics [1].

Considering the increasing applications of chiral materials in biology and technology,
the interactions of chiral materials with electromagnetic fields have recently become a
very interesting research subject. In the past few decades, a large number of scholars
have conducted a lot of analytical research on the interactions between chiral media
and electromagnetic waves. In 1972, Gordon first proposed the scattering problem of
chiral dielectric spheres based on the classical Mie scattering theory [2]. In 1974, Bohren
analytically obtained the classical scattering solutions of chiral particles [3]. Subsequently,
studies of chiral spherical scattering have been expanded to different aspects, including
scattering by an infinitely long chiral cylinder [4], the scattering problem of chiral particles
implanted in mediators [5], scattering of ellipsoids with chirality [6], and scattering of
non-uniformly distributed chiral spheres [7]. Nevertheless, the number of scatterers in
the above investigations is limited to a single chiral object, and the analytical study of
interactions between aggregated chiral objects is very few.

Photonics 2022, 9, 509. https://doi.org/10.3390/photonics9080509 https://www.mdpi.com/journal/photonics

https://doi.org/10.3390/photonics9080509
https://doi.org/10.3390/photonics9080509
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/photonics
https://www.mdpi.com
https://doi.org/10.3390/photonics9080509
https://www.mdpi.com/journal/photonics
https://www.mdpi.com/article/10.3390/photonics9080509?type=check_update&version=4


Photonics 2022, 9, 509 2 of 16

The study of scattering by collective objects is important due to their comprehensively
practical utilizations. Since Mackowski [8] and Xu [9] promoted and developed the addi-
tional theorem of spherical vector wave functions (SVWFs), the compact analysis for the
multi-scattering of aggregated isotropic spherical particles have been derived and widely
developed. Later, the scattering of multiple spheres was extended from the former linear
system to the more complex case of cluster aggregation by Fuller and Kattawar [10]. Xu [11]
proposed the generalized multiple Mie (GMM) theory to obtain the multi-scattering charac-
teristics of assembly isotropic spheres by plane waves incidence. Based on GMM theory,
Gouesbet et al. [12,13] developed the analytical solution of scattering by multiple spheres
with an arbitrary profiled beam incidence, involving many improvements of components
developed from the GLMT [14–16]. Since then, by applying the method of Gouesbet, many
subsequent studies such as soot collectivity [17] and periodic arrays [18] for the scattering
characteristics of multiple particles have been comprehensively reported. Moreover, some
numerical approaches including the null-field theory [19] and dipolar approximation [20]
have also been efficient methods to solve the problem. Despite the extensive knowledge
gained from these investigations, previous studies generally focused on the interactions
between Gaussian beam or plane wave incidence for assembly isotropic particles.

Since Durnin first introduced the concept of the Bessel beam, the unique beam has
attracted increasing attention due to its special properties of non-diffraction and self-
reconstruction [21,22]. It appears to be a potential dramatic alternative to using Gaussian
beams in some particular scenarios [23,24]. Driven by the characteristics, a variety of
researches have been proposed to study the description, expansion, scattering, and applica-
tions in the fields of capture, communication, and detection [25,26]. Recently, a convenient
technique for realizing the orientation and topological charge of HOBB has been reported
by Dwivedi, which provides significant advantages in drilling applications [27,28]. More-
over, some analytical studies have been carried out on the description of HOBB by a
double integration in a sphere coordinate system [29–31]. Taking into account the complex
and time-consuming process of numerical calculation [32], several studies have been in-
volved in the accurate investigation of expansions by using the conveniently analytical
methods [33–35]. Specially, the angular spectrum representation (ASR) is promoted by
Lock [36] and applied to the general description of Bessel beam with zero-order. Based
on the same method, Ma et al. researched isotropic sphere scattering by Bessel beam with
un-polarizations [37]. In addition, Gouesbet and Lock developed the dark theorem to
describe the BSCs and verified the presence of Bessel beams with no vortex [38,39]. Wang
deduced the expansion of HOBB with circular symmetry distribution [40,41].

Furthermore, from the relevant circumstances, the investigations of HOBB scatter-
ing [42,43] by chiral particles [39], by anisotropic particles [44], and by multi-layered
particles [45] are researched widely. However, the work mentioned above is mainly de-
voted to the interactions of the individual object. Studying the scattering of several spheres
at the same time is very different to that of a single sphere, particularly for the case of
aggregated chiral particles, since the particles encountered in nature or manufacturing are
often found to be clustered. Accurate prediction of scattering of multiple chiral spheres
simultaneously with an arbitrary incident HOBB by using a rigorous analytical solution
may have some significance in controlling and manipulating collective chiral particles of
complex shapes operating with a non-diffracting beam. In particular, using the analytical
methods can provide more physical insights into the problem and obtain accurate results
which can be used in comparison with numerical methods.

The body of the thesis is ordered as follows. In Section 2, based on the framework
of GLMTs, the expressions of arbitrary polarized HOBB are given. Moreover, analytical
solutions of the scattering interactions between collective chiral nanoparticles and arbitrar-
ily illuminated HOBB are presented by using the GMM equation. Section 3 presents the
numerical simulations for different parameters. Finally, Section 4 investigates a conclusion.
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2. Theoretical Analysis

The geometry of the multiple chiral particles system induced by a polarized Bessel
beam is given in Figure 1. The particle system Ojxjyjzj is defined coincident with the fixed
global coordinate Oxyz. The particles are arbitrarily induced by a HOBB. A temporary
coordinate system Ojxj

′yj
′zj
′(j = 1, 2) is depicted parallel to the beam system O′x′y′z′. The

incident angle between propagation direction and z axis is represented as α, and we denote
the polarized β as an angle of electric vector vibrating direction of HOBB. When the case
is vertical incidence, the electric field vibrates in the lateral magnetic pattern (TM) with
β = 0◦; vice versa, the magnetic field vibrates in the lateral electric pattern (TE) with
β = 90◦. When β presents other values, it represents another polarization mode.
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Figure 1. Illustration of multiple chiral spheres scattering induced by an arbitrarily polarized high-
order Bessel bam (HOBB). 
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To study the scattering interactions of HOBB and multiple particles, it is necessary
to come up with a suitable Bessel beam expansion. In 2017, Wang [36] derived a general
expansion of HOBB which fits well with the equations of Maxwell. Obviously, the descrip-
tions of Bessel beams can also be applied to our studies. On the basis of this work, the
initial x-polarized HOBB in the system Oxyz is described as [40,46]:

E = E0g(α0)(−i)peipϕexp[−ikz(z− z′)]

×
{[

(1 + cosα0)Jp(ktρ) +
1−cosα0

2 [e2iϕ Jp+2(ktρ)] + e−2iϕ Jp−2(ktρ)
]

êx

+
[

1
2i (1− cosα0)[e2iϕ Jp+2(ktρ)]− e−2iϕ Jp−2(ktρ)

]
êy

+
[
isinα0[eiϕ Jp+1(ktρ)]− e−iϕ Jp−1(ktρ)

]
êz
}

(1)

in which E0 and α0 are the electric field magnitude and the half-conical angle, respec-
tively. kz = kcosα0, kt = ksinα0. The general function g(α0) can make the expansion of
Equation (1) degenerate into a Davis HOBB proposed in [36,47] if g(α0) = (1 + cosα0)/4.
Moreover, they degenerate to a partial wave HOBB developed in [48] if g(α0) = 1/2.

Considering that the mathematical expression of Equation (1) originates from equa-
tions of Maxwell, the x-polarized HOBB can be expanded on the basis of SVWFs in the
intermediate system Ojxj

′yj
′zj
′ as [46]:

Einc
j = E0

∞
∑

n=1

n
∑

m=−n
Cnm

[
−ig′mjn,TEM(1)

mn
(
rj
′, k
)
+ g′mjn,TMN(1)

mn
(
rj
′, k
)]

Hinc
j = E0

k0
ωµ0

∞
∑

n=1

n
∑

m=−n
Cnm

[
g′mjn,TEN(1)

mn
(
rj
′, k
)
+ ig′mjn,TMM(1)

mn
(
rj
′, k
)] (2)
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where the notation “inc” shows the relevant incident expressions, and the subscript indi-
cates the relevant jth spherical expansions. M(q)

mn(r, k) and N(q)
mn(r, k) are the SVWFs, where

q = 1, 2, 3, 4 represents four kinds of spherical Bessel functions in the SVWFs.

Cnm = kCPW
n (−1)(m−|m|)/2 (n−m)!

(n + |m|)! CPW
n = (−i)n+1 · 2n +

1
kn(n + 1)

(3)

According to the derivation obtained in GLMT [21], the expression of g′mjn,TE can be
written as follows [46]:

g′mjn,TE = ig(α0)(−1)(m−|m|)/2 (n−m)!
(n+|m|)! exp(ikzzj

′){
ip−m+1 e(p−m+1)φj

′
Jp−m+1

(
kρj
′sinα0

)
[τm

n (cosα0) + mπm
n (cosα0)]

−ip−m+1e(p−m−1)φj
′
Jp−m−1

(
kρj
′sinα0

)
[τm

n (cosα0)−mπm
n (cosα0)]

(4)

in which, τm
n (cosα0) = dPm

n (cosα0)/dα0, πm
n (cosα0) = Pm

n (cosα0)/sinα0, p denotes the
beam order and

ρj
′ =

[(
xj
′)2

+
(
yj
′)2
]1/2

φj
′ = tan−1

(
yj
′

xj
′

)
(5)

Due to the coordinate rotation theorem of SVWFs [49], the formulations of SVWFs
between the coordinates Ojxj

′yj
′zj
′ and Ojxjyjzj have the following relations:

(M, N)(1)mn
(
rj
′, k
)
=

n

∑
s=−n

χ(m, s, n)(M, N)(1)sn
(
rj, k

)
(6)

in which, the beam center O′ coordinate (xj
′, yj
′, zj
′) at the temporary system Ojxj

′yj
′zj
′ is

derived as  xj
′

yj
′

zj
′

 =

 cosαcosβ −sinβ sinαcosβ
cosαsinβ cosβ sinαsinβ
−sinα 0 cosα

 x′ − xj
y′ − yj
z′ − zj

 (7)

In practice, we need to gain the expansion of HOBB with arbitrary incident directions
in the chiral sphere system

(
Ojxjyjzj

)
. By substituting Equation (6) into Equation (2), the

electromagnetic fields of arbitrarily incident HOBB can be expanded in the jth chiral system
Ojxjyjzj as:

Eip
j = E0

∞
∑

n=1

n
∑

m=−n

[
aip

jmnM(1)
mn
(
rj, k

)
+ bip

jmnN(1)
mn
(
rj, k

)]
Hip

j = E0
k0

ωµ0

∞
∑

n=1

n
∑

m=−n

[
aip

jmnN(1)
mn
(
rj, k

)
+ bip

jmnM(1)
mn
(
rj, k

)] (8)

where (
aip

jmn

bip
jmn

)
=

n

∑
s=−n

χ(s, m, n)Cns(−ig′mn,TE, g′mn,TM) (9)

χ(s, m, n) = (−1)m+s
[
(n + m)!(n−m)!
(n + s)!(n− s)!

]1/2
u(n)

ms (−α) (10)

u(n)
ms (−α) =

min(n−m,n−s)

∑
σ=max(0,−s−m)

(−1)n−m−σ

(
n + s

n−m− σ

)(
n− s

σ

) (
cos

α

2

)2σ+m+s
(

sin
−α

2

)2n−2σ−m−s
(11)

where aip
jmn and bip

jmn indicate the incident beam coefficients, superscript ip corresponds
to different polarization states, such as ix, iy, iL, and iR modes, respectively. Relations
between y-polarization HOBB and x-polarization HOBB can be expressed as: aiy

jmn = −ibix
jmn,
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biy
jmn = −iaix

jmn. In addition, the coefficients of a right-circular polarized (RCP) and left-
circular polarized (LCP) Bessel beam can be obtained, respectively, as follows:

aiR
jmn =

√
2(aix

jmn + bix
jmn)/2 biR

jmn =
√

2(bix
jmn + aix

jmn)/2

aiL
jmn =

√
2(aix

jmn − bix
jmn)/2 biL

jmn =
√

2(bix
jmn − aix

jmn)/2
(12)

To give the readers a more intuitive representation, the magnitude plots for the electric
magnitude of a HOBB with x-polarization, as well as the y-polarization, the RCP, and
the LCP polarization, are given in Figure 2. All the beams are denoted by p = 2 and
α0 = 30◦, as well as the wavelength λ = 1064nm. As can be seen, the beam intensity
distribution exhibits good symmetry in different polarization modes. Moreover, the typical
bright, circular core surrounded by concentric rings of approximately the same power is
visible. One can find that, as the distance from the center increases, the max of the intensity
decreases and the intensity in the inner circle is larger. In addition, all high-order Bessel
beams have zero central amplitude, as shown in Figure 2a–p; this can be explained by the
fact that a HOBB propagates over a characteristic length without spreading (dark central
region) and the doughnut shape is conserved. Based on the focusing properties, one can
expect that these beams can be used to guide high-index or low-index particles along
parabolic trajectories. In this paper, we are concerned with chiral nano-particles scattering
in the focal region.
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3. Multi-Scattering Theory

Taking into account the eigen-mode in chiral media made up of two parts: the RCP
wave with k1 = ω(

√
µcεc + κ

√
µ0ε0) and LCP wave with k2 = ω(

√
µcεc − κ

√
µ0ε0); where

εc, µc, and κ represent the permittivity, permeability, and chirality parameter of chiral
sphere, and ε0 and µ0 denote permittivity and permeability in vacuum, the corresponding
electromagnetic fields of the jth particle are described as [3]:

Es
j =

∞
∑

n=1

n
∑

m=−n
E0

[
as

jmnM(3)
mn(rj, k) + bs

jmnN(3)
mn(rj, k)

]
Hs

j =
k0

ωµ0

∞
∑

n=1

n
∑

m=−n
E0

[
as

jmnN(3)
mn(rj, k) + bs

jmnM(3)
mn(rj, k)

] (13)

E1
j =

∞
∑

n=1

n
∑

m=−n

[
A1

jmnM(1)
mn(r, k1) + A1

jmnN(1)
mn(r, k1) +B1

jmnM(1)
mn(r, k2)− B1

jmnN(1)
mn(r, k2)

]
H1

j = −i
√

εc/µc
∞
∑

n=1

n
∑

m=−n
[A1

jmnN(1)
mn(r, k1) + A1

jmnM(1)
mn(r, k1) + B1

jmnN(1)
mn(r, k2)− B1

jmnM(1)
mn(r, k2)]

(14)

where the notations “1” and “s” represent the relevant internal and scattered parameters,
respectively; as

jmn, bs
jmn indicate the scattering coefficients of the jth chiral particle; and

A1
jmn, B1

jmn denote the internal factors.
Following the continuous bounding criteria, the equations in the jth chiral particle

system accord with:
E1

j

∣∣∣
t
= Eit

j

∣∣∣
t
+ Es

j

∣∣∣
t
, H1

j

∣∣∣
t
= Hit

j

∣∣∣
t
+ Hs

j

∣∣∣
t

(15)

where Eit
j and Hit

j indicate the entire fields of the particle.
They can usually decompose into the initial fields and the fields scattered from another

sphere p.

Eit
j = Eip

j +
L

∑
(p 6=j)

Es
p,j Hit

j = Hip
j +

L

∑
(p 6=j)

Hs
p,j (16)

where Eip
j and Hip

j represent the initial beam; and Es
p,j and Hs

p,j represent the re-scattered
beam from the pth particle.

Applying the additional theorem [9] and Equations (8), (13), and (16), the entire
electromagnetic fields at the jth sphere are:

Eit
j = E0

∞
∑

n=1

n
∑

m=−n

[
ait

jmnM(1)
mn(rj, k) + bit

jmnN(1)
mn(rj, k)

]
Hit

j = E0
k

ωµ

∞
∑

n=1

n
∑

m=−n

[
ait

jmnN(1)
mn(rj, k) + bit

jmnM(1)
mn(rj, k)

] (17)
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The relevant coefficients are:

ait
jmn = ai

jmn +
L
∑

(p 6=j)

∞
∑

v=1

v
∑

µ=−v

[
as

pµv Aµv
mn + bs

pµvBµv
mn

]
(p 6= j)

bit
jmn = bi

jmn +
L
∑

(p 6=j)

∞
∑

v=1

v
∑

µ=−v

[
as

pµvBµv
mn + bs

pµv Aµv
mn

]
(p 6= j)

(18)

where Amn
µv and Bmn

µv indicate the vector additional coefficients [9]. Replacing the boundary
conditions in Equation (15) with Equations (13), (14), and (17), and using the expansions of
SVWFs [50], the scattering coefficients of the jth chiral particle can be gained as:

as
jmn = ajmn

{
aip

jmn +
M
∑

(i 6=j)

∞
∑

v=1

v
∑

µ=−v

[
as

iµv Aµv
mn + bs

iµvBµv
mn

]
(i 6= j)

}

bs
jmn = bjmn

{
bip

jmn +
M
∑

(i 6=j)

∞
∑

v=1

v
∑

µ=−v

[
as

iµvBµv
mn + bs

iµv Aµv
mn

]
(i 6= j)

} (19)

in which ajmn and bjmn denote the scattered result of a single chiral sphere [51].

ajmn = Asa
jnaip

jmn + Asb
jnbip

jmn bjmn = Bsa
jnaip

jmn + Bsb
jnbip

jmn (20)

where

Asa
jn =

ψn
(

x0j
)

ξn
(
x0j
)

D(1)
n (x1j)−ηr D(1)

n (x0j)
ηr D(1)

n (x1j)−D(3)
n (x0j)

+
D(1)

n (x2j)−ηr D(1)
n (x0j)

ηr D(1)
n (x2j)−D(3)

n (x0j)

ηr D(3)
n (x0j)−D(1)

n (x1j)
ηr D(1)

n (x1j)−D(3)
n (x0j)

+
ηr D(3)

n (x0j)−D(1)
n (x2j)

ηr D(1)
n (x2j)−D(3)

n (x0j)

(21)

Asb
jn =

ψn
(

x0j
)

ξn
(
x0j
)

ηr D(1)
n (x1j)−D(1)

n (x0j)
ηr D(1)

n (x1j)−D(3)
n (x0j)

− ηr D(1)
n (x2j)−D(1)

n (x0j)
ηr D(1)

n (x2j)−D(3)
n (x0j)

ηr D(3)
n (x0j)−D(1)

n (x1j)
ηr D(1)

n (x1j)−D(3)
n (x0j)

+
ηr D(3)

n (x0j)−D(1)
n (x2j)

ηr D(1)
n (x2j)−D(3)

n (x0j)

(22)

Bsa
jn = Asb

jn (23)

Bsb
jn =

ψn
(
x0j
)

ξn
(

x0j
)

ηr D(1)
n (x1j)−D(1)

n (x0j)
D(1)

n (x1j)−ηr D(3)
n (x0j)

+
ηr D(1)

n (x2j)−D(1)
n (x0j)

D(1)
n (x2j)−ηr D(3)

n (x0j)

D(3)
n (x0j)−ηr D(1)

n (x1j)
D(1)

n (x1j)−ηr D(3)
n (x0j)

+
D(3)

n (x0j)−ηr D(1)
n (x2j)

D(1)
n (x2j)−ηr D(3)

n (x0j)

(24)

where the expressions of ψn(z), ξn(z), and its logarithmic derivatives D(1)
n D(3)

n can be re-
ferred from the existing references [51]. The other symbols represent x0j = k0aj, x1j = k1jaj ,

x2j = k2jaj, and ηrj =
√

ε0/µ0/
√

εcj/µcj, where k0 denote the surrounding vacuum wave
number, and k1j and k2j pertain to the RCP and LCP wave at the jth sphere.

By utilizing the above scattering coefficients derived, the total scattered fields in Oxyz
can be deduced, which consist of individual fields scattered from each chiral sphere:

Est =
∞
∑

n=1

n
∑

m=−n
Emn

[
ast

mnM(3)
mn(r1, k0) + bst

mnN(3)
mn(r1, k0)

]
Hst = k0

iωµ0

∞
∑

n=1

n
∑

m=−n
B̃mn

µυ

[
ast

mnN(3)
mn(r1, k0) + bst

mnM(3)
mn(r1, k0)

] (25)
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where ast
mn and bst

mn denote the entire scattered coefficients:

ast
mn = as

1mn +
∞
∑

v=1

v
∑

µ=−v

[
as

2µv Ãµυ
mn
′(2, 1) + bs

2mn B̃µυ
mn
′(2, 1)

]
bst

mn = bs
1mn +

∞
∑

v=1

v
∑

µ=−v

[
as

2µv B̃µυ
mn
′(2, 1) + bs

2mn Ãµυ
mn
′(2, 1)

] (26)

Utilizing the total scattering coefficients gained, we can get the radar cross section
(RCS), which is presented as:

σ = lim
r→∞

(
4πr2

∣∣Est∣∣2/
∣∣∣Eip

∣∣∣2)
= 4π

k2
0

{∣∣∣∣ ∞
∑

n=1

n
∑

m=−n
Emn(−i)neimφ

[
mast

mn
Pm

n (cosθ)
sinθ + bst

mn
dPm

n (cosθ)
dθ

]∣∣∣∣2
+

∣∣∣∣ ∞
∑

n=1

n
∑

m=−n
Emn(−i)n+1eimφ

[
ast

mn
dPm

n (cosθ)
dθ + mbst

mn
Pm

n (cosθ)
sinθ

]∣∣∣∣2
} (27)

where Eip denotes the initial electric field with the amplitude presented as a unit.

4. Numerical Simulation

The scattering consequence of assembled chiral spheres illuminated by an arbitrarily
polarized HOBB are numerically calculated in this part. The E-plane and H-plane corre-
spond to the xoz− plane and H-plane, respectively. Numerical simulations considering the
various effects of different parameters including beam order, beam polarizations, incident
angles, beam conical angle, the chirality, the material loss, the number of linear chain,
as well as the periodical structure with dense chiral spheres on angular distributions of
the RCSs are analyzed numerically in detail. The correctness of the present computation
was confirmed when confronted with the numerical consequence obtained from the CST
simulation. As shown in Figure 3, the structure of two identical chiral spheres are arranged
symmetrically in the ẑ axis by HOBB incidence in the +ẑ direction. We present the incident
beam with x polarization and y polarization in Figure 3a, b separately, where wavelength
is defined as λ = 0.6328 µm . As verification, a HOBB will be degenerated to compare with
the consequence simulated from CST. In the below plots, the well consistency can indicate
the credibility of our result.
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Figure 3. Contrast of our simulations of angular distributions of normalized RCS with that of CST
software: (a) x-polarized; (b) y -polarized.

Figure 4 presents the RCSs distributions of a linear chain composed of three chiral
particles by a HOBB disseminating in the angle of 30◦ from the + Z axis with different
polarization states. The three close-packed chiral spheres are supposed to be the same, with
κj = 0.5, aj = 0.5λ, and λ = 0.6328 µm . For the calculation parameters, the refractive indices
of the chiral mediums and outer space are nj = 2n0 and n0 = 1. In addition, the beam
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center, the second chiral sphere center, and the global system Oxyz origin are coincident.
The parameters ix, iy, iR and iL represent the states of linear polarizations along the x-axis
and y-axis, and circular polarizations of right-handed and left-handed, respectively. As
shown in Figure 4a,b, the maximum RCS occurs in the angle consisting of the incident
angle and conical angle α0 = 30◦. Indeed, for the considered polarizations, the amplitude
of RCS oscillations is greater for a first-order Bessel beam with RCP polarization, since the
dipoles induced in small spheres have a fixed orientation, causing them to scatter the wave
intensively to another particle. This makes the optical interaction between them stronger,
which leads to greater higher scattering. Moreover, it can be seen that the influences at
x-polarized incidence are identical with those of y-polarized incidence. However, for the
circularly polarized HOBB incidence, the scattering results of RCP and LCP wave are
distinct, which does not correspond to the scattering results of isotropic spheres, since the
scattering of isotropic spheres is symmetric with the RCP and LCP beam, which results in
the complete coincidence. However, for chiral spheres, the inner field is decomposed into
RCP and LCP components, corresponding to the different wave numbers, which results in
the different scattering results.
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Figure 4. Angular distributions of normalized RCS induced by HOBB depending on the polarization
states. (a) E-plane; (b) H-plane.

Figure 5 plots RCSs of a linear chain composed of three chiral particles by an RCP
HOBB disseminating in the angle of 30◦ from the + Z axis. The three close-packed chiral
particles are similar to Figure 4. The influence of beam conical angles on RCSs is shown in
Figure 5a, and the related amplitude distributions are given in Figure 5b. If the beam order is
immobilized as p = 1 and the conical angles of HOBB are changed to α0 = 0◦, 10◦, 20◦, 30◦,
respectively, and if p is fixed as constant, the center point size increases when the conical
angle decreases. As given in Figure 5a, RCS decreases when we increase the conical
α0; indeed, it is shown in Figure 5b that the bigger the angle α0, the lower the peak
amplitude, which leads to a decrease in the amplitude of the RCS. Moreover, Figure 5a also
demonstrates that the maximum RCS is influenced by both the conical angle and the angle
of incidence, which always appears in the direction of the summation of these two angles.
This is due to the effect that distinct half-conical angles can be treated as different planes
of observation.

The beam order p is a key parameter in the composition of HOBB, which strongly
influence RCS. Figure 6 investigates the influences of RCS by an RCP HOBB disseminating in
the angle of 30◦ from the + Z axis with different beam orders. The relevant parameters are
identical to Figure 5. It is clear that a HOBB disseminates in the dark central area without
spreading. Moreover, the central spot size depends highly on the beam order. The larger the
beam order, the smaller the central spot size. To research the effect of the beam order, we
fixed the beam conical angle α0 = 30◦ and increased the beam order p from 0 to 3, and the
other parameters remained the same. Figure 6a depicts the calculated RCS. Figure 6b presents
the corresponding amplitude distribution. Similarly, it can be observed that the maximum
RCS is affected by the summation of the conical values and the angle of incidence in all cases.
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As shown in Figure 6a, the related amplitude of RCS with respect to large beam orders are
smaller than those of small beam orders, particularly for the maximum RCS positions. This is
the result of an increase of beam order p, causing the decreasing intensity peaks as depicted in
Figure 6b, resulting in the amplitude of RCS diminution. Moreover, it can be seen that if the
order is not zero, HOBB appears with a hollow center in Figure 6b, which makes it minimal in
the forward direction.
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Figure 5. (a) Angular distributions of normalized RCS illuminated by an RCP HOBB based on the
conical α0. (b) Distribution of a first-order Bessel beam with varying conical α0.
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Figure 6. (a) Angular distributions of normalized RCS induced by an RCP polarized Bessel beam
depending on the beam orders. (b) Distribution of a first-order Bessel beam with beam order p as
the parameter.

The RCS distributions of a linear chain composed of three close-packed chiral particles
by a 632.8-nm first-order RCP Bessel beam propagating with varying incident angles from
the +Z axis are shown in Figure 7. The relevant parameters are coincident with those shown
in Figure 5. Selected simulations derived in Figure 6 show that the maximum RCS occurs in
the direction of the combination of the angle of incidence and conical angles. For incident
angle α = 90◦, considering that the chiral chain satisfies the symmetry distributions, the
extreme position appears in the neighboring angle of maximum RCSs. This phenomenon
indicates that the extremum point is more likely to occur in the adjacent direction of the
maximum RCSs for vertical incidence, since the energy distribution is mainly focused on
these two directions. In addition, for the case of oblique irradiation, RCS on the E- and
H-planes no longer satisfies the symmetry distribution. Except for the circumstance of
vertical incidence α = 90◦, the RCS in the H-plane is symmetrically distributed, since the
symmetrical axe of the chiral chain is consistent with the direction of incidence; when the
incident direction is in the E plane, the angular distributions of RCS in the H plane are
symmetrically distributed.
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Figure 7. Angular distributions of normalized RCS illuminated by an RCP HOBB depending on the
angles of incidence. (a) E-plane; (b) H-plane.

The RCS distributions of a linear chain composed of three close-packed chiral particles
irradiated by a 632.8-nm Bessel beam are given in Figure 8. Under the same conditions as
Figure 7, the influence of the varying chirality on RCS are considered, except for the case
where the incident angle considers α = 30◦ from the + Z axis. The scattering enhances both
in the E- and H-plane with the increase of chirality. Nevertheless, the angular distribution
shape of RCS remains nearly unchanged. Therefore, the influence of the chirality on the
extreme position can be ignored.
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Figure 8. (a) Angular distributions of normalized RCS with varying chiral parameters κ versus
scattering angle irradiated by an RCP HOBB. (a) E-plane; (b) H-plane.

Figure 9 plots the RCS of a long linear chain consisting of 3, 7, 15, and 25 chiral spheres
next to each other irradiated by RCP HOBB disseminating in the angle of 30◦ from the +
Z axis. These chiral spheres are supposed to be the same with κj = 0.5, aj = 0.5λ, and
λ = 0.6328 µm. The centers of the HOBB and chiral chains are consistent. Figure 9 shows
that the greater the number of chiral spheres that make up the structure, the nearer the
extreme direction to the combination of the angle of incidence and conical angles. Moreover,
when spherical numbers increase in the chiral structure, the overall amplitude of the RCS
changes more greatly, and the vibrations become stronger. This is due to the result of more
direct interactions between chiral particles.
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Figure 9. Angular distributions of normalized RCS with varying chiral spheres numbers versus
scattering angle induced by an RCP polarized first-order Bessel beam. (a) E-plane; (b) H-plane.

In fact, the study of complex structure composed of a number of chiral particles may
have some practical value. Therefore, we studied the multiple scattering of 12 identical
chiral spheres arranged in 2 × 2 × 3 cuboid lattice, depicted in Figure 10. The radii of every
chiral particle is aj = 0.5λ, and the periodic unit is λ = 0.6328 µm. The array center is at the
origin (0, 0, 0) in Oxyz.
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Figure 10. Illustration of a structure of assembled chiral particles composed in a 2× 2× 3 square array.

The RCS of a 2 × 2 × 3 array of 12 chiral spheres with different material losses induced
by a 632.8-nm first-order Bessel beam propagating along the angle of α = 30◦ from the + Z axis
is calculated in Figure 11. To research the effect of material loss, we chose the refractive index
of the chiral sphere to be from 2.0 + 0.0i to 2.0 + 1.5i, and kept the other parameters fixed. As
given in Figure 10, for the unique structure of the chiral spheres, the extreme is affected by
the combination of the angle of incidence and conical angles. With the increase of material
loss, the shape of angular distribution remains nearly unchanged. Therefore, the effect of the
refractive imaginary component on extreme position can be nearly ignored. Moreover, the
corresponding RCS for great material loss is greater than small loss; the total influence of loss
is to increase amplitude either in the E-plane or H-plane, which is attributed to the increased
absorbance of photons, resulting in the effect of enhanced interactions on multiple scattering.

We investigated the scattering characteristics of other periodical arrays composed of L
identical chiral particles. The periodical array presented in Figure 12 contains an 8 × 8 × 8
cuboid array composed of 512 chiral particles. The related parameters are coincident with
those shown in Figure 5, except that the centre is consistent with the underlying layer centre.
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Figure 11. Angular distributions of normalized RCS with varying chiral spheres loss versus scattering
angle induced by RCP polarized first-order Bessel beam. (a) E-plane; (b) H-plane.
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Figure 12. Illustration of a structure of 512 assembled chiral particles composed in an 8 × 8 × 8
square array.

In Figure 13, the RCS distributions of the 1× 8× 8 array of 64 chiral particles, 2× 8× 8
array of 128 chiral particles, 3× 8× 8 array of 192 chiral particles, and 4× 8× 8 array of 512 chiral
particles are investigated. The induced 632.8-nm Bessel beam propagates along the angle of
α = 30◦ from the +Z axis. As shown in Figure 13, the extreme increases as the number of array
layers increases. This result is mainly due to the denser multiple scattering. In addition, the RCS
was found to be almost identical in the E- and H-plane in several directions. Moreover, the entire
RCS decreases as the sphere number decreases; this is distinct from the previous characteristics
investigated, as the chiral particles are thick. Moreover, for the complex periodical array of the
chiral spheres, the extremum point disappears, denoting that the extreme is not only affected by
the composed spherical number, but also affected by the structure of the chiral spheres.
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be inherently distinct, depending both on the handedness of the chiral particles and the 
polarization directions. Therefore, when enhancing the interactions of multiple chiral par-
ticles, an appropriately polarized beam should be selected. Moreover, an extreme scat-
tered value occurs in the combined direction of the angle of incidence and conical angles. 
Moreover, the amplitude of such a peak increases with the decrease of beam order and 
conical angle. With the increase of spherical numbers, the RCS distributions increase 
greatly. If plenty numbers of particles exist, RCSs of the E- and H-plane are almost iden-
tical in several propagating directions. Additionally, extreme position was indicated to be 
influenced by incident direction, the composed spherical linear chain number, and the 
structure of the spheres. The theoretical investigations provided here also support analyt-
ical investigation on the controlling of assembled chiral particles, which may find im-
portant applications in optical manipulation of aggregated chiral structure self-arrange-
ment by focused Bessel beams. 
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Figure 13. Angular distributions of normalized RCS of four structures composed of varying quan-
titative chiral particles versus the scattering angle from an RCP polarized first-order Bessel beam.
(a) E-plane; (b) H-plane.
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5. Conclusions

We investigate multiple interactions of collective chiral nanoparticles by an arbitrarily
incident HOBB by using analytical solutions. The present theory and codes were proved to
be effective by confrontation with the simulations obtained from the computer simulation
technology (CST) software. Numerical results concerning the effects of beam order, beam
conical angle, incident angles, beam polarization state, the chirality, the material loss on the
scattering of various types of aggregated chiral particles, the number of linear chains, as
well as the periodical structure with dense chiral spheres are displayed in detail. Results
present that the interactional scattering of multiple chiral particles can be inherently distinct,
depending both on the handedness of the chiral particles and the polarization directions.
Therefore, when enhancing the interactions of multiple chiral particles, an appropriately
polarized beam should be selected. Moreover, an extreme scattered value occurs in the
combined direction of the angle of incidence and conical angles. Moreover, the amplitude of
such a peak increases with the decrease of beam order and conical angle. With the increase
of spherical numbers, the RCS distributions increase greatly. If plenty numbers of particles
exist, RCSs of the E- and H-plane are almost identical in several propagating directions.
Additionally, extreme position was indicated to be influenced by incident direction, the
composed spherical linear chain number, and the structure of the spheres. The theoretical
investigations provided here also support analytical investigation on the controlling of
assembled chiral particles, which may find important applications in optical manipulation
of aggregated chiral structure self-arrangement by focused Bessel beams.
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