
Light Logic and Polynomial Time Computation

A Thesis

Submitted to

Faculty of Letters

Keio University

In Partial Fulfillment

of the Requirements for the Degree of

Doctor of Philosophy

by

Kazushige Terui

1

Acknowledgments

First of all, the author would like to express his gratitude to Dr. Max Kanovitch. During his visit
at Keio University in 1998, he kindly spent much time for discussions, from which the author benefited
considerably. Indeed, it was through the discussion on Elementary Linear Logic with him that the
author first gained the core insight into the polytime strong normalization theorem, one of the main
results of this thesis. The discussion concerning phase semantics was also helpful; it is reflected in the
presentation of Chapter 7.

Second, the author would like to express his gratitude to the members of Mita Logic Seminar,
especially Dr. Misao Nagayama and Mr. Ken Shiotani, for helpful suggestions and stimulating discus-
sions.

Professor Harry Mairson gave valuable comments on my presentation at the 16th Annual Sympo-
sium on Logic in Computer Science; his comments are reflected in Chapter 4. Professor Takashi Iida
and Professor Andre Scedrov made a number of helpful suggestions on the manuscript of this thesis.
Dr. Masaru Shirahata kindly replied to the author’s questions on contraction-free set theory. The
author would like to thank them sincerely.

Last but not least, the author would like to express his special thanks to his invaluable advisor,
Professor Mitsuhiro Okada, for helpful suggestions and constant encouragements; without his help,
this thesis would never be completed.

2

Contents

1 Introduction 6

1.1 Background . 6

1.2 Main Results of This Thesis . 11

1.3 Other Approaches to Characterization of Polytime . 12

1.4 Outline of This Thesis . 14

2 Syntax of Light Logic 19

2.1 Preliminary 1: Intuitionistic Linear Logic . 19

2.1.1 Syntax of ILL . 20

2.1.2 Second Order Quantification . 23

2.2 Preliminary 2: Intuitionistic Affine Logic . 24

2.2.1 Syntax of IAL . 24

2.3 Intuitionistic Light Linear Logic . 26

2.3.1 Syntax of ILLL . 26

2.3.2 Undecidability of ILLL . 27

2.4 Intuitionistic Light Affine Logic . 28

2.4.1 Syntax of ILAL . 28

2.4.2 Stratification of Proofs . 29

2.5 Remarks . 31

3 Light Affine Lambda Calculus and Polytime Strong Normalization 32

3.1 Light Affine Lambda Calculus . 33

3.1.1 Pseudo-Terms . 33

3.1.2 Terms . 34

3.1.3 Reduction . 37

3.2 Proving the Polystep Strong Normalization Theorem 38

3.2.1 An Extended Calculus with Explicit Weakening 39

3.2.2 Standardization Theorem . 43

3.2.3 Bounding Lengths of Standard Reduction Sequences 45

3.3 Main Results . 48

3

4 Proofs-as-Programs Interpretation for ILAL2 49

4.1 ILAL2 as a Type Assignment System . 49

4.2 Natural Deduction System ILAL2N . 53

4.3 Subject Reduction Theorem . 55

4.4 Characterization of Polytime Functions . 57

4.5 Remarks . 57

5 Light Set Theory 60

5.1 Syntax of LST . 61

5.2 Fundamentals of LST . 62

5.2.1 Some Basic Facts . 62

5.2.2 Equality . 63

5.2.3 Set Theoretic Operations . 64

5.2.4 Fixpoint Theorem . 65

5.2.5 Undecidability of LST . 66

5.3 Natural Numbers . 67

5.3.1 Numerals . 67

5.3.2 Induction . 69

5.3.3 Addition and Multiplication . 70

5.4 Representing Sets and Functions . 73

5.4.1 Representation in LST . 73

5.4.2 Finite Sets . 74

5.4.3 Words over Finite Alphabets 1 . 75

5.4.4 Words over Finite Alphabets 2 . 77

5.4.5 Cartesian Products . 79

5.4.6 Composition and Iteration . 79

5.5 Encoding Turing Machines . 80

6 Extracting Programs from Proofs of Light Set Theory 82

6.1 LST as a Type Assignment System . 82

6.2 Subject Reduction Theorem for LST . 84

6.3 Cut-Elimination Theorem for LST . 85

6.4 Extraction of λla terms from LST proofs . 87

7 Phase Semantics for Light Logic 90

7.1 Phase Semantics for ILL . 91

7.1.1 Preliminary on Monoids . 91

4

7.1.2 Phase Structures . 91

7.1.3 The Canonical Model . 94

7.1.4 Quotient Model Construction . 95

7.2 Phase Semantics for IAL . 98

7.2.1 Affine Phase Structures . 98

7.2.2 The Finite Model Property for IAL . 98

7.3 Phase Semantics for ILAL . 100

7.3.1 Light Affine Phase Structures . 101

7.3.2 The Finite Model Property for ILAL . 103

7.4 Remarks . 106

8 Conclusion 109

Bibliography 112

5

Chapter 1

Introduction

This thesis is intended to be a thorough investigation of the family of formal logical systems, called
Light Logic, which has been introduced recently and expected to shed a new light on the nature of
the feasible computation (i.e., computation executable in the real world) from a logical perspective.
Although our investigation below will be mostly technical, we shall first explain the main issues of this
thesis in an informal way.

In Section 1.1, we shall give the background, informally explaining the key concepts such as proofs,
programs, feasibility and the polynomial time computation. Then, after having mentioned Linear
Logic, in which our basic methodology originates, we shall arrive at the main theme of this thesis,
Light Logic. In Section 1.2, we shall summarize the main results of this thesis. In Section 1.3, we
shall discuss related works and compare them with our Light Logic approach. In Section 1.4, we shall
outline the contents of this thesis.

1.1 Background

Proofs and programs. Although proofs and programs are conceptually distinct notions which are
concerned with two different aspects of human/machine intelligence, that is reasoning and compu-
tation, it is not to be denied that these two are closely related in certain concrete situations. For
example, consider the following mathematical proposition:

(*) There are infinitely many prime numbers; namely, for any natural number n, there exists a prime
number m which is larger than n.

The well-known Euclid’s proof to (*) [EucBC] goes, roughly, as follows:

Given a natural number n, let m0 = n!+1. If m0 is prime, then m0 satisfies the condition.
Otherwise, let m1 be the smallest divisor of m0. Then this m1 satisfies the condition.
Indeed m1 is prime, since any number which is the smallest divisor of another number is
always prime. Moreover, m1 is larger than n, since no number ≤ n can divide m0 = n!+1.

This is a typical example of constructive proofs, which, for an existential statement ∃xA(x), provide
an effective means to find an object m as well as a proof of A(m) (see [TvD88]). Constructive proofs
have algorithmic content. Indeed, the italicized part in the above proof may well be construed as
describing an algorithm for obtaining a desired prime number. The rest of the proof then verifies

6

Logical Notions Computational Notions
Proofs Programs

Formulas Types (Specifications)
Cut-Elimination (Normalization) Computation (Execution)

Table 1.1: Proofs-as-Programs Correspondence

that the number obtained is really a desired one. Thus the above proof consists of two parts, namely
the algorithmic part and the verification part. The algorithmic part can be formally described as a
program in a usual programming language.

On the other hand, consider the following program specification:

(**) Given a natural number n as an input, return a prime number m which is larger than n.

The primary task of a programmer who is given this specification is to write a program for it, typically
a formal description of the algorithmic part of the above proof, but that is not all what he/she has to
do. After having written a program, the programmer may be asked to certify its correctness, especially
when reliability of the program is crucial. A certification is, ideally, given by means of a mathematical
proof, and it is likely that such a proof coincides with the verification part of the above proof. In
this way, we can observe a tight connection between proofs and programs, at least when constructive
proofs and certified programs are concerned.

The purest form of this proofs-programs connection can be found in a formal setting, which is now
widely known as the proofs-as-programs correspondence1 [CF58, How80]. According to this correspon-
dence, proofs are not just related to, but even identified with programs. To be more specific, proofs
of certain logical systems, e.g., Intuitionistic Logic, are interpretable as programs of certain (models
of) programming languages, e.g., typed λ-calculus; the formulas are then interpreted as types, i.e.,
specifications of programs, and the cut-elimination procedure in a sequent calculus system [Gen35]
(or equivalently the normalization procedure in a natural deduction system [Pra65]) is considered as
computation, i.e., execution of programs (see Table 1.1).

The proofs-as-programs correspondence is theoretically interesting in formally relating two concep-
tually different aspects of intelligence, i.e., reasoning and computation. It is practically advantageous
in providing a unified framework for programming, deduction and verification.

The proofs-as-programs correspondence is usually discussed within a framework of very high com-
putational complexity. For example, the simplest form of the correspondence may be found between
propositional Intuitionistic Logic and simply typed λ-calculus, but normalization (i.e., execution of a
program) in the latter is already hyper-exponential (i.e., requires of towers of exponentials) [Sta79].
However, hyper-exponential time computability is merely a theoretical notion which has little to do

1It is also known as the Curry-Howard isomorphism (or the formulas-as-types interpretation). We prefer the word
“proofs-as-programs” for the following reasons. First, the word “Curry-Howard isomorphism” sometimes refers to a
specific relation, rather than a general paradigm, between propositional Intuitionistic Logic and simply typed λ-calculus,
while we would like to apply the word to other logical/computational systems as well. Second, the Curry-Howard
isomorphism is usually discussed in the context of Church-style typed calculi, while in this thesis we deal with type-free
calculi with Curry-style type assignment systems. Third, in our framework, quantifiers are interpreted implicitly, i.e., the
logical inference rules for quantifiers do not appear explicitly in the computational languages. Namely, the interpretation
of proofs is not isomorphic, but just homomorphic. Therefore, it is at least debatable whether our framework really falls
under the Curry-Howard isomorphism in its most strict sense. Instead of discussing this point further, we adopt a more
neutral terminology “proofs-as-programs” which does not seem to have such a specific meaning.

7

Proofs Programs

ComputationLogic

??
Polytime
Programs

Proofs-as-Programs
Correspondence

Figure 1.1: What corresponds to polytime programs?

with the real world computation, since the time required for computation may be far larger than the
lifespan of the universe (see, e.g., [GJ78]). Hence a natural question is whether this paradigm can
be accommodated to a framework of lower computational complexity as well. In this thesis, we shall
discuss the proofs-as-programs correspondence in the context of the feasible computation, which is
explained below.

Feasible computation and polynomial time. In the real life, programmers write computer pro-
grams for solving daily computational tasks, such as calculating wages of employees, sorting a list of
customers, finding the most efficient way of transportation, and so on. Such programs are required not
only to be correct, but also to be executable within a reasonable amount of time and space. In short,
such programs are required to be feasibly executable. There is wide agreement among researchers in
the field of computer science that feasible algorithms are identified with polynomial time algorithms,
i.e., those which are computable by Turing machines within a polynomial number of steps (see, e.g.,
[GJ78] for an argument for this). Thus the feasible computation is identified with the polynomial time
computation, or shortly the polytime computation, and feasibly computable functions are identified
with polytime functions. Since the notion of feasibility is so crucial in the real world computation,
it has been one of the central issues in computer science to understand the nature of the polytime
computation.

In view of the proofs-as-programs correspondence which allows us to analyze various aspects of
computation from a logical perspective, it is natural to ask what the polytime computation amounts
to in terms of logic. Is it possible to find a purely logical notion which does not presuppose polytime
but does capture it according to the proofs-as-programs paradigm? To put it in other words, is it
possible to find a well-delimited subset of logical proofs which precisely correspond to polytime pro-
grams (see Figure 1.1)? There are various ways to approach this problem. For instance, one could
seek such a logical notion in the complexity of formulas (i.e., degree of quantifier alternation) or in
the structure of the induction inference rule in an arithmetical system. Our approach, by contrast,
focuses on the structure of logical inference rules. Among those, we are particularly interested in the
structural inference rules, which arise in Gentzen’s sequent calculus most naturally. (Other approaches
are mentioned in Section 1.3.)

Control of Contraction: Linear Logic. Apart from the logical inference rules and the cut rule,
Gentzen’s sequent calculus2 [Gen35] contains structural inference rules, Weakening and Contraction3:

2Although Gentzen also considered sequent calculus for Classical Logic, we shall exclusively deal with sequent calculus
for Intuitionistic Logic below in order to simplify the argument.

3In what follows, the Exchange inference rule of [Gen35]

8

yx

f(x,y)

x

f(x,x)

(a) (b) (c) (d) (e)

Figure 1.2: Iteration of Functions

Γ � C
A,Γ � C

(Weak)
A,A,Γ � C

A,Γ � C
(Contr)

.

Weakening means that a redundant assumption may be added harmlessly, while Contraction means
that two assumptions of a formula A is identified with a single assumption of A. Of these two, we
are particularly interested in the latter, i.e., Contraction. Although it seems quite harmless from
a viewpoint of logical reasoning, where it is irrelevant how many times one uses an assumption, it
actually causes a disastrous effect, namely an exponential explosion, when it comes to the complexity
of computation. For illustration, let us consider a proof of conclusion A,A � A. According to the
proofs-as-programs paradigm, such a proof corresponds to a function f(x, y) with two inputs and
one output all of which are of type A. The function f is schematically drawn in Figure 1.2(a). By
Contraction, we can obtain a proof of conclusion A � A which corresponds to function f(x, x) (Figure
1.2(b)). If this function is iterated (Figure 1.2(c)), it immediately gives rise to an exponentially
growing computational tree (Figure 1.2(d)). Since iteration is such a basic mechanism that it cannot
be dispensed with in most realistic computational systems, a reasonable way to avoid this exponential
explosion is to restrict the use of Contraction in one way or another.

At this point, it is suggestive to pay a visit to Linear Logic [Gir87, Gir95], which embodies an
elegant means to control the use of structural inference rules on the object level. Linear Logic is often
said to be a resource-sensitive logic, and this is precisely because it takes special care of Contraction and
Weakening. In Linear Logic, a formula is not allowed to be contracted or weakened unconditionally.
Rather, a formula must be authorized by means of a modal operator ! in advance of being contracted
or weakened. Formally, (the intuitionistic version of) Linear Logic is obtained from Intuitionistic Logic
in the following three steps: (i) remove Contraction and Weakening, (ii) enrich Intuitionistic Logic
with an S4-modal operator ! (called an exponential), (iii) re-introduce Contraction and Weakening,
but this time only for !-prefixed formulas4:

Γ � C
!A,Γ � C

Weak
!A, !A,Γ � C

!A,Γ � C
Contr

.

In this way the exponential modal operator controls the use of Contraction and Weakening. These
modifications result in a new logical system which is constructive (in the sense that proofs have

Γ, A, B, ∆ � C

Γ, B, A, ∆ � C
(Exch)

will be assumed implicitly.
4A more detailed exposition is given in Chapter 2.

9

algorithmic content) and which inherently possesses control over resources. It helps us analyze In-
tuitionistic and Classical Logics and give a deep insight into the nature of cut-elimination (see in
particular [Gir91, DJS95, DJS97]). Practical applications of Linear Logic are abundant, for which we
refer to [Sce93, GLR95].

Linear Logic is not a restriction, but a refinement of Intuitionistic and Classical Logics. As such
a logic, it has roughly the same expressive power as Intuitionistic and Classical Logics, thus cut-
elimination is still hyper-exponential. For instance, from a proof of conclusion A,A � A which repre-
sents f(x, y), we may obtain a proof of conclusion !A �!A

....
A,A � A

!A, !A � A
!l

!A, !A �!A !r

!A �!A Contr

which represents f(x, x) and by iteration causes an exponential explosion as before. Therefore, Linear
Logic itself does not capture polytime. Nevertheless, the idea of controlling Contraction by means
of a modal operator is quite attractive, and indeed it is this idea which, after a pioneering attempt
of Bounded Linear Logic [GSS92], leads Girard to an intrinsically polytime system: Light Linear Logic.

Taming of Contraction: Light Logic. In [Gir98], Girard introduced Light Linear Logic (LLL)
which is intended to capture the polytime computation in the proofs-as-programs paradigm. It was
proved that every polynomial time function is representable by a proof of (the second order) LLL,
and conversely that every LLL proof is normalizable via cut-elimination in polynomial time. Thus
the representable functions in LLL are precisely polytime. Later on, in [Asp98], Asperti introduced a
simplified system, called Light Affine Logic, by adding the full (unrestricted) Weakening rule to LLL.
The intuitionistic versions of these systems, Intuitionistic Light Linear Logic (ILLL) and Intuitionistic
Light Affine Logic (ILAL), were also introduced by Girard and Asperti, respectively. Since these
systems, LLL, LAL, ILLL and ILAL, are just variations on the same theme, namely taming of
Contraction, we shall collectively call them systems of Light Logic.

While Linear Logic is concerned with control of Contraction, Light Logic is concerned with taming
of Contraction. The basic idea is to replace the exponential modality ! of Linear Logic, which controls
Contraction, with two more tamed ones, called light exponentials. Now we have two modal operators
! and § with the following inference rules:

B � A
!B �!A

(!)
B1, . . . , Bm, C1, . . . , Cn � A

!B1, . . . , !Bm, §C1, . . . , §Cn � §A (§) m,n ≥ 0
.

Now assume that a proof of conclusion A,A � A is given and it represents a function f(x, y) as before.
In contrast to the case of Linear Logic, one can no more produce a proof of conclusion !A �!A from
that, since rule (!) only applies to those sequents which have at most one assumption formula. One
could produce a proof of §A, §A � §A, but it is useless because Contraction does not apply to §-prefixed
formulas. The only possibility left to us is to produce a proof of !A � §A as follows:

....
A,A � A

!A, !A � §A §

!A � §A Contr.

10

Although this proof surely represents f(x, x), it cannot be iterated anymore, since the input type !A
is different from the output type §A. Actually rule (!) of Light Logic allows a form of iteration, but
it no more yields an exponential computational tree like Figure 1.2 (d) but it just yields a linear one
like Figure 1.2 (e); iteration is not exponential, but linear in Light Logic. In general, what can be
obtained by several applications of linear iteration is at best a polytime function. Thus exponential
time functions are successfully ruled out5.

Since its inception, Light Logic has been investigated by various authors. Kanovitch, Okada and
Scedrov [KOSar] considered phase semantics for LLL and gave a semantic proof to the cut-elimination
theorem for LLL. Baillot [Bai00] considered coherent semantics for LLL, while Murawski and Ong
[MO00b] proposed a game semantics for a multiplicative-exponential fragment of LAL and proved a
full completeness theorem. Roversi [Rov99] fixed a gap which was found in the proof of the polytime
representability theorem in [Gir98], and described a very precise encoding of polytime Turing machines
in ILAL. He also attempted to design a functional programming language based on ILAL with ML-
like polymorphism in [Rov00]. Asperti and Roversi [AR00] presented a proofnet syntax for ILAL and
investigated some syntactic issues. Murawski and Ong [MO00a] investigated a relationship between
Light Logic and Bellantoni-Cook’s safe recursion formalism (see below). As for extensions of Light
Logic, there is a variant of LLL, called Elementary Linear Logic, which captures the elementary
recursive complexity; it was introduced in the appendix of [Gir98] and later reformulated in [DJ99].
On the other hand, we gave a characterization of the polynomial space functions based on the Light
Logic approach in [Ter00]. There are also a considerable number of related works, which are discussed
in Section 1.3.

1.2 Main Results of This Thesis

In spite of those past studies mentioned above, we have not yet arrived at a comprehensive under-
standing of Light Logic. First, the computational aspect (i.e., cut-elimination) of Light Logic is not
fully understood; it has been known that proofs are polytime normalizable, but has not been known if
polytime normalizability here is in the strong sense or not (see below). Second, the reasoning aspect
of Light Logic is not completely explored; it has not been fully examined what kind of reasoning is
possible and what kind of formal theories can be developed in Light Logic. Third, the semantic aspect
of Light Logic is to be studied further. Moreover, certain basic properties of a logical system, such as
decidability and finite model property, are not known for Light Logic. In this thesis, we investigate
Light Logic with the aim of clarifying these three aspects. In doing so, we mainly deal with the sim-
plest system of Light Logic, ILAL. Our main results are stated as follows.

1. In order to clarify the computational aspect of Light Logic, we introduce a term calculus λla, called
Light Affine Lambda Calculus, which embodies the essence of the proof system of ILAL. Proofs of
ILAL are structurally representable as terms of λla. Then we prove the main theorem:

Polytime Strong Normalization Theorem. Terms of λla are normalizable in polynomial time
regardless of which reduction strategy we take.

2. In order to examine the reasoning aspect of Light Logic, we develop Cantor’s naive set theory based
on ILAL, called Light Set Theory. Our main result is:

5This is merely a rough sketch of the idea, however. The actual situation is more complicated, and we need another
important mechanism, which we call stratification of proofs. We shall explain the latter in Subsection 2.4.2 of Chapter 2.

11

Provable Totality of Polytime Functions. A function is polytime computable if and only if it is
provably total in Light Set Theory.

It confirms that a sensible mathematical theory which has a truly polytime character can be developed
on the basis of Light Logic.

3. As a semantic means to investigate various properties of Light Logic, we introduce a sound and
complete semantics for ILAL, called light affine phase semantics (as well as a slightly generalized
version of it). Then we prove:

The Finite Model Property for ILAL. A formula is provable in ILAL if and only if it is satisfied
in all finite (generalized) light affine phase models.

It follows that ILAL is decidable. A more detailed account of these results is given in Section 1.4.

Light Logic captures the polytime computation through the proofs-as-programs paradigm. Hence
to study Light Logic is at the same time to study the nature of the polytime computation. We
hope that our study will lead to a better understanding of the feasible computation from a logical
perspective.

1.3 Other Approaches to Characterization of Polytime

Light Logic provides a logical characterization of the polytime functions in the paradigm of proofs-as-
programs and cut-elimination-as-computation. The characterization is machine-independent (it does
not mention Turing machines or other machine models) and resource-free (the syntax does not contain
explicit polynomial bounds). Since similar characterizations are abundant in the literature, we need
to compare Light Logic with them in order to clarify the characteristic of the Light Logic approach.
For convenience, we classify other approaches into the following categories: (1) recursion theory, (2)
functional programming, (3) proof theory, and (4) finite model theory.

(1) Recursion Theory
The seminal work in this area is Cobham’s recursion-theoretic characterization of the polytime func-
tions by bounded recursion on notation [Cob65]. This is the first machine-independent characterization
of a complexity class and has influenced later work so much. There is, however, an unpleasant point
in his result that in applying recursion one needs an explicit bounding function in addition to the
usual base and step functions, and one also needs an ad hoc initial function 2|x|·|y|, called the smash
function, sorely to provide a large enough bounding function. In some appropriate sense, Cobham’s
characterization does not presuppose polynomial time but does presuppose polynomial growth rate,
hence his characterization is not resource-free.

The ad hoc character of [Cob65] has been later remedied in the safe recursion (or ramified re-
currence) approach. Bellantoni and Cook [BC92] provide a resource-free characterization of polytime
which does away with Cobham’s bounding condition. It is based on a conceptual distinction between
two ways that data objects are used in computing. For instance, a 0-1 word can be used locally as a
collection of 0-1 data each of which is accessed bitwise, or it may be used globally as a template for
function iteration. According to this distinction, [BC92] classifies arguments of functions into two,
safe arguments (for local use of arguments) and normal arguments (for global use of arguments), and

12

imposes a constraint that recursion can be applied only on safe arguments. The resulting system
precisely captures the polytime functions in a machine-independent and resource-free way. Leivant
[Lei93, LM94] provides a similar characterization based on a more general concept of data ramification
and ramified recurrence.

These characterizations are purely recursion-theoretic while Light Logic is proof-theoretic. Never-
theless, a partial relationship between them is established by Murawski and Ong [MO00a] based on
the idea of identifying bint, which is a type for binary integers in ILAL, with normal inputs and
§kbint with safe inputs. It is then proved that safe recursion with non-contractible safe variables is
interpretable in the second order ILAL.

(2) Functional Programming
The idea of safe recursion is also available in the functional systems, as first exhibited by [LM93].
Later on, a typical polytime functional system is described by Hofmann [Hof97], where he considers
simply typed λ-calculus with data objects, distinguishes safe and normal arguments by means of S4-
modal types and then incorporates safe recursion of [BC92] as a recursor of base type. The system is
extended with higher type recursors in [BNS99, Hof98, Hofar], by imposing some linearity constraint
on the use of variables of higher type. See [Hof] for a good survey.

Closely related, but conceptually different characterizations of polytime are given based on applica-
tive control. The idea is to restrict the form of programs syntactically (rather than type-theoretically)
so as to guarantee their computational complexity. Jones [Jon97] characterizes the polytime functions
by recursion with read-only variables. Leivant [Lei99] extends this applicative control approach to a
calculus with higher type recursion, by appealing to some linearity constraint on variables of higher
type as in [BNS99, Hof98, Hofar].

These functional systems based on safe recursion or applicative control bear some similarity with
Light Logic, as suggested by the above mentioned result of [MO00a] and by the fact that linearity con-
straint is crucial in both approaches. Nevertheless, these functional systems are formally distinguished
from Light Logic in several ways. First, their underlying frameworks are different; all functional sys-
tems mentioned above are based on λ-calculus with data objects and a recursor (like Gödel’s system
T [Göd58]), while the proof systems of Light Logic are polymorphic calculi without built-in data
objects and a recursor (like Girard’s system F [Gir72]). Second, in the above functional systems,
the input/output dependencies are polytime only for base types, and not for higher types. Indeed,
normalization may be of hyper-exponential complexity at higher types. This shows that the global
structures of these systems are not necessarily of polytime character. On the other hand, normaliza-
tion (cut-elimination) is polytime at any type in Light Logic; in this respect one could say that Light
Logic is more adequate for characterizing polytime in the paradigm of normalization-as-computation,
since normalization (cut-elimination) in Light Logic is globally polytime. Third, there is a significant
difference even at the base types. The above functional systems are at best weakly polytime; they
admit a base type program whose normalization requires of exponential time when one takes a bad
reduction strategy. On the other hand, all programs expressible in Light Logic are strongly polytime.

(3) Proof Theory
As for proof-theoretic investigations of the polytime complexity, the first work to be mentioned is
Cook [Coo75], where an equational theory PV is introduced and the notion of feasibly constructive
proof is analyzed based on it. Although PV is interesting in its own right, it involves an iteration
schema similar to bounded recursion on notation of [Cob65] as well as certain ad hoc initial functions.
Thus it is not resource-free. In [CU93], system PV is extended to higher type functionals PV ω and

13

to logical systems IPV with quantifiers.

Another seminal work in this area is Buss’s Bounded Arithmetic [Bus86], where a deep connection
between bounded fragments of arithmetic and polynomial time hierarchy is revealed. Among systems
of Bounded Arithmetic, S1

2 captures the polytime functions. The relationship with Cook’s PV and its
extensions is examined in [Bus86, Bus93, CU93]. Bounded Arithmetic is now one of the central subjects
in proof theory and being studied quite extensively (see [HP93] and [Kra95]). However, the insight it
offers to polytime is quite different from that Light Logic offers. First, syntax of S1

2 contains Cobham’s
smash function as a primitive, and induction formulas have to be bounded; i.e., the characterization
is not resource-free. Second, Buss [Bus86] introduces a general method of witnessing, which allows
us to extract a polytime algorithm (in terms of Turing machines) from a given proof of totality of a
function in S1

2 . But the witnessing method applies only to cut-free proofs, while cut-elimination itself
is of hyper-exponential complexity. System S1

2 proof-theoretically captures the polytime computation,
but not in the paradigm of proofs-as-programs and cut-elimination-as-computation.

Resource free characterizations are given in [Lei94, Lei95, HBar] by developing the idea of safe
recursion/ramified recurrence in proof-theoretic settings. But in those works, again, the inner structure
of proofs forced by the cut-elimination procedure is not of polytime character.

Light Logic has a precursor, namely Bounded Linear Logic [GSS92], which provides a proof-
theoretic characterization of polytime in the proofs-as-programs paradigm. The basic idea is to replace
the exponential modality !A of Linear Logic, which means an unlimited supply of A, with a bounded
one !xA, which means a supply of A up to x times. The resulting system has a polytime cut-elimination
procedure and is enough expressive to encode all polytime functions. There is, however, a drawback
that polynomial resource parameters explicitly appear in the syntax; Bounded Linear Logic surely
captures polytime, but in doing so it crucially refers to polynomials. It should be noted, however, that
Bounded Linear Logic has been recently recast by a notable work [HS00], where a realizability model
for Bounded Linear Logic is introduced and the polytime upperbound for the representable functions
is shown based on it. It would be exciting if one could import the realizability method developed there
to Light Logic. Another work to be noted is Lafont’s new polytime system, called Soft Linear Logic
[Laf01], which can be seen as an elegant simplification of Bounded Linear Logic. We shall mention
the latter in Section 4.5 of Chapter 4.

(4) Finite Model Theory
Finally, we should mention that there are many nontrivial characterizations of polytime in the finite
model theory (and database queries) approach, such as [Saz80, Var82, Gur83, Pap85, GS86, Imm86,
Imm87, Lei90]. Typically in [Imm86], polytime predicates are characterized by formulas of first or-
der Classical Logic with inflationary fixpoints in a model-theoretic way (see [EF99] for the general
background). Those model-theoretic characterizations, however, have very little to do with the proof-
theoretic characterization of Light Logic; what plays an essential role there is models. On the other
hand, we intend to capture polytime in terms of proofs.

1.4 Outline of This Thesis

We have already stated our main results in Section 1.2. Here we explain the main issues of this thesis
in more detail and from a broader perspective.

Syntax of Light Logic (Chapter 2). We are concerned with the above problems for Light Logic in

14

general, but it would be tedious and fruitless to consider all systems of Light Logic at once. Rather,
we shall pick out ILAL as a sample system and address the above problems mainly for ILAL. The
reason why we select ILAL is that it is arguably simpler than the other systems. The simplicity of
ILAL will allow us to concentrate on the critical issues, leaving unnecessary complications aside.

In Chapter 2, we shall describe syntax of ILLL and then syntax of ILAL. It will be explained
how the latter simplifies the former, and why the classical counterpart of ILAL, i.e. LAL, is not
appropriate. LLL is as complex as ILLL. In addition, we shall mention undecidability of ILLL,
which is in contrast to decidability of ILAL. These results witness the relative simplicity of reasoning
in ILAL compared with others, thus justify our choice of ILAL.

Polytime strong normalizability of Light Logic proofs (Chapter 3 and Chapter 4)6. The
intrinsically polytime nature of Light Logic is best witnessed by the polytime normalization theorem,
which states that every proof can be normalized into a cut-free one in polynomial time. Although the
theorem has been shown for LLL by Girard and for ILAL by Asperti, there still remains an important
problem. What is actually shown in [Gir98, Asp98] is the polytime weak normalizability, namely, that
there is a specific reduction strategy which normalizes a given LLL proof in polytime. It has been left
unsettled whether the polytime strong normalizability holds for these systems of Light Logic, namely,
whether any reduction strategy normalizes a given proof in polytime. In Chapters 3 and 4, we shall
address this problem and give it an affirmative answer.

Having such a property will be theoretically important in that it gives further credence to Light
Logic as an intrinsically polytime system. It will be practically important, too. Through the proofs-
as-programs correspondence, each proof of Light Logic may be considered as a feasible program, which
is executable in polytime, and whose bounding polynomial is specified by its type (formula). In this
context, the property will assure that the polytime executability of such a program is not affected by
the choice of an evaluation strategy.

In Chapter 3, we shall introduce a new term calculus, called Light Affine λ-Calculus (λla), which
embodies the essential mechanisms of Light Logic in an untyped setting. It amounts to a simple
modification of λ-calculus with modal and let operators. The calculus λla is untyped, but remarkably,
all its well-formed terms are polytime normalizable; here well-formedness is a type-free syntactic
condition defined on terms. The second order version of ILAL, which is denoted as ILAL2, is then
re-introduced as a Curry-style type assignment system for λla in Chapter 4, and the subject reduction
theorem is proved. This basically means that proofs of ILAL2 can be embedded in λla, and the cut-
elimination procedure of ILAL2 is compatible with the reduction rules of λla under that embedding.
In this way, the proofs-as-programs interpretation is demonstrated for ILAL2.

Several term calculi for ILAL2 have been introduced before (for example, [Asp98, Rov00, Rov99,
AR00]). However, those calculi either have a complicated notion of reduction defined by more than 20
rewriting rules [Asp98, Rov00], or involve notational ambiguity [Rov99, AR00].7 It is often the case
that such complication and ambiguity make the computational intuition behind a calculus less clear.
On the other hand, λla has very simple operational behavior defined by just 5 reduction rules each
of which has a clear meaning, and yet it is free from ambiguity.

Another difference from those existing term calculi is that λla is introduced as an untyped calculus
from the outset. There are a number of reasons in doing so:

6This part is written based on our recent work [Ter01].
7See the remark in Section 9.1 of [AR00]. Instead, the latter paper presents a proofnet syntax for ILAL, based on

which several computational properties are investigated.

15

1. First of all, to design a truly polytime (rather than just polystep) polymorphic calculus, one
must give up a Church-style term syntax with embedded types; a universal quantifier may
bind an arbitrary number of type variable occurrences, and thus iterated type instantiations (Λ
reductions) may easily cause exponential growth in the size of types.8

2. An untyped polytime calculus deserves investigation in its own right. (This program was advo-
cated in the appendix of [Gir98], but has not been developed so far.)

3. The notion of well-formedness, rather than typability, neatly captures the syntactic conditions
for being polytime normalizable.

4. Last but not least, typability in ILAL2 is presumably intractable,9 while well-formedness is
checked very easily (in quadratic time).

We believe that our approach is more transparent than the above mentioned approaches in modeling
the computational mechanism of Light Logic10.

In this setting, we prove the polytime strong normalization theorem: every reduction strategy
(given as a function oracle) induces a normalization procedure which terminates in time polynomial in
the size of a given term (of fixed depth). It follows that every term typable in ILAL2, which can be
viewed as a structural representation of an ILAL2 proof (with formulas erased), is polytime strongly
normalizable. We shall argue that essentially the same holds for LLL.

Development of naive set theory in Light Logic (Chapter 5 and Chapter 6). Being a logical
system, Light Logic may be seen as a formal system of reasoning, and therefore it can be employed
as a basis for concrete mathematical theories by enriching it with non-logical axioms and/or non-
logical inference rules. There are various possibilities as to what mathematical theory we develop. For
example, we could enrich Light Logic with the axioms of Peano Arithmetic to obtain a feasible version
of first order arithmetic, or we could think of its second order extension, i.e., a feasible version of
analysis. Among those, the most interesting, most well-principled, and most radical option is perhaps
to enrich Light Logic with naive set theory:

• In enriching Light Logic, the least requirement is that axioms and inference rules newly intro-
duced should be compatible with cut-elimination, since otherwise the paradigm of proofs-as-
programs could not be maintained. In this respect, the inference rules of naive set theory are
perfectly suitable; they by no means disturb the cut-elimination procedure of Light Logic.

• Naive set theory is a powerful specification language. The descriptive expressivity of naive set
theory allows us to define various mathematical objects such as natural numbers, words and
functions in it. Indeed, it is so rich that we can fairly think of naive set theory based on Light
Logic as a general framework for polytime mathematics, a framework in which many branches of
mathematics can be developed in so far as the polytime concepts and functions are concerned.

8Proofnets (of LLL) contain formulas. Hence proofnets themselves are not polytime normalizable. A solution sug-
gested by [Gir98] is to work with untyped proofnets (with formulas erased) in the actual computation. When the con-
clusion is lazy, the formulas can be automatically recovered after normalization, and such formulas are not exponentially
large. Our approach is essentially the same, but we start by a type-free setting, then consider typing afterwards.

9The problem is undecidable for System F in the Curry style [Wel94].
10A problem is, however, that the connection between proofs and terms is loosened in our approach. In particular,

proving the subject reduction property is a bit difficult.

16

The main difficulty of naive set theory is that it is inconsistent with Classical and Intuitionistic Logics,
as witnessed by so-called Russell’s paradox. It is, however, known that the existence of Russell’s
formula does not necessarily imply contradiction if the use of Contraction is somehow limited. Indeed,
naive set theory is consistent with Light Logic, where the use of Contraction is severely restricted by
means of light exponentials.

In the appendix of [Gir98], Girard initiated the study of Light Set Theory, that is naive set theory
based on Light Logic, aiming at a general framework for feasible mathematics. In that paper, he
showed the fundamental theorem, called the fixpoint theorem, and in view of this theorem he claimed
that various sets and functions are definable in Light Set Theory. This is, however, merely the very
beginning of the story, and much has to be done to convince ourselves that Light Set Theory is a
suitable general framework for feasible mathematics. First, he did not carry out the full development
of Light Set Theory. That is no doubt a tedious work, but someone must carry it out. Second, he
considered naive set theory based on LLL, but things become much simpler if we consider it based on
ILAL, since we can freely use Weakening in ILAL. Third, function definability itself does not reflect
the intrinsically feasible character of Light Set Theory, since all recursive functions are definable in it
[Shi99]. The aim of Chapter 5 is to supplement Girard’s work in order to confirm the truly polytime
character of Light Set Theory. We shall introduce LST, which is naive set theory based on ILAL
(rather than LLL), and show that the polytime functions are not only definable, but also provably
total in LST.

One of the main advantages of developing a mathematical theory based on a constructive logical
system is that one can automatically extract algorithmic content from a given proof. In Chapter 6,
we shall demonstrate the program extraction method for LST. In our case, what we can extract is
a term of λla. Since any term of λla is polytime computable, this means that we can extract a
polytime program. The program extraction method is obtained by extending the proofs-as-programs
interpretation, which is demonstrated for ILAL2 in Chapter 4, to LST. In particular, from a proof
of the totality of function f in LST, we can automatically extract a term of λla which represents f .
Therefore, in some sense, proving a theorem which states a function’s totality is equivalent to writing
a (certified) program which computes that function.

Phase semantics and the finite model property for systems of Light Logic (Chapter 6).
Phase semantics was originally introduced by Girard [Gir87] as a sound and complete semantics for
Linear Logic. Later on, it was modified and adapted for various related logical systems; just to
mention a few examples, it was adapted for Intuitionistic Linear Logic in [Abr90, Tro92, Ono94,
Oka96, Oka99], and for Affine Logic in [Ono94, Laf97, Oka01]. Higher order versions were introduced
in [Oka96, Oka99].

Phase semantics, which was initially thought as “abstract nonsense” (see [Gir99a]), has later found
many interesting applications. For example, it was employed to give a semantic proof to the cut-
elimination theorem in [Oka96, Oka99, Oka01], to show undecidability of the second order Linear
Logic without exponentials in [Laf96]. Various finite model property results were given in [Laf97]
and [OT99]. A mixture of phase semantics and coherent semantics gave rise to the denotational
completeness for Linear Logic [Gir99a]. Phase semantics is also helpful in understanding certain
interesting syntactic phenomena such as polarity and focalization (see [And92], [Gir99b]).

In view of these applications, it is important to investigate phase semantics and its possible applica-
tions for Light Logic. Phase semantics for LLL and ILLL have already been introduced by Kanovitch,
Okada and Scedrov [KOSar] (and called fibred phase semantics), but not yet for ILAL. In Chapter
7, we shall introduce phase semantics for ILAL, called light affine phase semantics. It is naturally

17

obtained from those for Intuitionistic Linear Logic, Affine Logic and Light Linear Logic. Although
the interpretation of light exponentials directly comes from [KOSar], it is considerably simplified in
our case, since our target syntax ILAL is much simpler than LLL and ILLL. As an example of
applications, we shall show the finite model property for ILAL, which implies decidability of ILAL.
The latter is particularly important in the context of ILAL as a type assignment system for λla,
since it means that the type inhabitation problem for ILAL is decidable.

18

Chapter 2

Syntax of Light Logic

In this chapter, we shall describe syntax of Light Logic. Among systems of Light Logic, we are mainly
concerned with Intuitionistic Light Affine Logic (ILAL) [Asp98, AR00] and its extensions, which we
think to be most suitable as a basic framework for feasible computation and reasoning. ILAL is a
simplification of the intuitionistic version of Light Linear Logic (ILLL) [Gir98], while the latter may
be understood as a subsystem of the intuitionistic version of Linear Logic (ILL). And also, affinity of
ILAL comes from the intuitionistic version of Affine Logic (IAL). Being such a system, ILAL inherits
many ideas, notions and properties from ILLL, ILL and IAL. Hence for systematic presentation,
it is appropriate to begin with these precursors of ILAL and then to proceed step by step towards
ILAL. In addition, we shall state decidability results for these systems. Most of them are already
known or immediate consequences of known ones. Nevertheless, we think it important to mention
them explicitly for the following reasons:

• These decidability results clearly show that reasoning in systems of Light Logic is as complex as
systems of Linear/Affine Logic; replacing exponentials of Linear Logic with light exponentials
does not make easier to prove or refute statements.

• As we shall show below, ILLL is undecidable while ILAL is decidable. These facts confirm the
relative simplicity of ILAL compared with ILLL on the theoretical ground.

• Decidability results have implications on type inhabitation problems.

In Section 2.1, we shall recall syntax of ILL as well as its second order extension ILL2. In Section
2.2, we shall describe syntax of IAL, and investigate the effects of adding Unrestricted Weakening to
the inference rules. In Section 2.3, we move on to ILLL, and investigate the most important modal
connectives of Light Logics, called light exponentials. Undecidability of ILLL is shown, too. In Section
2.4, we shall arrive at our target logical system, ILAL. In addition to its syntax, the central idea of
Light Logic, stratification of proofs, is informally explained. Section 2.5 concludes the present chapter.

2.1 Preliminary 1: Intuitionistic Linear Logic

In this section we shall recall syntax and basic ideas of ILL. Our explanation below is essentially based
on [Gir87, Gir95]. The undecidability result (Theorem 2.2) is due to [LMSS92]. See also [Tro92].

19

Identity and Cut:

A � A
Id

Γ1 � A A,Γ2 � ∆
Γ1,Γ2 � ∆ Cut

Structural Rules:
Γ � C

!A,Γ � C
Weak

!A, !A,Γ � C

!A,Γ � C
Contr

Multiplicatives:

A,B,Γ � C

A ⊗ B,Γ � C
⊗l

Γ1 � A Γ2 � B
Γ1,Γ2 � A ⊗ B

⊗r Γ � C
1,Γ � C

1l � 1 1r

Γ1 � A B,Γ2 � C

A −◦ B,Γ1,Γ2 � C
−◦l A,Γ � B

Γ � A −◦ B
−◦r

Additives:

A,Γ � C B,Γ � C

A ⊕ B,Γ � C
⊕l

Γ � A
Γ � A ⊕ B

⊕r1
Γ � B

Γ � A ⊕ B
⊕r2 0,Γ � C

0l

A,Γ � C

A & B,Γ � C
&l1

B,Γ � C

A & B,Γ � C
&l2

Γ � A Γ � B
Γ � A & B

&r Γ � � �r

Exponentials:
A,Γ � C

!A,Γ � C
!l !Γ � A

!Γ �!A !r

Here !Γ stands for a multisets of formulas of the form !A1, . . . , !An.

Figure 2.1: Inference Rules of Intuitionistic Linear Logic (ILL)

2.1.1 Syntax of ILL

Definition 2.1 The formulas of Intuitionistic Linear Logic (ILL) are defined as follows;

• Propositional variables α, β, γ, . . . are formulas of ILL.

• 1, �, 0 are formulas of ILL.

• If A and B are formulas of ILL, then so are A ⊗ B, A −◦ B, A & B, A ⊕ B and !A.

Throughout this thesis, formulas are denoted by capital letters A,B,C, . . ., and multisets of formulas
are by Greek capital letters Γ,∆,Σ, The multiset union of Γ and ∆ is simply denoted by Γ,∆. If
Γ ≡ A1, . . . , An, then !Γ denotes the multiset !A1, . . . , !An. A sequent is of the form Γ � C. Since Γ is a
multiset, sequents are considered up to Exchange, namely the exchange rule may be applied implicitly.
The inference rules of ILL are those given in Figure 2.1. The notions of proof and provability are just
as usual, for which we refer to [Tak87, ST96].

Apart from atomic formulas, the formulas of ILL are classified into three groups:

Multiplicatives: A ⊗ B (multiplicative conjunction), A −◦ B (implication), 1 (one).

20

Additives: A & B (additive conjunction), A ⊕ B (additive disjunction), � (top), 0 (zero).

Exponentials: !A (of course).

The distinction between multiplicatives and additives reflects the two ways of dealing with context
formulas in the traditional sequent calculi (for Classical and Intuitionistic Logics). For example, in
Intuitionistic Logic, conjunction A ∧ B can be introduced on the right hand side of a sequent in the
following two ways:

(1) Γ � A ∆ � B
Γ,∆ � A ∧ B

(2) Γ � A Γ � B
Γ � A ∧ B

In (1), two contexts Γ and ∆ in the premise sequents may be arbitrary and are concatenated in the
conclusion sequent, while in (2), the contexts must be identical in the two premises and are shared
in the conclusion. The first style of context management is called multiplicative, and the second style
is called additive. These two are equivalent in the presence of the structural rules Contraction and
Weakening. However, they are strictly distinguished in ILL since ILL is sensitive as to the use of
the structural rules. Therefore, the conjunction ∧ of Classical/Intuitionistic Logic splits into two
connectives, multiplicative ⊗ and additive &, in ILL.

It is possible to consider additive implication (see, e.g., [Sch94]) too, but it is customarily omitted.
On the other hand, multiplicative disjunction ...

............
.................................. and its unit ⊥ are authentic to Classical Linear Logic,

and does not arise naturally in ILL.

Let us give some examples of provable formulas in ILL. Below, A ◦−◦ B abbreviates (A −◦ B) ⊗
(B −◦ A).

• Connectives ⊗, & and ⊕ are commutative, associative and have units 1, � and 0 respectively:

Commutativity: A ⊗ B ◦−◦ B ⊗ A, A & B ◦−◦ B & A, A ⊕ B ◦−◦ B ⊕ A.

Associativity: (A⊗B)⊗C ◦−◦ A⊗(B⊗C), (A&B)&C ◦−◦ A&(B&C), (A⊕B)⊕C ◦−◦ A⊕(B⊕C).

Unit: 1⊗ A ◦−◦ A, � & A ◦−◦ A, 0⊕ A ◦−◦ A.

The associativity allows us to omit some parentheses; for example we may write A ⊗ B ⊗ C in
place of A ⊗ (B ⊗ C) and (A ⊗ B) ⊗ C.

• Multiplicatives satisfy:

Adjointness: (A ⊗ B −◦ C) ◦−◦ (A −◦ (B −◦ C)).

• Additives distribute over multiplicatives in the following ways:

Distributivity: A ⊗ (B ⊕ C) ◦−◦ (A ⊗ B) ⊕ (A ⊗ C); A −◦ (B & C) ◦−◦ (A −◦ B) & (A −◦ C).

There are plenty of formulas which are provable in Intuitionistic Logic but whose counterparts in
ILL are not provable. Of particular importance are the following formulas corresponding to Weakening
and Contraction:

Unrestricted Weakening: A −◦ 1.

21

Unrestricted Contraction: A −◦ A ⊗ A.

These are not provable in ILL.

Let us come to the exponential modality. The crux of Linear Logic is to control the use of struc-
tural rules, Contraction and Weakening, on the object level. This is achieved by putting the modal
operator ! onto those formulas to which structural rules are to be applied. Thus, to apply Contraction
to a formula A, we first need to put ! upon A by rule (!l) (called Dereliction). Formulas introduced
by Weakening are also marked with !. The right rule (!r) is designed so that it is compatible with
Dereliction, Contraction and Weakening with respect to the cut-elimination procedure:

(!r−!l):

....
!Γ � A
!Γ �!A

(!r)

....
A,∆ � C

!A,∆ � C
(!l)

!Γ,∆ � C
−→

....
!Γ � A

....
A,∆ � C

!Γ,∆ � C

(!r − Contr):

.... π
!Γ � A
!Γ �!A

(!r)

....
!A, !A,∆ � C

!A,∆ � C
(Contr)

!Γ,∆ � C
−→

.... π
!Γ � A
!Γ �!A

(!r)

.... π
!Γ � A
!Γ �!A

(!r)
....

!A, !A,∆ � C

!A, !Γ,∆ � C

!Γ, !Γ,∆ � C

!Γ,∆ � C
(Contr)

(!r − Weak):

....
!Γ � A
!Γ �!A

(!r)

....
∆ � C

!A,∆ � C
(Weak)

!Γ,∆ � C
−→

....
∆ � C

!Γ,∆ � C
(Weak)

Note that, in the second case, the subproof π is duplicated and n occurrences of (Contr) are newly
created, where n = |!Γ|.

The modality ! satisfies S4 axioms of Modal Logic. In more detail, it is characterized by the
following principles:

Functricity: A −◦ B implies !A−◦!B

Monoidalness 1: !A⊗!B−◦!(A ⊗ B)

Monoidalness 2: !1

Dereliction: !A −◦ A

Digging: !A−◦!!A

Weakening: !A −◦ 1

22

Second Order Quantifiers:

A[B/α],Γ � C

∀α.A,Γ � C
∀l

Γ � A
Γ � ∀α.A

∀r

A,Γ � C

∃α.A,Γ � C
∃l

Γ � A[B/α]
Γ � ∃α.A

∃r

In rule (∀r), α is not free in Γ. In rule (∃l), α is not free in Γ and C.

Figure 2.2: Inference Rules for Second Order Quantifiers

Contraction: !A−◦!A⊗!A

Here, Monoidalness 1 and 2 correspond to axiom K (in the presence of Functricity), Dereliction to
axiom T, and Digging to axiom 4.

Since the exponential modality allows us to use structural rules, it is naturally expected that mul-
tiplicatives and additives which are previously distinguished are somehow identifiable in the presence
of !. Indeed we have:

Exponential Isomorphism: !A⊗!B ◦−◦ !(A & B),

which is in analogy with the equation 2x · 2y = 2x+y in number theory.

The modality-free fragment of ILL is called IMALL (the Multiplicative-Additive fragment of
Intuitionistic Linear Logic).

ILL and its classical counterpart Classical Linear Logic are undecidable. Indeed, a considerably
restricted fragment of ILL is already undecidable. Say that a sequent is !-prenex if it is of the form
!Γ,∆ � C where all formulas in Γ,∆, C are !-free.

Theorem 2.2 (Lincoln et al. [LMSS92]) The provability of !-prenex sequents in ILL is undecid-
able. Hence ILL is undecidable, too.

The proof consists in encoding a sort of Minsky’s counter machines, whose halting problem is
known to be undecidable.

2.1.2 Second Order Quantification

The expressive power of ILL is surely limited under the proofs-as-programs interpretation. ILL is
essentially a refinement of Intuitionistic Logic (see, e.g., [Abr93]), and the proofs of the latter may
well be identified with the terms of simply typed λ-calculus (see, e.g., [GLT88]). It is well-known that
simply typed λ-calculus cannot represent a nonmonotonic function such as predecessor [Sta79], and
the same is true of the proofs of ILL. Hence, it is natural to look for a suitable extension of ILL
which covers a sufficiently wide range of functions. The most preferable extension is with second order
quantifiers.

Definition 2.3 The formulas of the second order Intuitionistic Linear Logic (ILL2) are defined anal-
ogously to those of ILL, with the following clause attached:

23

• If A is a formula of ILL2 and α is a propositional variable, then ∀α.A and ∃α.B are formulas of
ILL2.

Let A[B/α] denote the formula obtained by substituting B for the free occurrences of α in A. The
inference rules of ILL2 are those of ILL toghether with the rules in Figure 2.2.

In what follows, formulas are considered up to α-equivalence, hence two formulas which differ
only in the names of bound variables are identified (see, e.g., [ST96]). Moreover, we adopt the so-
called variable convention [Bar81], so that substitution of formulas never causes a variable to be newly
bounded.

ILL2 is a refinement of the second order Intuitionistic Logic, which corresponds to Girard’s System
F [Gir72], also known as second order polymorphic typed lambda calculus. Hence the proofs of ILL2
represent all the provably total functions of second order Peano Arithmetic (see [GLT88] for the
background).

2.2 Preliminary 2: Intuitionistic Affine Logic

There is a variant of ILL, called Intuitionistic Affine Logic, denoted by IAL (see, e.g., [Ono94, Kop95,
Laf97, Oka01]). In this section, we shall recall syntax and basic properties of IAL. The undecidability
result (Theorem 2.4) for the second order IAL is essentially due to [LSS95].

2.2.1 Syntax of IAL

There is a variant of ILL, called Intuitionistic Affine Logic (IAL), which is obtained from ILL by
allowing Weakening for It is obtained from ILL by allowing Weakening for arbitrary formulas without
any restriction.

Γ � C
A,Γ � C

(Weak)
.

In what follows, the rule will be referred to as Unrestricted Weakening. Adding this rule means that
we give up the control over Weakening via the modality, and we concentrate on Contraction. In IAL,
the following are provable:

• � ◦−◦ 1;

• A ⊗ B −◦ A & B.

The modality-free fragment is called IMAAL(the Multiplicative-Additive fragment of Intuitionistic
Affine Logic).

Adding Unrestricted Weakening does not alter the expressive power of the system under the proofs-
as-programs interpretation. On the other hand, it significantly simplifies reasoning in the system;
indeed, IAL is decidable while ILL is not, as we shall see in Chapter 7.

However, once IAL is extended to the second order version IAL2, one immediately gets an unde-
cidability result:

24

Theorem 2.4 (Lincoln et al. [LSS95]) IAL2 is undecidable. Indeed, its multiplicative fragment
IMAL2 is already undecidable.

The proof amounts to interpreting the second order Intuitionistic Logic, which is known to be
undecidable [Löb76], in IMAL2. The basic idea is that Contraction can be simulated by means of
three copies of the following second order formula C:

C ≡ ∀α.(α −◦ α ⊗ α).

Hence, with the help of C ⊗ C ⊗ C, IMAL2 can simulate second order Intuitionistic Logic.

In IAL2, all logical connectives and constants are definable from {−◦, !,∀}:

∃β.A ≡ ∀α.(∀β.(A −◦ α) −◦ α);
A ⊗ B ≡ ∀α.((A −◦ B −◦ α) −◦ α);

1 ≡ ∀α.(α −◦ α);
A & B ≡ ∃α.((α −◦ A) ⊗ (α −◦ B) ⊗ α);
A ⊕ B ≡ ∀α.((A −◦ α) −◦ (B −◦ α) −◦ α);

0 ≡ ∀α.α,

where α is a fresh variable which does not occur in A and B. Similar second order definitions are also
available in ILL2, but an important difference is that none of the above definitions uses !, whereas
the definitions of additives in ILL2 crucially use !. For example, A⊕B is defined in ILL2 as follows:

A ⊕ B ≡ ∀α.(!(A −◦ α)−◦!(B −◦ α) −◦ α).

In the presence of Unrestricted Weakening, the use of ! may be avoided. This simplicity of second
order definitions is one of the reasons why we prefer an affine system rather than a linear system when
it comes to Light Logic.

The main defect of adding Unrestricted Weakening is that it makes the cut-elimination procedure
nondeterministic in the classical framework. Typically, in Classical Affine Logic, the proof

.... π1

� A
� A,B

(Weak)

.... π2

� A
B � A

(Weak)

� A,A

reduces to two entirely different proofs

.... π1

� A
� A,A

(Weak) and

.... π2

� A
� A,A

(Weak)

which cannot be identified in any sense. Therefore the result of cut-elimination is not unique, which
means that proofs cannot be seen as programs, since programs are supposed to evaluate to the unique
outputs. Such a difficulty does not arise in IAL, which does not have Weakening on the right hand
side.

25

2.3 Intuitionistic Light Linear Logic

Let us now come to the historically first system of Light Logic, that is Light Linear Logic [Gir98]. The
idea of the new system is to constrain the use of Contraction in such a way that a proof containing
Contraction never reduces to an exponentially large one via the cut-elimination procedure, while
allowing all polytime functions to be represented as proofs. Since !-modality of Linear Logic controls
Contraction, this is achieved by constraining !-modality. Girard introduced both Classical Light Linear
Logic (LLL) and its restriction to the intuitionistic fragment, Intuitionistic Light Linear Logic (ILLL).
Here we shall only describe the latter, whose second order extension is already sufficient for representing
all the polytime functions. Moreover, we shall only give it an axiomatic definition, since its sequent
calculus formulation is quite complicated.

The following exposition owes much to [Gir98]. However, the undecidability result (Corollary 2.7)
seems to be original (though immediate).

2.3.1 Syntax of ILLL

ILLL is obtained by replacing the exponential modality of ILL with its light version; first, disregard
Monoidalness 1 and 2, Dereliction and Digging, and add one direction of Exponential Isomorphism
explicitly, to the effect that we have:

Functricity: A −◦ B implies !A−◦!B

Weakening: !A −◦ 1

Contraction: !A−◦!A⊗!A

Exponential Isomorphism: !A⊗!B−◦!(A & B)

The other direction of Exponential Isomorphism is derivable by Functricity and Contraction. Second,
introduce an auxiliary modality § with the following principles:

Functricity§: A −◦ B implies §A −◦ §B

Monoidalness§: §A ⊗ §B −◦ §(A ⊗ B) and §1

Weak Dereliction: !A −◦ §A

The new modalities ! and § thus introduced are called the light exponentials. The second order
extension is denoted by ILLL2. Here are some remarks.

• The fundamental concept of Light Logic is stratification of proofs. This is achieved by rejecting
Dereliction and Digging (see Subsection 2.4.2 below).

• Two Monoidalness principles are also rejected. Both are quite harmless with regard to stratifica-
tion, but Monoidalness 1 causes an exponential explosion in the process of cut-elimination. On
the other hand, Monoidalness 2 is not quite compatible with Exponential Isomorphism. Hence
they are refused.

• The rejection of Monoidalness is too serious a restriction. To compensate for this, we need an
extra connective §, which satisfies Monoidalness (i.e., axiom K of Modal Logic). A weak form
of Dereliction is also included, which plays a role of correlating ! and §.

26

• Exponential Isomorphism is not derivable without Dereliction and Digging, while it is required
for representing certain basic functions such as predecessor. Hence we need to add it explicitly.

It is not so easy to integrate these principles into a sequent calculus formalism which admits cut-
elimination, with the main difficulty being Exponential Isomorphism. A solution given by Girard is
a sort of hybrid sequent calculus which can express both multiplicative and additive combinations
of formulas in one and the same sequent. The system works, but it is complicated. Moreover, it
cannot accommodate Monoidalness 2, which is perfectly harmless with regard to the computational
complexity of cut-elimination and quite useful in representing the polytime functions. Indeed, due to
the lack of Monoidalness 2, representation of functions in ILLL2 is somewhat awkward, in that it
leaves a lot of garbages !1 in conclusion sequents; typically predecessor is represented by a proof of
conclusion !1, int � int, and the garbage !1 cannot be removed.

A variant of LLL (and ILLL) with Monoidalness 1 and 2 is known as Elementary Linear Logic
[Gir98, DJ99] (and Intuitionistic Elementary Linear Logic) whose second order extension precisely
characterizes the elementary recursive functions.

2.3.2 Undecidability of ILLL

ILLL may be seen as a subsystem of ILL in the following sense:

Proposition 2.5 If A is provable in ILLL, then A− is provable in ILL, where A− is a formula of
ILL which is obtained by removing all §’s from A.

Proof. ILLL and ILL share the modality-free fragment. Moreover, the axioms for light exponentials
are mapped to provable formulas of ILL via the − translation.

Furthermore, ILLL and ILL are “equivalent” as far as the !-prenex sequents (see Section 2.1) are
concerned. For n ≥ 0, let Γn be the multiset Γ, . . . ,Γ︸ ︷︷ ︸

n times

. If Γ ≡ A1, . . . , An, let Γ & 1 be the multiset

A1 & 1, . . . , An & 1.

Proposition 2.6 Let !Γ,∆ � C be a !-prenex sequent. Then the following are equivalent:

(1) !Γ,∆ � C is provable in ILL;

(2) (Γ & 1)n,∆ � C is provable in IMALL for some n;

(3) !(Γ & 1), §∆ � §C is provable in ILLL.

Proof.
Statement (1) implies statement (2). This is easily proved by induction on the length of the cut-free
proof of !Γ,∆ � C. (2) implies (3) by rules (§) and (Contr) of ILLL. (3) implies (1) by Proposition
2.5, together with the fact that !A ◦−◦ !(A & 1) is provable in ILL.

In conjunction with Theorem 2.2 (undecidability of the !-prenex fragment of ILL), we conclude:

Corollary 2.7 ILLL is undecidable.

By a similar argument, we can also show that LLL is undecidable.

27

2.4 Intuitionistic Light Affine Logic

By inspecting the representation of the polytime functions in [Gir98], we see that Exponential Isomor-
phism is used only in the form:

!1⊗!B−◦!(1 & B).

The leftmost !1 is a garbage, hence it may be ignored. Therefore Exponential Isomorphism is, in
essence, only required to derive !B−◦!(1 & B). Now suppose that we have Unrestricted Weakening,
namely the underlying logic be affine rather than linear. Then B −◦ 1 & B is derivable, hence by
Functricity !B−◦!(1 & B) is derivable without Exponential Isomorphism. This means that we can
dispense with the problematic Exponential Isomorphism in the presence of Unrestricted Weakening.
This observation leads us to ILAL. The definition of ILAL below is due to [Asp98]. See also [AR00]
for a good exposition of the system.

2.4.1 Syntax of ILAL

ILAL consists of IMAAL endowed with the light exponentials !, §. But this time ! satisfies Monoidal-
ness 2 in addition to Functricity, Weakening and Contraction. § is just the same as in ILLL. Here
are some remarks.

• As explained above, we no more need Exponential Isomorphism, since its weaker form is derivable
and that is sufficient for representing the polytime functions. Hence we no more need to consider
hybrid sequents; just standard sequents suffice.

• And also, we are allowed to have Monoidalness 2, since the only reason why we did not adopt
it was that it was not compatible with Exponential Isomorphism. As a result, representation is
considerably simplified; in particular, it is garbage-free.

• The cost of adding Unrestricted Weakening is, again, the nondeterminism of cut-elimination in
the classical case, i.e. Classical Light Affine Logic LAL. Hence, in order to maintain the proofs-
as-programs paradigm, we are compelled to stick to the intuitionistic version, in contrast to the
case of Light Liner Logic, for which both classical and intuitionistic formulations are possible.

ILAL is formally defined as follows [Asp98].

Definition 2.8 The formulas of Intuitionistic Light Affine Logic (ILAL) are defined as follows;

• Propositional variables α, β, γ, . . . are formulas of ILAL.

• 1, �, 0 are formulas of ILAL.

• If A and B are formulas of ILAL, then so are A ⊗ B, A −◦ B, A & B, A ⊕ B, !A and §A.

The inference rules of ILAL are those given in Figure 2.3.

We may also consider the second order extension of ILAL, analogously to ILL2. The resulting
system is denoted by ILAL2. ILAL2 is undecidable, as an easy extension of the undecidability result
for IAL2 (Theorem 2.4).

28

Identity and Cut:

A � A
Id

Γ1 � A A,Γ2 � C

Γ1,Γ2 � C
Cut

Structural Rules:
Γ � C

A,Γ � C
Weak

!A, !A,Γ � C

!A,Γ � C
Contr

Multiplicatives:

A,B,Γ � C

A ⊗ B,Γ � C
⊗l

Γ1 � A Γ2 � B
Γ1,Γ2 � A ⊗ B

⊗r Γ � C
1,Γ � C

1l � 1 1r

Γ1 � A B,Γ2 � C

A −◦ B,Γ1,Γ2 � C
−◦l A,Γ � B

Γ � A −◦ B
−◦r

Additives:

A,Γ � C B,Γ � C

A ⊕ B,Γ � C
⊕l

Γ � A
Γ � A ⊕ B

⊕r1
Γ � B

Γ � A ⊕ B
⊕r2 0,Γ � C

0l

A,Γ � C

A & B,Γ � C
&l1

B,Γ � C

A & B,Γ � C
&l2

Γ � A Γ � B
Γ � A & B

&r Γ � � �r

Exponentials:
B � A
!B �!A !

Γ,∆ � A

!Γ, §∆ � §A §

In rule (!), B can be absent. In rule (§), Γ and ∆ can be empty.

Figure 2.3: Inference Rules of Intuitionistic Light Affine Logic (ILAL)

A nice aspect of ILAL2 is that all logical connectives, in particular additives, are definable from
{−◦, !, §,∀}, just as in IAL2. This point is quite useful, especially when it comes to investigating
the term calculus for ILAL2 (in Chapter 4). Note, in contrast, that the second order definitions of
additives are not available in ILLL2.

2.4.2 Stratification of Proofs

As often pointed out, the main cause of an exponential explosion in cut-elimination lies in an untamed
use of Contraction. What is particularly problematic is the phenomenon that Contraction duplicates
Contraction, and a copy of Contraction thus obtained by duplication then duplicates another copy,
and so on. The fundamental idea of Light Logic is to avoid such a lawless process of duplication by
enforcing a hierarchical structure on the occurrences of Contraction in a proof. This is achieved by
stratification of proofs which now we shall explain.

We may imagine that each proof of ILAL is stratified into layers, with two layers separated by
rules (!) and (§), as illustrated in Figure 2.4. To each layer, its depth n ≥ 0 is associated, by setting
the outermost layer as depth 0, the next layer as depth 1, and so on. The proof in Figure 2.4 consists
of three layers, and Contraction is used at depth 1.

29

A � A
!A �!A

(!)

B, !A �!A

A � A
!A �!A

(!) A � A
!A �!A

(!)

!A, !A �!A⊗!A
!A �!A⊗!A

(Contr)

B, !A � §(!A⊗!A)
!B, !!A � §(!A⊗!A)

(§)

stratification
=⇒

A � A

!A �!A
(!)

B, !A �!A

A � A

!A �!A
(!)

A � A

!A �!A
(!)

!A, !A �!A⊗!A
!A �!A⊗!A

(Contr)

B, !A � §(!A⊗!A)

!B, !!A � §(!A⊗!A)
(§)

Figure 2.4: Stratification of Proofs

The basic idea is to preserve this stratified structure during cut-elimination. Indeed, the inference
rules for light exponentials are carefully designed in such a way that the depth of a subproof is always
preserved by a reduction step; see the following principal reduction steps of cut-elimination for light
exponentials:

(!−!):

.... π
B � A

!B �!A
(!)

....
A � C

!A �!C
(!)

!B �!C
−→

.... π
B � A

....
A � C

B � C

!B �!C
(!)

(! − §):

.... π
B � A

!B �!A
(!)

....
A,∆,Γ � C

!A, !∆, §Γ � §C (§)

!B, !∆, §Γ � §C
−→

.... π
B � A

....
A,∆,Γ � C

B,∆,Γ � C

!B, !∆, §Γ � §C (§)

(§ − §):

.... π
Σ,Π � A

!Σ, §Π � §A (§)

....
A,∆,Γ � C

§A, !∆, §Γ � §C (§)

!Σ, §Π, !∆, §Γ � §C
−→

.... π
Σ,Π � A

....
A,∆,Γ � C

Σ,Π,∆,Γ � C

!Σ, §Π, !∆, §Γ � §C (§)

In all cases, reduction preserves the depth of the subproof π. This means that an occurrence of
Contraction cannot go up or down to another layer. On the other hand, an occurrence of Contraction
can duplicate only a subproof π at a deeper layer:

(! − Contr):

.... π
B � A

!B �!A
(!)

....
!A, !A,∆ � C

!A,∆ � C
(Contr)

!B,∆ � C
−→

.... π
B � A

!B �!A
(!)

.... π
B � A

!B �!A
(!)

....
!A, !A,∆ � C

!A, !B,∆ � C

!B, !B,∆ � C

!B,∆ � C
(Contr)

30

Linear and Affine Logics Light Logic
ILL: no ILLL: no
ILL2: no ILLL2: no
IAL: yes ILAL: yes
IAL2: no ILAL2: no

Table 2.1: Decidability of Linear, Affine and Light Logics

Thus an occurrence of Contraction can duplicate another one at a deeper layer only. In this way, a
hierarchical structure of Contraction is established, which has the effect of drastically lowering the
complexity of normalization. Note that stratification is easily disturbed if we have Dereliction and
Digging in addition. The effect of stratification will be formally investigated in terms of a term calculus
in Chapter 3.

2.5 Remarks

In this chapter, we have described various systems of Linear, Affine and Light Logics. The decidability
results for these systems are summarized in Table 2.1 (decidability of IAL and ILAL will be shown
in Chapter 7). The situation is basically the same in the classical cases. To the best of our knowledge,
however, it remains open whether the second order Classical Affine Logic and the second oder Classical
Light Affine Logic (or even their multiplicative fragment) are decidable or not.

In view of these results, it is fair to say that replacing the exponentials of Linear Logic with the light
ones does not alter the complexity of reasoning (it does not make easier to prove/refute a formula).
The “light” character of Light Logic is entirely concerned with its computational aspect, according to
the proofs-as-programs correspondence.

We have occasionally pointed out how ILAL simplifies ILLL (and LLL). To sum up:

• ILAL does not require hybrid sequents as ILLL does.

• ILAL admits second order definitions of additives, while ILLL does not.

• The representation of functions in ILAL is considerably simpler than in ILLL.

• ILAL is decidable while ILLL is not.

We have also pointed out that cut-elimination in Classical Light Affine Logic is nondeterministic,
hence the proofs-as-programs paradigm cannot be maintained for it. These results should justify our
choice of ILAL as the basic system for our investigation. In the rest of this thesis, we shall mainly
deal with ILAL and mention other systems only when they matter.

31

Chapter 3

Light Affine Lambda Calculus and
Polytime Strong Normalization

We shall now turn our attention to the computational aspects of Light Logic, namely those issues
concerning the cut-elimination procedure. The intrinsically polytime character of Light Logic is best
witnessed by the polytime normalizability of proofs, which means that every proof can be normalized
into a cut-free one in polynomial time. It is, however, observed by Girard that the polytime normal-
izability is largely independent of formulas/types; indeed the proof of the polytime normalizability in
[Gir98] does not use induction on the complexity of formulas. This suggests that we could have an
untyped calculus which equally satisfies the polytime normalizability.

In this chapter, we shall introduce an untyped term calculus λla, called Light Affine λ-Calculus,
which embodies the essentials of Light Logic in an untyped setting. The calculus is a modification of
λ-calculus (see [Bar81]), which has very simple operational behavior defined by just 5 reduction rules.
We then prove:

• The Polystep Strong Normalization Theorem: every reduction sequence in λla has a length
bounded by a polynomial in the size of its initial term (of fixed depth).

• The Polytime Strong Normalization Theorem: every reduction strategy (given as a function
oracle) induces a normalization procedure which terminates in time polynomial in the size of a
given term (of fixed depth).

A corollary to the strong normalizability is the Church-Rosser property for λla. (See Chapter 1 for
the theoretical and practical values of these results.) In the next chapter, ILAL2 will be introduced
as a type assignment system for λla. Thus the results in this chapter also have an impact on the
typed setting, i.e., the proof systems of Light Logic.

The rest of this chapter is organized as follows. In Section 3.1, we shall introduce λla. In Section
3.2 we shall prove the main part of the polystep strong normalization theorem. The theorem itself
appears in Section 3.3, as well as its direct corollaries, namely the Church-Rosser property and the
polytime strong normalization theorem.

32

3.1 Light Affine Lambda Calculus

We begin by giving the set PT of pseudo-terms (in 3.1.1). Our goal is to define the set T of well-formed
terms (in 3.1.2) and the notion of reduction (in 3.1.3).

3.1.1 Pseudo-Terms

Let x, y, z . . . range over term variables.

Definition 3.1 The set PT of pseudo-terms is defined by the following grammar:

t, u ::= x | λx.t | tu | !t | let u be !x in t | §t | let u be §x in t.

In addition to the standard constructs such as λ-abstraction and application, we have two modal
operators ! and § and two let operators (called let-! and let-§operators). Pseudo-terms !t and §t are
called boxes in analogy with their counterparts in proof-nets. Two let operators are used to connect
boxes, thus to make boxes mutually interacting.

It is suggestive to think of !t and §t as “boxes” in the literal sense and depict them as:

! t and § t .

With this intuition, each pseudo-term is stratified into layers; for example, (let !y be !x in §!(λz.zx))z
is stratified into three layers as follows:

(let ! y be !x in § ! λz.zx)w.

In the sequel, symbol † stands for either ! or §. Pseudo-terms (λx.t) and (let u be † x in t) bind each
occurrence of x in t. As usual, pseudo-terms are considered up to α-equivalence, and the variable
convention (see [Bar81]) is adopted for the treatment of free/bound variables (namely, the bound
variables are chosen to be different from the free variables, so that variable clash is never caused by
substitution). Notation t[u/x] is used to denote the pseudo-term obtained by substituting u for the
free occurrences of x in t. FV (t) denotes the set of free variables in t. FO(x, t) denotes the number
of free occurrences of x in t and FO(t) denotes the number of free occurrences of all variables in t.

As usual, each pseudo-term t is represented as a term tree, and each subterm occurrence u in t is
pointed by its address, i.e., a word w ∈ {0, 1}∗ which describes the path from the root to the node
corresponding to u in the term tree. For example, the term tree for (λx.let !x be !y in yy) and the
addresses in it are illustrated in Figure 3.1.

The size |t| of a pseudo-term t is the number of nodes in its term tree. Since our terms are untyped,
|t| is not significantly different from the length of its string representation. Given a pseudo-term t and
an address w, the depth of w in t is the number of !-boxes and §-boxes enclosing the subexpression at
w. The depth of t is the maximum depth of all addresses in it.

A context Φ (see, e.g., CH. 2, §1 of [Bar81]) is a pseudo-term-like expression with one hole •. If Φ
is a context and t is a pseudo-term, then Φ[t] denotes the pseudo-term obtained by substituting t for
• in Φ.

We write !dt and §dt to denote !! · · ·!︸ ︷︷ ︸
d times

t and §§ · · · §︸ ︷︷ ︸
d times

t, respectively.

33

x.let !x be !y in yy

let !x be !y in yy

!x

λ

yy

x y y

ε

0

00 01

011010000

Figure 3.1: Term Tree and Addresses

3.1.2 Terms

Before giving a formal definition of well-formed terms, we shall informally discuss the critical issues.

The fundamental idea of Light Logic is to enforce a stratified structure on proofs/terms and to
preserve it in the course of reduction. At the level of formulas/types, this is achieved by rejecting
Dereliction and Digging principles of Linear Logic’s !-modality. To achieve the same effect in our
untyped framework, we first assume that variables are (conceptually) classified into three groups:
undischarged, !-discharged, and §-discharged variables. These are to be bound by λ-abstraction, let-!
operator and let-§ operator, respectively. Now consider the following conditions.

• In default, a variable is undischarged, and a variable is made (either !- or §-) discharged when a
box is built around it.

For example, variable x in pseudo-term tx is undischarged, while it is !-discharged in !(tx). To
see the effect of this condition, consider the following pseudo-term corresponding to the Dereliction
principle:

dereliction(x) := let x be !y in y,

whose effect is to open a !-box:
dereliction(! t) −→ t.

It is ruled out by the above condition, since variable y is undischarged, but is illegally bound by a let-!
operator. On the other hand, the following pseudo-term, which corresponds to the Weak Dereliction
principle (!A −◦ §A), is legitimated:

let x be !y in § y ,

since variable y is discharged in § y , so it can be bound by the let! operator.

• A box may be built around a term only when it contains no free discharged variable.

Consider the following pseudo-term which corresponds to the Digging principle:

digging(x) := let x be !y in ! ! y ,

whose effect is to embed a !-box into another:

digging(! t) −→ ! ! t .

It is also ruled out by the above condition, since it attempts to build the outer box ! ! y around the

inner box ! y , but the latter contains a discharged variable y.

34

The only duplicable entities in Light Logic are contents of !-boxes, just as in Linear Logic. This is
maintained by the following condition:

• Among three binders, only let-! may bind multiple occurrences of (!-discharged) variables.

With this condition, duplication occurs only when a !-box meets a let-! operator; for example,

let !t be !x in (§xx)!x −→ (§tt)!t.

Light Logic rejects Monoidalness 1: !A⊗!A �−◦!A, in order to avoid potential exponential growth
caused by iterated duplication of !-boxes. To achieve the same effect, our term syntax requires a
further constraint on !-boxes:

• A !-box may be built around a term only when it contains at most one free variable.

Hence a term construction like
λx.(let x be !y in !yy)

which by iteration causes exponential growth is ruled out.

To compensate for this severe constraint, we need another kind of boxes, namely §-boxes. They are
not duplicable. But instead, they may contain an arbitrary number of free variables, corresponding
to Monoidalness§ of Light Logic.

All these design concepts are realized in the following formal definition, which is written in a style
inspired by [Abr93].

Definition 3.2 Let X,Y,Z range over the finite sets of variables. Then the 4-ary relation t ∈ TX,Y,Z

(saying that t is a (well-formed) term with undischarged variables X, !-discharged variables Y and
§-discharged variables Z) is defined as follows (in writing t ∈ TX,Y,Z , we implicitly assume that X, Y
and Z are mutually disjoint):

1. x ∈ TX,Y,Z ⇐⇒ x ∈ X.

2. λx.t ∈ TX,Y,Z ⇐⇒ t ∈ TX∪{x},Y,Z , x �∈ X, FO(x, t) ≤ 1.

3. tu ∈ TX,Y,Z ⇐⇒ t ∈ TX,Y,Z , u ∈ TX,Y,Z.

4. !t ∈ TX,Y,Z ⇐⇒ t ∈ TY,∅,∅, FO(t) ≤ 1.

5. §t ∈ TX,Y,Z ⇐⇒ t ∈ TY ∪Z,∅,∅.

6. let t be !x in u ∈ TX,Y,Z ⇐⇒ t ∈ TX,Y,Z , u ∈ TX,Y ∪{x},Z , x �∈ Y .

7. let t be §x in u ∈ TX,Y,Z ⇐⇒ t ∈ TX,Y,Z, u ∈ TX,Y,Z∪{x}, x �∈ Z, FO(x, u) ≤ 1.

Finally, t is a (well-formed) term (t ∈ T) if t ∈ TX,Y,Z for some X,Y and Z.

Definition 3.3

1. For each natural number n, we have Church numeral n ∈ T defined by

n ≡ λx.(let x be !z in §λy. (z · · · (z︸ ︷︷ ︸
n times

y) · · ·)).

35

2. For each word w ≡ i0 · · · in ∈ {0, 1}∗, we have w ∈ T defined by

w ≡ λx0x1.(let x0 be !z0 in (let x1 be !z1 in §λy.(zi0 · · · (ziny) · · ·)).

Observe that these n’s and w’s are all of depth 1.

Here are further examples:

Example 3.4

1. ωLA ≡ λx.(let x be !y in §yy) ∈ T .

2. ΩLA ≡ ωLA!ωLA ∈ T .

3. Suc ≡ λyx.let x be !x′ in (let y!x′ be §y′ in §(λz.x′(y′z))) ∈ T .

We have the following basic properties:

Lemma 3.5 Let t ∈ TX,Y,Z.

1. If X ⊆ X ′, Y ⊆ Y ′ and Z ⊆ Z ′, then t ∈ TX′,Y ′,Z′.

2. If x �∈ FV (t), then t ∈ TX\{x},Y \{x},Z\{x}.

3. Let x ∈ FV (t). Then x occurs at depth 0 iff x ∈ X. x occurs at depth 1 iff x ∈ Y ∪ Z. x never
occurs at depth > 1.

Proof. By induction on t.

Lemma 3.6 (Substitution)

1. t ∈ TX∪{x},Y,Z, x �∈ X and u ∈ TX,Y,Z =⇒ t[u/x] ∈ TX,Y,Z.

2. t ∈ TX,Y ∪{x},Z , x �∈ Y u ∈ TY,∅,∅ and FO(u) ≤ 1 =⇒ t[u/x] ∈ TX,Y,Z.

3. t ∈ TX,Y,Z∪{x}, x �∈ Z and u ∈ TY ∪Z,∅,∅ =⇒ t[u/x] ∈ TX,Y,Z.

Proof. By induction on t.

Remark 3.7 As discussed in Section 3 of [Asp98], a naive use of a box notation causes ambiguity,
and in conjunction with naive substitutions, it causes a disastrous effect on complexity.

Asperti fixed this problem by using a more sophisticated box notation like §(t)[u1/x1, . . . , un/xn],
while our solution is more implicit and is based on the conceptual distinction between discharged and
undischarged variables.

Asperti’s box §(tx1x2)[y/x1, y/x2] (with y of !-type) corresponds to (let y be !x in §(txx)) in our
syntax. Observe that variable y, which is external to the §-box, is shared in the former, while variable
x, which is internal to the §-box, is shared in the latter. This is parallel to the difference between
the contraction inference rule of Asperti’s ILAL and that of Girard’s original formation of LLL; the
former contracts !-formulas, while the latter contracts discharged formulas.

36

Remark 3.8 There is a quadratic time algorithm checking whether a given pseudo-term is well-
formed: Let t be a pseudo-term, and X and Y be the sets of its free variables at depth 0 and at depth
1, respectively. Then t is well-formed iff t ∈ TX,Y,∅ (by Lemma 3.5 and the fact that t ∈ TX,Y,Z implies
t ∈ TX,Y ∪Z,∅). The latter can be recursively checked with at most |t| recursive calls, and each call
involves a variable occurrence check at most once (corresponding to Clauses 2, 4 and 7 of Definition
3.2). Thus the algorithm runs in time O(n2), given a term of size n.

Name Redex Contractum

(β) (λx.t)u t[u/x]
(§) let §u be §x in t t[u/x]
(!) let !u be !x in t t[u/x]

(com) (let u be † x in t)v let u be † x in (tv)
let (let u be † x in t) be † y in v let u be † x in (let t be † y in v)

Figure 3.2: Reduction Rules

3.1.3 Reduction

Definition 3.9 The reduction rules of λla are those listed in Figure 3.2. We say that t reduces to u

at address w by rule (r), and write as t
w,(r)−→ u, if t ≡ Φ[v1], u ≡ Φ[v2], the hole • is located at w in Φ,

and v1 is an (r)-redex whose contractum is v2.

Note that the address w uniquely determines the rule (r) to be used. When either the address w

or the rule (r), or both, are irrelevant, we use notations t
(r)−→ u, t

w−→ u and t −→ u. The depth of a
reduction is the depth of its redex.

A finite sequence σ of addresses w0, . . . , wn−1 is said to be a reduction sequence from t0 to tn,
written as t0

σ−→∗tn, if there are pseudo-terms t0, . . . , tn such that

t0
w0−→ t1

w1−→ · · · wn−1−→ tn.

If every reduction in σ is the application of (r), then σ is called an (r)-reduction sequence and written

as t0
σ,(r)−→∗tn (or simply as t0

(r)−→∗tn). The length of σ is denoted by |σ|.

Remark 3.10 The stratified structure of a term is preserved by reduction. In particular, the depth
of a term never increases, since in reduction rules (β), (§) and (!) a subterm u is substituted for a
variable x occurring at the same depth and (com) does not affect the stratified structure.

Reduction rules (β) and (§) are strictly size-decreasing, since they never involve duplication. (com)
preserves a term’s size. The only reduction rule which causes duplication is (!). Observe, however,
that it is also strictly size-decreasing at the depth of the redex. The size increases only at deeper
layers.

The terms are closed under reduction:

Proposition 3.11 If t ∈ TX,Y,Z and t −→ u, then u ∈ TX,Y,Z.

37

(1)

ΩLA ≡ ωLA!ωLA
(β)−→ (let !ωLA be !y in §yy)
(!)−→ §ωLAωLA

(β)−→ §(let ωLA be !y in §yy).

(2)

Suc 2
(β)−→ λx.let x be !x′ in (let (λx.(let x be !z in §λy.(z(zy))))!x′ be §y′ in §(λz.x′(y′z)))
(β)−→ λx.let x be !x′ in (let (let !x′ be !z in §λy.(z(zy))) be §y′ in §(λz.x′(y′z)))
(!)−→ λx.let x be !x′ in (let §λy.(x′(x′y)) be §y′ in §(λz.x′(y′z)))
(§)−→ λx.let x be !x′ in §(λz.x′(λy.(x′(x′y))z))
(β)−→ λx.let x be !x′ in §(λz.x′(x′(x′z))) ≡ 3

Figure 3.3: Examples of normalization

Proof. By induction on Φ, we prove the following: if Φ[t] ∈ TX,Y,Z, Φ[t] → Φ[u] and t is the redex of
the reduction, then Φ[u] ∈ TX,Y,Z and

(*) FO(x,Φ[u]) ≤ FO(x,Φ[t]) for each x ∈ X ∪ Z.

If Φ ≡ • then u ∈ TX,Y,Z is easily checked by inspecting each reduction rule. For example,
if t is a (!) redex let !v1 be !x in v2, then v2 ∈ TX,Y ∪{x},Z , v1 ∈ TY,∅,∅ and FO(v1) ≤ 1. Hence
u ≡ v2[v1/x] ∈ TX,Y,Z by Lemma 3.6. Property (*) is easily examined.

If Φ ≡ λy.Φ′, then Φ′[t] ∈ TX∪{y},Y,Z , y �∈ X and FO(y,Φ′[t]) ≤ 1. By the induction hypothesis,
Φ′[u] ∈ TX∪{y},Y,Z , y �∈ X and FO(y,Φ′[u]) ≤ 1. Therefore λy.Φ′[u] ∈ TX,Y,Z. Property (*) is obvious.

The other cases are similar.

Example 3.12

1. The term ΩLA in Example 3.4 is a light affine analogue of Ω ≡ (λx.xx)(λx.xx), which is not
normalizable in λ-calculus. However, ΩLA is normalizable; see Figure 3.3 (1).

2. The term Suc in Example 3.4 represents successor for numerals n. For example the normalization
of Suc 2 is illustrated in Figure 3.3 (2).

3.2 Proving the Polystep Strong Normalization Theorem

In this section we shall prove the main part of the proof of the polystep (and polytime) strong
normalization theorem for λla. The theorem itself will appear in the next section. The key step
toward the polystep strong normalization theorem is a sort of standardization, i.e., transformation of
a reduction sequence into a outer-layer-first one. However, standardization in λla may undesirably

38

shorten the length of a reduction sequence. To avoid shortening, we first need to extend λla with
explicit weakening and to give a translation of reduction sequences in λla into this extended calculus
(in 3.2.1). Then we show the standardization theorem for the extended calculus (in 3.2.2), where
shortening of reduction sequences is successfully avoided. Finally, we show that the length of a
standard reduction sequence thus obtained is polynomially bounded (in 3.2.3).

3.2.1 An Extended Calculus with Explicit Weakening

The set PT w of extended pseudo-terms is defined analogously to PT , but each extended pseudo-term
may contain a subexpression of the form let t be in u (explicit weakening). To define the well-
formedness, we give a new 4-ary relation t ∈ T w

X,Y,Z by modifying Definition 3.2 as follows.

(1) Replace clauses 2, 6, and 7 with:

2’ λx.t ∈ TX,Y,Z ⇐⇒ t ∈ TX∪{x},Y,Z, x �∈ X, FO(x, t) = 1.

6’ let t be !x in u ∈ TX,Y,Z ⇐⇒ t ∈ TX,Y,Z, u ∈ TX,Y ∪{x},Z , x �∈ Y, FO(x, u) ≥ 1.

7’ let t be §x in u ∈ TX,Y,Z ⇐⇒ t ∈ TX,Y,Z, u ∈ TX,Y,Z∪{x}, x �∈ Z, FO(x, u) = 1.

Namely, we require that each binder must bind at least one (and exactly one, in case of λ and let-§)
variable occurrence.

(2) Add the following clause:

8’ let t be in u ∈ TX,Y,Z ⇐⇒ t ∈ TX,Y,Z , u ∈ TX,Y,Z .

We say that t is a (well-formed) extended term (t ∈ T w) if t ∈ T w
X,Y,Z for some X, Y , Z.

The reduction rules in Figure 3.2 are extended to PT w with the following modifications:

• Generalize (com) so that it is also applicable to the new let operator for explicit weakening.

• Add a new reduction rule ():
let u be in t −→ t.

Reduction rules other than () are called proper. A reduction sequence is proper if every reduction
in it is proper.

Lemmas 3.5 and 3.6 hold for T w, too. In addition, we have:

Proposition 3.13 If t ∈ T w
X,Y,Z, t

(r)−→ u and (r) is proper, then u ∈ T w
X,Y,Z.

Now we consider a translation of λla into the extended calculus.

Lemma 3.14 For each term t, there is an extended term tw such that tw
()−→∗t and |tw| ≤ 4|t|.

Proof. By induction on t. If t ≡ λx.u and FO(x, u) = 0, let tw ≡ λx.(let x be in uw). If t ≡
(let v be † x in u) and FO(x, u) = 0, let tw ≡ let v be † x in (let §x be in uw).

39

Theorem 3.15 (Translation into the extended calculus) Let t0 be a term and let

t0
σ−→∗t1

be a reduction sequence in λla. Then there are extended terms t′0, t′1 and a proper reduction sequence
τ such that |σ| ≤ |τ |, |t′0| ≤ 4|t0| and

t0
σ−→∗ t1

∗
()

�

�
∗
()

t′0
τ−→∗ t′1.

The proof idea is as follows. By Lemma 3.14, there is an extended term tw0 such that

tw0
()−→∗t0

σ−→∗t1.

By permuting it suitably, we can obtain

tw0
τ−→∗t′1

()−→∗t1,

such that τ is proper and |τ | ≥ |σ|. For example, a reduction sequence of the form

(let v be in (λx.t))u
()−→ (λx.t)u

(β)−→ t[u/x]

can be transformed into the following longer one:

(let v be in (λx.t))u
(com)−→ let v be in ((λx.t)u)

(β)−→ let v be in t[u/x]
()−→ t[u/x].

For a precise proof, we need the following two lemmas.

Lemma 3.16 Let t0 ∈ PT w. If t0
()−→ t1

(com)−→ t2, then

t0
σ,(com)−→ ∗t′1

()−→ t2

for some t′1 and |σ| ≥ 1.

Proof. Let w0 be the address of the contractum of the () reduction and w1 be the address of the
redex of the (com) reduction in t1. We consider the following cases.

(Case 1) w0 and w1 are incomparable. Then the reduction sequence must be of the form:

Φ[u0, u1]
()−→ Φ[u′

0, u1]
(com)−→ Φ[u′

0, u
′
1],

where Φ is a context with two holes, the first one at w0 and the second one at w1. In this case, it can
be permuted into:

Φ[u0, u1]
(r)−→ Φ[u0, u

′
1]

()−→ Φ[u′
0, u

′
1].

40

(Case 2) w0 � w1. This means that the (com) redex is embedded in the () contractum, namely the
reduction sequence must be of the form:

Φ0[let t be in Φ1[u]]
()−→ Φ0[Φ1[u]]

(com)−→ Φ0[Φ1[u′]].

Then it can be permuted into:

Φ0[let t be in Φ1[u]]
(com)−→ Φ0[let t be in Φ1[u′]]

()−→ Φ0[Φ1[u′]].

(Case 3) w0 = w10. This means that two reductions overlap. We apply the permutation depicted in
Figure 3.4(a), which indicates that the reduction sequence in solid lines may be replaced with one in
broken lines.

(Case 4) w0 � w100 or w0 � w11. This means that the () contractum is embedded in the (com)
redex. In this case we can first perform the (com) reduction, then the () reduction. Since the (com)
reduction neither duplicate nor erase the () redex, the latter () reduction takes place exactly once.

Lemma 3.17 Let t0 ∈ PT w. If t0
()−→ t1

(r)−→ t2, where (r) is neither (com) nor (), then

t0
(com)−→ ∗t′1

(r)−→ t′′1
()−→∗t2

for some t′1 and t′′1.

Proof. Let w0 be the address of the contractum of the () reduction and w1 be the address of the
redex of the (r) reduction. We consider the following cases.

(Case 1) w0 and w1 are incomparable. Similar to (Case 1) of the previous lemma. (Case 2) w0 � w1.
Similar to (Case 2) of the previous lemma. (Case 3) w0 = w10. This means that two reductions
overlap. We apply the permutations depicted in Figure 3.4 (b) and (c).

For the rest, we only treat the case where (r) is (!).
(Case 4) w0 � w100. We have:

Φ[let !Φ1[let t be in u] be !x in v]
()−→ Φ[let !Φ1[u] be !x in v]

(!)−→ Φ[v[Φ1[u]/x]],

which can be transformed into:

Φ[let !Φ1[let t be in u] be !x in v]
(!)−→ Φ[v[Φ1[let t be in u]/x]]

σ,()−→∗Φ[v[Φ1[u]/x]].

(Case 5) w0 � w11. We have:

Φ[let !u be !x in Φ1[let t be in v]]
()−→ Φ[let !u be !x in Φ1[v]]

(!)−→ Φ[Φ1[v][u/x]],

which can be transformed into:

Φ[let !u be !x in Φ1[let t be in v]]
(!)−→ Φ[Φ1[let t be in v][u/x]]

()−→ Φ[Φ1[v][u/x]].

41

(a)

Ψ[let u1 be in (let u2 be ∗ in t)] Ψ[let u2 be ∗ in t] let u2 be ∗ in Ψ[t]

let u1 be in Ψ[let u2 be ∗ in t] let u1 be in let u2 be ∗ in Ψ[t]

�()

�

�

�

�

�

�

�

�

�

�

�

�

�

��

(com)

�(com)

� ��(com)
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

()

where Ψ is of the form (•)v or let • be ∗ in v.

(b)

(let t be in (λy.u))v (λy.u)v u[v/y]

let t be in ((λy.u)v) let t be in (u[v/y])

�()

�

�

�

�

�

�

�

��
(com)

�(β)

� ��(β)
�

�

�

�

�

�

�

�

�
()

(c)

let (let t be in † u) be † y in v let † u be † y in v v[u/x]

let t be in (let † u be † y in v) let t be in (v[u/x])

�()

�

�

�

�

�

�

�

�

�

�

�

�

�

��

(com)

�(†)

� ��(†) �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

()

(d)

(let !t be !x in (λy.u))v (λy.u[t/x])v u[t/x][v/y]

let !t be !x in (λy.u)v let !t be !x in u[v/y] u[v/y][t/x]

�(!)

�

�

�

�

�

�

�

�

�

�

��

(com)

�(β)

� � � � � � ��(β)
� � � � � � � � � � � � ��(!)

≡

Figure 3.4: Permutation Rules

42

Proof of Theorem 3.15.
We argue step by step as follows:
(1) Every reduction sequence of the form

t0
()−→ t1

ν,(com)−→ ∗t2

may be transformed into

t0
ν′,(com)−→ ∗t′1

()−→ t2.

where |ν| ≤ |ν ′|. This is proved by induction on |ν|, using Lemma 3.16.
(2) Every reduction sequence of the form

t0
τ,()−→∗t1

ν,(com)−→ ∗t2

may be transformed into

t0
ν′,(com)−→ ∗t′1

τ ′,()−→∗t2,

where |τ | = |τ ′| and |ν| ≤ |ν ′|. This is proved by induction on |τ |, using (1).
(3) Every reduction sequence of the form

t0
τ,()−→∗t1

(r)−→ t2,

where (r) is proper, may be transformed into

t0
ν′
−→∗t′1

τ ′,()−→∗t2,

where ν ′ is proper and |ν ′| ≥ 1. This is proved by induction on |τ |, using Lemma 3.17 and (2).
(4) Every reduction sequence of the form

t0
τ,()−→∗t1

ν−→∗t2,

where ν is proper, may be transformed into

t0
ν′
−→∗t′1

τ ′,()−→∗t2,

where ν ′ is proper and |ν| ≤ |ν ′|. This is proved by induction on |ν|, using (3).
(5) Finally, given a term t0 and a reduction sequence t0

σ−→∗t1, we apply Lemma 3.14 to obtain a
suitable extended term t′0. Then the theorem immediately follows from (4).

3.2.2 Standardization Theorem

A reduction sequence σ is standard if it can be partitioned into subsequences σ0;σ1; . . . ;σ2d, such that,
for i ≤ d, σ2i+1 consists of (!)-reductions at depth i and σ2i consists of other reductions at depth i.

Theorem 3.18 (Standardization) Let t0 be an extended term and σ be a proper reduction sequence

t0
σ−→∗t1.

Then there is a standard proper reduction sequence τ

t0
τ−→∗t1

such that |σ| ≤ |τ |.

43

The proof is again based on permutation of reduction sequences. For example, let u be a (β) redex
and u′ be its contractum, and consider the following nonstandard reduction sequence:

let !u be !x in v
(β)−→ let !u′ be !x in v

(!)−→ v[u′/x].

Here the first reduction is at depth 1 and the second at depth 0. It can be standardized as follows:

let !u be !x in v
(!)−→ v[u/x]

σ,(β)−→∗v[u′/x].

Since (let !u be !x in v) is an extended term, we have FO(x, v) ≥ 1. Hence v[u/x] contains at least
one occurrence of the (β) redex u, so |σ| ≥ 1. Therefore the length of a reduction sequence never
decreases by this permutation. For a precise proof, we need the following two lemmas.

Lemma 3.19 Let
t0

w0,(r0)−→ t1
w1,(r1)−→ t2,

and suppose that the first reduction is at deeper depth than the second. Then

t0
(r1)−→ t′1

(r0),σ−→∗t2,

such that the first reduction is at depth dp(w1, t1) and all reductions in σ are at depth dp(w0, t0).

Proof. The case when w0 and w1 are incomparable is similar to (Case 1) of the proof of Lemma 3.17.
It is impossible to have w0 � w1, since dp(w0, t1) > dp(w1, t1). It is also impossible that two reductions
overlap. For the other cases, we only consider the critical case when w1 points at a (!)-redex.

If w0 � w10, we have

Φ0[let !Φ1[u] be !x in v]
w0,(r)−→ Φ0[let !Φ1[u′] be !x in v]

w1,(!)−→ Φ0[v[Φ1[u′]/x]],

which can be transformed into:

Φ0[let !Φ1[u] be !x in v]
w1,(!)−→ Φ0[v[Φ1[u]/x]]

σ,(r)−→∗Φ0[v[Φ1[u′]/x]].

Note that FO(x, v) ≥ 1 by the definition of the extended terms, therefore we always have |σ| ≥ 1.

If w0 � w11, we have

Φ0[let !u be !x in Φ1[v]]
w0,(r)−→ Φ0[let !u be !x in Φ1[v′]]

w1,(!)−→ Φ0[Φ1[v′][u/x]],

which can be transformed into:

Φ0[let !u be !x in Φ1[v]]
w1,(!)−→ Φ0[Φ1[v][u/x]]

w′
0,(r)−→ Φ0[Φ1[v′][u/x]].

Lemma 3.20 Let t0 be an extended term and let a proper reduction sequence

t0
w0,(!)−→ t1

w1,(r)−→ t2,

be given, where (r) is not (!) and two reductions are at the same depth d. Then we have a reduction
sequence

t0
(com)−→∗t′1

w′
1,(r)−→ t′′1

w′
0,(!)−→ t2,

such that every reduction in it is at depth d.

44

s0(x) = 1 si(x) = 0
s0(λx.t) = s0(t) + 1 si(λx.t) = si(t)

s0(tu) = s0(t) + s0(u) + 1 si(tu) = si(t) + si(u)
s0(†t) = FO(t) + 1 si(†t) = si−1(t)

s0(let t be † x in u) = s0(t) + s0(u) + 1 si(let t be † x in u) = si(t) + si(u)
s0(let t be in u) = s0(t) + s0(u) + 1 si(let t be in u) = si(t) + si(u)

Figure 3.5: Partial Sizes

Proof. The critical case is when (r) is (β) and two reductions overlap. In this case, we apply the
permutation depicted in Figure 3.4(d). The equivalence of u[t/x][v/y] and u[v/y][t/x] is easily checked
(recall that we are adopting the variable convention, so that x does not occur in v and y does not
occur in t).

Proof of Theorem 3.18.
(1) Every proper reduction sequence t0 −→∗u can be transformed into the following form without
decreasing the length:

t0
τ0−→∗t1

τ1−→∗ · · · tn τn−→∗u,

where τi consists of reductions at depth i (0 ≤ i ≤ n). This is proved by a step-by-step argument
similar to the proof of Theorem 3.15, using Lemma 3.19.
(2) Every reduction sequence t0

τ−→∗u which consists of reductions at the same depth can be trans-
formed into

t0
τ0−→∗t1

τ1−→∗u,

where τ1 consists of (!) reductions and τ0 consists of other reductions. This is proved by induction on
the number of (!) reductions in τ , using Lemma 3.20.

3.2.3 Bounding Lengths of Standard Reduction Sequences

For each extended term t its partial size si(t) at depth i is defined in Figure 3.5 (where i ranges over
the numbers ≥ 1). We define s(t) to be

∑∞
i=0 si(t). The only difference between |t| and s(t) is that

the size of a box †t in the latter sense also counts the number of free variable occurrences in t, i.e.,
that variables may be counted twice in the latter. Therefore it holds that |t| ≤ s(t) ≤ 2|t|.

The theorem below is essentially due to [Gir98, Asp98]. In our case, however, the length of
a reduction sequence may slightly exceed the size of its final term, since we have the commuting
reduction rule (com).

Theorem 3.21 (Polynomial bounds for standard reduction sequences) Let t0 be an extended
term of depth d and σ be a standard proper reduction sequence t0

σ−→∗u. Then s(u) ≤ s(t0)2
d

and
|σ| ≤ s(t0)2

d+1
.

This is shown with the help of the following lemmas.

Lemma 3.22 Let σ be a reduction sequence t
σ−→∗t′ which consists of (!) reductions at depth i. Then

sj(t′) ≤ sj(t) · si(t) for each j > i.

45

Proof. For simplicity, let us assume i = 0. To estimate the potential size growth caused by (!)
reductions, we make the following definition. For each extended term t, its unfolding
tPT w is defined
as follows:

x ≡ x

(tu) ≡
t
u

(λx.t) ≡ λx.
t

(†t) ≡ †t

(let !t be !x in u) ≡ let !t!t · · ·!t︸ ︷︷ ︸

n times

be !x in
u, where n = FO(x,
u).

(let t be † x in u) ≡ let
t be † x in
u, if t �≡!t′ or †x �≡!x.

We claim:

(1) FO(
v) ≤ s0(v).

(2) sj(v) ≤ sj(
v) ≤ s0(v) · sj(v).

(3) if v
(!)−→ v′ at depth 0. then FO(x,
v′) ≤ FO(x,
v) for any x.

(4) if v
(!)−→ v′ at depth 0, then sj(
v′) ≤ sj(
v).

The lemma follows from (2) and (4):

sj(t′) ≤ sj(
t′) ≤ sj(
t) ≤ s0(t) · sj(t).

Claim (1) is proved by induction on v. If v ≡ †u, then FO(
v) = FO(†u) ≤ s0(†u). If v ≡
let !u1 be !x in u2, then

FO(
v) = FO(!u1) · FO(x,
u2) + FO(
u2) − FO(x,
u2) ≤ FO(
u2) ≤ s0(u2),

since FO(!u1) ≤ 1 by well-formedness. Other cases are easier.

The first half of Claim (2) is obvious. The second half is proved by induction on v, using (1). If
v ≡ †u, then sj(
v) = sj(†u) ≤ s0(†u) · sj(†u). If v ≡ let !u1 be !x in u2, then

sj(
v) = sj(!u1) · FO(x,
u2) + sj(
u2)
≤ sj(!u1) · s0(u2) + s0(u2) · sj(u2)
≤ s0(u2) · (sj(!u1) + sj(u2))
≤ s0(v) · sj(v)

Claims (3) is proved by induction on Φ, and (4) is also proved by induction on Φ, using Claim (3).

Lemma 3.23 Let σ be a reduction sequence t
σ−→∗t′ which consists of reductions at depth i. Then

|σ| ≤ si(t)2.

46

Proof. For simplicity, assume that i = 0. For an extended term v and its subterm u at depth 0 of the
form (let u1 be ∗ in u2), we define

com(u, v) := s0(v) − s0(u2).

Define com(v) to be the sum of all com(u, v)’s with u ranging over all such occurrences of let-expressions
in v. Then we claim:

(1) s0(v) + com(v) ≤ s0(v)2.

(2) If v
(r)−→ v′ by a reduction at depth 0, then s0(v′) + com(v′) < s0(v) + com(v).

The lemma follows from these two.

To show (1), observe that v contains at most s0(v) − 1 let-expressions and that com(u, v) ≤ s0(v)
for each u. Hence

s0(v) + com(v) ≤ s0(v) + (s0(v) − 1) · s0(v) ≤ s0(v)2.

Now let us show (2). In case that (r) is (β), (§) or (!), s0(v) strictly decreases and com(v) never
increases. In case that (r) is (com), s0(v) does not change and com(v) strictly decreases: let the
reduction be

Ψ[let u1 be ∗ in u2]
(com)−→ let u1 be ∗ in Ψ[u2],

where Ψ is of the form (•)v or let • be ∗ in v. Then

com((let u1 be ∗ in Ψ[u2]), v′) < com((let u1 be ∗ in u2), v),

while com(u, v) remains unchanged for other u’s.

Proof of Theorem 3.21. Let σ be partitioned as

t0
σ0−→∗ σ1−→∗t1

σ2−→∗ σ3−→∗ · · · td
σ2d−→∗u.

Let s0 = s0(t0), . . . , sd = sd(t0). Let also s = s0 + · · · sd = s(t). By applying Lemma 3.22 repeatedly,
we obtain the bounds for the partial sizes of ti illustrated in the following table (taken from [Asp98]):

depth 0 depth 1 depth 2 · · · depth d

t0 s0 s1 s2 · · · sn

t1 s0 s0s1 s0s2 · · · s0sn

t2 s0 s0s1 s2
0s1s2 · · · s2

0s1sn

· · · · · · · · · · · · · · · · · ·
sd s0 s0s1 s2

0s1s2 · · · s2d

0 s2d−1

1 · · · s2
d−2sd−1sd

Here, the polynomial at row i and column j bounds si(tj).

Therefore we see that sj(ti) is bounded by Sj = s2j

0 s2j−1

1 · · · sj−1sj, for each j ≤ d (regardless of i),
and the final size s is bounded by S0 + S1 + · · · + Sd ≤ s2d

.

On the other hand, |σ2j |+ |σ2j+1| ≤ S2
j for each j ≤ d by Lemmas 3.23. Therefore, |σ| is bounded

by
(S0 + · · · + Sd)2 ≤ s2d·2 = s2d+1

.

47

input t
loop
query to oracle f to obtain f(t)
if f(t) is defined

then let t := t′ such that t
f(t)−→ t′

else output t and halt
end loop.

Figure 3.6: Algorithm normalizef

3.3 Main Results

Now we are in a position to state the main results of this chapter. From Theorems 3.15, 3.18 and 3.21,
it follows:

Theorem 3.24 (Polystep strong normalization) For every term t0 of size s and depth d, the
following hold:

1. Every reduction sequence from t0 has a length bounded by O(s2d+1
).

2. Every term to which t0 reduces has a size bounded by O(s2d
).

Corollary 3.25 (Church-Rosser property) If t0 is a term and t1 ←−∗ t0 −→∗t2, then t1 −→
∗t3 ←−∗ t2 for some term t3.

Proof. By showing local confluence, which is straightforward.

To make precise what we mean by polytime strong normalization, we give the following definitions.
A reduction strategy for T is a partial function f : T −→ {0, 1}∗ such that f(t) gives an address of
a redex of t whenever t is reducible and is undefined otherwise. We can think of a Turing machine
normalizef with function oracle f , described in Figure 3.6.

Now we have:

Corollary 3.26 (Polytime strong normalization) For any reduction strategy f for T , normalizef

terminates in time O(s2d+2
), given a term t0 of size s and depth d as input. It outputs the unique

normal form of t0.

Proof. Observe that each step of reduction t −→ t′ is carried out in quadratic time; the worst case,
namely the case of (!)-reduction, consists in substituting a subterm of size ≤ |t| for at most |t| variable
occurrences. Therefore the total runtime is roughly estimated by O(s2d·2 · s2d+1

) = O(s2d+2
).

48

Chapter 4

Proofs-as-Programs Interpretation for
ILAL2

In this chapter, we shall demonstrate the proofs-as-programs interpretation for proofs of ILAL2. More
specifically, we shall show that proofs of ILAL can be embedded as terms of λla in such a way that
cut-elimination in ILAL2 is in full accordance with normalization in λla. Hence the main result of
the previous chapter, the polytime strong normalization theorem, also applies to the proof system of
ILAL2, too.

The proofs-as-programs interpretation has another consequence. It is known by Girard-Roversi’s
result [Gir98, Rov99] that all polytime functions are representable as proofs of ILAL2. Therefore, our
interpretation, in conjunction with the main result of the previous chapter, establishes a characteriza-
tion of the polytime functions in terms of λla: A function is polytime if and only if it is representable
as a term of λla.

In Section 4.1, we shall introduce ILAL2 as a type assignment system for λla. The presentation
there is in a sequent calculus style. It is, however, difficult to prove the subject reduction theorem
directly for that sequent system. The main reason is that it does not satisfy the subterm typability. To
overcome this, we shall introduce a variant typing system, called ILAL2N , in Section 4.2. ILAL2N

is written in a natural deduction style. It is equivalent to ILAL2 as far as closed terms are concerned,
and it does satisfy the subterm typability. Once having defined the suitable formalism ILAL2N ,
it is easy to prove the subject reduction theorem for ILAL2N , and the same theorem for ILAL2
follows from it. This is achieved in Section 4.3. The above mentioned characterization of the polytime
functions by λla is stated in Section 4.4. Finally in Section 4.5, we mention the polytime strong
normalizability of the proofnets of LLL and give a brief comparison with Lafont’s Soft Linear Logic
[Laf01]. We also mention some decidability results for type inference in ILAL and ILAL2.

4.1 ILAL2 as a Type Assignment System

In this section, we shall reformulate ILAL2 (described in Chapter 2) as a type assignment system for
λla. The present formulation differs from the previous one in the use of Girard’s discharged types
[Gir98].

49

x :A � x :A Id
Γ1 � u :A x :A,Γ2 � t :C

Γ1,Γ2 � t[u/x] :C Cut

Γ � t :C
∆,Γ � t :C Weak

x : [A]!, y : [A]!,Γ � t :C
z : [A]!,Γ � t[z/x, z/y] :C Cntr

Γ1 � u :A1 x :A2,Γ2 � t :C
Γ1, y :A1 −◦ A2,Γ2 � t[yu/x] :C

−◦l x :A1,Γ � t :A2

Γ � λx.t :A1 −◦ A2
−◦r

x :A[B/α],Γ � t :C
x :∀α.A,Γ � t :C ∀l

Γ � t :A
Γ � t :∀α.A

∀r, (α is not free in Γ)

x : [A]!,Γ � t :C
y :!A,Γ � let y be !x in t :C !l

x :B � t :A
x : [B]! �!t :!A !r

x : [A]§,Γ � t :C
y :§A,Γ � let y be §x in t :C

§l Γ,∆ � t :A
[Γ]!, [∆]§ � §t :§A §r

In rule (!r), x :B can be absent. In rule (§r), Γ and ∆ can be empty.

Figure 4.1: Type Assignment System ILAL2

Definition 4.1 The types of ILAL2 are given by the following grammar:

A,B ::= α | A −◦ B | ∀α.A | !A | §A.

A !-discharged type is an expression of the form [A]!. A §-discharged type is an expression of the form
[A]§.

The connectives and constants of ILAL2 other than {−◦,∀, !, §} are definable from {−◦,∀} (see
Section 2.2 of Chapter 2):

∃β.A ≡ ∀α.(∀β.(A −◦ α) −◦ α);
A ⊗ B ≡ ∀α.((A −◦ B −◦ α) −◦ α);

1 ≡ ∀α.(α −◦ α);
A & B ≡ ∃α.((α −◦ A) ⊗ (α −◦ B) ⊗ α);
A ⊕ B ≡ ∀α.((A −◦ α) −◦ (B −◦ α) −◦ α);

0 ≡ ∀α.α.

We write !dA and §dA to denote !! · · ·!︸ ︷︷ ︸
d times

A and §§ · · · §︸ ︷︷ ︸
d times

A.

A declaration is an expression of the form x :A or x : [A]†. A finite set of declarations is denoted by
Γ, ∆, etc. Let Γ be a set of declarations x1 :A1, . . . , xn :An where all types in it are non-discharged.
Then [Γ]† denotes x1 : [A1]†, . . . , xn : [An]†. If Γ contains a declaration with a discharged type, then
[Γ]† is undefined.

50

Definition 4.2 The type inference rules of ILAL are those given in Figure 4.1. We say that a
pseudo-term t is typable in ILAL if Γ � t :A is derivable for some Γ and A by those inference rules.

Since the type inference rules are in full accordance with the logical inference rules of ILAL2, it
is straightforward that a formula A is provable in ILAL2 (as a logical system) if and only if there is
a pseudo-term t such that � t :A is derivable in ILAL2 (as a type assignment system).

Remark 4.3 Observe that if x :A,Γ � t :C, namely x is of undischarged type, then it occurs at most
once in t. Therefore, no duplication is caused by the substitutions used in (Cut) and (−◦l) rules, which
always operate on undischarged types. Note the simplicity of our (Cut) rule as compared with the
Cut rule of [Asp98] which requires a complicated substitution operation to avoid illegal duplication.

Another effect of using discharged types is that they act as a barrier to substitution into boxes.
This is reminiscent of the use of patterns in Wadler’s syntax for Intuitionistic Linear Logic [Wad93].
Indeed, we could alternatively use Wadler’s patters to obtain the same effect.

As expected, we have:

Theorem 4.4 Every typable pseudo-term is a term. More exactly, if �x : �A, �y : �[B]!, �z : �[C]§ � t :D, then
t ∈ T{�x},{�y},{�z}.

Proof. By induction on the length of the typing derivation. In the cases of (Cut) and (−◦l), apply
Lemma 3.6(1).

Terms for unary integers and words (or binary integers) are defined in Definition 3.3. To recall the
definition, we have

n ≡ λx.(let x be !z in §λy. (z · · · (z︸ ︷︷ ︸
n times

y) · · ·)),

for each integer n. We also have

w ≡ λx0x1.(let x0 be !z0 in (let x1 be !z1 in §λy.(zi0 · · · (ziny) · · ·)),

for each w ≡ i0 · · · in ∈ {0, 1}∗. To these terms the following types are to be assigned:

Definition 4.5

int ≡ ∀α.!(α −◦ α) −◦ §(α −◦ α)
bint ≡ ∀α.!(α −◦ α)−◦!(α −◦ α) −◦ §(α −◦ α)

There is, however, a minor problem which is related to the existence of η-variants. For instance,
we have a term such that

� λx.(let x be !z in §z) : int,

which is not a Church-numeral. Actually, this term is η-equivalent to Church-numeral 1. Similarly,
bint contains some terms which are η-equivalent to 0 and 1. In what follows, we shall just identify
these η-variants with their origins. This is a quite harmless convention since the η-equivalence relation
is compatible with the reduction relation −→. It simplifies our presentation considerably.

With this convention, types int and bint surely serve as data types:

51

Proposition 4.6 Let t be a normal term.

1. � t : int is derivable if and only if t ≡ n for some natural number n (or t is an η-variant of 1).

2. � t :bint is derivable if and only if t ≡ w for some w ∈ {0, 1}∗ (or t is an η-variant of 0 or 1).

This can be proved through a careful analysis of cut-free derivations; the fact that every typable
normal term has a cut-free typing derivation can be easily verified1. In a similar way, we can show:

Proposition 4.7 If � t : §A is derivable and t is normal, then t is of the form §t′ and � t′ : A is
derivable.

An example of untypable terms is ΩLA in Example 3.4. To see the reason, define the erasure of a
term of λla to be a λ-term obtained by applying the following operations as much as possible:

†u �→ u,

let u be † x in t �→ t[u/x].

If a term is typable in ILAL, then its erasure is typable in System F (in the Curry style, see [Bar92]).
Now, ΩLA cannot be typed in ILAL, since the erasure of ΩLA is Ω, a term which cannot be typed in
System F.

Definition 4.8 A function f : {0, 1}∗ −→ {0, 1}∗ is λla-represented by a term t if there is a natural
number d ≥ 0 such that tw −→∗§df(w) for every w ∈ {0, 1}∗.

By Girard-Roversi’s result [Gir98, Rov99], every polytime function is representable as a proof of
ILAL2 (see [AR00] for a good exposition and [MO00a] for an independent proof). In our framework,
that result is rephrased as follows:

Theorem 4.9 Every function f : {0, 1}∗ −→ {0, 1}∗ which is computable in polynomial time is λla-
represented by a term of type bint −◦ §dbint for some d.

The converse of this theorem will be taken up in Section 4.4 after the subject reduction theorem
has been proved. Below is a remark on the significance of types in our framework.

Remark 4.10 Types are not necessary for the polytime normalizability, but still useful in several
ways. Let us summarize the uses of types.

• Types are used to avoid deadlocks, such as (†t)u and let (λx.t) be † x in u.

• Data types such as int and bint, constrain the shape of normal forms. By Propositions 4.6 and
4.7, all normal terms of type §dint are of the form §dn (or an η-variant of §d1). Similarly, all
normal terms of type §dbint are of the form §dw (or η-variants of §d0, §d1). .

• Lazy types, including §kint and §kbint, tell us the depths of normal forms: say that a type is
lazy if it does not contain a negative occurrence of ∀. If a term t is normal and of lazy type A,
then it means that � t : A can be derived without using the (∀l) inference rule, which has an
effect of hiding some information on derivations. Thus all uses of the ! and § inference rules in
the derivation are recorded in A. Hence the depth of A immediately bounds the depth of t.

1A detailed proof is given in the case of LST in Lemma 6.8 (Section 6.3, Chapter 6), and it can be adapted for ILAL2
straightforwardly (see Remark 6.10).

52

• The above suggests that in order to normalize a term of lazy type of depth d, we do not have to
fire redices at depth > d, which will be removed by reductions at lower depths before arriving
at the normal form. In this way, lazy types help us detect redundant redices.

4.2 Natural Deduction System ILAL2N

ILAL2 does not satisfy the subterm typability; for example, !(xx) may be typed as x : [A]! �!(xx) :!A,
but its subterm xx cannot be typed. This makes difficult to prove the subject reduction theorem
directly for ILAL2.

In this section, we introduce a variant system ILAL2N based on a natural deduction formalism.
Then we show that ILAL2 and ILAL2N are equivalent as far as closed terms are concerned. ILAL2N

satisfies the subterm typability, and will be convenient for proving the subject reduction theorem in
the next section.

The inference rules of ILAL2N are those in Figure 4.2.

x :A,Γ � x :A Ax

Γ � t :A −◦ B Γ � u :A
Γ � tu :B −◦E

x :A,Γ � t :B FO(x, t) ≤ 1
Γ � λx.t :A −◦ B

−◦I

Γ � t :∀α.A
Γ � t :A[B/α] ∀E

Γ � t :A α �∈ FV (Γ)
Γ � t :∀α.A

∀I

Γ � u :!A x : [A]!,Γ � t :B
Γ � let u be !x in t :B !E

Γ � t :A FO(t) ≤ 1
[Γ]!,∆ �!t :!A !I

Γ � u : §A x : [A]§,Γ � t :B FO(x, t) ≤ 1
Γ � let u be §x in t :B

§E Γ,Σ � t :A
[Γ]!, [Σ]§,∆ � §t : §A §I

Figure 4.2: Natural Deduction System ILAL2N

Lemma 4.11 If x :µ,Γ � t :A is derivable in ILAL2N and x �∈ FV (t), where µ is either nondischarged
or discharged type, then Γ � t :A is derivable in ILAL2N . The same property holds for ILAL2, too.

Proof. By induction on the derivation.

Lemma 4.12 The following rules are derivable in ILAL2N :

Γ � t :C
∆,Γ � t :C Weak

x : [A]!, y : [A]!,Γ � t :C
z : [A]!,Γ � t[z/x, z/y] :C Cntr

Γ � u :A x :A,Γ � t :C
Γ � t[u/x] :C Cut

∆ � u :A x : [A]!, [∆]!,Γ � t :C FO(u) ≤ 1
[∆]!,Γ � t[u/x] :C

Cut!
∆,Σ � u :A x : [A]§, [∆]!, [Π]§,Γ � t :C

[∆]!, [Π]§,Γ � t[u/x] :C
Cut§

53

Proof.
(Weak) By induction on the derivation.
(Cntr) By induction on the derivation. Actually we show that contraction is derivable not only for
!-discharged formulas but also for nondischarged and §-discharged formulas too.
(Cut) By induction on the derivation of x :A,Γ � t :C.
(Cut!) By induction on the derivation of x : [A]!, [∆]!,Γ � t : C. Let us consider the critical case.
Suppose that the last inference rule used in the derivation is (!I) of the form:

x : A,∆ � t′ : C ′ FO(t′) ≤ 1
x : [A]!, [∆]!,Γ �!t′ :!C ′

By (Cut), ∆ � t′[u/x] : C is derivable in ILAL2N . Moreover FO(u) ≤ 1 and FO(t′) ≤ 1, hence
FO(t′[u/x]) ≤ 1. Therefore we can apply (!I), yielding [∆]!,Γ �!t′[u/x] :!C ′.
(Cut§) By induction on the derivation of x : [A]§, [∆]!, [Π]§,Γ � t :C.

Lemma 4.13 If Γ � t :A is derivable in ILAL2, then it is also derivable in ILAL2N .

Proof. By induction on the derivation, using derived rules (Weak), (Cntr) and (Cut) in Lemma 4.12.

A variable substitution is a function θ from the set of term variables to itself. tθ denotes the term
obtained from t by replacing each free variable x in t with θ(x). Γθ denotes the set of declarations
obtained by replacing each variable x in it by θ(x). It may decrease the number of declarations due
to unification. For example, If Γ ≡ x :A, y :A and θ(x) = θ(y) = z, then Γθ ≡ z :A.

Lemma 4.14 Let Γ � t :A be derivable in ILAL2N . Then there are Γ′, t′ and a variable substitution
θ such that

• Γ′ � t′ :A is derivable in ILAL2,

• Γ′θ ≡ Γ and t′θ ≡ t.

Proof. By induction on the derivation. We shall only treat several critical cases.
(Case 1) The last inference is −◦E of the form:

Γ � t :A −◦ B Γ � u :A
Γ � tu :B −◦E

By the induction hypothesis, there are Γ′
1, Γ′

2, t′, u′ and variable substitutions θ1 and θ2 such that

• Γ′
1 � t′ :A −◦ B and Γ′

2 � u′ :A are derivable in ILAL2,

• Γ′
1θ1 ≡ Γ′

2θ2 ≡ Γ, t′θ1 ≡ t and u′θ2 ≡ u.

Without loss of generality, we may assume that FV (Γ′
1) and FV (Γ′

2) are disjoint. From these, we see
that Γ′

1,Γ
′
2 � t′u′ :B is derivable in ILAL2, we can define a suitable variable substitution θ by

θ(x) = θ1(x) if x ∈ FV (Γ′
1);

= θ2(x) otherwise.

(Case 2) The last inference is −◦I of the form:

54

x :A,Γ � t :B FO(x, t) ≤ 1
Γ � λx.t :A −◦ B

−◦I

By the induction hypothesis, there are x1 :A, . . . , xn :A, Γ′, t′ and a variable substitution θ such that

• x1 :A, . . . , xn :A,Γ′ � t′ :B is derivable in ILAL2,

• θ(x1) = · · · = θ(xn) = x, Γ′θ ≡ Γ and t′θ ≡ t.

Since FO(x, t) ≤ 1, there is at most one xi such that xi ∈ FV (t′). By Lemma 4.11, xi :A,Γ′ � t′ :A
is derivable in ILAL2. Rename xi as x. Then we can apply (−◦r) to derive Γ′ � λx.(t′[x/xi]) :A in
ILAL2.

(Case 3) The last inference is !E of the form:

Γ � u :!A x : [A]!,Γ � t :B
Γ � let u be !x in t :B !E

By the induction hypothesis, there are Γ′
1, x1 : [A]!, . . . , xn : [A]!, Γ′

2, t′, u′ and variable substitutions θ1

and θ2 such that

• Γ′
1 � u′ :!A and x1 : [A]!, . . . , xn : [A]!,Γ′

2 � t′ :B are derivable in ILAL2,

• θ(x1) = · · · = θ(xn) = x, Γ′
1θ1 ≡ Γ′

2θ2 ≡ Γ, u′θ1 ≡ u and t′θ2 ≡ t.

We may assume that FV (Γ′
1), FV (Γ′

2) and {x1, . . . , xn} are disjoint. By (Cntr), (!l) and (Cut),
Γ′

1,Γ
′
2 � let u′ be !x in (t′[x/x1, . . . , x/xn]) is derivable in ILAL2. A suitable variable substitution θ

is defined as in (Case 1).

As a consequence, we obtain:

Corollary 4.15 � t :A is derivable in ILAL2 if and only if it is derivable in ILAL2N .

Proof. By Lemma 4.13 and Lemma 4.14.

4.3 Subject Reduction Theorem

In this section we prove the subject reduction theorem for ILAL2N , from which the same theorem
for ILAL2easily follows. For the treatment of quantifiers, we use a technique which is exploited in
[Bar92] to show the subject reduction theorem for System F in the Curry style.

Define a binary relation > on types by

A > ∀α.A

∀α.A > A[B/α].

Denote the reflexive transitive closure of > by ≥.

Lemma 4.16 A −◦ B ≥ A′ −◦ B′ =⇒ ∃�α∃ �C A′ −◦ B′ ≡ (A −◦ B)[�C/�α].

55

Proof. See Lemma 4.2.4 of [Bar92].

Lemma 4.17 (Generation lemma) The following hold for ILAL2N :

1. Γ � x :A =⇒ Γ ≡ x :B,Γ′ for some B ≥ A.

2. Γ � λx.t :A =⇒ x :B,Γ � t :C for some B −◦ C ≥ A, and FO(x, t) ≤ 1.

3. Γ � tu :A =⇒ Γ � t :B −◦ C and Γ � u :B for some B and C ≥ A.

4. Γ � let u be !x in t :A =⇒ Γ � u :!B and x : [B]!,Γ � t :C for some B and C ≥ A.

5. Γ �!t :A =⇒ ∆ � t :C for some !C ≥ A and [∆]! ⊆ Γ, and FO(t) ≤ 1.

6. Γ � let u be §x in t : A =⇒ Γ � u : §B and x : [B]§,Γ � t : C for some B and C ≥ A, and
FO(x, t) ≤ 1.

7. Γ � §t :A =⇒ ∆,Σ � t :C for some §C ≥ A and [∆]!, [Σ]§ ⊆ Γ.

Proof. By induction on derivations.

Theorem 4.18 (Subject Reduction for ILAL2N) If Γ � t :A is derivable in ILAL2N and t −→
u, then Γ � u :A is derivable in ILAL2N .

Proof. The proof is quite similar to that of Proposition 3.11. Let Γ � Φ[t] :A be derivable in ILAL2N ,
Φ[t] → Φ[u] and t be the redex of the reduction. We prove that Γ � Φ[u] :A and

(*) FO(x,Φ[u]) ≤ FO(x,Φ[t]) for each x such that either x :A ∈ Γ or x : [A]§ ∈ Γ for some A.

by induction on Φ.

When Φ ≡ •, the above are shown using Generation Lemma and the derived rules (Cut), (Cut!)
and (Cut§) given in Lemma 4.12. Other cases are easy.

Corollary 4.19 (Subject Reduction for ILAL2) If Γ � t :A is derivable in ILAL2 and t −→ u,
then Γ � u :A is derivable in ILAL2.

In this chapter, ILAL2 has been considered as a type assignment system for λla. This means that
every proof of ILAL2 (as a logical system) is structurally representable by a term of λla (structurally
because formulas/types are erased and inference rules for second order quantifiers are ignored in terms
of λla). Corollary 4.19 basically means that cut-elimination in ILAL2 (as a logical system) is in full
accordance with normalization in λla. In this context, it is important to mention a direct consequence
of Corollary 3.26 in the previous chapter:

Corollary 4.20 (Polytime strong normalization for ILAL2 proofs) Every structural repre-
sentation of a proof of ILAL2 (as a term of λla) is polytime strongly normalizable in the sense of
Corollary 3.26.

56

4.4 Characterization of Polytime Functions

As a consequence of the subject reduction theorem and the polytime strong normalization theorem,
we have the following result:

Theorem 4.21 Every term t of type bint −◦ §dbint λ-represents a function f : {0, 1}∗ −→ {0, 1}∗
which is computable in time O(n2d+3

).

Proof. Recall that all w’s are of depth 1, so that tw is of constant depth for every w ∈ {0, 1}∗.
Without loss of generality, we may assume that the depth is equal to the depth of §dbint, i.e., d + 1
(just ignore the deeper layers, which do not contribute to the normal form; see Remark 4.10). By
Corollary 3.26, the normal form of tw is computed in time O(|tw|2d+3

), thus in time O(|w|2d+3
) (by

taking a reasonable reduction strategy of low complexity). The type of tw is §dbint, hence so is the
type of its normal form by the subject reduction theorem. By Proposition 4.6 (2) and Proposition
4.7, the normal form should be of the form §dw′, and such w′ is unique by the Church-Rosser property.

Therefore we obtain a characterization of the polytime functions:

Corollary 4.22 (Characterization of the Polytime Functions) A function f : {0, 1}∗ −→
{0, 1}∗ is polytime computable if and only if it is λ-represented by a λla term of type bint −◦ §dbint
for some d.

4.5 Remarks

In this chapter, we have reformulated ILAL2 as a type assignment system for λla and proved the
subject reduction theorem (Corollary 4.19). It has implied, in conjunction with the main result of
the previous chapter, the polytime strong normalizability of (structural representations of) proofs of
ILAL2 (Corollary 4.20). It has also yielded a characterization of polytime in terms of λla (Corollary
4.22). Some remarks are in order.

Polytime strong normalization for LLL. Let us discuss the polytime strong normalizability of
LLL proofnets. As a preliminary, consider the following decompositions of the (!) reduction rule:

(!1) let !u be !x in Φ[x] −→ let !u be !x in Φ[u];

(!2) let !u be !x in t −→ t, if x �∈ FV (t).

Clearly the (!) reduction rule is simulated by these two. With this modification, we still have the poly-
time strong normalization theorem. Note that these rules are natural counterparts of Girard[Gir98]’s
reduction rules for the exponential boxes: (!1) corresponds to the contraction reduction and (!2) to
the weakening reduction.

Given this, it is quite plausible that we can apply our technique to LLL to show the strong poly-
time normalization theorem for the proofnets of LLL (with formulas erased). There is, however, a
limitation that additives should be treated in a lazy way, because eager reductions for additive com-
ponents cost exponential time.

57

Type Checking Typability Inhabitation
ILAL yes yes yes
ILAL2 ? ? no

Table 4.1: Decision Problems for Type Inference

Exact Runtime of normalization. In [AR00] it was shown that the functions computable in time
O(nd) are representable by terms of type bint −◦ §d+6bint. Professor Mairson, on the other hand,
pointed out to the author that the representation could be considerably remedied with respect to the
depth; e.g., we can replace the depth d + 6 above with log d multiplied by a constant.

The reason is as follows. The encoding of [AR00] consumes d + 3 depths to represent polynomials
of degree d. However, if we begin with a term for squaring n2 of type int −◦ §2int and compose it
d times, we can obtain a term for n2d

of type int −◦ §2dint. Hence it only requires depth 2logd to
represent polynomial nd.

This fact induces a lowerbound O(s2
d−1
2) for the time for normalizing a λla term of size s and

depth d. On the other hand, we have an upperbound O(s2d+2), as shown in the previous chapter. It
seems possible to sharpen both of these two bounds so as to establish a finer characterization of the
expressibility of λla. We leave it to the future work.

Decision Problems for Type Inference. Given a type assignment system for some term calculus,
it is important to know how complex type inference in it is. There are three questions which are
frequently asked to estimate the complexity of type inference.

Type Checking: Given a term t and type A, does � t :A hold?

Typability: Given a term t, is there any type A such that � t :A holds?

Inhabitation: Given a type A, is there any term t such that � t :A holds?

The answers for these questions are summarized in Table 4.1.

Type checking and typability are decidable for ILAL, as (essentially) shown by Roversi [Rov00].
In fact, Roversi achieved more; he considered a type system ILAL with ML-like polymorphism and
extended the standard Hindley-Milner algorithm for computing principal types [Hin69, Mil78] to his
type system. His term calculus is different from ours, but there seems to be virtually no problem in
repeating his argument for our term calculus.

Inhabitation is also decidable for ILAL; this follows from the fact that ILAL as a logical system
is decidable. This result will be proved in Chapter 7 as a consequence to the finite model property for
ILAL. On the other hand, inhabitation for ILAL2 is undecidable, since ILAL2 is undecidable as a
logical system (see Section 2.4 of Chapter 2).

We strongly believe that type checking and typability for ILAL2 are also undecidable, in view of
the fact that the corresponding problems for System F in the Curry style are undecidable [Wel94]. It
seems that essentially the same argument as [Wel94] goes through for ILAL2. But it still requires of
a careful examination. We leave it to the future work.

58

Soft Linear Logic. Recently Lafont [Laf01] introduced yet another polytime system based on re-
finement of Linear Logic, which is called Soft Linear Logic (SLL). Like Light Logic, the refinement
consists in a restriction on the exponential modality of Linear Logic, but remarkably SLL does not
require any extra modality such as §, hence is much more elegant than Light Logic as a logical system.
In addition, the (strong) normalization theorem is very easy to prove.

In spite of the emergence of this new elegant system, we still consider significant to continue the
investigation of Light Logic for the following reasons:

• Certain basic functions are more naturally representable in Light Logic than in SLL. Typically,
addition is slightly unnatural in SLL, because it is represented not of type int −◦ int −◦ int,
where int ≡ ∀α.!(α −◦ α) −◦ (α −◦ α), but of type

int −◦ int −◦ ∀α.!(α −◦ α)⊗!(α −◦ α) −◦ (α −◦ α).

The reason is that the contraction rule of SLL is too restrictive. It seems that programming in
Light Logic is more natural than in SLL in such cases.

• Although the modalities of two systems looks alike at first, they are actually quite different in
their computational power; λla terms of depth d are normalizable in O(s2d+1

) steps, while SLL
proofs of depth d are in O(sd) steps.

• Several semantic studies have already been made for Light Logic [KOSar, Bai00, MO00b]. On
the other hand, it is not very obvious whether similar (or entirely different) semantics can be
considered for SLL.

59

Chapter 5

Light Set Theory

Light Logic is not just a type system, but also a formal system of reasoning. To examine the reasoning
aspect of Light Logic, we shall study naive set theory based on Light Logic, which we call Light Set
Theory, in this chapter.

Naive set theory is characterized by the comprehension principle, saying that for any formula A
and a variable x there is a set {x|A} such that

A[t/x] ↔ t ∈ {x|A}.

The theory well-captures the basic intuition of sets as collections of elements satisfying certain prop-
erties. It is strong enough to develop almost all existing mathematical theory based on it, but unfor-
tunately it is inconsistent with Classical and Intuitionistic Logics: in naive set theory, we can define
a formula A which is equivalent to ¬A (let R be the Russell’s set defined as {x|x �∈ x} and let A be
R ∈ R). In terms of sequent calculus, it means that both A � ¬A and ¬A � A are provable. From
these two sequents, we can derive contradiction (i.e., the empty sequent) in Classical/Intuitionistic
Logic:

A � ¬A

¬A � A
¬A,¬A �
¬A � (Contr)

A �
� ¬A

¬A � A
¬A,¬A �
¬A � (Contr)

�

The above proof contains Contraction. Since its use is so crucial, it is naturally expected that the
existence of formula A above does not necessarily imply contradiction when the use of Contraction
is somehow limited. It was Grishin [Gri74] who first observed that contraction-free logics are indeed
consistent with the naive comprehension principle. Since then, naive set theory has been investigated
in the framework of contraction-free logics (see, e.g., [Gri81, Whi93, Shi96, Shi99]). As observed in
[Gir98], Light Logic is also consistent with naive comprehension, due to the tamed use of Contraction,
hence it makes sense to investigate Light Set Theory.

Light Set Theory is introduced on the basis of LLL in [Gir98], but things become much more
transparent if we base it on a simpler logical system. Hence we reformulate it on the basis of ILALand
call the resulting system LST. In Section 5.1, we shall describe syntax of LST. In Section 5.2, we
shall mention several basic facts on it. Such basic facts include the cut-elimination theorem for LST,

60

Comprehension:
A[t/x],Γ � C

t ∈ {x|A},Γ � C
∈ l

Γ � A[t/x]
Γ � t ∈ {x|A} ∈ r

Set Quantifiers:
A[t/x],Γ � C

∀x.A,Γ � C
∀l

Γ � A
Γ � ∀x.A

∀r

A,Γ � C

∃x.A,Γ � C
∃l

Γ � A[t/α]
Γ � ∃x.A

∃r

In rule (∀r), x is not free in Γ. In rule (∃l), x is not free in Γ and C.

Figure 5.1: Inference Rules of Light Set Theory (LST)

availability of fixpoints, representability of all recursive functions and undecidability of LST. Section
5.3 is devoted to an investigation of natural numbers and numeric functions in LST. In particular, a
restricted form of the induction schema is studied. In Section 5.4, we shall exhibit various mathematical
structures and functions which are representable in LST. In Section 5.5, we shall give an encoding of
polytime Turing machines, and prove the main result of this chapter that all polytime functions are
provably total in LST.

5.1 Syntax of LST

Here we shall describe syntax of LST. It comes from the appendix of [Gir98], but we shall base it on
ILAL.

Definition 5.1 The terms and formulas of Light Set Theory (LST) are defined simultaneously as
follows:

• Term variables x, y, z, . . . are terms;

• If A is a formula and x is a term variable, then {x|A} is a term;

• If t and u are terms, then t ∈ u is a formula;

• 1, �, 0 are formulas;

• If A and B are formulas, then so are A ⊗ B, A −◦ B, A & B, A ⊕ B, !A and §A;

• If A is a formula and x is a term variable, then ∀x.A and ∃x.A are formulas.

The inference rules of LST are those of ILAL with the additional rules in Figure 5.1.

We use A,B,C, . . . to denote formulas, and t, u, v, . . . to denote terms. Notation A[t/x] is used to
denote the formula which is obtained from A by replacing all occurrences of term variable x with t.
Similarly, we use substitution notations for terms and sequence of formulas, such as u[t/x] and Γ[t/x],
with the obvious meaning.

Negation is defined by means of 0:

61

Definition 5.2

¬A ≡ A −◦ 0

t �∈ u ≡ ¬t ∈ u

t �= u ≡ ¬t = u

This definition is compatible with the standard intuitionistic inference rules for negation:

Proposition 5.3 The following formulas are provable in LST;

1. A,Γ � 0 implies Γ � ¬A.

2. Γ � A implies ¬A,Γ � 0.

3. A,¬A � B.

5.2 Fundamentals of LST

In this section, we shall recall basic notions and properties of Light Set Theory, such as cut-elimination
and its consequences (in 5.2.1), properties of equality (in 5.2.2), some basic set-theoretic operations
(in 5.2.3), the fixpoint theorem (in 5.2.4) and numeralwise representability of all recursive functions
and undecidability of LST (in 5.2.5). We owe most materials below to [Gir98], [Gri81] and [Shi99],
except the undecidability result for (the modality-free fragment of) LST; the latter is immediately
obtained from Shirahata’s result, but it seems that this is the first place to mention it explicitly. All
the results of this section hold for the modality-free fragment of LST as well.

5.2.1 Some Basic Facts

Throughout this chapter, we presuppose the cut-elimination theorem for LST:

Theorem 5.4 If A is provable in LST, then it is cut-free provable in LST.

A proof will be given in Chapter 6. As a consequence we have:

Corollary 5.5 LST is consistent, i.e., 0 is not provable in it.

Corollary 5.6

1. (Disjunction Property) If A ⊕ B is provable, then either A or B is provable.

2. (Existence Property) If ∃xA is provable, then A[t/x] is provable for some term t.

3. (Modality Property) If !A or §A is provable, then A is provable.

Another fact which will be frequently used without mentioning is that the provable sequents are
closed under substitution:

Proposition 5.7 Let t be a term. If Γ � C is provable in LST, then Γ[t/x] � C[t/x] is also provable
in LST.

Proof. By induction on the length of the proof, noting that formulas are considered up to α-equivalence,
i.e., ∀xA ≡ ∀y(A[y/x]).

62

5.2.2 Equality

The first thing to do is to define an equality relation. Unfortunately, the standard extensional equality
defined by:

t =e u ≡ ∀x(x ∈ t ◦−◦ x ∈ u)

is not appropriate, since it does not satisfy the basic properties of equality. Alternatively, Girard
[Gir98] used Leibniz equality, which was defined as follows:

Definition 5.8
t = u ≡ ∀x(t ∈ x −◦ u ∈ x).

Note that Leibniz equality is very strong in that it equates only syntactically identical expressions:

Proposition 5.9 t = u is provable in LST iff t and u are syntactically identical.

Proof. Since ∀x(t ∈ x −◦ u ∈ x), t ∈ x � u ∈ x is provable in LST, if we have t = u, then we also
obtain t ∈ x � u ∈ x. By the cut-elimination theorem, it should be an axiom. Hence t and u should
be syntactically identical. The other direction is immediate.

For example, LST does not prove {x|A ⊕ B} = {x|B ⊕ A}.
The following are basic properties of Leibniz equality:

Proposition 5.10 The following formulas are provable in LST;

1. t = t.

2. t = u −◦ (A[t/x] −◦ A[u/x]).

3. t = u −◦ u = t.

4. t = u ⊗ u = r −◦ t = r.

5. t = u −◦ t = u ⊗ t = u.

6. t = u −◦ t =e u.

Proof.

1. Immediate.

2. We have A[t/x] � t ∈ {x|A} and u ∈ {x|A} � A[u/x].Hence

t ∈ {x|A} −◦ u ∈ {x|A} � A[t/x] −◦ A[u/x].

Therefore, the claim holds by rule (∈ l).

3. By 1 and 2, taking A ≡ x = t.

4. By 1 and 2, it holds that u = t −◦ u = r −◦ t = r. Hence the claim holds by 3.

63

5. By 2, we have
t = u −◦ (t = t ⊗ t = t −◦ t = u ⊗ t = u).

Now use 1 twice.

6. By 2, we have t = u −◦ (t =e t −◦ t =e u), while t =e t is easily proved.

Note that statement 5 above means that Contraction is freely available for equational formulas.
The last statement says that Leibniz equality implies the extensional equality. We do not have the
converse, however; indeed the converse is inconsistent:

Theorem 5.11 (Grishin[Gri81]) LST with axiom t =e u −◦ t = u is inconsistent.

Proof. We show that the axiom t =e u−◦ t = u implies Contraction for all formulas. Given a formula
A, let t ≡ {x|1} and u ≡ {x|A}. Then we have t =e u ◦−◦ A. On the other hand, t = u ◦−◦ t =e u
by assumption. Since Contraction is freely available for t = u by Proposition 5.10(5), it follows that
Contraction is also available for A.

By taking Russell’s formula in the beginning of this chapter as A, we can simulate the proof of
contradiction given there.

We use the following abbreviations:

Definition 5.12

∀x ∈ t.A ≡ ∀x(x ∈ t −◦ A);
∃x ∈ t.A ≡ ∃x(x ∈ t ⊗ A);

∃!x.A ≡ ∃x(A ⊗ ∀y(A[y/x] −◦ y = x));
∃!x ∈ t.A ≡ ∃x ∈ t(A ⊗ ∀y(A[y/x] −◦ y = x)).

5.2.3 Set Theoretic Operations

Let us define some set theoretic operations.

Definition 5.13

∅ ≡ {x|0}
{t} ≡ {x|x = t}

{t, u} ≡ {x|x = t ⊕ x = u}
{t1, . . . , tn} ≡ {x|x = t1 ⊕ · · · ⊕ x = tn}

t ∪ u ≡ {x|x ∈ t ⊕ x ∈ u}
〈t, u〉 ≡ {{t}, {t, u}}

〈t1, . . . , tn〉 ≡ 〈· · · 〈〈t1, t2〉, t3〉 · · · , tn〉

Proposition 5.14 The following are provable in LST;

64

1. t �∈ ∅.

2. t ∈ {u} ◦−◦ t = u.

3. t ∈ {u, v} ◦−◦ t = u ⊕ t = v.

4. 〈t, u〉 = 〈r, s〉 ◦−◦ t = r ⊗ u = s.

Proof.

1. From 0 � 0, we obtain t ∈ {x|0} � 0 by rule (∈ l).

2. By definition.

3. By definition.

4. The proof is familiar in the case of the standard axiomatic set theory, and we can repeat just the
same argument in LST, since Contraction is available for all equational formulas. A complete
proof can be found in [Shi99].

5.2.4 Fixpoint Theorem

One of the most interesting aspects of Light Set Theory is that any formula has a fixpoint:

Theorem 5.15 (Fixpoint Theorem, Girard[Gir98])

1. For any formula A, there exists a term f such that

t ∈ f ◦−◦ A[f/y, t/x]

is provable for any t.

2. More generally, for any formula A, there exists a term f such that

〈t1, . . . , tn〉 ∈ f ◦−◦ A[f/y, t1/x1, . . . , tn/xn]

is provable for any t1, . . . , tn.

Proof. As for the first claim, define

s ≡ {z | ∃u∃v(z = 〈u, v〉 ⊗ A[{w | 〈w, v〉 ∈ v/y, u/x])};
f ≡ {w | 〈w, s〉 ∈ s},

where u, v and w are fresh variables. Then we can derive the desired property. A complete proof can
be found in [Shi99]. The second claim is just a generalization of the first.

65

5.2.5 Undecidability of LST

In [Shi99], Shirahata defined the numeral n for each natural number n by:

0 = ∅;
S(t) = t ∪ {t};

n ≡ S(· · ·S(S︸ ︷︷ ︸
n times

(0)) · · ·),

and proved the following by using the fixpoint theorem:

Theorem 5.16 (Shirahata[Shi99]) Every total recursive function is numeralwise representable in
(the modality-free fragment of) LST; i.e., for every k-ary recursive function F , there exists a term f
such that

• for any �n ∈ Nk, if F (�n) = m, then

� 〈�n,m〉 ∈ f and
� ∀x(〈�n, x〉 −◦ x = m) are provable.

In what follows, we shall strengthen this result to weak numeralwise representability of all recur-
sively enumerable predicates.

Let N∗ be the fixpoint

x ∈ N∗ ◦−◦ x = 0 ⊕ ∃y ∈ N∗(x = S(y)).

Then we have:

Lemma 5.17 � t ∈ N∗ is provable in LST if and only if t is a numeral n.

Proof. The “if” direction is proved by induction on n. If n = 0 then we have

� 0 = 0
� 0 = 0 ⊕ ∃y ∈ N∗(0 = S(y))

� 0 ∈ N∗ .

If n = m + 1 then by the induction hypothesis, � m ∈ N∗ is provable in LST. Therefore we have:

� m ∈ N∗ � S(m) = S(m)
� m ∈ N∗ ⊗ S(m) = S(m)
� ∃y ∈ N∗(S(m) = S(y))

� S(m) = 0 ⊕ ∃y ∈ N∗(S(m) = S(y))

� S(m) ∈ N∗ .

The “only-if” direction is proved by induction on the size of term t (i.e., the number of symbols
in t). Suppose that � t ∈ N∗ is provable. Then either � t = 0 or � ∃y ∈ N∗(t = S(y)) is provable by
the disjunction property.

In the former case, t is syntactically equivalent to 0 by Proposition 5.9.

66

In the latter case, there is some term u such that � u ∈ N∗⊗ t = S(u) is provable by the existence
property. Therefore � u ∈ N∗ and � t = S(u) are both provable. Thus t is syntactically equivalent to
S(u), and hence the induction hypothesis applies to u, which is of smaller size than t. Therefore we
see that u is of the form m for some m ∈ N . Therefore t ≡ m + 1.

Using the above lemma, we can show:

Theorem 5.18 Every recursively enumerable predicate is weakly numeralwise representable in (the
modality-free fragment of) LST. Namely, for every k-ary predicate R ⊆ Nk there exists a formula A
of LST such that

〈n1, . . . , nk〉 ∈ R ⇐⇒ � A[n1/x1, . . . , nk/xk]

for any 〈n1, . . . , nk〉 ∈ Nk.

Proof. Let R ⊆ Nk be a recursively enumerable predicate. Without loss of generality, we may assume
that there is a recursive predicate Q ⊆ Nk+1 such that

〈�n〉 ∈ R ⇐⇒ there exists m ∈ N such that 〈�n,m〉 ∈ Q.

By Theorem 5.16, we have a formula B of LST which numeralwise represents Q. Now,

〈�n〉 ∈ R ⇐⇒ there exists m ∈ N such that 〈�n,m〉 ∈ Q

⇐⇒ there exists m ∈ N such that � B[�n/�x,m/y]
⇐⇒ � ∃y ∈ N∗B[�n/�x]

(The previous lemma is used to derive the last equivalence.) Therefore, the formula ∃y ∈ N∗B weakly
numeralwise represents R.

Since the class of recursively enumerable predicates exceeds the class of recursive (decidable) pred-
icates (see, e.g., [Sho67]), we conclude:

Corollary 5.19 LST is undecidable.

Remark 5.20 Note that this undecidability result for LST cannot be obtained as a simple modifica-
tion of the undecidability result for ILAL2 (Theorem 2.4); by using the encoding of [LSS95], we could
simulate naive set theory based on Intuitionistic Logic. But it is not useful at all, since the latter is
inconsistent, thus trivially decidable.

5.3 Natural Numbers

Now let us investigate natural numbers and their properties in LST. We shall define the set of
natural numbers in 5.3.1, then introduce a restricted form of Induction, called Light Induction, which
is available in LST (in 5.3.2). Using Light Induction, we shall show that addition and multiplication
are provably total in LST (in 5.3.3).

5.3.1 Numerals

The previous definition of natural numbers based on unordered pairs is not satisfactory, because it
does not yield S(x) = S(y)−◦x = y. Alternatively, we define natural numbers based on ordered pairs:

67

Definition 5.21

0 ≡ ∅
S(t) ≡ 〈∅, t〉

n ≡ S(· · · S(S︸ ︷︷ ︸
n times

(0)) · · ·)

This definition yields the desired properties:

Proposition 5.22 The following are provable in LST:

1. S(t) �= 0.

2. S(t) = S(u) ◦−◦ t = u.

Proof.

1. S(t) = 0 implies 〈∅, t〉 = ∅. But {∅} ∈ 〈∅, t〉 whereas {∅} �∈ ∅, a contradiction.

2. t = u−◦ S(t) = S(u) by Proposition 5.10 (2), while S(t) = S(u)−◦ t = u by Proposition 5.14 (4).

Next we define the set of natural numbers in LST:

Definition 5.23

N ≡ {x|∀α.!∀y(y ∈ α −◦ S(y) ∈ α) −◦ §(0 ∈ α −◦ x ∈ α)}.

The term N surely represents the set of natural numbers in the usual sense:

Proposition 5.24

1. 0 ∈ N is provable in LST.

2. t ∈ N −◦ S(t) ∈ N is provable in LST.

3. t ∈ N is provable in LST if and only if t is a numeral n.

Proof.
1.

0 ∈ α � 0 ∈ α
� 0 ∈ α −◦ 0 ∈ α

� §(0 ∈ α −◦ 0 ∈ α)
!∀y(y ∈ α −◦ S(y) ∈ α) � §(0 ∈ α −◦ 0 ∈ α)
�!∀y(y ∈ α −◦ S(y) ∈ α) −◦ §(0 ∈ α −◦ 0 ∈ α)

� ∀α.!∀y(y ∈ α −◦ S(y) ∈ α) −◦ §(0 ∈ α −◦ 0 ∈ α)
� 0 ∈ N

68

2.
t ∈ α � t ∈ α S(t) ∈ α � S(t) ∈ α

t ∈ α −◦ S(t) ∈ α, t ∈ α � S(t) ∈ α

∀y(y ∈ α −◦ S(y) ∈ α), t ∈ α � S(t) ∈ α

0 ∈ α, ∀y(y ∈ α −◦ S(y) ∈ α), 0 ∈ α −◦ t ∈ α � S(t) ∈ α

∀y(y ∈ α −◦ S(y) ∈ α), 0 ∈ α −◦ t ∈ α � 0 ∈ α −◦ S(t) ∈ α

!∀y(y ∈ α −◦ S(y) ∈ α), §(0 ∈ α −◦ t ∈ α) � §(0 ∈ α −◦ S(t) ∈ α)

!∀y(y ∈ α −◦ S(y) ∈ α)2, !∀y(y ∈ α −◦ S(y) ∈ α) −◦ §(0 ∈ α −◦ t ∈ α) � §(0 ∈ α −◦ S(t) ∈ α)

!∀y(y ∈ α −◦ S(y) ∈ α) −◦ §(0 ∈ α −◦ t ∈ α) �!∀y(y ∈ α −◦ S(y) ∈ α) −◦ §(0 ∈ α −◦ S(t) ∈ α)

∀α.!∀y(y ∈ α −◦ S(y) ∈ α) −◦ §(0 ∈ α −◦ t ∈ α) � ∀α.!∀y(y ∈ α −◦ S(y) ∈ α) −◦ §(0 ∈ α −◦ S(t) ∈ α)

t ∈ N � S(t) ∈ N

3. The “if” direction follows from 1 and 2 above. As for the “only-if” direction, observe that the last
part of the cut-free proof of t ∈ N must be of the following form:

....
0 ∈ α,∀y(y ∈ α −◦ S(y) ∈ α)n � t ∈ α

∀y(y ∈ α −◦ S(y) ∈ α)n � 0 ∈ α −◦ t ∈ α

!∀y(y ∈ α −◦ S(y) ∈ α) � §(0 ∈ α −◦ t ∈ α)
�!∀y(y ∈ α −◦ S(y) ∈ α) −◦ §(0 ∈ α −◦ t ∈ α)

� ∀α.!∀y(y ∈ α −◦ S(y) ∈ α) −◦ §(0 ∈ α −◦ t ∈ α)
� t ∈ N

for some n ≥ 0. From this, we conclude that t ≡ m for some m ≤ n.

5.3.2 Induction

With N defined above, a certain restricted form of induction is available:

Proposition 5.25 The following inference rule, called Light Induction, is derivable in LST:

Γ � A[0/x] B,A[y/x] � A[S(y)/x]
§Γ, !B, t ∈ N � §A[t/x] ,

where y does not occur in A and B, and B may be absent.

Proof.

B,A[y/x] � A[S(y)/x]

B, y ∈ {x|A} � S(y) ∈ {x|A}
B � ∀y(y ∈ {x|A} −◦ S(y) ∈ {x|A})
!B �!∀y(y ∈ {x|A} −◦ S(y) ∈ {x|A})

Γ � A[0/x]
Γ � 0 ∈ {x|A}

A[t/x] � A[t/x]
t ∈ {x|A} � A[t/x]

Γ, 0 ∈ {x|A} −◦ t ∈ {x|A},� A[t/x]
§Γ, §(0 ∈ {x|A} −◦ t ∈ {x|A}),� §A[t/x]

§Γ, !B, !∀y(y ∈ {x|A} −◦ S(y) ∈ {x|A}) −◦ §(0 ∈ {x|A} −◦ t ∈ {x|A}),� §A[t/x]
§Γ, !B,∀α.!∀y(y ∈ α −◦ S(y) ∈ α) −◦ §(0 ∈ α −◦ t ∈ α),� §A[t/x]

§Γ, !B, t ∈ N � §A[t/x]

69

In what follows, we are particularly interested in sequents of the form �u ∈ N � §pA (p ≥ 0), where
�u ∈ N stands for a sequence of the form u1 ∈ N, . . . , un ∈ N. For such sequents, the following useful
principles are available:

Proposition 5.26

1. (Coercion) t ∈ N −◦ §p!qt ∈ N is provable for any p ≥ 1 and q ≥ 0.

2. (N-Contraction) The following inference rule is derivable in LST:

t ∈ N, t ∈ N, �u ∈ N � §pA

t ∈ N, �u ∈ N � §p+1A

3. (Lifting) The following inference rule is derivable in LST:

�u ∈ N � §pA

�u ∈ N � §p+qA
for any q ≥ 0.

Proof.

1. For any p ≥ 1 and q ≥ 0, we have � §p−1!q0 ∈ N and §p−1!qx ∈ N � §p−1!qS(x) ∈ N. Hence the
desired formula is obtained by Light Induction.

2. We have � 0 ∈ N ⊗ 0 ∈ N and x ∈ N ⊗ x ∈ N � S(x) ∈ N ⊗ S(x) ∈ N. Hence by Light Induction,
we obtain t ∈ N � §(t ∈ N ⊗ t ∈ N). On the other hand, we have

§(t ∈ N ⊗ t ∈ N), §�u ∈ N � §p+1A

by assumption. By (Cut) and Coercion ui ∈ N � §ui ∈ N for each ui ∈ {�u}, we obtain the
desired sequent.

3. Apply rule (§) q times, then apply (Cut) with Coercion ui ∈ N � §qui ∈ N for each ui ∈ {�u}.

5.3.3 Addition and Multiplication

The graphs of addition and multiplication are defined by fixpoint:

Definition 5.27 Let plus be a term which satisfies

〈x, y, z〉 ∈ plus ◦−◦ (y = 0 ⊗ x = z) ⊕ ∃y′∃z′(y = S(y′) ⊗ z = S(z′) ⊗ 〈x, y′, z′〉 ∈ plus).

Such a term exists by the fixpoint theorem. Similarly, let mult be a term which satisfies

〈x, y, z〉 ∈ mult ◦−◦ (y = 0 ⊗ z = 0) ⊕ ∃y′∃z′(y = S(y′) ⊗ 〈z′, x, z〉 ∈ plus ⊗ 〈x, y′, z′〉 ∈ mult).

Lemma 5.28

70

1. 〈x, 0, z〉 ∈ plus ◦−◦ x = z.

2. 〈x,S(y), z〉 ∈ plus ◦−◦ ∃z′(z = S(z′) ⊗ 〈x, y, z′〉 ∈ plus).

3. 〈x, 0, z〉 ∈ mult ◦−◦ z = 0.

4. 〈x,S(y), z〉 ∈ mult ◦−◦ ∃z′(〈z′, x, z〉 ∈ plus ⊗ 〈x, y, z′〉 ∈ mult).

Proof.
1. We have x = z � 0 = 0 ⊗ x = z, hence x = z � 〈x, 0, z〉 ∈ plus is provable. On the other hand, we
have 0 = 0 ⊗ x = z � x = z and

∃y′∃z′(0 = S(y′) ⊗ z = S(z′) ⊗ 〈x, y′, z′〉 ∈ plus) � x = z.

(To see the latter, observe that 0 = S(y′) implies 0 by Proposition 5.22 (2), hence also implies x = z.)
Therefore, 〈x, 0, z〉 ∈ plus � x = z is provable.

2. We have z = S(z′) ⊗ 〈x, y, z′〉 ∈ plus � S(y) = S(y) ⊗ z = S(z′) ⊗ 〈x, y, z′〉 ∈ plus, hence

∃z′(z = S(z′) ⊗ 〈x, y, z′〉 ∈ plus) � ∃y′∃z′(S(y) = S(y′) ⊗ z = S(z′) ⊗ 〈x, y′, z′〉 ∈ plus).

Therefore
∃z′(z = S(z′) ⊗ 〈x, y, z′〉 ∈ plus) � 〈x,S(y), z〉 ∈ plus

is provable. On the other hand, we have

S(y) = 0 ⊗ x = z � ∃z′(z = S(z′) ⊗ 〈x, y, z′〉 ∈ plus) (5.1)

(since S(y) = 0 � 0) and

y = y′ ⊗ z = S(z′) ⊗ 〈x, y′, z′〉 ∈ plus � z = S(z′) ⊗ 〈x, y, z′〉 ∈ plus,

(by Proposition 5.10 (2)). From the latter, we obtain

S(y) = S(y′) ⊗ z = S(z′) ⊗ 〈x, y′, z′〉 ∈ plus � z = S(z′) ⊗ 〈x, y, z′〉 ∈ plus,

by Proposition 5.22 (4). Therefore

∃y′∃z′(S(y) = S(y′) ⊗ z = S(z′) ⊗ 〈x, y′, z′〉 ∈ plus) � ∃z′(z = S(z′) ⊗ 〈x, y, z′〉 ∈ plus) (5.2)

is provable. From (5.1) and (5.2), we obtain

〈x,S(y), z〉 ∈ plus � ∃z′(z = S(z′) ⊗ 〈x, y, z′〉 ∈ plus).

3 and 4 are similarly shown.

The following two propositions show that addition and multiplication are provably total in LST.

Proposition 5.29

1. 〈n,m, k〉 ∈ plus is provable in LST if n + m = k.

71

2. 〈n,m, k〉 ∈ mult is provable in LST if n · m = k.

Proof. Both are proved by (external) induction on m.

Proposition 5.30 The following are provable in LST:

1. ∀x ∈ N.∀y ∈ N.§∃!z ∈ N(〈x, y, z〉 ∈ plus).

2. ∀x ∈ N.∀y ∈ N.§3∃!z ∈ N(〈x, y, z〉 ∈ mult).

Proof.
1. We prove

(i) � ∀x ∈ N.∃!z ∈ N(〈x, 0, z〉 ∈ plus) and

(ii) ∀x ∈ N.∃!z ∈ N(〈x, y, z〉 ∈ plus) � ∀x ∈ N.∃!z ∈ N(〈x,S(y), z〉 ∈ plus).

It then follows by Light Induction that

y ∈ N � §(∀x ∈ N.∃!z ∈ N(〈x, y, z〉 ∈ plus)). (5.3)

By an easy manipulation, we obtain

§(x ∈ N), y ∈ N � §∃!z ∈ N(〈x, y, z〉 ∈ plus),

hence by Coercion
x ∈ N, y ∈ N � §∃!z ∈ N(〈x, y, z〉 ∈ plus),

as required.

Now let us show (i). By Lemma 5.28(1),

〈x, 0, x〉 ∈ plus ⊗ ∀y(〈x, 0, y〉 ∈ plus −◦ y = x)

is provable. From this,
x ∈ N � ∃!z ∈ N(〈x, 0, z〉 ∈ plus),

i.e., (i) is provable.

As for (ii), argue informally as follows. Assume that x ∈ N and ∃!z ∈ N(〈x, y, z〉 ∈ plus), i.e., z ∈ N
be the unique element such that 〈x, y, z〉 ∈ plus. Then it follows that

S(z) ∈ N (5.4)

by Proposition 5.24 (2), and
〈x,S(y),S(z)〉 ∈ N (5.5)

by Lemma 5.28 (2). It remains to show that S(z) is the unique element satisfying (5.5). So assume that
〈x,S(y), w〉 ∈ N. Then by Lemma 5.28 (2), there exists w′ such that w = S(w′) and 〈x, y,w′〉 ∈ plus.
By the uniqueness of z, we have w′ = z. Therefore w = S(z) as required. It is easy to check that this
informal proof can be formalized in LST.

2. We prove

72

(iii) � §∃!w ∈ N(〈x, 0, z〉 ∈ mult) and

(iv) x ∈ N, §∃!z ∈ N(〈x, y, z〉 ∈ mult) � §∃!w ∈ N(〈x,S(y), w〉 ∈ mult).

Then by Light Induction,

!x ∈ N, y ∈ N � §2∃!z ∈ N(〈x, y, z〉 ∈ mult)

is provable, hence by Coercion, we obtain the desired formula.

As for (iii), observe that

� 0 ∈ N ⊗ 〈x, 0, 0〉 ∈ mult ⊗ ∀w′(〈x, 0, w′〉 ∈ mult −◦ w′ = 0)

is provable by Proposition 5.24 (1) and Lemma 5.28 (3).

As for (iv), first show

〈x, y, z〉 ∈ mult, 〈z, x,w〉 ∈ plus � 〈x,S(y), w〉 ∈ mult

and

∀z′(〈x, y, z′〉 ∈ mult −◦ z = z′),∀w′(〈z, x,w′〉 ∈ plus −◦ w = w′) � ∀w′(〈x,S(y), w′〉 ∈ mult −◦ w = w′)

by using Lemma 5.28 (4). From these two, we successively derive:

〈x, y, z〉 ∈ mult ⊗ ∀z′(〈x, y, z′〉 ∈ mult −◦ z = z′), ∃!w ∈ N(〈z, x, w〉 ∈ plus) � ∃!w ∈ N(〈x, S(y), w〉 ∈ mult)

∃!z ∈ N(〈x, y, z〉 ∈ mult), ∀z ∈ N.∃!w ∈ N(〈z, x, w〉 ∈ plus) � ∃!w ∈ N(〈x, S(y), w〉 ∈ mult)

§∃!z ∈ N(〈x, y, z〉 ∈ mult), §∀z ∈ N.∃!w ∈ N(〈z, x, w〉 ∈ plus) � §∃!w ∈ N(〈x, S(y), w〉 ∈ mult) .

Therefore, we obtain the desired sequent by (5.3).

5.4 Representing Sets and Functions

In this section, we shall demonstrate that various sets and functions required for encoding Turing
machines are representable in LST.

5.4.1 Representation in LST

We first need to make precise what it means to represent sets and functions in LST.

Definition 5.31

1. A set T is represented by a term t of LST if there is a bijection (·)∗ from T to the set of terms
u such that � u ∈ t is provable in LST.

2. A function F : �T −→ U is represented by a term f with domains �t and codomain u if

• �T and U are represented by �t and u respectively;

• For any �m ∈ �T and n ∈ U such that F (�m) = u, � 〈�m∗, n∗〉 ∈ f is provable in LST;

73

• � ∀�x ∈ t.§d∃!y ∈ u(〈�x, y〉 ∈ f) is provable in LST for some d ≥ 0, where ∀�x ∈ t.A stands
for ∀x1 ∈ t . . . ∀xn ∈ t.A.

In particular, we say that f is flatly represented by f in case d = 0. A representable function is
also said to be provably total in LST, following the standard terminology.

Note that the notion of representability in the above sense is stronger than that of numeralwise
representability studied in Section 5.2.5 in that the totality of a function must be internally provable
in the formal system LST. We have already seen that the term N represents the set N of natural
numbers, plus and mult represent addition and multiplication of natural numbers; it is also clear that
the term {x|∃y(x = 〈y,S(y)〉)} represents successor. Further examples of representations are provided
below.

The uniqueness property incorporated in the third condition of Definition 5.31(2) implies the
following:

Proposition 5.32 Suppose that a function F : �T −→ U be represented by a term f with domains �t
and codomain u. Let �m ∈ �T . Then 〈�m∗, v〉 ∈ f is provable in LST iff v ≡ n∗, where n = F (�m).

Proof. The “if” direction holds by definition. To show the “only-if” direction, observe that

� §d∃!y ∈ u(〈�m∗, y〉 ∈ f)

is provable in LST for any �m ∈ �T . By Corollary 5.6, it follows that

∀y(〈�m∗, y〉 ∈ f −◦ y = v0)) (5.6)

is provable for some v0. Now suppose that 〈�m∗, v〉 ∈ f be provable. Then we have v = v0 by (5.6).
Suppose also that n = F (�m). Then by definition, 〈�m∗, n∗〉 ∈ f is provable. Hence we have n∗ = v0 by
(5.6). Hence v = v0 = n∗ is provable in LST. Therefore v ≡ n∗ by Proposition 5.9.

5.4.2 Finite Sets

A finite set Qn with n elements is represented by the term

Qn ≡ {0, . . . , n − 1}

with the obvious bijection. In particular, the set Q2 of boolean values is represented by Q2. This
definition yields flat Contraction

t ∈ Qn −◦ (t ∈ Qn ⊗ t ∈ Qn)

and Coercion
t ∈ Qn −◦ §d!et ∈ Qn for any d ≥ 1 and e ≥ 0.

Moreover, we have:

Proposition 5.33 Every finite function F : Qn1 × · · · × Qnk
−→ Qm is flatly representable with

domains Qn1 , . . . ,Qnk
and codomain Qm.

74

Proof. Instead of giving a detailed proof, we just describe an example, which should be sufficient for
convincing ourselves. We shall show that boolean conjunction ∧ : Q2 × Q2 −→ Q2 is represented by

conj ≡ {x|(x = 〈0, 0, 0〉) ⊕ (x = 〈0, 1, 0〉) ⊕ (x = 〈1, 0, 0〉) ⊕ (x = 〈1, 1, 1〉)}.

The first and the second conditions for representability are immediate. As for the third condition,
prove

� 0 ∈ Q2 ⊗ 〈0, 0, 0〉 ∈ conj ⊗ ∀z(〈0, 0, z〉 ∈ conj −◦ z = 0),

from which we obtain
x = 0, y = 0 � ∃!z ∈ Q2(〈x, y, z〉 ∈ conj).

Similarly, we can prove

x = 0, y = 1 � ∃!z ∈ Q2(〈x, y, z〉 ∈ conj),
x = 1, y = 0 � ∃!z ∈ Q2(〈x, y, z〉 ∈ conj),
x = 1, y = 1 � ∃!z ∈ Q2(〈x, y, z〉 ∈ conj).

Therefore, we obtain
x ∈ Q2, y ∈ Q2 � ∃!z ∈ Q2(〈x, y, z〉 ∈ conj),

by noting that x ∈ Q2 ◦−◦ x = 0 ⊕ x = 1.

As a generalization, we also have:

Proposition 5.34 Given functions

Hi : �T −→ U, for each 0 ≤ i ≤ n − 1,

one defines a new function F : Qn × �T −→ U by:

F (i, �v) = Hi(�v).

Suppose that �T and U be represented by terms �t and u, and Hi’s be flatly representable. Then the
above F is flatly representable with domains Qn,�t and codomain u.

Proof. Let Hi be represented by term hi for 0 ≤ i ≤ n − 1. Define

f ≡ {x|(∃〈�y, z〉 ∈ h0.x = 〈0, �y, z〉) ⊕ · · · (∃〈�y, z〉 ∈ hn−1.x = 〈n − 1, �y, z〉).

Then this term f flatly represents F .

5.4.3 Words over Finite Alphabets 1

Let us consider the set Wn of words over a finite alphabet Qn. First, define

ε ≡ ∅;
Si(t) ≡ 〈i, t〉, for each 0 ≥ i < n.

Then we can naturally associate a term w to each word w ∈ Wn. For example we associate to 010 ∈ W2

the term S0(S1(S0(ε))).

75

There are two ways of representing the set Wn, both of which are useful. The first is a generalization
of N. Define W2 by

W2 ≡ {x|∀α.!∀y(y ∈ α −◦ S0(y) ∈ α)−◦!∀y(y ∈ α −◦ S1(y) ∈ α) −◦ §(ε ∈ α −◦ x ∈ α)}.

More generally, define for each n

Wn ≡ {x|∀α.!∀y(y ∈ α −◦ S0(y) ∈ α) −◦ · · ·!∀y(y ∈ α −◦ Sn−1(y) ∈ α) −◦ §(ε ∈ α −◦ x ∈ α)}.

In what follows, W2 and W2 are often abbreviated as W and W. The second representation of Wn will
be given in the next subsection.

Proposition 5.35

1. ε ∈ Wn is provable in LST.

2. t ∈ Wn −◦ Si(t) ∈ Wn is provable in LST for each 0 ≤ i < n.

3. t ∈ Wn is provable in LST if and only if t is of the form w for some w ∈ Wn.

Proof. Similarly to the proof of Proposition 5.24.

Like N, Wn admits Light Induction, hence it also admits Coercion, Contraction and Lifting:

Proposition 5.36 The following inference rule is derivable in LST:

Γ � A[0/x] B0, A[y/x] � A[S0(y)/x] · · · Bn−1, A[y/x] � A[Sn−1(y)/x]
§Γ, !B0, . . . , !Bn−1, t ∈ Wn � §A[t/x]

where y does not occur in A and B0, . . . , Bn−1.

Proposition 5.37

1. (Coercion) t ∈ Wn −◦ §p!qt ∈ Wn is provable for any p ≥ 1 and q ≥ 0.

2. (Wn-Contraction) The following inference rule is derivable in LST:

t ∈ Wn, t ∈ Wn, �u ∈ Wn � §pA

t ∈ Wn, �u ∈ Wn � §p+1A

3. (Lifting) The following inference rule is derivable in LST:

�u ∈ Wn � §pA

�u ∈ Wn � §p+qA
for any q ≥ 0.

Proof. Similarly to the proofs of Propositions 5.25 and 5.26.

Proposition 5.38 The length map | • | : Wn −→ N such that

|w| = the length of w

is representable with domain Wn and codomain N.

76

Proof. We consider the case n = 2. Define the term len by:

〈x, y〉 ∈ len ◦−◦ (x = ε ⊗ y = 0) ⊕ ∃x′∃y′((x = S0(x′) ⊕ x = S1(x′)) ⊗ y = S(y′) ⊗ 〈x′, y′〉 ∈ len).

Then we easily see that

(i) 〈ε, y〉 ∈ len ◦−◦ y = 0 and

(ii) 〈Si(x), y〉 ∈ len ◦−◦ ∃y′(y = S(y′) ⊗ 〈x, y′〉 ∈ len.

From these two,

(iii) 〈w,m〉 ∈ len if |w| = m,

(iv) � ∃!y ∈ N(〈ε, y〉 ∈ len),

(v) ∃!y ∈ N(〈x, y〉 ∈ len) � ∃!y ∈ N(〈Si(x), y〉 ∈ len) for i = 0, 1.

From the last two, by Light Induction for W2 we obtain

∀x ∈ W2.§∃!y ∈ N(〈x, y〉 ∈ len)

as desired.

Proposition 5.39 Let n ≤ m. Then t ∈ Wn � t ∈ Wm is provable in LST. Therefore the inclusion
map In : Wn −→ Wm is flatly representable with domain Wn and codomain Wm.

Proof. Proving t ∈ Wn � t ∈ Wm is easy. The term {x|∃y.x = 〈y, y〉 represents the inclusion map.

5.4.4 Words over Finite Alphabets 2

The second representation of Wn is given by fixpoint:

x ∈ W′
n ◦−◦ x = ε ⊕ ∃x′ ∈ W′

n(x = S0(x′) ⊕ · · · ⊕ x = Sn−1(x′)).

Proposition 5.40

1. ε ∈ W′
n is provable in LST.

2. t ∈ W′
n −◦ Si(t) ∈ W′

n is provable in LST for each 0 ≤ i < n.

3. t ∈ W′
n is provable in LST if and only if t is of the form w for some w ∈ Wn.

Proof. 1 and 2 are easily proved. As for 3, the “if” direction follows from 1 and 2. The “only-if”
direction is proved by induction on the size (i.e., the number of symbols) of t. Assume that t ∈ W′

n is
provable in LST. If t ≡ ε, then there is nothing to prove. Otherwise, by Corollary 5.6, there is a term
t′ such that t = Si(t′) and t′ ∈ W′

n are provable for some i < n. By Proposition 5.9, t and Si(t′) are
syntactically identical. Hence t′ has a smaller number of symbols than t. By the induction hypothesis,
t′ ≡ w for some w ∈ Wn. Therefore t ≡ Si(w).

W′
n does not admit Induction. Instead, it allows us to flatly represent the following discriminator

function:

77

Proposition 5.41 Given functions

Hε : �T −→ U ;
Hi : Wn × �T −→ U, for each 0 ≤ i ≤ n − 1,

one defines a new function F : Wn × �T −→ U , called discriminator, by:

F (ε, �v) = Hε(�v);
F (i · w,�v) = Hi(w,�v).

Suppose that �T and U be represented by terms �t and u, and Hε and Hi’s be flatly represented by h
and hi’s. Then the above F is flatly representable with domains W′

n,�t and codomain u.

Proof. For simplicity, we consider the case n = 2 and assume �T ≡ T . Define the term f by

〈x, y, z〉 ∈ f ◦−◦ (x = ε⊗〈y, z〉 ∈ hε)⊕∃x′((x = S0(x′)⊗〈x′, y, z〉 ∈ h0)⊕(x = S1(x′)⊗〈x′, y, z〉 ∈ h1)).

By assumption, y ∈ t � ∃!z〈y, z〉 ∈ hε, from which we obtain

x = ε, y ∈ t � ∃!z(〈x, y, z〉 ∈ f). (5.7)

And also,
x′ ∈ W′

2, y ∈ t � ∃!z(〈x′, y, z〉 ∈ h0)

by assumption, from which we obtain

x′ ∈ W′
2 ⊗ x = S0(x′), y ∈ t � ∃!z(〈x, y, z〉 ∈ f). (5.8)

Similarly we have
x′ ∈ W′

2 ⊗ x = S1(x′), y ∈ t � ∃!z(〈x, y, z〉 ∈ f). (5.9)

By (5.7), (5.8) and (5.9),
x ∈ W′

2, y ∈ t � ∃!z(〈x, y, z〉 ∈ f)

is provable as required.

As an instance of the above proposition, we have:

Proposition 5.42 Predecessor for Wn, defined by

P (ε) ≡ ε;
P (i · w) ≡ w, for 0 ≤ i < n,

is flatly representable with domain and codomain W′
n.

The following proposition shows, in some appropriate sense, that Wn is a “subset” of W′
n.

Proposition 5.43 t ∈ Wn � §(t ∈ W′
n) is provable in LST. Therefore, the identity map Id : Wn −→

Wn is representable with domain Wn and codomain W′
n.

Proof. We have � ε ∈ W′
n and x ∈ W′

n � Si(x) ∈ W′
n for each 0 ≤ i < n by Proposition 5.40.

Therefore, by Light Induction for W, we have t ∈ W � §(t ∈ Wb).

The converse does not hold in general, however.

78

5.4.5 Cartesian Products

If two sets T and U are represented by terms t and u respectively, then their Cartesian product T ×U
is represented by the term

t × u ≡ {x|∃y∃z(x = 〈y, z〉 ⊗ y ∈ t ⊗ z ∈ u},

with the associated bijection
〈x, y〉∗ = 〈x∗, y∗〉.

Proposition 5.44 Products of flatly representable functions are flatly representable with appropriate
domains and codomain.

Proof. Let Fi : Ti −→ Ui be flatly represented by terms fi respectively, with domains ti and codomain
ui (i = 1, 2). Then define:

f1 × f2 ≡ {x|∃y1y2z1z2(x = 〈〈y1, y2〉, 〈z1, z2〉〉 ⊗ 〈y1, z1〉 ∈ f1 ⊗ 〈y2, z2〉 ∈ f2)}.

This term flatly represents F1 × F2 : T1 × T2 −→ U1 × U2, as required.

5.4.6 Composition and Iteration

Proposition 5.45 Suppose that �T , �T ′, U and V be represented by terms �t, �t′, u and v. Suppose that
function G : �T × U −→ V be representable with domains �t, u and codomain v, and that function H :
�T ′ −→ U be representable with domains �t′ and codomain u. Then the function F (�x, �z) = G(�x,H(�z)),
where �x and �z are disjoint, is representable with domain �t, �t′ and codomain v.

Proof. For simplicity, let us assume that �x ≡ x and �z ≡ z. Suppose that G and H be represented by
terms g and h. Define:

g ◦ h ≡ {x′|∃xyzw(x′ = 〈x, y, z〉 ⊗ 〈y,w〉 ∈ h ⊗ 〈x,w, z〉 ∈ g)}.

This term represents G(x,H(z)).

Proposition 5.46 If G : �T −→ U is representable and H : U −→ U is flatly representable, then the
function F : N × �T −→ U , defined by iteration:

F (0, �y) = G(�y);
F (n + 1, �y) = H(F (n, �y)),

is representable.

Proof. For simplicity, let us assume that �y ≡ y. Suppose that G and H be represented by terms g
and h. Let f be the fixpoint:

〈x, y, z〉 ∈ f ◦−◦ (x = 0 ⊗ 〈y, z〉 ∈ g) ⊕ ∃x′z′(x = S(x′) ⊗ 〈x′, y, z′〉 ∈ f ⊗ 〈z′, z〉 ∈ h).

By Light Induction, we can show that this term f surely represents F . We omit the proof, since it is
quite similar to the representability of addition and multiplication (Proposition 5.30).

79

5.5 Encoding Turing Machines

In this section, we shall show that polynomial time computations over Turing machines can be sim-
ulated in LST. As a consequence, we shall show that every polytime function is provably total in
LST. Our treatment of Turing machines below is essentially the same as in [Gir98, AR00]. We refer
to [HU79] for the general background on Turing machines.

Let M be a single-tape Turing machine over the alphabet Σ = {0, 1, b} (where b is for blank) and
with the states Q = {q0, . . . , qn−1} (where q0 is the initial state). M is endowed with a transition
function

δ : Σ × Q −→ Σ × Q × {L,R,C},
here L stands for left, R for right, and C for no-move. M has an infinite tape, which has infinitely
many cells in both directions. A step of M consists of reading one symbol from the cell which the head
is scanning, writing a symbol on the same cell, moving the head at most one tape cell, and entering a
new state, in accordance with the transition function δ.

A configuration of M consists of a triple 〈q, w1, w2〉 ∈ Q × Σ∗ × Σ∗; q denotes the current state,
w1 describes the non-blank part of the tape to the left of the head, w2 describes the non-blank part of
the tape to the right of the head. By convention, w1 is written in the reverse order, and w2 includes
the content of the cell currently scanned.

The initial configuration with input w ∈ {0, 1}∗ is of the form 〈q0, ε, w〉. Let M arrive at a
configuration 〈q, w1, w2〉 after some steps. We extract the output of the computation from 〈q, w1, w2〉
in the following way. If w2 does not contain blank b, then the output is w2. Otherwise w2 must be of
the form w · b · w′ where w does not contain a blank symbol. In this case, the output is w.

Definition 5.47 A function F : {0, 1}∗ −→ {0, 1}∗ is a polynomial time function if there is a Turing
machine M and a monotone polynomial p such that starting from the initial configuration with input
w ∈ {0, 1}∗ M outputs F (w) after p(|w|) steps, for every w ∈ {0, 1}∗.

Now we claim:

Theorem 5.48 Every polynomial time function is provably total in LST with domain and codomain
W.

Proof. All the requisite materials are given in the previous sections. It just suffices to put them
together. Let F be a polynomial time function. Then there is a Turing machine M and a polynomial
p as in Definition 5.47.

• The set Conf ≡ Q×Σ∗×Σ∗ of configurations is represented by the term Conf ≡ Qn×W′
3×W′

3.

• The function δ̂ : Conf −→ Conf for the one-step transition is obtained by combining successors
and predecessor for Σ∗, a case function for Q and a case function for Σ∗. Note that all of these
are flatly representable in LST by Propositions 5.40, 5.42, 5.34 and 5.41. Hence δ̂ is also flatly
representable with domain and codomain Conf by Proposition 5.44. (Here it is crucial to use W′

3

rather than W3 to define Conf.)

• Using iteration, a function FM : N ×Conf −→ Conf is defined such that the value of FM (n, c)
is the configuration of M after n steps starting from the configuration c. By Proposition 5.46,
this FM can be represented by a term of LST with domain N × Conf and codomain Conf.

80

• On the other hand, any monotone polynomial can be composed of addition and multiplication,
and thus can be represented by a LST term with domain and codomain N. By composing it
with the length function | • | : {0, 1}∗ −→ N , we obtain a term representing the function p(|w|)
with domain W and codomain N.

• The initializing function which transforms an input w ∈ {0, 1} to an initial configuration is
represented by a term with domain W and codomain Conf by using Propositions 5.39 and 5.43.
The output function from Conf to {0, 1}∗ can be similarly represented with domain Conf and
W′.

• Therefore, we get a term representing F with domain W and codomain W′; the input is used
twice, once for initialization and once for the time bound p(|w|), but it does not matter since we
have W-Contraction.

• A problem is that the above F is represented with codomain W′. But the function Id′ : N ×
{0, 1}∗ −→ {0, 1}∗ such that

Id′(n,w) = the lowermost n bits of w,

is representable with domain N × W′ and codomain W. Using this, we can obtain the desired
term representing F with domain and codomain W, since the length of the output is obviously
bounded by p(|w|).

81

Chapter 6

Extracting Programs from Proofs of
Light Set Theory

In Chapter 5, we have developed naive set theory based on ILAL. The main advantage of developing
a mathematical theory based on a constructive logic is that we can extract a program from a proof of
a mathematical proposition. In particular, if we have a proof of a proposition like “for every x ∈ W
there exists y ∈ W such that A(x, y),” then from that proof we can extract a program which, given
an input m ∈ W , returns an appropriate value n ∈ W which satisfies the specification A(m,n). In
this chapter, we shall demonstrate the program extraction method for LST. This is carried out by
extending the proofs-as-programs interpretation, which is detailed for ILAL2 in Chapter 4, to LST.
In our case, what we can extract is a term of λla. Since any term of λla is polytime normalizable,
the extracted program is a polytime one. Note that all polytime functions are provably total in LST
as shown in Chapter 5. In conjunction with this result, the program extraction yields a complete
characterization of the polytime functions: A function is polytime if and only if it is provably total in
λla.

In Section 6.1, we shall reformulate LST as a type assignment system for λla. In Section 6.2, we
shall prove the subject reduction theorem. The cut-elimination theorem for LST (in the strict sense)
is proved in Section 6.3. In Section 6.4, we shall describe the program extraction method, and as a
consequence obtain a complete characterization of the polytime functions.

6.1 LST as a Type Assignment System

As in the case of ILAL2, we shall reformulate the theory LST as a type assignment system for λla.
The formal definition is as follows:

Definition 6.1 The terms and types of LST are simultaneously defined by the following grammar:

t, u ::= x | {x|A};
A,B ::= t ∈ u| A −◦ B | ∀x.A | !A | §A.

Discharged types are defined as before. Note that terms of LST are distinguished from terms of λla,
although we use the same notation for both of them.

82

x :A � x :A Id
Γ1 � u :A x :A,Γ2 � t :C

Γ1,Γ2 � t[u/x] :C Cut

Γ � t :C
∆,Γ � t :C Weak

x : [A]!, y : [A]!,Γ � t :C
z : [A]!,Γ � t[z/x, z/y] :C Cntr

Γ1 � u :A1 x :A2,Γ2 � t :C
Γ1, y :A1 −◦ A2,Γ2 � t[yu/x] :C

−◦l x :A1,Γ � t :A2

Γ � λx.t :A1 −◦ A2
−◦r

x :A[u/x],Γ � t :C
x :∀x.A,Γ � t :C ∀l

Γ � t :A
Γ � t :∀x.A

∀r, (x is not free in Γ)

x :A[u/x],Γ � t :C
x :u ∈ {x|A},Γ � t :C ∈ l

Γ � t :A[u/x]
Γ � t :u ∈ {x|A} ∈ r

x : [A]!,Γ � t :C
y :!A,Γ � let y be !x in t :C !l

x :B � t :A
x : [B]! �!t :!A !r

x : [A]§,Γ � t :C
y :§A,Γ � let y be §x in t :C

§l
Γ,∆ � t :A

[Γ]!, [∆]§ � §t :§A §r

In rule (!r), x :B can be absent. In rule (§r), Γ and ∆ can be empty.

Figure 6.1: Type Assignment System LST

Definition 6.2 The type inference rules of LST are those given in Figure 6.1. We say that a pseudo-
term t is typable in LST if Γ � t :A is derivable for some Γ and A by those inference rules.

We only have −◦,∀, ! and § as logical connectives (type constructors). The other connectives and
constants of LST are again defined from −◦ and ∀: Fix an arbitrary closed term t0 of LST (e.g.,
{x|x ∈ x}). Then define:

∃y.A ≡ ∀x.(∀y.(A −◦ t0 ∈ x) −◦ t0 ∈ x);
A ⊗ B ≡ ∀x.((A −◦ B −◦ t0 ∈ x) −◦ t0 ∈ x);

1 ≡ ∀x.(t0 ∈ x −◦ t0 ∈ x);
A & B ≡ ∃x.((t0 ∈ x −◦ A) ⊗ (t0 ∈ x −◦ B) ⊗ t0 ∈ x);
A ⊕ B ≡ ∀x.((A −◦ t0 ∈ x) −◦ (B −◦ t0 ∈ x) −◦ t0 ∈ x);

0 ≡ ∀x.t0 ∈ x,

where x is a fresh variable which does not occur in A and B.

It is easy to see that these definitions are compatible with the inference rules of LST.

As before, typable terms are well-formed:

83

Γ � t :∀x.A
Γ � t :A{u/x} ∀E

Γ � t :A x �∈ FV (Γ)
Γ � t :∀x.A

∀I

Γ � t :u ∈ {x|A}
Γ � t :A[u/x]

∈ E
Γ � t :A[u/x]

Γ � t :u ∈ {x|A} ∈ I

Figure 6.2: Inference Rules for LSTN

Theorem 6.3 Every pseudo-term which is typable in LST is a term. More exactly, if �x : �A, �y : �[B]!, �z :
�[C]§ � t :D, then t ∈ T{�x},{�y},{�z}.

Example 6.4 In the proof of Proposition 5.24 (2), we described a (formal) proof of t ∈ N � S(t) ∈ N.
That proof can be viewed as a typing derivation for successor:

Suc ≡ λyx.let x be !x′ in (let y!x′ be §y′ in §(λz.x′(y′z)))

which was introduced in Example 3.4 of Chapter 3. In fact, we have

� Suc :t ∈ N −◦ S(t) ∈ N

in LST.

6.2 Subject Reduction Theorem for LST

The subject reduction theorem can be proved for LST just in the same way as for ILAL2. To show
this, we introduce a natural deduction system LSTN , and prove the equivalence of LST and LSTN up
to the closed terms. Then we show the generation lemma for LSTN , from which the subject reduction
theorem follows immediately. Instead of repeating the same argument as before, we shall just point
out the modifications to be needed.

The inference rules of LSTN are the same as the inference rules of ILAL2N (see Figure 4.2) except
that we have the rules in Figure 6.2 instead of ∀E and ∀I in Figure 4.2.

It is routine to show that LSTN is equivalent to LST as far as the closed terms are concerned.

Define a binary relation > by

A > ∀x.A

∀x.A > A[u/x]
A[u/x] > u ∈ {x|A}

u ∈ {x|A} > A[u/x]

With this definition of >, we can show an analogue of the generation lemma for ILAL2N (Lemma
4.17). Therefore we have:

Theorem 6.5 (Subject Reduction for LSTN) If Γ � t :A is derivable in LSTN and t −→ u, then
Γ � u :A is derivable in LSTN .

Corollary 6.6 (Subject Reduction for LST) If Γ � t : A is derivable in LST and t −→ u, then
Γ � u :A is derivable in LST.

84

6.3 Cut-Elimination Theorem for LST

The subject reduction theorem in conjunction with normalizability of λla terms almost implies the
cut-elimination theorem for LST. However, a typing derivation for a normal term may still contain
several implicit cuts, which do not appear as redices in λla. In this section, we shall describe how to
eliminate those implicit cuts and thus complete the proof of the cut-elimination theorem for LST.

Proposition 6.7 If Γ � t :C is derivable in LST, then so is Γ[�u/�x] � t :C[�u/�x], for every sequence �u
of terms of LST.

Proof. By induction on the length of the derivation.

Lemma 6.8 If Γ � t : C is derivable in LST and t is normal, then there is a cut-free derivation of
the same conclusion.

Proof. Let π be a derivation of Γ � t :C. For each (Cut) inference occurring in π we define its rank
as the size (i.e., the number of inference rules) of the subderivation above it.

Since t is normal, π cannot contain a principal cut for −◦, ! and §. In what follows, we shall show
that the other types of cuts can be removed or replaced with a cut of smaller rank.

(Case 1) Principal cuts for ∀ and ∈. Apply the following reduction:

.... π1

Γ1 � u :A
Γ1 � u :∀y.A

.... π2

x :A[v/y],Γ2 � t :C
x :∀y.A,Γ2 � t :C

Γ1,Γ2 � t[u/x] :C Cut

−→
.... π1[v/y]

Γ1 � u :A[v/y]

.... π2

x :A[v/y],Γ2 � t :C
Γ1,Γ2 � t[u/x] :C Cut

.... π1

Γ1 � u :A[v/y]
Γ1 � u :v ∈ {y|A}

.... π2

x :A[v/y],Γ2 � t :C
x :v ∈ {y|A},Γ2 � t :C

Γ1,Γ2 � t[u/x] :C Cut

−→
.... π1

Γ1 � u :A[v/y]

.... π2

x :A[v/y],Γ2 � t :C
Γ1,Γ2 � t[u/x] :C Cut

(Case 2) Weakening cuts. Apply the following reduction:

.... π1

Γ1 � u :A

.... π2

Γ2 � t :C
x :A,Γ2 � t :C Weak

Γ1,Γ2 � t :C Cut

−→
.... π2

Γ2 � t :C
Γ1,Γ2 � t :C Weak.

(Case 3) Axiom cuts. Apply the following reduction:

x :A � x :A

.... π2

x :A,Γ2 � t :C
x :A,Γ2 � t :C Cut

−→ π2

x :A,Γ2 � t :C.

(Case 4) Commutative cuts, i.e., when one of the cut formulas is not principal. We shall consider only
some typical cases. If the cut is of the form

85

.... π1

Γ1 � u :A −◦ B

.... π2

x :A −◦ B,Γ′
2 � t′ :C ′

x :A −◦ B,Γ2 � t :C J

Γ1,Γ2 � t[u/x] :C Cut
,

namely J is not −◦l, then replace it with

.... π1

Γ1 � u :A −◦ B

.... π2

x :A −◦ B,Γ′
2 � t′ :C ′

Γ1,Γ′
2 � t′[u/x] :C ′ Cut

Γ1,Γ2 � t[u/x] :C J .

If the cut is of the form

· · ·
Γ1 � u :A −◦ B

J

....
∆1 � v :A

....
y :B,∆2 � t :C

x :A −◦ B,∆1,∆2 � t[xv/y] :C
Γ1,∆1,∆2 � t[uv/y] :C Cut,

then the only possibilities of J are (Cntr), (−◦l), (∀l) and (∈ l). In each case, the cut can be
successfully replaced with another one of smaller rank. For example, when (J) is (∀l), apply the
following reduction:

....
z :D[s/w],Γ1 � u :A −◦ B

z :∀w.D,Γ1 � u :A −◦ B
∀l

....
∆1 � v :A

....
y :B,∆2 � t :C

x :A −◦ B,∆1,∆2 � t[xv/y] :C
z :∀w.D,Γ1,∆1,∆2 � t[uv/y] :C Cut

−→

....
z :D[s/w],Γ1 � u :A −◦ B

....
∆1 � v :A

....
y :B,∆2 � t :C

x :A −◦ B,∆1,∆2 � t[xv/y] :C
z :D[s/w],Γ1,∆1,∆2 � t[uv/y] :C Cut

z :∀w.D,Γ1,∆1,∆2 � t[uv/y] :C ∀l .

The point is that J cannot be neither (!l) nor (§l), since these two would introduce a commutative
redex.

Other cases are similar.

Theorem 6.9 (Cut-Elimination Theorem for LST) If Γ � t : C is derivable in LST, then Γ �
u :C is cut-free derivable, where u is the normal form of t.

Proof. By normalizability of λla terms, the subject reduction theorem and Lemma 6.8.

Remark 6.10 It is straightforward to adapt the above argument for ILAL2, since it is carried out
by induction on the size of proofs, not by induction on the complexity of formulas. Hence analogues
of Lemma 6.8 and Theorem 6.9 hold for ILAL2, too.

86

The cut-elimination theorem has the following corollary, which will play an important role in the
program extraction.

Corollary 6.11

1. If � t :§A is derivable and t is normal, then t is of the form §t′ and � t′ :A is derivable.

2. If � t :∃y.A is derivable and t is normal, then t is of the form λz.zt′ and � t′ :A[u/y] is derivable
for some term u of LST.

Proof.

1. Immediate.

2. Recall that ∃y.A is defined as ∀x.(∀y.(A −◦ t0 ∈ x) −◦ t0 ∈ x). The last part of the cut-free
derivation of � t :∃y.A must be of the following form:

....
� t′ :A[u/y] w :t0 ∈ x � w :t0 ∈ x

z :A[u/y] −◦ t0 ∈ x � zt′ :t0 ∈ x

z :∀y.(A −◦ t0 ∈ x) � zt′ :t0 ∈ x

� λz.zt′ :∀y.(A −◦ t0 ∈ x) −◦ t0 ∈ x

� λz.zt′ :∃y.A ,

and t ≡ λz.zt′.

6.4 Extraction of λla terms from LST proofs

Now we shall describe how to extract a term of λla from a proof of LST. Instead of dealing with the
general case, we shall confine ourselves to proofs of formulas of the form ∀x ∈ W.§d∃y ∈ W.A, which
should be sufficient for illustrating the general pattern.

First, through a careful analysis of cut-free derivations, we can show the following:

Proposition 6.12 Suppose that t be a normal term of λla.

1. For every natural number n, � t :n ∈ N is derivable if and only if t ≡ n (or t is an η-variant of
1).

2. For every w ∈ {0, 1}∗, � t :w ∈ W is derivable if and only if t ≡ w (or t is an η-variant of 0 or
1).

The following terms are used in the program extraction.

87

Definition 6.13 For each d ≥ 0, define λla terms Fstd(z) and Extd(z), both having a free variable
z, as follows:

Fst0(z) ≡ z(λx1x2.x1)
Fstd+1(z) ≡ let z be §z′ in §Fstd(z′)

Ext0(z) ≡ z(λx.x)
Extd+1(z) ≡ let z be §z′ in §Extd(z′)

Lemma 6.14

1. z :§dA ⊗ B � Fstd(z) :§dA is derivable for any pair of types A and B.

2. Fstd(§dt) −→∗§d(Fst0(t)).

3. Extd(§dλz.zt) −→∗§dt.

Proof.
1. Let y be a variable which does not occur in A and B.

x1 :A � x1 :A
x1 :A � x1 :t0 ∈ {y|A}

x1 :A,x2 :B � x1 :t0 ∈ {y|A}
� λx1x2.x1 :A −◦ B −◦ t0 ∈ {y|A}

z′ :A � z′ :A
z′ :t0 ∈ {y|A} � z′ :A

z : (A −◦ B −◦ t0 ∈ {y|A}) −◦ t0 ∈ {y|A} � z(λx1x2.x1) :A
z :A ⊗ B � z(λx1x2.x1) :A

2 and 3 are easily checked.

Our main theorem in this chapter is the following:

Theorem 6.15 (Program Extraction) Let � ∀x ∈ W.§d∃y ∈ W.A be derivable in LST. Then there
is a term u of λla such that for every w ∈ {0, 1}∗, uw reduces to §dw′ and the formula A[w/x,w′/y]
is provable in LST.

Proof. Let t be a term of λla such that

� t :∀x ∈ W.§d∃y ∈ W.A

is derivable in LST. We claim that the desired term is λz.Fstd(Extd(tz)).

Let w ∈ {0, 1}∗. By Proposition 6.12, � w : w ∈ W is derivable. On the other hand, it is easy to
see that

� t :w ∈ W −◦ §d∃y ∈ W.A[w/x]

is derivable, so that we have
� tw :§d∃y ∈ W.A[w/x].

Let nf(tw) be the normal form of tw. Then, by the subject reduction theorem and Corollary 6.11,
nf(tw) must be of the form §dλz.zv and

� v :s ∈ W ⊗ A[w/x, s/y]

88

is derivable for some term s of LST. Therefore, s ∈ W and A[w/x, s/y] are provable in LST. Hence
by Proposition 5.35, s ≡ w′ for some w′ ∈ {0, 1}∗.

By Lemma 6.14, we have � Fst0(v) :w′ ∈ W, hence the normal form of Fst0(v) is w′ by the subject
reduction theorem and Proposition 6.12.

To put things together, we obtain:

(λz.Fstd(Extd(tz)))w −→ Fstd(Extd(tw)) −→∗Fstd(Extd(§dλz.zv))

−→∗Fstd(§dv) −→∗§d(Fst0(v)) −→∗§dw′,

as required.

As a corollary, we have the following characterization theorem:

Corollary 6.16 (Characterization of the Polytime Functions) Let F : {0, 1}∗ −→ {0, 1}∗ be a
function. The following are equivalent:

1. F is polytime computable.

2. F is provably total with domain and codomain W in LST.

3. F is λla-representable.

Proof.
(1 ⇒ 2) By Theorem 5.48.
(2 ⇒ 3) By definition, there is a term f of LST, a natural number d ≥ 0 and a term t of λla such
that

� t :∀x ∈ W.§d∃!y ∈ W(〈x, y〉 ∈ f).

From this, we can easily obtain

� t′ :∀x ∈ W.§d∃y ∈ W(〈x, y〉 ∈ f).

Hence the program extraction theorem applies, and we obtain a term u of λla such that for any
w ∈ {0, 1}∗, uw reduces to §dw′ and 〈w,w′〉 ∈ f is provable in LST. The latter is equivalent to
F (w) = w′ by Proposition 5.32.
(3 ⇒ 1) By the polytime strong normalization theorem.

89

Chapter 7

Phase Semantics for Light Logic

In this chapter, we shall introduce light affine phase semantics, which is meant to be a sound and
complete semantics for ILAL, and show the finite model property for ILAL. As a consequence, we
obtain decidability of ILAL, and decidability of the type inhabitation problem for ILAL as a type
assignment system. Light affine phase semantics has its origin in phase semantics for ILL [Abr90,
Tro92, Ono94, Oka96, Oka99], phase semantics for Affine Logic [Laf97, Oka01] and phase semantics
for LLL [KOSar]. In particular, our interpretation of the light exponentials is a straightforward
simplification of the interpretation in the last one.

Although phase semantics is somewhat abstract in its nature, there is a good way to grasp its
intuition, that is to think of it as a generalization of Kripke semantics for Intuitionistic Logic. Recall
that Kripke semantics is based on partially ordered sets. Given a partially ordered set (P,≤), each
formula A is interpreted by an upward closed subset of P . Conjunction is interpreted by set-theoretic
intersection, while disjunction is by union. The interpretation of implication is peculiar, and is based
on the structure of partially ordered sets. Phase semantics modifies this construction in several ways.
First, we consider commutative monoids (M, ·, ε) rather than partially ordered sets. Second, instead of
considering ≤-upward closure, we explicitly introduce a closure operator Cl over P(M), and interpret
each formula A by a subset X ⊆ M which is closed in the sense of Cl, namely X = Cl(X). Additive
connectives are interpreted based on set-theoretic operations ∩ and ∪ as before, while multiplicative
connectives are interpreted by monoid operations.

The structure of this chapter is almost parallel to the structure of Chapter 2, except that phase
semantics for ILLL is mentioned at last in Section 7.4. In Section 7.1, we shall recall phase semantics
for ILL. We shall also introduce an important technique of the quotient model construction via logical
congruence, which was originally devised for classical systems of Linear and Affine Logics by Lafont
[Laf97] and later modified for intuitionistic systems by Okada and Terui [OT99]. In Section 7.2, we
shall describe phase semantics for IAL, and apply the quotienting technique to obtain the finite model
property for IAL (a result proved in [OT99]). This serves as a preliminary to the later application
of the quotienting technique to ILAL. In Section 7.3, we shall introduce light affine phase semantics
for ILAL. Then we shall show the finite model property for ILAL with respect to the generalized
version of light affine phase semantics by applying the quotienting technique developed before; this is
a novel result of this thesis. We shall conclude this chapter with some remarks and open problems in
Section 7.4.

90

7.1 Phase Semantics for ILL

In this section, we shall recall the fundamentals of phase semantics for ILL [Abr90, Tro92, Ono94,
Oka96, Oka99]. The basic definition of phase semantics (in 7.1.2) essentially comes from [Abr90, Tro92,
Ono94]. The notion of co-basis and Theorem 7.10 is due to our unpublished manuscript [KOT99].
The definition of the canonical model and the phase-semantic proof to the cut-elimination theorem
(7.1.3) are due to [Oka96, Oka99]. The quotienting technique (in 7.1.4) is due to [Laf97, OT99].

7.1.1 Preliminary on Monoids

To fix notation and terminology, we shall recall the definition of monoids and some related concepts.

Definition 7.1 A monoid is a triple (M, ·, ε) such that M is a set, · is a function M × M → M , ε is
an element of M , and the following properties are satisfied for any x, y, z ∈ M :

• (x · y) · z = x · (y · z);

• ε · x = x · ε = x.

A monoid is commutative if x · y = y · x for any x, y ∈ M .

For X,Y ⊆ M , we define
X · Y = {x · y|x ∈ X, y ∈ Y }.

X · Y is associative and has unit {ε}.

Definition 7.2 A monoid M1 = (M1, ·1, ε1) is said to be a submonoid of another monoid M2 =
(M2, ·2, ε2) if M1 ⊆ M2, ε1 = ε2 and ·1 agrees with ·2 on M1.

Definition 7.3 Given two monoids M1,M2 A monoid homomorphism from M1 to M2 is a function
h : M1 −→ M2 such that h(ε) = ε and h(x · y) = h(x) · h(y) for any x, y ∈ M1.

7.1.2 Phase Structures

Definition 7.4 (Cf. [Tro92]) A phase structure (M,Cl) consists of a commutative monoid M =
(M, ·, ε) with a closure operator Cl, that is a mapping from the subsets of M to the subsets of M such
that for all X,Y ⊆ M :

(Cl1) X ⊆ Cl(X),

(Cl2) Cl(Cl(X)) ⊆ Cl(X),

(Cl3) X ⊆ Y =⇒ Cl(X) ⊆ Cl(Y),

(Cl4) Cl(X) · Cl(Y) ⊆ Cl(X · Y).

A set X ⊆ M is said to be closed if X = Cl(X).

91

Define
X −◦ Y = {z ∈ M |∀x ∈ X x · z ∈ Y }.

We have:

(*) X · Y ⊆ Z ⇐⇒ X ⊆ Y −◦ Z.

In particular, Y ⊆ Z =⇒ ε ∈ Y −◦ Z.

Lemma 7.5

1. X −◦ Y is closed whenever Y is.

2. An arbitrary intersection
⋂

λ∈Λ Xλ is closed whenever each Xλ is closed.

Proof.
(1) Assume that Y = Cl(Y). We have X −◦ Y ⊆ Cl(X −◦ Y) by (Cl1). On the other hand,

X −◦ Y ⊆ X −◦ Y ⇒ X · X −◦ Y ⊆ Y by (*)
⇒ Cl(X · X −◦ Y) ⊆ Cl(Y) by (Cl3)
⇒ Cl(X) · Cl(X −◦ Y) ⊆ Cl(Y) by (Cl4)
⇒ X · Cl(X −◦ Y) ⊆ Cl(Y) by (Cl1)
⇒ X · Cl(X −◦ Y) ⊆ Y by (Cl2)
⇒ Cl(X −◦ Y) ⊆ X −◦ Y by (*)

(2) We have
⋂

λ∈Λ Xλ ⊆ Cl(
⋂

λ∈Λ Xλ). On the other hand, for each λ ∈ Λ,
⋂

λ∈Λ Xλ ⊆ Xλ. Hence

Cl(
⋂

λ∈Λ

Xλ) ⊆ Cl(Xλ) = Xλ

by (Cl3) and (Cl2). Therefore, Cl(
⋂

λ∈Λ Xλ) ⊆ ⋂
λ∈Λ Xλ.

Definition 7.6 A preorder � on M is defined by:

x � y ⇐⇒ Cl({x}) ⊆ Cl({y}).

Remark 7.7 Observe that if X = Cl(X) then X is downward closed with respect to �. This is
reminiscent of the ≤-upward closure of Kripke semantics. The closure operator Cl is, however, more
abstract than the latter, since the converse direction does not hold in general, i.e., being downward
closed with respect to � is not sufficient for being closed in the sense of Cl.

Definition 7.8 Given a phase structure (M,Cl), one defines the following sets and operations over
X,Y ⊆ M :

• 1 = Cl({ε}); � = M ; 0 = Cl(∅).

• X ⊗ Y = Cl(X · Y); X & Y = X ∩ Y ; X ⊕ Y = Cl(X ∪ Y).

All these operations yield a closed set whenever its components X and Y are.

92

Definition 7.9 ([KOT99]) Given a phase structure (M,Cl), a family X = {Xλ}λ∈Λ of closed subsets
of M is called a co-basis if for any Y ⊆ M :

Cl(Y) =
⋂

{Xλ|Y ⊆ Xλ, λ ∈ Λ}.

Indeed, the (uncountable) family of all closed sets forms a trivial co-basis. Conversely, a closure
operator Cl can be induced by a specific family of subsets of M satisfying a certain property:

Theorem 7.10 Let M be a monoid and X = {Xλ}λ∈Λ be a family of subsets of M such that X ∈ X
and x ∈ M implies that {x} −◦ X ∈ X . Then operator Cl defined by:

Cl(Y) =
⋂

{Xλ|Y ⊆ Xλ, λ ∈ Λ}

satisfies all axioms (Cl1)—(Cl4).

Proof. (Cl1) — (Cl3) are all immediate. We claim that Cl above satisfies the following:

(Cl4’) X · Cl(Y) ⊆ Cl(X · Y) for any X,Y ⊆ M .

Then (Cl4) is derived by using (Cl4’) twice:

Cl(X) · Cl(Y) ⊆ Cl(Cl(X) · Y)
= Cl(Y · Cl(X))
⊆ Cl(Cl(Y · X))
= Cl(X · Y).

To show (Cl4”), let X · Y ⊆ Xλ with λ ∈ Λ. Then for any x ∈ X, {x} · Y ⊆ Xλ, i.e.,

Y ⊆ {x} −◦ Xλ.

Since {x} −◦ Xλ ∈ X by assumption,
⋂

{Xλ|Y ⊆ Xλ, λ ∈ Λ} ⊆ {x} −◦ Xλ.

Therefore
{x} ·

⋂
{Xλ|Y ⊆ Xλ, λ ∈ Λ} ⊆ Xλ,

for any x ∈ X. Namely,

X ·
⋂

{Xλ|Y ⊆ Xλ, λ ∈ Λ} ⊆
⋂

{Xλ|X · Y ⊆ Xλ, λ ∈ Λ},

as required.

Several interpretations have been proposed for the exponential modality !. Among those, we adopt
Lafont’s interpretation [Laf97] here.

Given a phase structure (M,Cl), the set

J(M) = {x ∈ 1 | x � x · x}

is easily shown to be a submonoid of M .

93

Definition 7.11 ([Laf97]) An enriched phase structure (M,Cl,K) consists of a phase structure (M,Cl)
with a submonoid K of J(M). In an enriched phase structure, one defines

• !X = Cl(X ∩ K).

For example, K may be J(M) itself, or the singleton {ε}, or the set of idempotents I = {x ∈
1 | x · x = x} in 1.

Definition 7.12 A valuation v over an enriched phase structure (M,Cl,K) is an assignment of a
closed set v(α) to each atomic formula α. A phase model is a phase structure endowed with a valuation.

The valuation v is extended to arbitrary ILAL formulas in a natural way:

• v(1) = 1, v(�) = �, v(0) = 0;

• v(A ⊗ B) = v(A) ⊗ v(B), v(A −◦ B) = v(A) −◦ v(B);

• v(A & B) = v(A) & v(B), v(A ⊕ B) = v(A) ⊕ v(B);

• v(!A) =!v(A).

A formula A is satisfied in (M,Cl,K, v) if ε ∈ v(A).

The phase models are sound and complete for ILL; indeed, they are complete for cut-free ILL.
Hence the cut-elimination theorem follows [Oka96, Oka99]:

Theorem 7.13 For any formula A, the following are equivalent:

1. A is provable in ILL;

2. A is cut-free provable in ILL;

3. A is satisfied in every phase model.

The implication (1 ⇒ 3) can be shown by the standard soundness argument. (2 ⇒ 1) is trivial.
To show (3 ⇒ 2), we construct the canonical model, which is described below.

7.1.3 The Canonical Model

Here we shall describe Okada’s construction of the canonical model. The construction will be later
modified so that a finitely generated canonical model is obtained (in 7.2.2).

Definition 7.14 ([Oka96, Oka99]) The canonical model ILL• = (M0, Cl0,K0, v0) for ILL is defined
as follows:

• M0 is the free commutative monoid generated by the formulas of ILAL; namely elements of M
are multisets of formulas, the binary operation · is multiset union, and the unit is the empty
multiset ∅.

94

• For each formula C of ILL, define its outer value [[C]] by

[[C]] = {Σ | Σ � C is cut-free provable in ILL}.

• Let X be the set of outer values of all ILL formulas. Define Cl0 by

Cl0(X) =
⋂

{Y | X ⊆ Y, Y ∈ X}.

• K0 = {!Γ | !Γ ∈ M0}.

• v(α) = [[α]] for each atomic formula α.

ILL• is indeed a phase model, and the following Main Lemma establishes Theorem 7.13:

Lemma 7.15 (Main Lemma [Oka96, Oka99]) For any formula A of ILL, A ∈ v0(A) ⊆ [[A]]. In
particular, if ε ∈ v0(A), A is cut-free provable in ILL.

This lemma is proved by induction on A.

7.1.4 Quotient Model Construction

Here we shall describe the technique of quotient model construction [Laf97, OT99], which is the key
to prove the finite model property for various systems. In what follows, we shall often use notation
f ◦ g(X) for function composition in place of f(g(X)).

Let (M,Cl,K, v) be a phase model. For any x, y ∈ M , define x ∼ y by

x ∼ y ⇐⇒ x � y and y � x.

Then ∼ is reflexive, symmetric, transitive, and satisfies:

• x ∼ y implies x · z ∼ y · z.

• x ∼ y and y ∈ X imply x ∈ Cl(X) for any X ⊆ M .

A binary relation satisfying these properties are called a logical congruence.

Let π(x) denote the equivalence class to which x belongs. Then, the quotient model (M∼, Cl∼,K∼, v∼)
of (M,Cl,K, v) is defined as follows:

M∼ = {π(x) | x ∈ M}
π(x) · π(y) = π(x · y)

ε = π(ε)
Cl∼(X) = π(Cl(π−1(X)))

K∼ = π(K)
v∼(α) = π(v(α)).

π is a monoid homomorphism from M to M∼. Moreover, π− ◦ π(X) = Cl(X) for any X ⊆ M .

95

Lemma 7.16 For any X ⊆ M , π(Cl(X)) = Cl∼(π(X)). Therefore, π(X) is closed whenever X is.

Proof.

Cl∼ ◦ π(X) = π ◦ Cl ◦ π−1 ◦ π(X)
= π ◦ Cl ◦ Cl(X)
= π ◦ Cl(X).

Lemma 7.17 (M∼, Cl∼,K∼, v∼) is a phase model.

Proof. First we prove that Cl∼ is a closure operator.
(Cl1) Suppose that X ⊆ M∼. Then we have:

π−1(X) ⊆ Cl(π−1(X))
X = π(π−1(X)) ⊆ π(Cl(π−1(X))).

(Cl2) Let X ⊆ Y ⊆ M∼. Then we have:

π−1(X) ⊆ π−1(Y)
Cl ◦ π−1(X) ⊆ Cl ◦ π−1(Y)

π ◦ Cl ◦ π−1(X) ⊆ π ◦ Cl ◦ π−1(Y).

(Cl3)

π ◦ Cl ◦ π−1 ◦ π ◦ Cl ◦ π−1(X) = π ◦ Cl ◦ Cl ◦ π−1(X)
= π ◦ Cl ◦ Cl ◦ π−1(X)
= π ◦ Cl ◦ π−1(X).

(Cl4) Observe that

π(Z1) · π(Z2) = π(Z1 · Z2) for any Z1, Z2 ⊆ M ;
π−1(W1) · π−1(W2) = π−1(W1 · W2) for any W1,W2 ⊆ M∼.

Therefore,

π ◦ Cl ◦ π−1(X) · π ◦ Cl ◦ π−1(Y) = π(Cl ◦ π−1(X) · Cl ◦ π−1(Y))
⊆ π ◦ Cl(π−1(X) · π−1(Y))
⊆ π ◦ Clπ−1(X · Y).

It remains to show that K∼ is a submonoid of J(M∼). For any x ∈ K∼, there is x′ ∈ K such that
x = π(x′). Since x′ � x′ · x′, we have

π(x′) � π(x′ · x′) = π(x′) · π(x′).

Furthermore, x′ ∈ 1 = Cl({ε}). Therefore,

π(x′) ∈ π ◦ Cl({ε}))
⊆ π ◦ Cl ◦ π−1({ε})
= Cl∼({ε}).

Therefore, K∼ ⊆ J(M∼).

96

Lemma 7.18 All operations 1,0,�,⊗,−◦,&,⊕, ! commute with π. Namely,

π(∗) = ∗, for ∗ ∈ {1,0,�};
π(X) � π(Y) = π(X � Y), for ∗ ∈ {⊗,−◦,&,⊕},

!π(X) = π(!X),

for any closed sets X,Y ⊆ M .

Proof.
(i)

π(X ⊗ Y) = π ◦ Cl(X · Y)
= Cl∼(π(X · Y))
= Cl∼(π(X) · π(Y))
= π(X) ⊗ π(Y).

(ii)

π(X & Y) = π(X) & π(X).

(iii)

π(X ⊕ Y) = π ◦ Cl(X ∪ Y)
= Cl∼(π(X ∪ Y))
= Cl∼(π(X) ∪ π(Y))
= π(X) ⊕ π(Y).

(iv)

x ∈ π(X) −◦ π(Y) ⇐⇒ {x} · π(X) ⊆ π(Y)
⇐⇒ π−1({x}) · π−1 ◦ π(X) ⊆ π−1 ◦ π(Y)
⇐⇒ π−1({x}) · X ⊆ Y

⇐⇒ π−1({x}) ⊆ X −◦ Y

⇐⇒ π ◦ π−1({x}) ⊆ π(X −◦ Y)
⇐⇒ x ∈ π(X −◦ Y).

(v)

π(!X) = π(Cl(X ∩ K))
= Cl∼(π(X ∩ K))
= Cl∼(π(X) ∩ π(K))
= !π(X).

The cases of constants are similar.

Theorem 7.19 (Lafont [Laf97], Okada-Terui [OT99]) Every formula A of ILL is satisfied in
(M,Cl,K, v) iff it is satisfied in the quotient model (M∼, Cl∼,K∼, v∼).

97

Proof. By induction on A, using Lemma 7.18.

Proposition 7.20 If (M,Cl,K) has a finite co-basis, then M∼ is finite.

Proof. Let a finite co-basis X over (M,Cl,K) be given. It is easy to show that x ∼ y iff x ∈ X ⇐⇒
y ∈ X for any X ∈ X . Hence it follows that there are exactly 2|X | equivalence classes over M . Hence
M∼ is finite.

From the results above, we obtain:

Corollary 7.21 For any phase structure (M,Cl,K) having a finite co-basis, there is a finite phase
structure which satisfies the same set of formulas as (M,Cl,K).

7.2 Phase Semantics for IAL

Now we move on to phase semantics for IAL [Ono94, Laf97, OT99, Oka01]. We shall give the
definition in 7.2.1, and then prove the finite model property for IAL in 7.2.2, using the canonical
model construction and the quotienting technique detailed before. A by-product is the cut-elimination
theorem for IAL. The content of this section is largely based on [OT99].

7.2.1 Affine Phase Structures

Phase semantics for IAL is obtained from phase semantics for ILL by imposing a further constraint
on the closed sets.

Definition 7.22 A set X ⊆ M is an ideal if X · M ⊆ X. An affine phase structure is an enriched
phase structure (M,Cl,K) with every closed set ideal.

In an affine phase structure, we have:

• � = 1; X ⊗ Y ⊆ X & Y .

Unrestricted Weakening is characterized by the principle A−◦ 1, which is always satisfied in an affine
phase structure. Hence the soundness of affine phase structure for IAL is obvious. Note that the set
J(M) can be simply defined as {x|x � x · x}.

7.2.2 The Finite Model Property for IAL

First of all, we need some general facts on monoids. Let M be a commutative monoid. For x, y ∈ M ,
let x ≤ y if y = xz for some z ∈ M .

Given Y ⊆ M , Y · M is always an ideal, which is denoted by IdM (Y). We drop the subscript M
when they are obvious from the context.

If M is a free commutative monoid generated by {p1, . . . , pk}, then each x ∈ M can be represented
as px1

1 · · · pxk
k for some nonnegative integers x1, . . . , xk. In this case, x ·−y iff px1

·−y1
1 · · · pxk

·−yk
k where

xi ·−yi is xi − yi if xi ≥ yi and is 0 otherwise. For X ⊆ M and y ∈ M , X ·−y denotes the set
{x ·−y|x ∈ X}.

The following lemma is easily proved.

98

Lemma 7.23 Let M be a finitely generated free commutative monoid. Then, for any X ⊆ M , {y}−◦
Id(X) = Id(X ·−y).

We need, as in [Laf97], the following lemma which was also crucial in the first proof of decidability
of Affine Logic by Kopylov [Kop95].

Lemma 7.24 Let M be a finitely generated free commutative monoid, and X be an ideal of it. Then
X = Id({x1, . . . , xn}) for some {x1, . . . , xn} ⊆ M .

For the proof, see [Laf97].

The construction of the canonical model (in 7.1.3) is slightly modified.

Definition 7.25 Let A be a formula of IAL. The canonical model IAL•[A] is defined analogously to
ILL•, but with some modifications:

• M0 is the free commutative monoid generated by the subformulas of A.

• The outer values are defined for sequents: given Γ, C ∈ M0, its outer value [[Γ � C]] is defined
by:

[[Γ � C]] = {Σ ∈ M0 | Σ,Γ � C is cut-free provable in IAL}.
Write [[C]] for [[� C]].

• The co-basis X and Cl0 are defined by:

X = {[[Γ � C]]‖ Γ, C consists of subformulas of A.}
Cl0(X) =

⋂
{Y | X ⊆ Y, Y ∈ X}.

• K0 = {!Γ | !Γ ∈ M0}.

• v(α) = [[α]] for each atomic formula α.

Lemma 7.26 IAL•[A] is a phase model.

Proof. We have to check that (1) Cl0 is a closure operator, and (2) K0 is a submonoid of J(M).

(1) For any Σ ∈ M0 and [[Γ � C]] ∈ X ,

{Σ} −◦ [[Γ � C]] = [[Σ,Γ � C]] ∈ X .

Hence the set X meets the condition of Theorem 7.10. Therefore Cl0 is a closure operator.

(2) We have to show that !Γ �!Γ·!Γ for any !Γ ∈ K. For this, it suffices to show that whenever
!Γ·!Γ ∈ [[∆ � C]], it also holds that !Γ ∈ [[∆ � C]]. But this is immediate by Contraction.

Remark 7.27 It is crucial to consider the outer values for sequents; the outer values for formulas are
not enough to form a co-basis.

99

The main lemma is restricted to the subformulas of A:

Lemma 7.28 For any subformula B of A, B ∈ v0(B) ⊆ [[B]]. In particular, if ε ∈ v0(A), A is cut-free
provable in ILL.

The proof is just as for Lemma 7.15. With the help of Lemma 7.24, we can show the following:

Lemma 7.29 The co-basis X is finite.

Proof. There are only finitely many outer values [[B]] for formulas. By Lemma 7.24, [[B]] = Id({∆1, . . . ,∆n})
for some {∆1, . . . ,∆n}. For a given Σ ∈ M0,

[[Σ � B]] = {Σ} −◦ [[B]] = Id({∆1 ·−Σ, . . . ,∆n ·−Σ})

by Lemma 7.23. But there are only finitely many Π’s such that Π ≤ ∆i, i.e., the number of sets of
the form Id({∆1 ·−Σ, . . . ,∆n ·−Σ}) is finite. Therefore, X is finite.

The following theorem summarizes the soundness, the completeness, the cut-elimination and the
finite model property for IAL once for all:

Theorem 7.30 For any formula A, the following statements are equivalent:

1. A is provable in IAL.

2. A is satisfied in all affine phase models.

3. A is satisfied in all finite affine phase models.

4. A is satisfied in the quotient of IAL•[A].

5. A is satisfied in IAL•[A].

6. A is cut-free provable in IAL.

Proof. The implication (3 ⇒ 4) is due to Lemma 7.29 and Proposition 7.20. (4 ⇒ 5) holds by Theo-
rem 7.19. (5 ⇒ 6) holds by Lemma 7.28. Other implications are trivial.

In particular, we have:

Corollary 7.31 (Okada-Terui[OT99]) IAL has the finite model property. Hence IAL is decidable.

7.3 Phase Semantics for ILAL

We now introduce light affine phase semantics for ILAL in 7.3.1, which is an immediate modification
of fibred phase semantics for LLL and ILLL [KOSar]. The definition of the latter is given in Section
7.4, where it is also explained what our modification consists in. We prove the finite model property
for ILAL based on a slightly generalized version of light affine phase semantics in 7.3.2.

100

7.3.1 Light Affine Phase Structures

Definition 7.32 A light affine phase structure (M,Cl, f, h) is an affine phase structure (M,Cl) en-
dowed with a pair (f, h) of functions which satisfies the following:

1. f is a function from M to J(M);

2. f(ε) = ε;

3. h is a monoid homomorphism from M to itself;

4. f is bounded by h: for any x ∈ M , f(x) � h(x).

We define:

• !X = Cl(f(X));

• §X = Cl(h(X)).

In the above definition, condition 1 corresponds to Contraction, condition 2 corresponds to Monoidal-
ness 2, condition 3 to Monoidalness§ and condition 4 to Weak Dereliction; Functricity is automatically
satisfied.

It is possible to relax the definition above, so that f may be a partial function. With this relaxation,
an affine phase structure (M,Cl,K) becomes a special case: let g be the identity function on M and
f be defined by

f(x) = x, if x ∈ K;
= undefined, otherwise.

Then (M,Cl, f, g) is a light affine phase structure with f partial, and we have Cl(X∩K) = Cl(f(X)).

Example 7.33 As an example of light affine phase structures, we give a countermodel to Dereliction,
Digging and Monoidalness 1, which are syntactically rejected in ILAL. Let (M,≤) be the following
partially ordered set: M = {1, a, b, 0} and the partial order ≤ is defined by

1

a b

0

��� ���

��� ���

,

where x −→ y indicates x ≥ y. Define a commutative binary operation · over M by:

1 · x = x

0 · x = 0
a · a = 0
a · b = 0
b · b = b,

101

where x ∈ M . Then M = (M, ·, 1) is a commutative monoid. For X ⊆ M , define Cl(X) = {x|∃y ∈
X(x ≤ y)}. Then (M,Cl) is an affine phase structure with J(M) = {1, b, 0}. Finally define f, h :
M −→ M by:

f(1) = 1
f(a) = b

f(b) = 0
f(0) = 0
h(x) = 1

Then it is easy to check that h is a monoid homomorphism and f is bound by h. Therefore, (M,Cl, f, h)
is a light affine phase structure. Let Y be a closed set {a, 0}. Then we have:

• !Y = {b, 0}.

• !!Y = {0}.

• !(Y ⊗ Y) = {0}.

• !Y ⊗!Y = {b,⊥}.

From these, we see:

• 1 �∈!Y −◦ Y .

• 1 �∈!Y −◦!!Y .

• 1 �∈!Y ⊗!Y −◦!(Y ⊗ Y).

Therefore, Dereliction, Digging and Monoidalness 1 are not satisfied in (M,Cl, f, h).

The following generalized version of light affine phase semantics is needed in the next subsection.

Definition 7.34 A generalized light affine phase structure (M,Cl, F,H) is an affine phase structure
(M,Cl) with two functions F : P(M) −→ P(J(M)) and H : P(M) −→ P(M) such that

• X ⊆ Y implies F (X) ⊆ F (Y) and H(X) ⊆ H(Y);

• ε ∈ X implies ε ∈ F (X) and ε ∈ H(X);

• H(X) · H(Y) ⊆ H(X · Y) for any X,Y ⊆ M ;

• F (X) ⊆ Cl(H(X))

Given such (M,Cl, F,H), one defines

• !X = Cl(F (X));

• §X = Cl(H(X)).

102

It is clear that a light affine phase structure (M,Cl, f, h) is a special case; just define F (X) = {f(x)|x ∈
X} and H(X) = {h(x)|x ∈ X}.

Lemma 7.35 For every generalized light phase structure (M,Cl, F,H) and X,Y ⊆ M , we have:

1. X ⊆ Y implies !X ⊆!Y .

2. 1 ⊆!1.

3. !X ⊆!X⊗!X.

4. X ⊆ Y implies §X ⊆ §Y .

5. §X ⊗ §Y ⊆ §(X ⊗ Y).

6. !X ⊆ §X.

Proof. All are more or less immediate from the definition.

Definition 7.36 A light affine phase model is a light affine phase structure with a valuation. In a
light affine phase model, the valuation v is extended by:

• v(!A) =!(v(A)); v(§A) = §(v(A)).

The soundness for ILAL follows from Lemma 7.35. In the next subsection, we shall show the
completeness, the cut-elimination and the finite model property for ILAL once for all.

7.3.2 The Finite Model Property for ILAL

Let us first define the canonical model for ILAL.

Definition 7.37 Given a formula A, the canonical model ILAL•[A] = (M0, Cl0, v0, f0, h0) is defined
analogously to IAL•[A], with some modifications:

• M0 is the free commutative monoid generated by the subformulas of A and 0.

• For a sequent Γ � C which consists of subformulas of A and 0,

[[Γ � C]] = {Σ ∈ M0| Σ,Γ � C is cut-free provable in ILAL}.

• Let X be the set of outer values of all sequents which consist of subformulas of A and 0, and
define Cl0 by

Cl0(X) =
⋂

{Y | X ⊆ Y, Y ∈ X}.

103

• Define f0 and h0 by:

f0(∅) = ∅;
f0(B) = !B, if !B is a subformula of A;

= 0 otherwise;
f0(Γ) = 0 if |Γ| ≥ 2.
h0(∅) = ∅;
h0(B) = §B, if §B is a subformula of A;

= !B, if §B is not a subformula of A, but !B is;
= 0, otherwise;

h0(B1, . . . , Bn) = h0(B1), . . . , h0(Bn).

• v(α) = [[α]] for each atomic formula α.

Lemma 7.38 ILAL•[A] is a light affine phase model.

Proof. It is sufficient to check that (f0, h0) meets the conditions of Definition 7.34. As for condition
1, !B �!B·!B holds as before, and it also holds that 0 � 0 · 0, since 0 is the least element with respect
to �. Conditions 2 and 3 are evident. As for condition 4 prove the following by induction on the
length of the cut-free proof:

• If §B,Γ � C is cut-free provable in ILAL, then so is !B,Γ � C.

When f0(Γ) = 0, then clearly we have f0(Γ) � h0(Γ). Otherwise, we have either f0(Γ) = h0(Γ) =!B
or f0(Γ) =!B � §B = h0(Γ).

The main lemma of [Oka96, Oka99] can be accommodated for ILAL.

Lemma 7.39 For any subformula B of A, B ∈ v0(B) ⊆ [[B]]. In particular, if ε ∈ v0(A), A is cut-free
provable in ILAL.

Proof. By induction on B. We just check the cases for light exponentials.

(Case 1) B ≡!C. By the induction hypothesis, C ∈ v0(C). Hence !C ∈ f(v0(C)) ⊆ v0(!C). On the
other hand, assume Γ ∈ f0(v0(C)). Then either Γ ≡ 0 or Γ ≡!D and D ∈ v0(C) for some subformula
!D of A. In the former case, it is clear that 0 ∈ [[!C]]. In the latter case, D � C is cut-free provable by
the induction hypothesis. Hence !D �!C is cut-free provable, too.

(Case 2) B ≡ §C. §C ∈ v0(§C) can be shown similarly to (Case 1). On the other hand, assume
Γ ∈ h0(v0(C)). If Γ contains 0, then Γ � §C is an axiom. Otherwise, Γ ≡!∆1, §∆2 and ∆1,∆2 ∈ v0(C).
By the induction hypothesis, ∆1,∆2 � C is cut-free provable. Hence !∆1, §∆2 � §C is cut-free provable,
too.

Lemma 7.40 ILAL•[A] has a finite co-basis.

Proof. The same as Lemma 7.29.

104

The next task is to construct a finite model from ILAL•[A]. At this point, however, we face an
obstacle, since the light affine phase models are not closed under the quotient model construction.
The main reason is that x ∼ y does not imply h(x) ∼ h(y). Typically,

B,C ∼ B ⊗ C

holds in ILAL•[A], but never
§B, §C ∼ §(B ⊗ C).

Fortunately, the generalized light affine phase models are closed under the quotient model construction,
and we should content ourselves with that.

Definition 7.41 Given a generalized light affine phase model (M,Cl, F,H, v), its quotient
(M∼, Cl∼, F∼,H∼, v∼) is defined as in Subsection 7.1.4, with F∼ and H∼ defined as follows:

• F∼(X) = π ◦ F ◦ π−1(X);

• H∼(X) = π ◦ H ◦ π−1(X).

With this definition, we have:

Lemma 7.42

1. (M∼, Cl∼, F∼,H∼, v∼) is a generalized light affine phase model.

2. When X is a closed subset of M , π(!X) =!π(X) and π(§X) = §π(X).

Proof. As for 1, let us just check that (1a) F∼(X) ⊆ J(M∼), and (1b) F∼(X) ⊆ Cl∼(H∼(X)) for any
X ⊆ M∼. Others are straightforward.

(1a) Since F ◦ π−1(X) ⊆ J(M), we have π ◦ F ◦ π−1(X) ⊆ π ◦ J(M). It is easily checked that
π ◦ J(M) ⊆ J(M∼).

(1b) We have F ◦ π−1(X) ⊆ Cl ◦ H ◦ π−1(X). Hence,

π ◦ F ◦ π−1(X) ⊆ π ◦ Cl ◦ H ◦ π−1(X)
= Cl∼ ◦ π ◦ H ◦ π−1(X)
= Cl∼ ◦ H∼(X).

As for 2, we have:

§(π(X)) = Cl∼ ◦ π ◦ H ◦ π−1 ◦ π(X)
= Cl∼ ◦ π ◦ H(X)
= π ◦ Cl ◦ H(X)
= π(§X).

Similarly for !.

105

Theorem 7.43 Let (M,Cl, f, h, v) be a light affine phase model. Then, every formula A of ILAL is
satisfied in (M,Cl, f, h, v) iff it is satisfied in its quotient (M∼, Cl∼, f∼, h∼, v∼).

Proof. Similar to Theorem 7.19, using the previous lemma.

To put things together, we obtain:

Theorem 7.44 For any formula A, the following statements are equivalent:

1. A is provable in ILAL.

2. A is satisfied in all light affine phase models.

3. A is satisfied in all generalized light affine phase models.

4. A is satisfied in all finite generalized affine phase models.

5. A is satisfied in the quotient of ILAL•[A].

6. A is satisfied in ILAL•[A].

7. A is cut-free provable in IAL.

Proof. The implication (1 ⇒ 3) is by the soundness argument. (3 ⇒ 4) holds trivially, and (4 ⇒ 5)
holds by Lemma 7.40 and Proposition 7.20. (5 ⇒ 6) holds by Theorem 7.43, and (6 ⇒ 7) holds by
Lemma 7.39. (7 ⇒ 1) is trivial. Finally, (3 ⇒ 2) holds because 2 is a special case of 3, and (2 ⇒ 6)
holds because ILAL•[A] is a (non-generalized) light affine phase model.

In particular, we have:

Corollary 7.45 ILAL has the finite model property. Hence ILAL is decidable.

7.4 Remarks

In this chapter, we have investigated phase semantics for Light Logic, with a special emphasis on the
finite model property. Here are some remarks.

Comparison with fibred phase semantics. As was said before, light affine phase semantics is a
simplification of fibred phase semantics for ILLL [KOSar]. Here we shall recall the definition of the
latter and compare it with the former.

Definition 7.46 A fibred phase structure is a family {(Mn, Cln, fn, hn)}n≥0, where for each integer
n ≥ 0,

1. (Mn, Cln) is a phase structure;

2. fn+1 : Mn+1 −→ Mn is a function;

3. hn+1 : Mn+1 −→ Mn is a monoid homomorphism;

106

4. fn is bounded by hn: For every x ∈ Mn there exists y ∈ Mn such that y � x and fn(x) � hn(y);

5. fn satisfies the intermediate value property: For every x, y ∈ Mn such that fn(x), fn(y) are
defined, there exists z ∈ Mn such that z � x, z � y and fn(x) · fn(y) = fn(z).

Given a family X = {Xn}n≥0 of closed subsets of {Mn}n≥0, define families !X = {(!X)n}n≥0 and
§X = {(§X)n}n≥0 as follows:

• (!X)n = Cln(fn+1(Xn+1) ∩ Jn);

• (§X)n = Cln(hn+1(Xn+1)).

It is not necessary to consider a family of phase structures if one is only interested in completeness; just
a single phase structure would do. In [KOSar], the fibred structure is rather used to give a concrete
mathematical example of models which invalidate Dereliction, Digging and Monoidalness. The same
applies to our light affine phase semantics. Although we have considered a non-fibred version of light
affine phase semantics in this chapter, we could easily extend it to a fibred version.

Beside fibredness, light affine phase semantics differs from fibred phase semantics in the following
points:

• We do not need the intermediate value property for f ; this is because we do not have Exponential
Isomorphism in syntax of ILAL.

• Instead, we need the condition f(ε) = ε, which corresponds to Monoidalness 2.

• The boundedness condition and the interpretation of ! are slightly simplified. This small im-
provement also applies to fibred phase semantics.

The simplicity of light affine phase semantics is particularly advantageous when it comes to con-
structing a concrete model. In Example 7.33 we have described a simple countermodel to Dereliction,
Digging and Monoidalness 1 which consists of just 4 elements. It does not seem to be so easy to have
such a simple construction in fibred phase semantics, with the main trouble being the intermediate
value property.

Finite model property with respect to non-generalized light affine phase models. The fi-
nite model property for ILAL which we showed was with respect to the generalized light affine phase
models. It is open whether the same holds with respect to the (non-generalized) light affine phase
models.

Finite model property for other systems of Linear and Affine Logics. The quotienting
method used here has a much wider range of applications. Using this method, Lafont proved the
finite model property for the multiplicative additive fragment of Linear Logic, Classical Affine Logic
and their noncommutative versions [Laf97]. On the other hand, we proved the finite model property
for the multiplicative additive fragment of Intuitionistic Linear Logic and for Classical/Intuitionistic
Linear Logic with Unrestricted Contraction in [OT99]. In the same paper, we also showed the finite
model property for various systems of Substructural Logics ([Ono90, Ono94, Ono98]).

Extensions of light affine phase semantics. The extension of our phase semantics to the higher
order versions is easily achieved along the line of [Oka96, Oka99]. It is also easy to define classical

107

light affine phase semantics and obtain the soundness/completeness, the cut-elimination and the finite
model property for LAL. An interesting open problem is whether light affine phase semantics can be
extended to Light Set Theory with a suitable semantic proof to the cut-elimination theorem. There
is no principled reason which forbids us to give such a semantic proof to cut-elimination, since it can
be proved anyway by a syntactic means. It would be, however, extremely difficult, because it requires
us to express the naive comprehension principle of LST in terms of phase semantics which rests upon
the standard set theory.

108

Chapter 8

Conclusion

In this thesis, we have investigated various aspects of Light Logic, aiming at a better understand-
ing of the polytime computation in the proofs-as-programs paradigm. Let us summarize our main
contributions:

1. In Chapter 3, we introduced an untyped term calculus λla which embodies the essential mecha-
nisms of the proof system of Light Logic. It roughly amounts to an untyped bi-modal lambda cal-
culus with certain linearity and stratification conditions. Two modal operators are introduced in
such a way that the complexity of normalization becomes exactly polytime. The calculus has an
advantage of simplicity over other existing term calculi for ILAL [Asp98, Rov00, Rov99, AR00];
in particular, λla is free from explicit substitutions which are used in [Asp98]. Although explicit
substitutions are often useful in giving fine control over the substitution operation, they com-
plicate syntax too much and make the operational intuition of a calculus unclear. In contrast,
our syntax adopts the standard notion of substitution, and henceforth succeeds in reducing 27
rewriting rules of [Asp98] to just 5, all of which have a clear operational meaning. The simplicity
of λla allows us to concentrate on critical issues in the Light Logic computation, and to prove
the basic properties such as the Church-Rosser property and the subject reduction property in
a highly convincing way.

We then proved the polytime strong normalization theorem for λla, which states that terms of
λla are normalizable in polynomial time regardless of which reduction strategy we take. Theo-
retically, this property suggests a sharp distinction between λla and other polytime functional
systems such as [LM93, Hof97, BNS99, Hof98, Hofar, Lei99], since in the latter, normalization
is at best weakly polytime. Practically, the theorem guarantees us a free choice of a reduction
strategy when it comes to designing realistic polytime programming languages. The choice of a
reduction strategy is often crucial in language design, and the theorem shows that λla is rather
flexible in this respect.

2. In Chapter 4, we reformulated ILAL2 as a type assignment system for λla, and proved the sub-
ject reduction theorem. It basically means that proofs of ILAL2 are structurally representable
by terms of λla, and cut-elimination in ILAL2 is in full accordance with normalization in λla.
From this and the previous result, it follows that the polytime strong normalizability also holds
for the proof system of ILAL2. Note that before our work only the polytime weak normaliz-
ability has been known for Light Logic, and it has been left open whether the polytime strong
normalizability also holds or not. Our result gives a positive answer to this problem. Meanwhile,
it has been known that all polytime functions are representable by proofs of ILAL2 [Rov99].

109

Therefore, the above result also yields a complete characterization of the polytime functions via
λla terms: A function is polytime if and only if it is representable by a term of λla.

3. In Chapter 5, we elaborated the detail of Light Set Theory, which had been left by [Gir98]. We
introduced naive set theory LST based on ILAL. LST is endowed with a powerful mechanism
of naive comprehension, and as a result, all recursive functions are numeralwise representable in
(the modality-free fragment of) LST. This means that in LST we may speak of functions not
just in terms of proofs, but also in terms of formulas. The main theorem of Chapter 5 then states
that each polytime function is representable by a formula of LST and moreover its totality is
provable in LST. This result, on the one hand, extends preceding works on contraction-free naive
set theory [Gri81, Whi93, Shi96, Shi99] and shows that enriching contraction-free naive set theory
with light exponentials leads to a richer and still consistent naive set theory in which functions
are not just numeralwise representable, but also provably total as far as polytime functions are
concerned. On the other hand, it extends the representability result of [Gir98, Rov99], which is
concerned with proofs, to another form of representability which is concerned with formulas of
LST.

Our main theorem, provable totality of all polytime functions, is not a matter of surprise at all,
as it is naturally expected from the representability result for ILAL2. Nevertheless, it is not so
trivial and requires of a thorough checking, because representation-via-formulas in LST is not
fully parallel to representation-via-proofs in ILAL2. For instance, addition of natural numbers
is represented by a proof of

int −◦ int −◦ int

in ILAL2, but the totality statement for addition in LST is roughly of the form

x ∈ N −◦ §y ∈ N −◦ §∃!z ∈ N(〈x, y, z〉 ∈ plus),

that is, it requires of an extra §. Although there is no problem in deriving totality of all
polynomials from this formula, it should be noted that the algorithm extracted from it is surely
different from the algorithm corresponding to the proof of int−◦ int−◦ int in ILAL2. Another
difference between LST and ILAL2 is that we can define sets by using fixpoints in LST. It
allows a flat (i.e., depth-0) definition W′ of the set {0, 1}∗, which admits of a flat representation
of the discriminator function for it. Note that encoding of Turing machines in ILAL2 is terribly
complicated precisely because the discriminator function is not flatly representable in ILAL2
(see [Rov99]). We can, on the other hand, take advantage of the flat discriminator in LST and
obtain a well-structured, simple encoding of Turing machines.

4. In Chapter 6, we reformulated LST as a type assignment system for λla and demonstrated the
program extraction method for LST: Given a proof of LST, we can automatically extract its
algorithmic content as a term of λla. In particular, from a proof of a totality statement for a
function f we can extract a term of λla which represents f .

On the practical side, this method suggests a possibility of designing an integrated formal system
for feasible programming and verification, where a certified program can be extracted from a
proof of its formal specification, and moreover an exact polytime upperbound for execution can
be obtained from that proof at the same time.

On the theoretical side, the program extraction method implies that every function provably total
in LST is representable as a term of λla, and therefore polytime computable. In conjunction
with the main result of Chapter 5, we can conclude that the provably total functions in LST are

110

exactly polytime. This property confirms the truly polytime nature of LST, although much has
to be done to further claim that LST is really a suitable framework for feasible mathematics.

5. In Chapter 7, we studied phase semantics for ILAL. We introduced light affine phase semantics,
which is a simplification of fibred phase semantics of [KOSar], and then showed the finite model
property for ILAL (with respect to the generalized version of light affine phase semantics), by
means of the quotienting method which was developed in [Laf97, OT99]. It implies decidability
of ILAL, and thus decidability of the type inhabitation problem for λla and ILAL.

Through these investigations, we have obtained a complete logical/type-theoretical characterization
of polytime functions, i.e., the equivalence among

• functions computable by Turing machines in polynomial time,

• functions representable by proofs of ILAL2,

• functions provably total in LST, and

• functions representable by terms of λla.

Moreover, this equivalence is constructive in the sense that we can effectively obtain one of the above
representations from another. If we have a polytime Turing machine which computes the function f ,
then we can effectively encode f as a proof of ILAL2 or as a formula of LST. If we have a proof of
ILAL2 which represents f , then we can effectively obtain a term of λla which represents f via the
proofs-as-programs interpretation. If we have a proof of the totality of f in LST, we can effectively
obtain a term of λla which represents f via the program extraction method. Finally, if we have a
term of λla which represents f , we can concretely define a polytime Turing machine which computes
f (see Figure 3.6 in Chapter 3).

In future work, we shall investigate the following:

1. Incorporation of inductive data types as primitives in λla, while keeping the polytime upper-
bound for normalization; such an extension will make programming in λla easier, and thus make
λla more appropriate as a basis for realistic polytime functional programming languages.

2. Further development of Light Set Theory; in this thesis, we have mainly dealt with the provable
totality of polytime functions, but we think that the use of LST is far more extensive. It would
be interesting if we could formalize a proof of a nontrivial mathematical theorem in LST, and
extract a polytime algorithm which is implicit in that proof.

3. Extension of the Light Logic approach to other complexity classes such as the polynomial space
functions; an attempt has been already made in [Ter00], but it is too complicated and perhaps
a better formalization could be obtained.

111

Bibliography

[Abr90] V. Michele Abrusci. Sequent calculus for intuitionistic linear propositional logic. In P. P.
Petkov, editor, Mathematical Logic, pages 223–242, New York, London, 1990. Plenum Press.
Proceedings of the Summer School and Conference on Mathematical Logic, honorably ded-
icated to the 90th Anniversary of Arend Heyting (1898–1980), Chaika, Bulgaria, 1988.

[Abr93] Samson Abramsky. Computational interpretations of linear logic. Theoretical Computer
Science, 111:3–57, 1993.

[And92] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Journal of
Logic and Computation, 2(3):297–347, 1992.

[AR00] A. Asperti and L. Roversi. Intuitionistic light affine logic (proof-nets, normalization com-
plexity, expressive power, programming notation). Ftp available at http://www.di.unito.it/
http://www.di.unito.it/r̃over, 2000.

[Asp98] A. Asperti. Light affine logic. In Proceedings of LICS’98, 1998.

[Bai00] P. Baillot. Stratified coherent spaces: a denotational semantics for light linear logic. Pre-
sented at the Second International Workshop on Implicit Computational Complexity, 2000.

[Bar81] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Elsevier North-Holland,
1981.

[Bar92] H. P. Barendregt. Lambda calculi with types. In S. Abramsky, Dov M. Gabbay, and
T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, Volume 2, pages 117–
309. Oxford University Press, 1992.

[BC92] S. Bellantoni and S. Cook. New recursion-theoretic characterization of the polytime func-
tions. Computational Complexity, 2:97–110, 1992.

[BNS99] S. Bellantoni, K.-H. Niggl, and H. Schwichtenberg. Ramification, modality and linearity in
higher type recursion. Presented at the First International Workshop on Implicit Compu-
tational Complexity, 1999.

[Bus86] S. R. Buss. Bounded Arithmetic. Bibliopolis, 1986.

[Bus93] S. R. Buss. A note on bootstrapping intuitionistic bounded arithmetic. In Aczel, Simmons,
and Wainer, editors, Proof Theory, pages 151–169. Cambridge University Press, 1993.

[CF58] H. B. Curry and R. Feys. Combinatory Logic. North Holland, 1958.

112

[Cob65] A. Cobham. The intrinsic computational difficulty of functions. In Y. Bar-Hillel, edi-
tor, Proceedings of the International Conference on Logic, Methodology, and Philosophy of
Science, pages 24–30. North-Holland, Amsterdam, 1965.

[Coo75] S. A. Cook. Feasibly constructive proofs and the propositional calculus. In Proceedings of
the 7th Annual ACM Symposium on Theory of Computing, pages 83 – 97, 1975.

[CU93] S. Cook and A. Urquhart. Functional interpretations of feasibly constructive arithmetic.
Annals of Pure and Applied Logic, 63:103 – 200, 1993.

[DJ99] V. Danos and J.-B. Joinet. Linear logic & elementary time. presented at ICC’99, 1999.

[DJS95] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. On the linear decoration of
intuitionistic derivations. In Archive for Mathematical Logic, volume 33, pages 387–412,
1995.

[DJS97] V. Danos, J.-B. Joinet, and H. Schellinx. A new deconstructive logic: linear logic. The
Journal of Symbolic Logic, 62:755–807, 1997.

[EF99] H-D. Ebbinghaus and J. Flum. Finite Model Theory, 2nd Edition. Springer, 1999.

[EucBC] Euclid. The Elements. 3rd cent. B.C.

[Göd58] K. Gödel. Über eine bisher noch nicht benützte erweiterung des finiten standpunktes.
Dialectica, 12:280–287, 1958. English translation in: Gödel’s Works, Vol. II (Oxford Univ.
Press, Oxford, 1990).

[Gen35] G. Gentzen. Untersuchungen über das logische schliessen. Math. Zeitschrift, 39:176 –210,
405–431, 1935. English translation in The Collected Papers of Gerhart Gentzen, translated
by M. Szabo, North-Holland.

[Gir72] Jean-Yves Girard. Une extension de l’interprétation de Godel à l’analyse, et son application
à l’élimination des coupures dans l’analyse et la théorie des types. PhD thesis, Univ. Paris
VII, 1972. Also in the Proceedings of the Second Scandinavian Logic Symposium, North
Holland, 1973.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[Gir91] Jean-Yves Girard. A new constructive logic: Classical logic. Mathematical Structures in
Computer Science, 1:255–296, 1991.

[Gir95] Jean-Yves Girard. Linear logic: Its syntax and semantics. In J.-Y. Girard, Y. Lafont, and
L. Regnier, editors, Advances in Linear Logic, pages 1–42. Cambridge University Press,
1995. Proceedings of the Workshop on Linear Logic, Ithaca, New York, June 1993.

[Gir98] J.-Y. Girard. Light linear logic. Information and Computation, 14(3):175–204, 1998.

[Gir99a] J.-Y. Girard. On denotational completeness. Theoretical Computer Science, 227:249 – 273,
1999.

[Gir99b] J.-Y. Girard. On the meaning of logical rules I: syntax vs. semantics. In U. Berger and
H. Schwichtenberg, editors, Computational Logic, pages 215 – 272. Heidelberg Springer-
Verlag, 1999.

113

[GJ78] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-
completeness. Freeman, San Francisco, 1978.

[GLR95] Jean-Yves Girard, Yves Lafont, and Laurent Regnier, editors. Advances in Linear Logic,
number 222 in London Mathematical Society Lecture Notes Series. Cambridge University
Press, 1995.

[GLT88] Jean-Yves Girard, Yves Lafont, and P. Taylor. Proofs and Types. Cambridge Tracts in
Theoretical Computer Science 7. Cambridge University Press, 1988.

[Gri74] V. N. Grishin. A nonstandard logic and its application to set theory (russian). In Studies
in Formalized Languages and Nonclassical Logics (Russian), pages 135 – 171. Izdat, Nauka,
Moskow, 1974.

[Gri81] V. N. Grishin. Predicate and set-theoretic calculi based on logic without contractions.
Math. USSR. Izvestija, 18:41–59, 1981.

[GS86] Y. Gurevich and S. Shelah. Fixed-point extensions of first-order logic. Annals of Pure and
Applied Logic, 32:265 – 280, 1986.

[GSS92] Jean-Yves Girard, Andre Scedrov, and Philip J. Scott. Bounded linear logic: A modular
approach to polynomial time computability. Theoretical Computer Science, 97:1–66, 1992.
Extended abstract in Feasible Mathematics, S. R. Buss and P. J. Scott editors, Proceedings
of the MCI Workshop, Ithaca, NY, June 1989, Birkhauser, Boston, pp. 195–209.

[Gur83] Y. Gurevich. Algebras of feasible functions. In Proc. of the 24th Symposium on Foundations
of Computer Science, pages 210–214. IEEE Computer Society Press, 1983.

[HBar] M. Hofmann and S. Bellantoni. A new “feasible” arithmetic. Journal of Symbolic Logic, to
appear.

[Hin69] J. R. Hindley. The principal type scheme of an object in combinatory logic. Trans. Amer.
Math. Soc., 146:29 – 60, 1969.

[Hof] M. Hofmann. Programming languages capturing complexity classes. SIGACT News Logic
Column 9.

[Hof97] M. Hofmann. An application of category-theoretic semantics to the characterisation of
complexity classes using higher-order function algebras. Bulletin of Symbolic Logic, 3(4),
1997.

[Hof98] M. Hofmann. Type Systems for Polynomial-Time Computation. Habilitationsschrift, Tech-
nical University of Darmstadt, 1998.

[Hofar] M. Hofmann. Safe recursion with higher types and BCK algebra. Annals of Pure and
Applied Logic, to appear.

[How80] W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin and J. R.
Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and
Formalism, pages 479–490. Academic Press, 1980.

[HP93] P. Hajék and P. Pudlák. Metamathematics of First-Order Arithmetic. Springer-Verlag,
1993.

114

[HS00] M. Hofmann and P. Scott. Realizability models for BLL-like languages. Presented at the
Second International Workshop on Implicit Computational Complexity, 2000.

[HU79] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley, Reading, Mass, 1979.

[Imm86] N. Immerman. Relational queries computable in polynomial time. Information and Control,
68:86 – 104, 1986.

[Imm87] N. Immerman. Languages which capture complexity classes. SIAM Journal of Computing,
16:760 – 778, 1987.

[Jon97] N. Jones. Computability and Complexity from a Programming Perspective. MIT Press,
1997.

[Kop95] Alexei P. Kopylov. Decidability of linear affine logic. In D. Kozen, editor, Tenth Annual
IEEE Symposium on Logic in Computer Science, pages 496–504, San Diego, California,
June 1995.

[KOSar] M. Kanovitch, M. Okada, and A. Scedrov. Phase semantics for light linear logic. Theoretical
Computer Science, to appear. An extended abstract appeared in Proceedings of MFPS’97.

[KOT99] Max Kanovitch, Mitsuhiro Okada, and Kazushige Terui. Intuitionistic phase semantics is
almost classical. Unpublished Manuscript, 1999.

[Kra95] J. Kraj́ıček. Bounded Arithmetic, Propositional Logic, and Complexity Theory. Cambridge
University Press, 1995.

[Löb76] M. H. Löb. Embedding first-order predicate logic in fragments of intuitionistic logic. Journal
of Symbolic Logic, 41:705 – 718, 1976.

[Laf96] Yves Lafont. The undecidability of second order linear logic without exponentials. Journal
of Symbolic Logic, 61(2):541 – 548, 1996.

[Laf97] Yves Lafont. The finite model property for various fragments of linear logic. Journal of
Symbolic Logic, 62(4):1202 – 1208, 1997.

[Laf01] Y. Lafont. Soft linear logic and polynomial time. Manuscript, 2001.

[Lei90] D. Leivant. Inductive definitions over finite structures. Information and Computation, 89:95
– 108, 1990.

[Lei93] D. Leivant. Stratified functional programs and computational complexity. In Conference
Record of the 13th Annual ACM Symposium on Principles of Programming Languages,
pages 325 – 333, 1993.

[Lei94] D. Leivant. A foundational delineation of poly-time. Information and Computation, 1994.

[Lei95] D. Leivant. Intrinsic theories and computational complexity. In D. Leivant, editor, Logic
and Computational Complexity, pages 177–194. Springer-Verlag LNCS 960, 1995.

[Lei99] D. Leivant. Applicative control and computational complexity. In Proceedings of CSL’99,
pages 82–95. Springer-Verlag, LNCS 1683, 1999.

115

[LM93] D. Leivant and J.-Y. Marion. Lambda calculus characterizations of poly-time. Fundamenta
Informaticae, 19:167–184, 1993.

[LM94] D. Leivant and J.-Y. Marion. Ramified recurrence and computational complexity II: sub-
stitution and polyspace. In J. Tiuryn and L. Pacholsky, editors, Computer Science Logic.
Springer, 1994.

[LMSS92] Patrick Lincoln, John Mitchell, Andre Scedrov, and Natarajan Shankar. Decision problems
for propositional linear logic. Annals of Pure and Applied Logic, 56:239–311, April 1992.
Also in the Proceedings of the 31th Annual Symposium on Foundations of Computer Sci-
ence, St Louis, Missouri, October 1990, IEEE Computer Society Press. Also available as
Technical Report SRI-CSL-90-08 from SRI International, Computer Science Laboratory.

[LSS95] Patrick Lincoln, Andre Scedrov, and Natarajan Shankar. Decision problems for second order
linear logic. In D. Kozen, editor, Tenth Annual IEEE Symposium on Logic in Computer
Science, pages 476–485, San Diego, California, June 1995.

[Mil78] R. Milner. A theory of type polymorphism in programming. J. Computer and Systems
Sciences, 17:348–375, 1978.

[MO00a] A. S. Murawski and C.-H. L. Ong. Can safe recursion be interpreted in light logic? Presented
at the Second International Workshop on Implicit Computational Complexity, 2000.

[MO00b] A. S. Murawski and C.-H. L. Ong. Discreet games, light affine logic and ptime computation.
In Proceedings of CSL2000, pages 427–441. Springer-Verlag, LNCS 1862, 2000.

[Oka96] Mitsuhiro Okada. Phase semantics for higher order completeness, cut-elimination and nor-
malization proofs (extended abstract). In J.-Y. Girard, M. Okada, and A. Scedrov, editors,
ENTCS (Electronic Notes in Theoretical Computer Science) Vol.3: A Special Issue on the
Linear Logic 96, Tokyo Meeting. Elsevier-ENTCS, 1996. An earlier version is available by
ftp anonymous on iml.univ-mrs.fr, in pub/okada.

[Oka99] Mitsuhiro Okada. Phase semantic cut-elimination and normalization proofs of first- and
higher-order linear logic. Theoretical Computer Science, 227:333– 396, 1999.

[Oka01] Mitsuhiro Okada. A uniform proof for higher order cut-elimination and normalization
theorem. Theoretical Computer Science, to appear, 2001.

[Ono90] Hiroakira Ono. Structural rules and a logical hierarchy. In P. P. Petkov, editor, Mathematical
Logic, pages 95–104. Plenum Press, 1990. Proceedings of the Summer School and Conference
on Mathematical Logic, honorably dedicated to the 90th Anniversary of Arend Heyting
(1898–1980), Chaika, Bulgaria, 1988.

[Ono94] Hiroakira Ono. Semantics for substructural logics. In K. Došen and P. Schröder-Heister,
editors, Substructural logics, pages 259–291. Oxford University Press, 1994.

[Ono98] Hiroakira Ono. Decidability and finite model property of substructural logics. In The Tbilisi
Symposium on Language, Logic and Computation 1995, pages 263–274. CSLI Publications,
1998.

[OT99] Mitsuhiro Okada and Kazushige Terui. The finite model property for various fragments of
intuitionistic linear logic. Journal of Symbolic Logic, 64(2):790–802, 1999.

116

[Pap85] C. Papadimitriou. A note on the expressive power of PROLOG. Bulletin of EATCS, 26:21
– 23, 1985.

[Pra65] D. Prawitz. Natural Deduction. Almqvist & Wiksell, Stockholm, 1965.

[Rov99] L. Roversi. A P-time completeness proof for light logics. In Proceedings of CSL’99, pages
469–483. Springer-Verlag, LNCS 1683, 1999.

[Rov00] L. Roversi. Light affine logic as a programming language: a first contribution. Internatinal
Journal of Foundations of Computer Science, 11(1):113 – 152, March 2000.

[Saz80] V. Sazonov. Polynomial computability and recursivity in finite domains. Electronische
Informationsverarbeitung und Kybernetik, 7:319 – 323, 1980.

[Sce93] Andre Scedrov. A brief guide to linear logic. In G. Rozenberg and A. Salomaa, editors,
Current Trends in Theoretical Computer Science, pages 377–394. World Scientific Publish-
ing Company, 1993. Also in Bulletin of the European Association for Theoretical Computer
Science, volume 41, pages 154–165.

[Sch94] Harold Schellinx. The Noble Art of Linear Decorating. PhD thesis, Institute for Logic,
Language and Computation, University of Amsterdam, 1994.

[Shi96] M. Shirahata. A linear conservative extension of zermelo-fraenkel set theory. Studia Logica,
56:361 – 392, 1996.

[Shi99] M. Shirahata. Fixpoint theorem in linear set theory. Unpublished Manuscript, 1999.

[Sho67] R. Shoenfield. Mathematical Logic. Addison-Wesley, 1967.

[ST96] H. Schwichtenberg and A. S. Troelstra. Basic Proof Theory. Cambridge Tracts in Theoret-
ical Computer Science. Cambridge University Press, 1996.

[Sta79] R. Statman. The typed λ-calculus is not elementary recursive. Theoretical Computer
Science, 9:73 – 81, 1979.

[Tak87] G. Takeuti. Proof Theory. North Holland, the second edition, 1987.

[Ter00] K. Terui. Linear logical characterization of polyspace functions. Presented at the Second
International Workshop on Implicit Computational Complexity, 2000.

[Ter01] K. Terui. Light affine lambda calculus and polytime strong normalization. In Proceedings
of LICS2001, pages 209–220, 2001.

[Tro92] Anne S. Troelstra. Lectures on Linear Logic. CSLI Lecture Notes 29, Center for the Study
of Language and Information, Stanford, California, 1992.

[TvD88] Anne S. Troelstra and Dirk van Dalen. Constructivism in Mathematics, An Introduction,
Vol. 1. Studies in Logic and the Foundations of Mathematics 121. North Holland, 1988.

[Var82] M. Vardi. Complexity and relational query languages. In Proc. of the 14th ACM Symposium
on Theory of Computing, pages 137 – 146, 1982.

[Wad93] P. Wadler. A syntax for linear logic. In Proceedings of MFPS’93. Springer Verlag, LNCS
802, 1993.

117

[Wel94] J. B. Wells. Typability and type-checking in the second-order calculus are equivalent and
undecidable. In Proceedings of LICS’94, pages 176–185. IEEE, 1994.

[Whi93] R. B. White. A consistent theory of attributes in a logic without contraction. Studia Logica,
52:113 – 142, 1993.

118

