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Quantum geometry has been identified as an important ingredient for the physics of quantum materials and
especially of flat-band systems, such as moiré materials. On the other hand, the coupling between light and
matter is of key importance across disciplines and especially for Floquet and cavity engineering of solids. Here
we present fundamental relations between light-matter coupling and quantum geometry of Bloch wave functions,
with a particular focus on flat-band and moiré materials, in which the quenching of the electronic kinetic energy
could allow one to reach the limit of strong light-matter coupling more easily than in highly dispersive systems.
We show that, despite the fact that flat bands have vanishing band velocities and curvatures, light couples to them
via geometric contributions. Specifically, the intraband quantum metric allows diamagnetic coupling inside a flat
band; the interband Berry connection governs dipole matrix elements between flat and dispersive bands. We
illustrate these effects in two representative model systems: (i) a sawtooth quantum chain with a single flat band
and (ii) a tight-binding model for twisted bilayer graphene. For (i) we highlight the importance of quantum
geometry by demonstrating a nonvanishing diamagnetic light-matter coupling inside the flat band. For (ii) we
explore the twist-angle dependence of various light-matter coupling matrix elements. Furthermore, at the magic
angle corresponding to almost flat bands, we show a Floquet-topological gap opening under irradiation with
circularly polarized light despite the nearly vanishing Fermi velocity. We discuss how these findings provide
fundamental design principles and tools for light-matter-coupling-based control of emergent electronic properties
in flat-band and moiré materials.

DOI: 10.1103/PhysRevB.104.064306

I. INTRODUCTION

It has become increasingly clear that not only the band
structure but also the properties of the Bloch functions are
of key importance in understanding and designing the phys-
ical properties of periodic structures. Prominent examples
are the quantum Hall effect and topological insulators [1–9],
which are governed by quantum geometric concepts such as
the Chern number (the Berry curvature integrated over the
Brillouin zone) or other topological invariants. Recently, the
set of quantum geometric quantities known to bear signif-
icance to physical observables has broadened further. For
instance the quantum metric (Fubini-Study metric), which
describes the distance between quantum states in a subman-
ifold of the Hilbert space, has been predicted to influence
diverse phenomena ranging from superconductivity [10–12],
orbital magnetic susceptibility [13–16], exchange constants
[17], and exciton Lamb shift [18] to the nonadiabatic anoma-
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lous Hall effect [13,19]. The quantum metric has recently
been measured experimentally [20–23]. The Berry curvature
and the quantum metric are the imaginary and real parts of
the quantum geometric tensor, respectively [24]. Therefore,
the distance between quantum states and the topology of the
system are intimately connected. This provides, for instance, a
fundamental lower bound of the superfluid weight (superfluid
density) in terms of the Chern number and Berry curvature of
the band [10,25].

It is intuitive to expect that the effects from the quantum
geometric properties of the Bloch states outsize those of the
band structure if the latter is featureless. Indeed, the geomet-
ric contribution to the supercurrent of a superconductor is
maximized in so-called flat (dispersionless) bands. The impor-
tance of quantum geometric concepts is therefore amplified
by the recent breakthrough results on flat-band-related super-
conducting and correlated phases in twisted bilayer graphene
(TBG) [26–40]. The precise mechanism of superconductiv-
ity in TBG is heavily debated [39,41–72]. However, for
this nearly flat-band system the superfluid weight has also
been proposed to contain a significant geometric contribu-
tion [73,74] and to be governed by the topological C2zT

Wilson loop winding number [75]. Although much research
has focused on TBG, for which flat bands appear only for
certain narrow ranges around specific twist angles (so-called
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magic angles, the largest of which is 1.1 ± 0.1◦ [28,31,32]),
the general concept of flat-band engineering is much more
broadly applicable [40]. For example, recent advances into
multilayered and/or electrostatically gated graphitic systems
[76–84], twisted bilayer boron nitride [85], twisted homo- or
heterobilayers of semiconducting transition metal dichalco-
genides [86–93], monochalcogenides [94], or twisted bilayers
of magnetic MnBi2Te4 [95] have been made. These studies
demonstrate that, in the absence of semimetallic behavior typ-
ical for graphene, the bandwidth (kinetic energy scales) can
be reduced continuously and smoothly with the twist angle by
the moiré superpotential induced by the interference pattern
between layers, which in turn allows increasing the relative
importance of interactions.

In this paper, we show how quantum geometry affects
one more important physical phenomenon, namely the light-
matter coupling (LMC) between electromagnetic fields and
Bloch electrons. The LMC of quantum materials is of critical
importance, for their potential integration into optoelectronic
devices [96,97], for their ability to host polaritonic excita-
tions with strongly hybridized light and matter contributions
[98–103], as well as for the fundamental possibility to en-
gineer new states of matter in them through LMC. The
light-matter engineering concept is particularly intriguing.
In the regime of classical light, Floquet matter [104,105]—
matter driven periodically in time—has brought about key
ideas for the so-called Floquet engineering of topology
[106–108] and other emergent properties of quantum mate-
rials [109]. Going from classical to quantum light, it has been
noticed how strong LMC in the quantum-electrodynamical
regime is potentially useful to engineer cavity quantum ma-
terials [110–128].

In flat-band and moiré systems, LMC would be of even
greater impact. The quenching of the kinetic energy of flat-
band electrons might allow one to reach the regime of strong
LMC more easily than in strongly dispersive materials [40].
Specifically for TBG and other moiré systems, there have
been first theoretical explorations of Floquet engineering
[129–137] and nonlinear optical responses [138]. Recently
a measured strong mid-infrared photoresponse in bilayer
graphene at small twist angles was reported [139]. Specifically
in Ref. [129] the band gap that opens at the Dirac points under
laser driving with circularly polarized light was found to be
significantly larger than the value that is naïvely expected as
one approaches the flat-band regime at the magic angle in
TBG. It is these observations that prompt two key questions:
Where does the LMC in flat-band systems come from? How
is it influenced by the twist angle as a control parameter of
band flatness? Both of these questions will be addressed in
this paper.

The role of quantum geometry for the LMC in moiré
materials such as TBG has not been studied, although connec-
tions between quantum geometry and coupling of electrons
to electromagnetic fields have been found in other con-
texts. Following earlier work for first-principles computations
of magnetic susceptibilities in insulators [140–142], it has
been discussed how the quantum geometry of Bloch wave
functions affects the orbital magnetic susceptibility [14–16],
linear [143] and nonlinear optical responses [144–147], and
spin susceptibility of spin-orbit coupled superfluids [148],

FIG. 1. Illustration of the main concept of this paper. Moiré
engineering has been demonstrated as a flexible route towards two-
dimensional flat-band engineering (top row). From the band structure
one might naïvely expect that the coupling to light in flat bands
vanishes. However, a geometric contribution (present, e.g., in TBG),
can contribute to light-matter coupling and dominates in flat band
systems (bottom row).

and enables Higgs spectroscopy in flat-band superconductors
[149].

In this paper, we demonstrate the key importance of quan-
tum geometry for LMC in flat-band materials (Fig. 1). We first
derive fundamental relations between the LMC and quantum
geometric quantities in a general multiband system in Sec. II.
We consider separately the linear and quadratic LMC (the
para- and diamagnetic terms), and the intra- and interband
contributions in each. In Sec. III we illustrate these general
results within a simple model, namely the sawtooth quan-
tum chain. Section IV explores the LMC and its geometric
properties in a tight-binding model system that captures the
salient features of TBG and similar moiré materials. Finally,
we conclude in Sec. V.

II. LIGHT-MATTER COUPLING IN MULTIBAND

SYSTEMS

To set the stage, we briefly recall LMC of free and band
electrons in single-band settings. In a free electron gas, the
coupling to an electromagnetic vector potential A(r, t ) is
given by the gauge-invariant minimal coupling prescription
p → p − eA, leading to the kinetic energy (p − eA)2/2m.
This implies the usual linear paramagnetic (j · A) LMC pro-
portional to the electronic current density j, and the quadratic
diamagnetic ( ne2

2m
A2) LMC proportional to the electronic den-

sity n and inversely proportional to the mass m of the
electrons. For band electrons with energy dispersion ǫ(k),
the paramagnetic light-matter coupling is then dictated by
the band velocity v(k) = ∂ǫ(k)/∂k, whereas the diamagnetic
coupling features the effective mass related to the inverse of
the band curvature ∂2ǫ(k)/∂k2. Specifically, the naïve expec-
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tation for the LMC in flat-band systems is that LMC should
vanish since both the band velocity and the band curvature
are zero in a strictly flat band. Obviously this is the case
in single flat bands corresponding to the atomic limit, and
it may happen also in multiband systems. However, we will
show in the following that in multiband systems with specific
geometric properties the LMC actually does not vanish.

We now proceed to calculate the light-matter couplings
(LMCs) for generic multiorbital tight-binding models with the
Hamiltonian

H0 =
∑

i, j

∑

a,b

ta,b(i, j)c†
i,ac j,b. (1)

Here i, j are sites on a Bravais lattice and a, b are orbital
indices. Furthermore, c(†) are annihilation (creation) operators
of electrons and t denotes the hopping integral. Throughout
the paper we omit the spin of the electrons. We couple this
system to light via the Peierls substitution adding a phase to
the hopping integral

H =
∑

i, j

∑

a,b

ta,b(i, j)e
i
∫ Ri,a

R j,b
dr′

μAμ(r′,t )
c

†
i,ac j,b, (2)

where Aμ(r, t ) is the component in the μ direction of the elec-
tromagnetic vector potential in the Coulomb gauge. We use
natural units setting e = h̄ = c = 1 and throughout the paper
employ Einstein’s summation convention. One can expand the
exponential in Eq. (2) which yields

H = H0 +
∑

i, j

∑

a,b

ta,b(i, j)

×
[

LA
μAμ +

1

2
LAA

μν AμAν + . . .

]

c
†
i,ac j,b, (3)

where we have defined the light-matter couplings as

LA
μ =

(

∂Aμ(r,t )H
)

|A=0,

LAA
μν =

(

∂Aμ(r,t )∂Aν (r′,t ′ )H
)

|A=0. (4)

We denote these terms as linear and quadratic LMC, re-
spectively. The LMC tensors are gauge dependent, but their
absolute values are not, and it is the latter that are observable
and influence various physical phenomena that depend on
LMC [150].

In this work we are mainly interested in the long-
wavelength limit and thus set Aμ(r, t ) = Aμ(t ) in what
follows. In this part we also suppress the time dependence of
the vector potential denoting it as Aμ as it is irrelevant to the
derivations.

We now diagonalize the Hamiltonian H0 to

H0 =
∫

dk ψ
†
k

h(k) ψk, (5)

where ψ
(†)
k

is an annihilation (creation) operator in the orbital
basis and h(k) is a matrix in orbital space that depends con-
tinuously on the quasimomentum parameter k. Performing a
Fourier transform of the light-matter coupled Peierls Hamilto-
nian H and assuming a spatially constant vector potential one
obtains

H =
∫

dk ψ
†
k

h(k + A) ψk. (6)

In this manner we may interpret the Hamiltonian and the
LMCs as matrices that continuously depend on the quasimo-
mentum k as a parameter. We can thus calculate the matrix
elements of the LMCs in a convenient way as

LA
μ,ab(k) = 〈a|

(

∂Aμ
H (k)

)

|A=0|b〉

= 〈a|
(

∂kμ
H0(k)

)

|b〉,

LAA
μν,ab(k) = 〈a|

(

∂Aμ
∂Aν

H (k)
)

|A=0|b〉

= 〈a|
(

∂kμ
∂kν

H0(k)
)

|b〉,

(7)

where |a〉 and |b〉 are again vectors in the orbital basis.
Through a standard basis transform the above equation can
be written in any basis and not only the orbital one. However,
in order for Eq. (7) to hold one must only differentiate the k

dependence of the LMC with respect to the quasimomentum
k and not a possible k dependence of the basis vectors.

In what follows we will be particularly interested in the
matrix elements of the LMCs in the band basis—i.e., the
eigenbasis of h(k) of the non-light-matter coupled system. We
thus define

LA
μ,nm(k) = 〈n(k)|

(

∂kμ
H0(k)

)

|m(k)〉

LAA
μν,nm(k) = 〈n(k)|

(

∂kμ
∂kν

H0(k)
)

|m(k)〉, (8)

where |n(k)〉 and |m(k)〉 are vectors in the band basis. In
general, they will naturally depend on k. For n = m we call
the coupling intra-band and keep only one index, i.e., writ-
ing LA

μ,n=m ≡ LA
μ,n and similar for quadratic couplings. For

n 	= m we call it inter-band. Next, we calculate the general
expressions for the linear and quadratic intraband and inter-
band couplings. We abbreviate derivatives with respect to the
quasimomentum kμ as ∂kμ

→ ∂μ. We note that in the case of a
degenerate k-point k∗ the basis vectors and through them also
the LMCs, as defined in Eq. (4), are not unique. In this case,
one may evaluate the LMC by taking the limit k → k∗.

A. Linear intraband coupling

The linear intraband coupling

LA
n,μ(k) = 〈n(k)|(∂μH0(k))|n(k)〉 (9)

can be calculated by utilizing the Schrödinger equation

H0(k)|n(k)〉 = εn(k)|n(k)〉, (10)

where εn(k) is the eigenvalue of H0(k) corresponding to the
eigenvector |n(k)〉 at a specific k point, i.e., the k-dependent
dispersion of band n. By performing a derivative of the equa-
tion with respect to kμ and acting from the left with 〈n(k)| one
obtains

LA
n,μ(k) = ∂μεn(k). (11)

Thus the linear intraband LMC of band n is simply given by
its band velocity—which is a well known result.

B. Linear interband coupling

In an analogous way we derive the linear interband cou-
pling

LA
mn,μ(k)m 	=n = 〈m(k)|(∂μH0(k))|n(k)〉. (12)
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We use the Schrödinger equation, Eq. (10), and perform a
derivative with respect to kμ, but this time act with 〈m(k)| 	=
〈n(k)| from the left. This yields

LA
mn,μ(k)|m 	=n = (εn(k) − εm(k))〈m(k)|∂μn(k)〉. (13)

The mathematical form of this result is known from calcu-
lations of other physical quantities: The superfluid weight
of a multiband system can be calculated by performing the
Peierls substitution and expanding the vector potential to
second order (including the paramagnetic and diamagnetic
terms), and then evaluating the current-current response in its
static and long-wavelength limit [25]. In such a calculation,
Eq. (13) appears as the interband part of the paramagnetic
current. However, the superfluid weight is distinct from this
as it involves the current-current commutator, and also the
diamagnetic term, as will be discussed below.

C. Quadratic intraband coupling

We continue with the quadratic intraband coupling

LAA
n,μν (k) = 〈n(k)|(∂μ∂νH0(k))|n(k)〉. (14)

Following analogous steps to the derivation of the linear case
we find

LAA
n,μν (k) = ∂μ∂νεn(k) −

∑

n′,n′ 	=n

(εn(k)−εn′ (k))

× (〈∂μn(k)|n′(k)〉〈n′(k)|∂νn(k)〉 + H.c.). (15)

Details of the derivation are given in Appendix A.
The quadratic interband coupling in band n is thus given

by two terms. The first is the curvature of the band as in
the case of a single band. The second term is a manifestly
multiband contribution and, interestingly, is similar to the
quantum metric

gn
μν (k) = 〈∂μn(k)|(1 − |n(k)〉〈n(k)|)|∂νn(k)〉 + H.c.

=
∑

n′,n′ 	=n

〈∂μn(k)|n′(k)〉〈n′(k)|∂νn(k)〉 + H.c. (16)

Thus finite quantum metric may enable finite LMC even in
a flat band where the effective mass is infinite (i.e., the first
term is zero). The quantum metric generates a “geometric”
effective mass that can be finite. This has been previously
noticed in different physical contexts. First, the two-body
problem of two attractively interacting fermions in a flat band
gives quantum-metric-dependent pair effective mass in certain
limits [12]. In Refs. [151,152], an effective band mass was
also calculated, and the result is mathematically equivalent to
Eq. (15) although the physical context of the result is different.

It is of interest to compare the result (15) to the geometric
contribution of multiband superfluid weight Ds

geom,μν [25]:

Ds
geom,μν =

∑

k,m,n

[
tanh(βEm/2)

Em

−
tanh(βEn/2)

En

]

×
�2(εn − εm)

εn + εm − 2μ
(〈∂μm|n〉〈n|∂νm〉 + H.c.). (17)

Here En and � are the Bogoliubov eigenenergies and the order
parameter of a superconducting system, respectively, β the

inverse temperature, and μ the chemical potential. Terms from
the quantum metric multiplied by the band energy difference
appear here too, but otherwise the form differs from Eq. (15).
Physically, the two results describe distinct processes. The
LMC in Eq. (15) corresponds solely to the diamagnetic term,
while Eq. (17) contains the diamagnetic term and the product
of two paramagnetic terms (the current-current commuta-
tor); for a band-integrated quantity, it is possible to combine
these utilizing integration by parts. Furthermore, the super-
fluid weight depends on the properties of the superconducting
ground state such as the order parameter �.

1. Quadratic intraband coupling in special cases: Two-band

systems and lowest/highest flat bands

For a two-band system the second term in Eq. (15) becomes
directly proportional to the metric. To see this let Eg(k) =
ε1(k) − ε2(k) be the band gap between the two bands. Then
the quadratic LMC into band 1 is (the coupling into band 2
follows in the same manner)

LAA
1,μν (k) = ∂μ∂νε1(k) − Eg(k)g1

μν (k). (18)

Another interesting case is the intraband coupling into an
exactly flat band. In that case the linear intraband coupling
vanishes identically as seen in Sec. II A. The curvature term
in Eq. (15) does not contribute either. Thus, to quadratic order
in A the LMC (superscript A, AA denoting that linear and
quadratic order is included) will be given as

LA,AA
n,μν (k) = −

∑

n′,n′ 	=n

(εn(k)−εn′ (k))

× (〈∂μn(k)|n′(k)〉〈n′(k)|∂νn(k)〉 + H.c.). (19)

If the flat band is the one with the lowest or highest energy we
can define a lower bound to the magnitude of the light-matter
coupling:

∣
∣LA,AA

1/N,μμ

∣
∣ � Ẽg(k)g1/N

μμ (k). (20)

Here Ẽg(k) denotes the separation between the considered
flat band one (N) and the next higher (lower) lying band at
each k point. g1(N )

μμ (k) denotes the diagonal elements of the
quantum metric in band one (N), which are always positive.
Although finite quantum metric suggests the possibility of
finite LMC also in the off-diagonal case, a relation similar to
Eq. (20) cannot be derived. The bound Eq. (20) is meaningful
nevertheless, since often, for instance in our TBG LMC study
below, the diagonal light-matter couplings are the relevant
ones.

D. Quadratic interband coupling

Last, we calculate the quadratic interband coupling

LAA
mn,μν |m 	=n(k) = 〈m(k)|(∂μ∂νH0(k))|n(k)〉. (21)

By a similar approach as above, we find

LAA
mn,μν |m 	=n(k) = (∂μεn(k) − ∂μεm(k))〈m(k)|∂νn(k)〉

+
1

2
εm(k)〈∂μ∂νm(k)|n(k)〉

+
1

2
εn(k)〈m(k)|∂μ∂νn(k)〉
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TABLE I. Linear and quadratic intra- and interband light-matter couplings. The dependence on the quasimomentum k is not marked
explicitly; it should be kept in mind that all the couplings are k local. The light-matter couplings are determined not only by the band structure
but also by the quantum geometric properties of the wave functions.

Linear (Aμ) Quadratic (AμAν)

Intraband (n) ∂μεn ∂μ∂νεn −
∑

n 	=n′ (εn−εn′ )(〈∂μn|n′〉〈n′|∂νn〉 + H.c.)

Interband (n, m) (εn − εm )〈m|∂μn〉 [(∂μεn − ∂μεm )〈m|∂νn〉 + 1
2 εm〈∂μ∂νm|n〉

+ 1
2 εn〈m|∂μ∂νn〉 +

∑

n′ εn′ (〈∂μm|n′〉〈n′|∂νn〉)] + (μ ↔ ν )

+
∑

n′

εn′(k)(〈∂μm(k)|n′(k)〉〈n′(k)|∂νn(k)〉)

+ μ ↔ ν. (22)

Here the first term contains the interband Berry connection,
defined as Amn(k) = i〈m(k)|∂kn(k)〉. Products of components
of the inter- and intraband Berry connection also appear un-
der the sum in the last term. The Berry connection is not a
gauge-independent quantity, which implies that the quadratic
interband LMC depends on gauge, too, which in fact is the
case. We summarize our findings on the LMC in Table I.

III. SAWTOOTH CHAIN

Particle localization in a periodic system due to strong
confinement, so-called atomic limit, leads to a trivial flat
band. Nontrivial flat bands can emerge in multiorbital lattices,
without strong confinement, due to interference effects [153].
Suitable unit cells containing several sites can be provided,
for instance, by geometry as in the case of the famous Lieb
[154] and kagome lattices. Another possibility is to use mag-
netic fields or artificial gauge potentials which create unit
cells determined by the magnetic flux; an obvious example is
Landau levels. Quasi-one-dimensional ladder systems exhibit

flat bands as well. The essence of all such systems is that it is
possible to have eigenstates which are located at some sites of
the lattice with suitable wave-function phases so that hopping
to neighboring sites is prevented by destructive interference.

One of the simplest models offering a flat band is the
sawtooth ladder or quantum chain [155,156], which we use
here to illustrate our findings on LMC. The Hamiltonian of
the sawtooth chain, depicted in Fig. 2(a), is

H0 = −
∑

i

t c
†
i,Bci,A + H.c. −

∑

i

t c
†
i+1,Aci,B + H.c.

−
∑

i

t
√

2
c

†
i+1,Aci,A + H.c. (23)

The dispersion of the resulting two bands reads

ε1(k) = −
√

2t (cos(ka) + 1)

ε2(k) =
√

2t . (24)

This band structure is shown in Fig. 2(b). The bands are
separated by the k-dependent gap

Eg(k) =
√

2t (cos(ka) + 2). (25)

FIG. 2. The sawtooth chain exhibiting a flat and a dispersive band, and its light-matter couplings. (a) Sketch of the model. We illustrate the
destructive interference that causes the flat band by plotting its Bloch wave function on three adjacent sites. The amplitude is denoted by the
radius of the colored circle (the amplitude on the full black dot is

√
2 times that of the amplitude on the empty circle). The sign is determined

by the color: red for positive and blue for negative. (b) The bare band structure exhibiting a completely flat and a dispersive band separated
by a gap. (c) Linear intraband coupling. This quantity vanishes identically in the completely flat band. (d) Linear interband coupling. Note
that this is a gauge dependent quantity. We have chosen the same gauge for the plot as in the text, Eq. (30). (e) Quadratic intraband coupling.
Importantly, this is nonzero even in the completely flat band. (f) Quadratic interband coupling. We have again chosen the same gauge as in the
text Eq. (36).
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We also explicitly state the metric for later comparison to the
LMCs. It is equal for both bands and reads

g1/2(k) =
sin

(
k a
2

)2

2(cos(ka) + 2)2
. (26)

We next calculate the linear intra- and interband LMCs. Since
the interband couplings are only determined up to a phase
(similar to all transition matrix elements) we explicitly state
the eigenfunctions v1 and v2 effectively fixing the gauge

v1 =
1

√

2 cos
(

1
2 k

)2 + 1

(√
2 cos(k/2)

1

)

v2 =
1

√

2 cos
(

1
2 k

)2 + 1

(

−1√
2 cos(k/2)

)

. (27)

With these the linear light-matter couplings read

LA
1 (k) =

√
2t sin(ka), (28)

LA
2 (k) = 0, (29)

LA
12(k) = −t sin

(
ka

2

)

. (30)

As expected, the linear LMC inside the second band, Eq. (28),
vanishes due to the vanishing band velocity. At the same time,
the linear LMC inside the dispersive band, Eq. (29), can easily
be read off as the derivative of the band dispersion, Eq. (24).
Note that the linear interband coupling is not gauge invariant;
we have fixed the gauge for the shown result Eq. (30). The
linear intraband and interband LMCs are plotted in Figs. 2(c)
and 2(d), respectively.

We continue by calculating the quadratic LMCs and obtain

LAA
1 (k) =

√
2t cos(ka) +

√
2t (cos(ka) + 2) (31)

×
sin

(
ka
2

)2

2(cos(ka) + 2)2
, (32)

=
√

2t cos(ka) + Eg(k)g1/2(k) (33)

LAA
2 (k) = −

√
2t (cos(ka) + 2) ×

sin( ka
2 )2

2(cos(ka) + 2)2
, (34)

= −Eg(k)g1/2(k) (35)

LAA
12 (k) =

1

2
t cos

(
ka

2

)
5 − 2 cos

(
k a
2

)

1 + 2 cos
(

k a
2

) . (36)

Indeed the quadratic LMC inside the flat band, Eq. (34), is
given by the negative energy gap Eq. (25) multiplied by the
metric of the band Eq. (26). The quadratic LMC inside the
dispersive band, on the other hand, has the same contribution
with a flipped sign. In addition, the band curvature contributes
to the quadratic LMC Eq. (34). Again, the interband coupling,
Eq. (36), is not gauge invariant and we fixed the gauge for
the form shown here. We illustrate the quadratic intra- and
interband LMCs in Figs. 2(e) and 2(f), respectively.

FIG. 3. Low-energy electronic band structure of the magic-angle
twisted bilayer graphene (MATBG) model (	M = 1.05◦) along the
two Dirac points of the mini Brillouin zone. Black dashed lines
show the monolayer Graphene (MG) Dirac bands. The red and
turquoise dotted lines indicate the two different momenta considered
in Sec. IV B.

IV. TWISTED BILAYER GRAPHENE

We analyze LMCs in magic-angle (	M = 1.05◦) twisted
bilayer graphene (MATBG) as a prototypical flat band moiré
material, utilizing our analytical results from Sec. II. In the
first part, after introducing the full-unit cell tight-binding
Hamiltonian, we explore the static light-matter coupled
Hamiltonian. In the second part we employ Floquet theory
to investigate dynamical LMC effects in the high-frequency
driving regime.

A. Full unit-cell tight-binding model

The TBG tight-binding Hamiltonian has the general form

H0 =
∑

i, j

∑

a,b

ta,b(i, j)c†
i,ac j,b, (37)

where the indices i, j denote the Bravais lattice and the indices
a, b refer to the pz orbitals of the carbon atoms within both
layers. We assume Slater-Koster hopping matrix elements of
the general form:

ta,b(i, j) = t0 exp

[

−β
r − b

b

]
x2 + y2

r2

+ t1 exp
[

−β
r − c0

b

] z2

r2
, (38)

where r = ||(x, y, z)T || denotes the distance between sites
ria and r jb. We choose our model parameters according to
Ref. [73]. The parameters b = a0/

√
3, a0 = 2.46 Å, and c0 =

3.35 Å denote the nearest-neighbor distance of the carbon
atoms, the monolayer lattice constant, and the interlayer dis-
tance, respectively. For our model calculations we assume an
intralayer hopping t0 = −2.7 eV, an interlayer hopping t1 =
0.297 eV, and β = 7.2 as fitting parameter for the exponential
decay of the hopping matrix elements.

Figure 3 shows the electronic band structure of the TBG
model Hamiltonian at the first magic angle 	M = 1.05◦. The
reference monolayer graphene Dirac bands (black dashed
lines) illustrate the strong band-flattening effect that originates
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FIG. 4. LMCs of the Peierls-substituted MATBG Hamiltonian. (a)–(c) show the LMCs at K̃1 in the linear regime of the first Dirac cone
around K1. (d)–(f) show the LMCs at the Ŵ point. Coloured dots indicate the magic-angle values that are presented on a finer grid in the insets.
Colored arrows indicate the monolayer graphene reference values. (a),(d) provides a measure of the linear-field intraband coupling (band
velocity) summed over the four flat bands. (b),(e) show the linear-field interband couplings. The red and turquoise lines indicate the coupling
between the four flat bands. The orange and black line provide a measure of the coupling of the four flat bands to the two higher and two lower
lying dispersive bands. (c),(f) measure of the quadaratic-field intraband coupling.

from the interlayer-coupling-induced backfolding to the mini
Brillouin zone corresponding to a moiré super cell of N =
11908 lattice sites. The red (turquoise) dotted line indicates a
quasimomentum cut in close proximity to the Dirac point (at
Ŵ) for which we investigate the LMC in the following section.

B. Light-matter coupling

We explore electronic LMC of the nearly-flat band
manifold in MATBG. In accordance with our analytic
model investigations of Secs. II and III, we couple a
spatially homogeneous external vector potential A via
Peierls substitution. This introduces gauge phase factors
ta,b(i, j) → ta,b(i, j) exp [igA(ri,a − r j,b)] to the hopping el-
ements of Eq. (38). Expanding the field-dependent hopping
elements up to second order, we define the LMC elements of
the Fourier transformed Hamiltonian in the original band basis
H0(k)|n(k)〉 = εn(k)|n(k)〉 according to Eqs. (8) as

LA
mn,μ(k) = 〈m(k)|(∂μH0(k))|n(k)〉,

LAA
mn,μν (k) = 〈m(k)|(∂μ∂νH0(k))|n(k)〉. (39)

We characterize the LMC of the nearly flat electronic bands
by introducing the three quantities

LMCm=n
A (k) =

1

4

∑

m

√
∑

μ

∣
∣LA

μ,mm(k)
∣
∣
2
,

LMCm 	=n

A (k) =
1

4

∑

mn,m 	=n

√
∑

μ

∣
∣LA

μ,mn(k)
∣
∣
2
,

LMCm=n
AA (k) =

1

4

∑

m

√

1

2

∑

μν

∣
∣LA

μν,mm(k)
∣
∣
2
. (40)

The first expression LMCm=n
A defines a quantitative mea-

sure of the linear-field intraband coupling. The index
m ∈ {−2,−1, 0,+1} runs over the four flat bands (we
choose a counting where the first conduction band has
band index m = 0). As we only consider fields within
the x-y plane we have two spatial indices μ, ν ∈ {x, y}.
The second quantity LMCm 	=n

A provides a measure for
the linear-field interband coupling. The indices m 	= n ∈
{−4,−3,−2,−1, 0,+1,+2,+3} run over the four flat bands
and the two higher and lower lying dispersive bands. For
computational simplicity, we neglect the coupling to higher
and lower lying bands at this point; the limited number of
bands however is sufficient for making the important quali-
tative points, discussed below. The last expression, LMCm=n

AA ,
quantifies the quadratic-field intraband coupling. Again, the
band index m ∈ {−2,−1, 0,+1} runs over the four flat bands.
We do not present the quadratic interband coupling as our
numerical analysis has shown that, for the chosen driving
regime, it has no impact on our results presented in Sec. IV C.

The numerical results for these quantities for the field-
coupled Hamiltonian are presented in Fig. 4. The upper row,
Figs. 4(a)–4(c), shows the LMCs at a momentum K̃1 within
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the linear region close to the first Dirac point. We avoid the
exact Dirac point as the band degeneracy imposes a vanishing
interband coupling between the flat bands (see Table I). More-
over, the second k derivatives vanish at the Dirac point (see
Appendix B). The lower row illustrates the same couplings
at the Brillouin zone center Ŵ. Colored arrows indicate ref-
erence values of two uncoupled graphene sheets, which can
easily be accessed by switching off the interlayer coupling
in our model. Within the Dirac cone, the decrease of the
band velocity (interlayer coupling) with twist angle reflects
the well-known quenching of the bandwidth when approach-
ing the magic angle from above. For increasing twist angles
the band velocity approaches that of monolayer graphene
[Fig. 4(a)]. At the Ŵ point, the band velocity vanishes for all
twist angles as it does for graphene [Fig. 4(d)].

To investigate the linear-field interband coupling, we con-
sider the coupling within the flat bands and the coupling
between the flat bands and the two higher and the two lower
lying dispersive bands separately. At the Dirac cone, the cou-
pling within the flat bands shows the same angle dependency
as the intraband coupling, which is a direct consequence of the
form of the Dirac Hamiltonian (see Appendix B). However,
while the interband coupling within the flat bands becomes
very small at the magic angle, we find an increasingly pro-
nounced coupling to the higher and lower lying dispersive
bands for small twist angles [Fig. 4(b)]. This significant in-
terband coupling between the four flat bands and the other
bands is the central result of this section as it provides, at first
glance counterintuitively, a strong light-matter engineering
channel at the Dirac points despite vanishingly small Fermi
velocities. Importantly, the true interband coupling could be
even higher, as we restrict the summation to the four nearest
lying dispersive bands. The significance of the interband cou-
pling manifests in two ways. First, one can directly compare
its absolute LMC amplitude at the magic angle to either the
interband coupling between the flat bands or to the linear-
field intraband coupling [Fig. 4(a)]. These are quantities that
dominate the LMC in monolayer graphene [see red arrows
in Figs. 4(a) and 4(b)]. Moreover, the interband coupling is
significant indirectly, as we will demonstrate in Sec. IV C:
The experimentally observable light-induced Floquet gap at
the Dirac points is much larger than expected from naive Dirac
band physics and strongly depends on this interband coupling
to higher and lower lying dispersive bands.

The qualitative behavior of the linear-field interband cou-
pling at the Brillouin zone center is similar [Fig. 4(e)]. Again
the coupling between the flat bands is very small while
the coupling to the dispersive bands becomes very strong
towards approaching the magic angle. Interestingly, the cou-
pling within the flat bands seems to reach a local maximum
for an intermediate twist angle at the Ŵ point. These results
highlight the limited applicability of the four-band models
often used for describing TBG. This general coupling mech-
anism between flat bands could play an important role within
measured strong midinfrared light-matter responses in small
angle TBG [139].

The quadratic intraband coupling increases monotonically
with the twist angle both close to the Dirac point and at the
Brillouin zone center. Note that since we look not exactly at
the Dirac point, the second derivatives in k can have finite val-

ues in contrast to the Dirac Hamiltonian itself (see Appendix
B). At the magic angle the quadratic intraband coupling is
finite but small.

C. Floquet engineering

Exploiting the significant LMC of the quasiflat MATBG
bands shown in the previous section, we now investigate the
effect of a time-periodic external field on the MATBG elec-
tronic band structure via the Floquet formalism. In particular,
we explore two different effects of a circularly polarized laser
field. The first effect is the opening of a topological band
gap �K at the Dirac points that is a direct consequence of
broken time-reversal symmetry [129,157–162]. The second
effect is a bandwidth renormalization of the low-energy man-
ifold at the Brillouin zone center �Ŵ , usually referred to as
dynamical localization. We quantify these effects as a function
of the field strength and trace back their origin to different
parts of the LMC Hamiltonian. By coupling a time-periodic
laser field, the Hamiltonian itself becomes time dependent
H (t ) = H (t + T ) with time period T . Expanding up to second
order in the driving field, the matrix elements of the time-
dependent Hamiltonian in the original band basis take the
general form

〈m|H (t )|n〉 = εnδmn +
∑

μ

LA
μ,mnAμ(t )

+
1

2

∑

μν

LAA
μν,mnAμ(t )Aν (t ). (41)

Note that for simplicity we drop the explicit k dependency
from here on. By mapping the periodic time evolution to a
quasistatic eigenvalue problem via a discrete Fourier trans-
form in time, the eigenspectrum of the driven system can be
described by a Floquet matrix

H
αβ =

1

T

∫ T

0
dtH (t )ei(α−β )t + δαβα, (42)

where the indices α and β span a multiphoton Hilbert space
with single-photon energy  = 2π

T
. For the experimentally

relevant frequency regime ( = 3 eV) and moderate field
strengths, we find converged Floquet results by keeping con-
tributions up to the linear photon order (see Fig. 6 in Appendix
C). However, even in the single-photon limit the huge size
of the full moiré supercell yields a Floquet matrix of leading
order 3 × 11908, which is utterly challenging to treat numeri-
cally. To effectively reduce the dimension of the problem, we
introduce a band cutoff Nc to the full time-dependent Hamilto-
nian (41) in the original band basis. Instead of all 11908 bands,
we consider only a number of Nc bands with band indices
m, n running from [−Nc/2, Nc/2 − 1]. As shown in Fig. 7 of
Appendix C, a band cutoff Nc = 512 yields converged results.

In order to disentangle distinct LMC contributions to the
light-induced Floquet gap at K and the band renormalization
at Ŵ, we employ an effective downfolded Floquet Hamiltonian
[163] via a high-frequency expansion in . Up to order −1

this yields

Heff = H
00 +

1



∞
∑

l=1

1

l
[H0−l ,H0+l ]. (43)
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FIG. 5. Floquet band effects as function of the driving amplitude A0 at a driving frequency of  = 3 eV. The colored curves illustrate the
amplitude dependency of the dominant contribution to the gap renormalization obtained from the effective HFA Floquet Hamiltonian, Heff. The
dashed black lines indicate the values obtained from the band-truncated Floquet matrix Hαβ up to quadratic field order. Blue crosses indicate
reference values obtained from the full Floquet matrix without band truncation with full exponential LMC. (a) shows a quadratic gap opening
at the Dirac point K1 as function of the driving amplitude. The dominant contribution clearly stems from the linear-field interband matrix
elements between the flat bands of the effective Floquet Hamiltonian [lin-inter, see Eq. (46) with m 	= n ∈ {−2, 1, 0, 1}]. The black solid line
indicates the gap value obtained from a naïve two-band approximation with the Moire renormalized Fermi velocity of vF = 0.23 eV/Å. We
find excellent agreement between the HFA and the full Floquet calculations. (b) shows the bandwidth renormalization of the flat band manifold
at the Ŵ point. For small driving amplitudes A0 � 0.004 Å−1 the bandwidth is dominated by the quadratic intraband coupling [quad-intra, see
Eq. (48) with m = n ∈ {−2, 1, 0, 1}], which leads to a reduction of the bandwidth. For higher driving amplitudes the bandwidth is dominated
by the linear-field interband coupling between the flat bands [lin-inter, see Eq. (46) with m 	= n ∈ {−2, 1, 0, 1}], which induces a trend towards
an increasing bandwidth. The yellow curve shows the bandwidth contribution from the unperturbed Hamiltonian [zero, see Eq. (44)]. As
reference, we show the sum of all three dominant contributions from Heff (purple curve). Despite a small overestimation of the renormalized
bandwidth, the HFA (the purple curve) qualitatively reproduces the trajectories of full Floquet calculations (blue crosses).

As a great advantage of the above expression, the zero-photon
sector of the Floquet Hamiltonian now decouples from the
higher photon orders, recovering the original Hilbert space
of the unperturbed Hamiltonian. This allows us to straight-
forwardly track down these parts of the effective Hamiltonian
that dominantly contribute to light-induced effects exhibited
by the Floquet band structure. We keep terms up to l � 2 and
assume circular field polarization within the x-y plane of the
form A(t ) = A0(sin t, cos t, 0).

In the following, we investigate different contributions to
the effective Floquet Hamiltonian Eq. (43) from distinct LMC
orders up to second order. Again, H0|m〉 = ǫm|m〉 indicates the
eigenbasis of the field-free Hamiltonian.

(a) Zeroth order. The zeroth order contribution corre-
sponds to the field-free Hamiltonian

H
00
0 = H0. (44)

(b) Linear coupling LA
μ,nm. Taking only linear-field LMC

into account the expressions appearing in Eq. (43) can be read
off as

H
00
A = 0,

H
0−1
A =

A0

2
(∂yH0 + i∂xH0),

H
0+1
A =

A0

2
(∂yH0 − i∂xH0),

H
0−2
A = H

0+2
A = 0.

(45)

Plugging Eqs. (45) into Eq. (43) and employing the definitions
of Eq. (39) yields

〈m|HA
eff|n〉 =

iA2
0

2

[

∑

l

LA
x,ml L

A
y,ln − LA

y,ml L
A
x,ln

]

(46)

for the matrix elements of the effective Floquet Hamiltonian.
(c) Quadratic coupling LAA

μν,nm. Considering solely
quadratic-field LMC yields

H
00
AA =

A2
0

4

[

∂2
x H0 + ∂2

y H0
]

,

H
0−1
AA = H

0+1
AA = 0,

H
0−2
AA =

A2
0

8

[

−∂2
x H0 + 2i∂x∂yH0 + ∂2

y H0
]

,

H
0+2
AA =

A2
0

8

[

−∂2
x H0 − 2i∂x∂yH0 + ∂2

y H0
]

.

(47)

Inserting Eq. (47) into Eq. (43) we obtain

〈m|HAA
eff |n〉 =

A2
0

4

[

LAA
xx,mn + LAA

yy,mn

]

+ O
(

A4
0

)

(48)

for the quadratic-field contribution to the matrix elements of
the effective Floquet Hamiltonian.

In Fig. 5 we explore the Floquet band-structure effects as a
function of the driving amplitude A0. As a reference, we first
calculate the values of the Floquet gap at K1 and the electronic
low-energy bandwidth at Ŵ via Eq. (42) with a truncated band
basis according to the band cutoff [see black dashed lines
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in Figs. 5(a) and 5(b)]. In a next step, we use the effective
Floquet Hamiltonian, Eq. (43), to calculate the different con-
tributions of distinct LMC orders to the gap and bandwidth
renormalization, respectively. As in Sec. IV B we consider
intraband and interband contributions separately. Moreover,
we distinguish the interband coupling between flat bands and
the coupling between flat and dispersive bands. We do this
by first calculating the Floquet eigenbasis of the full effective
Floquet Hamiltonian. Afterwards we set all matrix elements
that are not of current interest to zero and transform the
resulting matrix to the Floquet eigenbasis. We then calculate
the quantity of interest from the diagonal elements, which
for the full matrix correspond to the Floquet eigenvalues of
the effective Hamiltonian. We only plot the dominant contri-
bution. Importantly, we quantify the impact of higher-order
field effects by extracting reference values from a full Floquet
Hamiltonian, Eq. (42), where H (t ) contains all bands and the
full exponential LMC. The excellent agreement between the
full (blues crosses) and the truncated results (black dashed
line) renders higher order LMC effects (beyond second order)
insignificant within the chosen driving regime.

For the light-induced band gap at the Dirac point K1,
Fig. 5(a), the linear-field interband coupling between the flat
bands [see Eq. (46), m 	= n ∈ {−2,−1, 0,+1}] is by far the
dominant contribution. This agrees with the very small Fermi
velocity and vanishing second k derivatives ∂2

μH0 = 0 at K1.
The quadratic plot trajectory agrees with the quadratic field
dependency. At first glance, this result is counterintuitive,
since the dipole coupling matrix elements between the flat
bands become very small at the magic angle [see Fig. 4(b)].
However, as Eq. (46) illustrates, the dynamical transition ma-
trix elements of the effective Floquet Hamiltonian depend via
the index l on the dipole matrix elements to all higher and
lower lying bands, which we have shown to be significant
(note that l now runs over all bands within the chosen band
cutoff.) Due to its importance, we want to rephrase this key re-
sult: The MATBG Floquet Dirac gap is predominantly opened
via Floquet-induced coupling between the flat bands that is
mediated via strong dipole coupling of the flat bands to the

higher and lower lying dispersive bands. This result is in stark
contrast to monolayer graphene, where the band gap in the
high-frequency regime is solely governed by the Fermi veloc-
ity �MG

K ≈ 2(vF A0 )2


[157] as demonstrated experimentally for

the surface Dirac cone in Bi2Se3 [106]. For reference we plot
the naïve expectation for the gap using the renormalized Fermi
velocity of MATBG (black line) to highlight the difference
between both gap opening mechanisms. In agreement with the
weak intraband coupling (vF ≈ 0.23 eV/Å) [see Fig. 4(a)],
it is vanishingly small at the magic angle. The importance
of the other bands beyond the four flat bands, via mediated
couplings, resembles at an overall level the finding that the
higher bands are important for the superfluid weight even
when superfluid pairing mainly takes place in the four flat
bands [73]—also due to virtual processes to the higher bands.

The band renormalization at Ŵ [Fig. 5(b)] shows a more
complex behavior as a function of the driving amplitude A0

than at the Dirac point. For small driving amplitudes A0 �

0.004 Å−1 the significant contribution to the renormalization
stems from the quadratic intraband coupling [green curve,
see Eq. (48)]. As the valence (conduction) bands show a

pronounced positive (negative) band curvature at the Bril-
louin zone center, we suppose that a considerable part of the
renormalization might have its origin in the finite band mass
(see the first term on the upper right-hand side in Table I).
However, quantifying the geometric contribution (second term
on the upper right-hand side in Table I) to the renormalization
effect and exploring possible ways to enhance it are interesting
questions to tackle. As the sign of the geometric part is not
fixed, this term could potentially either reinforce or counter-
act the curvature induced renormalization, depending on the
mass sign of the surrounding dispersive bands. For stronger
driving (A0 > 0.004 Å−1) the linear-field interband coupling
between the flat bands [red curve, see Eq. (46)] dominates the
Floquet bandwidth leading to an overall bandwidth increase
at Ŵ towards higher driving amplitudes. This increase is partly
counteracted by zero-field contribution from the unperturbed
Hamiltonian Eq. (44). Interestingly, the high-frequency ap-
proximation (HFA) shows very good agreement with the full
Floquet calculations at the Dirac point while it overestimates
the bandwidth renormalization at higher driving amplitudes.
However, it should be emphasized that in the context of this
work the HFA is rather employed as means to obtain a pro-
found understanding of the underlying physical mechanism
than to give exact quantitative results as, e.g., provided in
Refs. [130,131] for Floquet driven MATBG. Qualitatively, the
HFA has overall good agreement with the full Floquet results.
Moreover, notice that we found the gap opening mechanism
at the Dirac point to be qualitatively stable as function of
the driving frequency whereas it has a strong impact on the
bandwidth at Ŵ.

V. DISCUSSION

Reducing the kinetic energy scale is a promising route
for stabilizing quantum many-body effects that emerge from
interactions and/or coupling to external perturbations. The
extreme example of making the interaction or coupling en-
ergy scales dominant are so-called flat bands where the
energy dispersion is constant. For instance, enhancement
of ferromagnetism [164,165], superconductivity [166], and
light-matter coupling (LMC) [40] have been predicted for
(nearly) flat band systems. However, many important physical
observables and responses, especially when related to dis-
placement of the particles, depend on the effective mass and
the Fermi velocity, which in a flat band diverge and vanish,
respectively. This apparent problem has recently been pointed
out to be refutable in multiband systems of suitable quantum
geometry; for instance, in the context of superconductivity
the quantum metric, Berry curvature, and Chern number of
the band guarantee stable supercurrent [10,25]. Here, we have
shown that large light-matter couplings are possible in flat
bands of suitable quantum geometry and that this has remark-
able ramifications in the case of a multiband model describing
twisted bilayer graphene (TBG).

We calculated the LMC to second order in the field ampli-
tude in a generic multiband system and distinguished the intra-
and interband contributions. For the linear in amplitude case
(the paramagnetic term), the intraband coupling is given by
the group velocity as is well known, while the interband cou-
pling depends on the properties of the Bloch functions. The
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quadratic (diamagnetic) intraband term contains the inverse
effective mass, which would be present also in a single-band
case, but also a multiband term that relates to the quantum
metric of the band. In two limits, namely the two-band case
and a system with exactly flat band either as the highest or
the lowest one, we showed that the LMC is bounded from
below by the quantum metric of the band. This highlights
that the quadratic intraband coupling, usually given by the
inverse effective mass, can be finite also in a flat band of
diverging effective mass, provided that it has a finite quantum
metric. As the quantum metric is bounded from below by
the Berry curvature and the Chern number of the band, topo-
logically nontrivial (nearly) flat bands are thus favorable for
large quadratic LMCs. Finally, we showed that the quadratic
interband coupling depends on the interband Berry connection
and can be nonzero also for flat bands. To illustrate these find-
ings within a simple flat-band model, we presented the LMCs
dependence on quantum geometry and how it varies over the
Brillouin zone in the case of a sawtooth quantum chain.

Recent advances in moiré materials, where the band cur-
vature can be tuned by a twist angle between atomic layers,
motivated us to explore the LMC within a generic tight-
binding model that describes the basic features of twisted
bilayer graphene. We performed the analysis both for static
and dynamic (Floquet engineering) LMC effects, which is
challenging due to the extremely large size of the moiré unit
cell at the magic angle. In the static case, we found a strong de-
pendence of the LMC on the twist angle. Obviously the band
flattening tuned by the twist angle modifies the Fermi velocity
and the effective mass. We found that the intraband linear
LMC simply reflects these quantities, as would be expected by
a naïve approach. In contrast, the linear interband LMC shows
intriguing behavior: It becomes very large at the magic angle.
We found this to be due to the couplings between the flat and
the dispersive bands while the terms involving two different
flat bands were negligible. The quadratic (diamagnetic) LMC
inside the flat bands was found to decrease but remain finite
as the magic angle in TBG is approached.

Understanding the dynamic case was strongly motivated
by the potential of Floquet engineering in moiré materials.
For instance, topological gaps have been predicted to open
at the K point of the MATBG dispersion, but since the gap
was much larger than expected by naïve rescaling of a Dirac-
fermion-only model, its origin remained a puzzle [129]. Here
we showed that the possibility of large Floquet gaps at the
K point arises from interband coupling between the four flat
bands. The mechanism was revealed to be quite subtle and
intriguing. In the static case, the matrix elements between
the flat bands would be vanishing; however, in the dynamic
one they actually contain virtual transitions to the higher (and
lower) dispersive bands, which facilitates a sizable effective
coupling between two flat bands. We further considered the Ŵ

point and showed that band flattening can be engineered there
via quadratic intraband terms.

Intuitive physical understanding of the connection between
quantum geometry and various responses such as supercurrent
and LMC is provided by the connection between Wannier
function overlaps and topology. In a band with nonzero
Chern number, Wannier functions cannot be exponentially
localized [167]. The significant overlap of Wannier functions

of nearby lattice sites facilitates particle displacement and
transport driven by interparticle interactions or an external
perturbation—this effect becomes dominant in a flat band
where noninteracting, uncoupled particles localize due to de-
structive interference of the wave functions [168].

Our results provide general guidelines for designing strong
light-matter interaction phenomena in multiband systems.
Quenching the kinetic energy is indeed a feasible strategy,
since interband LMCs as well as the quadratic intraband one
can remain large provided the bands have nontrivial quan-
tum geometric properties, in particular finite quantum metric
and/or interband Berry connection. The quantum metric can
be nonzero in a topologically trivial system, however, it is
bounded from below by the Chern number, thus topologi-
cally nontrivial systems with nearly flat bands are excellent
candidates to host large LMCs. In case of TBG and other
moiré materials, this points to the potential importance of
the so-called fragile topology associated with these systems
[57,169,170]. Our findings on TBG emphasize that interband
processes involving the higher and lower dispersive bands,
either directly (static) or indirectly (Floquet), generate large
LMC effects even when the na’ve theory based on the energy
dispersions would indicate otherwise. This is definitely good
news for Floquet or cavity engineering and LMC in moiré
materials. It emphasizes, however, that models that take into
account only a few (in case of TBG, four) flat bands can
drastically miss important effects. The need to consider more
than four bands, due to geometric contributions, was pointed
out also in the context of superconductivity in TBG [73].

An obvious future task is to explore how including more
bands than in this work influences LMCs in TBG: What will
be the maximum value achievable? To overcome limitations
related to the large size of the unit cell, renormalized models
[55,171] could be applied, but there one needs to carefully
investigate whether the renormalization still works in the con-
text of LMC, and dynamic processes in particular. To provide
direct predictions for Floquet engineering experiments, sim-
ulations with smaller frequencies need to be performed. Our
results should also inspire and guide the way for searching
large LMCs and efficient Floquet engineering in other moiré
materials beyond TBG, where vast possibilities for different
parameter regimes and quantum geometric properties can be
found.
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FIG. 6. Convergence of Floquet effects as function of considered
photon sectors for a driving frequency  = 3 eV and a driving ampli-
tude A0 = 0.01 Å−1. Black solid lines indicate the values computed
with the truncated Floquet Hamiltonian Hαβ . For both quantities, the
Floquet gap at K1 (a) and the bandwidth renormalization at Ŵ (b), we
find good convergence at linear photon order |max(α)| = 1, which
we use throughout this work.

APPENDIX A: QUADRATIC INTRABAND COUPLING

Here we present the calculation for the quadratic intraband
coupling

LAA
n,μν (k) = 〈n(k)|(∂μ∂νH0)|n(k)〉. (A1)

From now, we leave out the explicit k dependence of the quan-
tities for brevity. From the Schrödinger equation we obtain

〈n|(∂μ∂νH )|n〉 + 〈n|(∂μH )|∂νn〉 + 〈n|(∂νH )|∂μn〉
= ∂μ∂νεn + (∂μεn)〈n|∂νn〉 + (∂νεn)〈n|∂μn〉. (A2)

We next simplify the second and third term on the LHS, as
exemplified here for the second term:

〈n|(∂μH )|∂νn〉

=
∑

n′

〈n|(∂μH )|n′〉〈n′|∂νn〉

=
∑

n′ 	=n

〈n|(∂μH )|n′〉
︸ ︷︷ ︸

Sec. IIB= (εn−ε′
n )〈∂μn|n′〉

〈n′|∂νn〉

+ 〈n|(∂μH )|n〉
︸ ︷︷ ︸

Sec. IIB= ∂μεn

〈n|∂νn〉

= 2
∑

n′ 	=n

(εn−εn′ )〈∂μn|n′〉〈n′|∂νn〉 + (∂μεn)〈n|∂νn〉. (A3)

Inserting this and the analogous term, with μ and ν ex-
changed, back into Eq. (A2) we arrive at the final result

LAA
n,μν (k) = ∂μ∂νεn(k)−

∑

n 	=n′

(εn(k)−εn′ (k))

× (〈∂μn(k)|n′(k)〉〈n′(k)|∂νn(k)〉 + H.c.), (A4)

where we have restored the explicit k dependence. This is the
result quoted in Sec. II C Eq. (15). The above calculation is
analogous to that of Ref. [151].

APPENDIX B: LIGHT-MATTER COUPLING IN

DIRAC HAMILTONIAN

The Dirac Hamiltonian to describe a single Dirac point can
generally written as

HD = vF (σxkx + σyky), (B1)

where vF denotes the band velocity, k = (kx, ky) the two-
dimensional lattice momentum, and σx,y the corresponding
Pauli matrices. The orthonormal eigenvectors are

v1 =
1

√
2

(

−
kx + iky

|k|
, 1

)T
, v2 =

1
√

2

(
kx + iky

|k|
, 1

)T

,

(B2)
with corresponding eigenvalues

ε1 = −vF |k|, ε2 = vF |k|. (B3)

FIG. 7. Convergence of Floquet effects as function of band cutoff
Nc for a driving frequency  = 3 eV and a driving amplitude A0 =
0.01 Å−1. Black solid lines indicate the values computed with the
truncated Floquet Hamiltonian Hαβ . The blue dashed line indicates
the reference values extracted from the full Floquet Hamiltonian
without band truncation and with full exponential LMC. Red dashed
lines indicate the values computed via the effective Floquet Hamil-
tonian Heff in the HFA. For both quantities, the Floquet gap at
K1 (a) and the bandwidth renormalization at Ŵ (b), we find good
convergence for a band cutoff Nc = 512. We use this cutoff for all
numerical Floquet calculations presented in Sec. IV C. The truncated
Floquet Hamiltonian (black) and the full Floquet Hamiltonian (blue)
show consistent results at Nc, rendering field effects beyond second
order insignificant in the chosen driving regime. While the high
frequency approximation works well at the K point, it overestimates
the bandwidth renormalization at the Ŵ point. However, it should
be noted that the HFA is predominantly introduced for means of a
profound understanding of the underlying physical mechanism, not
to provide quantitatively exact results.
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The momentum derivatives of the Dirac Hamiltonian are

∂xHD = vF σx, ∂yHD = vF σy. (B4)

In the eigenbasis, Eq. (B2), these take the form

S∂xHDS−1 =
vF

|k|
(−σzkx − σyky),

S∂yHDS−1 =
vF

|k|
(−σzky + σykx ). (B5)

The second momentum derivatives vanish since the Dirac
Hamiltonian only contains terms that are linear in momentum.

APPENDIX C: FLOQUET CONVERGENCE

In Fig. 6 we show the convergence of the Floquet gap
at K1 and the electronic bandwidth renormalization of the
low-energy band manifold at Ŵ as a function of the number
max(α) of considered photon sectors. For the laser parameters
used in this paper, we find good convergence when we retain
only contributions up to first order α = ±1. In Fig. 7 we plot
the convergence of the Floquet gap at K1 and the electronic
bandwidth renormalization of the low-energy band manifold
at Ŵ as a function of the band cutoff Nc. We find good conver-
gence for a band cutoff of Nc = 512 bands.
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