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Abstract. The exact factorization approach, originally developed for electron-nuclear dynamics, is extended
to light-matter interactions within the dipole approximation. This allows for a Schrödinger equation for
the photonic wavefunction, in which the potential contains exactly the effects on the photon field of its
coupling to matter. We illustrate the formalism and potential for a two-level system representing the matter,
coupled to an infinite number of photon modes in the Wigner–Weisskopf approximation, as well as to a
single mode with various coupling strengths. Significant differences are found with the potential used in
conventional approaches, especially for strong couplings. We discuss how our exact factorization approach
for light-matter interactions can be used as a guideline to develop semiclassical trajectory methods for
efficient simulations of light-matter dynamics.

1 Introduction

The interaction of light with matter involves the corre-
lated dynamics of photons, electrons, and nuclei. Even
at a non-relativistic level the solution of Schrödinger’s
equation for the coupled subsystems is a daunting com-
putation. In a given situation however, one is often
measuring properties of only one of these subsystems. For
example, one might be wanting to know how the electri-
cal conductivity of a molecule is affected by the photons,
as in the recent experiment showing the increased con-
ductivity of organic semiconductors due to hybridization
with the vacuum field [1]. On the other hand, one might
want to understand how molecular dissociation after elec-
tronic excitation is affected in the presence of light, as
in the recent study of light-induced versus intrinsic non-
adiabatic dynamics in diatomics [2]. Or, one might want
to measure the superradiance from a collection of atoms
[3]. In each of these three cases, the observable of interest
involves one of the subsystems alone, electronic, nuclear,
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and photonic, respectively, yet to capture the dynamics of
the relevant subsystem, clearly the effects of all subsys-
tems are needed. The question then arises: can we write a
Schrödinger equation for one of the subsystems alone, such
that the solution yields the wavefunction of that subsys-
tem? The potential appearing in the equation would have
to incorporate the couplings to the other subsystems as
well as to any externally applied fields.
Hardy Gross, with co-workers, in fact already answered

exactly these questions [4–6] for the case of coupled
electronic and nuclear subsystems in the presence of a clas-
sical light field neglecting the magnetic field contribution.
That is, for systems of electrons and nuclei, interacting
with each other via a scalar potential (usually taken as
Coulomb), and in the presence of an externally applied
scalar potential, such as the electric field of light, it
was shown that one can exactly factorize the complete
molecular wavefunction into a wavefunction describing
the nuclear system, and a wavefunction describing the
electronic system that is conditionally dependent on
the nuclear subsystem [4–7]: Ψ(r,R, t) = χ(r, t)ΦR(r, t),

where r = r1, . . . , rNe
and R = R1, . . . ,RNn

represent
all electronic and nuclear coordinates respectively. The
equation for the nuclear subsystem has a Schrödinger
form, with scalar and vector potentials that completely
account for the coupling to the electronic system. One
can reverse the roles of the electronic and nuclear sub-
systems, to instead get a Schrödinger equation for the

https://epjb.epj.org/
https://doi.org/10.1140/epjb/e2018-90177-6
http://www.springerlink.com
mailto:Norah-Magdalena.Hoffmann@mpsd.mpg.de
mailto:heiko.appel@mpsd.mpg.de
mailto:angel.rubio@mpsd.mpg.de
mailto:nmaitra@hunter.cuny.edu


Page 2 of 14 Eur. Phys. J. B (2018) 91: 180

electronic system, which is particularly useful when one
is most interested in the electronic properties [8], e.g. in
field-induced molecular ionization.

Recently rapid experimental and theoretical advances
have however drawn attention to fascinating phenomena
that depend on the quantization of the light field in
its interaction with matter. This includes few-photon
coherent nonlinear optics with single molecules [9], direct
experimental sampling of electric-field vacuum fluctua-
tions [10,11], multiple Rabi splittings under ultrastrong
vibrational coupling [12], exciton-polariton condensates
[13,14], polaritonically enhanced superconductivity in
cavities [15], or frustrated polaritons [16] among others.
Optical cavities can be used to tune the effective strength
of the light-matter interaction, and, in the strong-coupling
regime in particular, one finds for example non-radiative
energy transfer well beyond the Förster limit between
spatially separated donors and acceptors [17], strong
coupling between chlorosomes of photosynthetic bacteria
and confined optical cavity modes [18], photochemical
reactions can be suppressed with cavity modes [19], the
position of conical intersections can be shifted or they can
be removed [2,20], or state-selective chemistry at room
temperature can be achieved by strong vacuum-matter
coupling [21]. Strong vacuum-coupling can change chemi-
cal reactions, such as photoisomerization or a prototypical
deprotection reaction of alkynylsilane [21,22]. This has
given rise to the burgeoning field now sometimes called
“polaritonic chemistry” [20,23–27]. In addition, novel
spectroscopies have been proposed which explicitly exploit
correlated states of the photon field. For example the use
of entangled photon pairs enables one to go beyond the
classical Fourier limit [28,29], or correlated photons can
be used to imprint correlation onto matter [20,27,30,31].

In this paper, we extend the exact factorization
approach to non-relativistic coupled photon-matter sys-
tems within the dipole approximation. We focus particu-
larly on finding the potential driving the photonic system
in the present study. One motivation is towards develop-
ing mixed quantum-classical methods for the light-matter
system. The observation that in a matter-free system, the
photonic Hamiltonian is a sum over harmonic Hamilto-
nians for each mode of the radiation field suggests that
a classical treatment of the photonic system would be
accurate: if the system begins in a Gaussian wavepacket,
classical Wigner dynamics exactly describes the motion
[32]. Coupling to matter within the dipole approximation
where the coupling operator is linear in the photonic vari-
able preserves the quadratic nature of the Hamiltonian,
and one might then think that again a classical Wigner
treatment would be exact. However, although accurate, it
is not exact. This implies that the true potential driving
the photonic motion is in fact not quadratic. The exact
factorization approach defines exactly what this potential
should be. In this paper we explain the formalism and give
some examples of this potential, that clearly show devia-
tions from harmonic behaviour throughout the dynamics.

The theory is described in Section 2, presenting the
Hamiltonian that we will consider, and the formalism of
the factorization approach. Section 3 demonstrates the
approach on two examples, that we choose as the simplest

cases for this initial study. The matter system is described
by a two-level system while the photonic system is chosen
to either be an infinite number of modes treated within
the Wigner–Weisskopf approximation, or a single cavity
mode chosen to be resonant with the spacing of the two
levels, explored over a range of coupling strengths. We
find and interpret the potential driving the photonic sys-
tem, which depends significantly on whether the initial
state of the system is chosen correlated or fully factor-
ized. Finally in Section 4 we summarize and discuss the
relevance of this approach for future investigations of
light-matter dynamics.

2 Theory

2.1 QED-Hamiltonian

In this work, we consider the non-relativistic limit of a
system of Ne electrons, Nn nuclei, and Np quantized pho-
ton modes, treated within the dipole approximation in
Coulomb gauge [27,33,34]. For now, we do not consider
any classical external fields, and neglect spin-coupling.
The Hamiltonian of this coupled system is then defined
by [20,35–38]

Ĥ(q, r,R) = Ĥp + Ĥe + Ĥn + Ĥep + Ĥnp + Ĥen + Ĥpen,

(1)
which operates in the space of: r = {r1..ri..rNe

} represent-
ing all electronic spatial coordinates, R = {R1..RI ..RNn

}
representing all nuclear coordinates, and q = {q1..qα..qNp

}
representing all photonic displacement coordinates. The
first term characterizes the cavity-photon Hamiltonian

Ĥp(q) =
1

2





2Np
∑

α=1

p̂2α + ω2
αq̂

2
α



 = T̂p(q) + V̂p(q). (2)

Here q̂α =
∑

α

√

~

2ωα
(â+α + âα) defines the photonic dis-

placement coordinate for the αth mode, with creation(a+)
and annihilation(a) operators [35,36], and the commuta-
tion relation [q̂α, p̂α′ ] = ı~δα,α′ . The photonic displace-
ment coordinate is directly proportional to the mode-
projected electric displacement operator, D̂α = ǫ0ωαλαq̂α,
while p̂α is proportional to the magnetic field [36,37].
The αth mode has frequency ωα = kαc = απc/V , with
kα the wavevector and V the quantization volume. The
electron–photon coupling strength is given by

λα =
√
4πSα(kα ·X)eα, (3)

where Sα denotes the mode function, e.g. a sine-function
for the case of a cubic cavity [36,39], kα the wave vector,
and X the total dipole of the system. In particular, we
emphasize at this point that the mode functions introduce
a dependence of the coupling constants on the quantiza-
tion volume of the electromagnetic field. By confining this
volume, for example with an optical cavity, one can tune
the interaction strength. Finally, we note that the sum in
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equation (2) goes from 1 to 2Np, to take the two polariza-
tion possibilities of the electromagnetic field into account.
The second term of equation (1) denotes the electronic
Hamiltonian

Ĥe(r) =

Ne
∑

i=1

p̂2
i

2me
+

e2

4πǫ0

Ne
∑

i>j

1

|ri − rj |

= T̂e(r) + V̂ee(r) , (4)

where me defines the electronic mass, p̂i the electronic
momentum operator conjugate to r̂i. The third term in
equation (1) denotes the nuclear Hamiltonian

Ĥn(R) =

Nn
∑

I=1

P̂I
2

2MI
+

e2

4πǫ0

Nn
∑

i>j

ZIZJ

|RI −RJ |
(5)

= T̂n(R) + V̂nn(R), (6)

with analogous identifications to the electronic
Hamiltonian and eZI here being the nuclear charge.

The remaining terms in equation (1) denote the cou-
plings between the subsystems. The electron-nuclear
coupling appears as the usual Coulombic interaction:

Ĥen = −
Ne
∑

i=1

Nn
∑

J=1

e2Z

|ri −RJ |
(7)

the electron–photon coupling, in dipole approximation,

Ĥep = −
2Np
∑

α=1

ωαq̂α~λα ·
Ne
∑

i=1

eri, (8)

(where e is the magnitude of the electronic charge) bilin-
early couples the total electric dipole moment with the
electric field operator for each mode of the photonic field.
Similarly, the nuclear-photon coupling is

Ĥnp =

2Np
∑

α=1

ωαq̂α~λα ·
Nn
∑

I=1

eZIRI . (9)

Finally, Hpen represents the dipole self-energy of the
matter in the radiation field:

Ĥpen =
1

2

2Np
∑

α=1

~λα ·
(

Nn
∑

I

ZIRI −
Ne
∑

i

ri

)2

. (10)

This self-energy term is essential for a mathematically
well defined light-matter interaction. Without this term
the Hamiltonian is not bound from below, and loses in
addition translational invariance (in case of a vanishing
external potential) [40].

The dynamics of such a coupled system is given by
the solution of the time-dependent Schrödinger equation
(TDSE)

ĤΨ(r,R,q, t) = i∂tΨ(r,R,q, t), (11)

where Ψ(r,R,q, t) is the full matter-photon wavefunction,

that contains the complete information of the coupled
system. However it is difficult to obtain an intuitive under-
standing and interpretation of such a coupled system
from the high-dimensional Ψ(r,R,q, t), and moreover, we

may not be interested in all the information as we might
be interested in one of the subsystems. If one of these
subsystems varies on a much slower time-scale than the
others (in particular the nuclei), what is often done in
coupled electron-nuclear systems is a Born–Oppenheimer
(BO) adiabatic approximation where the faster time-scale
subsystem (in particular the electrons) are assumed to
instantaneously adjust to the positions of the nuclei, and
hence if they begin in an eigenstate, they remain in
an eigenstate parameterized by the nuclear coordinate.
The eigenenergy maps out a BO potential energy sur-
face (PES) which provides the potential for the nuclear
dynamics. These potential-energy surfaces are clearly an
approximation within the adiabatic ansatz, but in fact
an exact PES can be defined quite generally without
the need for any adiabatic approximation, which brings
us to the main point of this paper. For the electron-
nuclear problem, these arise from the exact factorization
approach mentioned earlier in the introduction. In the
next section we will extend the idea of the exact factoriza-
tion for electron-nuclei systems to coupled photon-matter
systems.
Before moving to this, we note that equation (1) is the

most general form of Hamiltonian that we will consider
in the present work. In later sections, in particular in
the explicit examples, we will simplify to just a two-level
electronic system interacting with the photonic field in a
cavity. In that case, many of the terms in equation (1) are
zero, and we simplify the remaining terms even further to
a model Hamiltonian

Ĥ = −ω0

2
σ̂z +

∑

α

(

−1

2

∂2

∂q2α
+

1

2
ω2
αq

2
α

)

+
∑

α

ωαλαq̂α(degσ̂x). (12)

Here σi are the Pauli matrices. The first term is the
two-level system that replaces the electronic Hamilto-
nian (including the dipole self-energy, which simplifies to
a constant energy shift for a two-level system), where
the energy-level difference is ω0, and deg, appearing in
the third term, is the dipole moment of the transition.
The second term describes the free photon field, as in
equation (2), while equation (8) reduces to the third term
with λα as the coupling strength evaluated at the position
of the atom in the cavity. The TDSE also simplifies, to

i~
∂

∂t

−→
Ψ (q, t) =

(

−ω0

2
+ Ĥp(q)

∑

α
ωαλαq̂αdeg

∑

α
ωαλαq̂αdeg

ω0

2
+ Ĥp(q)

)

−→
Ψ (q, t),

(13)

where we use the notation
−→
Ψ (q, t) being a 2-vector defined

at every q and t. A cartoon of the problem is given

in Figure 1.
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Fig. 1. Cavity-setup: particle (green) trapped in a cavity and
coupled by coupling strength λα to the α photon mode with
the photonic frequency ωα, where α = {1, 2, . . . , 2np}.

2.2 Exact factorization approach

The exact factorization (EF) may be viewed as a
reformulation of the quantum mechanics of interact-
ing coupled systems where the wavefunction is factored
into a marginal amplitude and a conditional amplitude
[4–7,41]. With non-relativistic electron-nuclear systems in
mind, the equations for these amplitudes were derived for
Hamiltonians of the form

Ĥ = T̂e + T̂n + V̂ , (14)

where V̂ is a scalar potential that includes coupling
between the electrons and nuclei (usually Coulombic)

and any externally applied fields. Here T̂e,n are kinetic
energy operators of the electronic and nuclear systems,
just as in equations (4) and (6), that have the form of
−∑i(I) ∇2

i(I)/2mi(I) (that is, no vector potential). The

EF then proves that the exact full molecular wavefunction
can be factored as

Ψ(r,R, t) = χ(R, t)ΦR(r, t) . (15)

The equation for the nuclear amplitude χ has a TDSE
form [5,6,42,43], equipped with a time-dependent scalar
potential ǫ(R, t) and a time-dependent vector potential
AI(R, t) that include entirely the effects of coupling to the
electronic system as well as external fields. The equation
for the conditional electronic amplitude ΦR has a more

complicated form, involving a coupling operator Ûen, that
acts on the parametric dependence of ΦR. The factoriza-

tion is unique, up to a gauge-like transformation, provided
ΦR satisfies the “partial normalization condition” (PNC),
∫

dr|ΦR(r, t)|2 = 1; under such a transformation, ǫ and

A transform as scalar and vector potentials do in electro-
dynamics. The nuclear Nn-body probability density and
current-density can be obtained in the usual way from
the nuclear amplitude χ(R, t), so in this sense, χ can be
identified as the nuclear wavefunction of the system.

The form of equation (15) is similar to the BO approx-
imation, however with the important difference that
equation (15) is an exact representation of the wavefunc-
tion, not an approximation, and further that it is valid
for time-dependent systems, with time-dependent exter-
nal fields, as well. The BO approximation assumes that

the electronic system remains always in the instantaneous
ground (or eigen)-state associated with the nuclear config-
uration R, and therefore misses all the physics associated
with non-adiabatic effects, including wavepacket branch-
ing and decoherence. These effects are contained exactly
in the coupling terms in the EF equations: the scalar and
vector potentials and the coupling operator of the elec-
tronic equation. It is important to note that there is no
assumption of different timescales in the EF approach, in
contrast to the BO approximation.
As the scalar potential plays a role analogous to the

BO PES, but now for the exact system, it is denoted the
time-dependent potential energy surface (TDPES), while
the vector potential (TDVP) is an exact time-dependent
Berry connection. The gauge-freedom is a crucial part of
the EF approach: in particular, whether a gauge exists in
which the vector potential can be transformed into part
of the TDPES has been explored in some works [44–47],
especially since the common understanding is that Berry
phases appear only out of an adiabatic separation of time-
scales, while the EF is exact and does not assume any such
separation. Further, equally valid is the reverse factoriza-
tion [8], Ψ(r,R, t) = χ(r, t)Φr(R, t), which is particularly

useful when one is interested in the electronic system,
since in this factorization, the electronic system follows
a TDSE in which the potentials can be analysed and
interpreted.

2.3 Exact factorization approach for QED

Here, we extend the exact factorization to systems of cou-
pled photons, electrons, and nuclei. Since all the kinetic
operators in the Hamiltonian within the dipole approxi-
mation, equation (1), are of similar form to those that were
considered in the original EF approach, equation (14),
the mathematical structure of the equations and coupling
terms will be similar when we make a factorization into
two parts.
There are three possibilities for such a factorization,

and we expect each to be useful in different contexts. One
possibility, which is perhaps the most natural extension
of the factorization of references [4–7,41], is to take the
nuclear system as the marginal one,

Ψ(q, r,R; t) = χ(R; t)ΦR(q, r; t) , (16)

with the PNC
∫

dqdr|ΦR(q, r; t)|2 = 1 (17)

for every nuclear configuration R at each time t. This
would yield a TDSE for the nuclear system, much like in
the original EF approach, but now the TDPES and TDVP
includes not only the effects on the nuclei of coupling to
the electrons, but also to the photons. This would be a
particularly useful factorization for studying light-induced
non-adiabatic chemical dynamics phenomena, when the
quantum nature of light is expected to play a role. In fact,
an approximation based on the normal BO approxima-
tion for the electron-ion dynamics has been used to study
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the cavity-induced changes in the potential energy sur-
faces in the strong coupling regime [48]. This would be a
particularly useful factorization for studying light-induced
non-adiabatic phenomena, when the quantum nature of
light is expected to play a role.
A second possibility is the natural extension of the

reverse factorization [8], where the electronic system is
the marginal amplitude

Ψ(q, r,R; t) = χ(r; t)Φr(q,R; t) , (18)

with the PNC
∫

dqdR|Φr(q,R; t)|2 = 1, for all t and every

electronic configuration r, which would yield a TDSE for
electrons, with the e-TDPES and e-TDVP now incor-
porating the full effects on the electrons of coupling to
the nuclei as well as the photons. This could be particu-
larly useful for studying, for example, the impact of the
vacuum field on electrical conductivity in a molecule or
semiconductor.

This leaves the third possibility, where the photonic
system is chosen as the marginal:

Ψ(q, r,R; t) = χ(q; t)Φq(r,R; t) , (19)

with the PNC

∫

drdR|Φq(r,R; t)|2 = 1 , (20)

for each field-coordinate q and all times t. This is the

factorization we will focus on in the present paper: it
gives a TDSE for the photonic system, within which the
scalar potential, which we call the q-TDPES, and vec-
tor potential, the q-TDVP, contain the feedback of the
matter-system on the radiation field. In free space, the
potential acting on the photons is quadratic as is evident
from equation (2), however, in the presence of matter,
the potential determining the photonic state deviates
from its harmonic form due to interactions with matter.
The cavity-BO approach introduced in reference [34] has
demonstrated these deviations within the BO approxima-
tion. The EF approach now renders this concept exact,
beyond any adiabatic assumptions.

The equations for each of these three factorizations
follow from a straightforward generalization of the orig-
inal EF equations, as the non-multiplicative operators
(the kinetic operators) have the same form; hence the
derivation proceeds quite analogously to that given in
references [5,6,42]. In particular, for the factorization
equation (19), we obtain

(

Ĥm(r,R,q; t)− ǫ(q; t)
)

Φq(r,R; t) = i∂tΦq(r,R; t), (21)
(

2np
∑

α

1

2

(

i
∂

∂qα
+Aα(q; t)

)2

+ ǫ(q; t)

)

χ(q; t) = i∂tχ(q; t),

(22)

where the matter Hamiltonian Ĥm is given by

Ĥm(r,R,q; t) = ĤqBO + Ûep (23)

with

ĤqBO = Ĥe+ Ĥn+ Ĥen+ Ĥpen+ Ĥep+ Ĥnp+
1

2

2Np
∑

α=1

ωαq̂
2
α

(24)
defined in an analogous way to the BO Hamiltonian,
but now for the photonic system. The electron–photon
coupling potential Ûep is given by

Ûep[Φq, χ] =

2np
∑

α

[

(−i∂qα −Aα(q; t))
2

2
+

(−i∂qαχ(q; t)

χ(q; t)

+Aα(q; t)

)

(

−i∂qα −Aα(q; t)
)

]

, (25)

the q-TDPES by

ǫ(q; t) =

∫

drdRΦ∗
q(r,R; t)

(

Ĥm(r,R,q; t)− i∂t

)

×Φq(r,R; t) (26)

and the q-TDVP by

Aα(q; t) = −i

∫

drdRΦ∗
q(r,R; t)∂qαΦq(r,R; t) . (27)

The factorization (19) is unique up to a gauge-like trans-
formation, provided the PNC, equation (20) is satisfied.
The gauge-like transformation has the structure of the
usual one in electromagnetism, except here the scalar and
vector potentials arise due to coupling, rather than due
to external fields, and they are potentials on the pho-
tonic system, not on the matter system. The equations
are form-invariant under the following transformation:

Φq(r,R, t) → Φq(r,R, t) exp(iθ(q, t))

χ(q, t) → χ(q, t) exp(−iθ(q, t))

Aα(q; t) → Aα(q; t) + ∂αθ(q, t)

ǫ(q; t) → ǫ(q; t) + ∂tθ(q, t). (28)

Further, one can show that the displacement-field
density represented by χ reproduces that of the full
wavefunction, i.e.

|χ(q; t)|2 =

∫

drdR|Ψ(q, r,R; t)|2 , (29)

and that the phase of χ together with the q-TDVP provide
the displacement-field probability current in the natural
way:

https://epjb.epj.org/
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Im〈Ψ |∂αΨ〉 = |χ(q; t)|2Aα(q; t) + ∂αS(q; t) , (30)

where χ(q; t) = |χ(q; t)| exp(iS(q, t)). This means that

observables associated with multiplication by q can be

obtained directly from χ(q, t), for example, the electric

field

E(r; t) =
∑

α

ωαλα(r, t)

∫

dq qα|χ(q; t)|2 , (31)

while the magnetic field is

B(r; t) =
∑

α

c

ωα
∇× λα(r, t)

∫

dq|χ(q; t)|2Aα(q; t)

+∂αS(q; t). (32)

2.4 Exact factorization for simplified model

hamiltonian: two-level system in radiation field

For our exploration of the QED factorization in this
paper, we will turn to the simplified model Hamiltonian
of equation (12), where the matter system’s Hamiltonian
is a 2×2 matrix. First, it is useful to write equation (12)
as

Ĥ = −
∑

α

1

2
∂2
qα12 + ĤqBO , where (33)

ĤqBO=−ω0

2
σ̂z+

∑

α

1

2
ω2
αq

2
α12+

∑

α

ωαλαq̂α(degσ̂x). (34)

Here ĤqBO is analogous to the BO Hamiltonian in the
usual electron-nuclear case. We can define q-BO states as
normalized eigenstates:

ĤqBO
−→
Φ (1,2)

q = ǫ
(1,2)
qBO (q)

−→
Φ (1,2)

q , (35)

with
−→
Φ i,†

q · −→Φ j
q = δij . and these can be used as a basis to

expand the fully coupled wavefunction, i.e.

−→
Ψ (q, t) = χ1(q, t)

−→
Φ (1)

q + χ2(q, t)
−→
Φ (2)

q , (36)

which would be analogous to the Born–Huang expansion
but now for the cavity-matter system.

Now in the EF approach, the fully coupled wavefunction
is instead factorized as a single product:

−→
Ψ (q, t) = χ(q, t)

−→
Φ q(t), (37)

where the PNC becomes

−→
Φ †

q(t) ·
−→
Φ q(t) = 1 , (38)

and holds for every q and each time t.

We note that there are two useful bases for this problem.
One is obtained from diagonalizing the field-free two-level
system, i.e. that defined by eigenvectors of the Pauli-σz

matrix. The other basis is the q-BO basis, defined by the
eigenvectors of ĤqBO, as in equation (35).

The EF equations follow directly from equations
(21)–(27) but with the much simplified ĤqBO above,
and all integrals over r and R replaced by 2×2 matrix-
multiplication.

2.5 Photonic time-dependent potential energy

surface

Unlike the original electron-nuclear factorization, the q-
TDVP can always be chosen to be zero due to the one-
dimensional nature of each photon-displacement mode.
This means that one can always transform to a gauge in
which the q-TDPES contains the entire effect of the cou-
pling of the matter system on the radiation field, i.e. it
is the only potential that is driving the photonic dynam-
ics. For the matter system, both the q-TDPES and the
photon-matter coupling operator incorporate the effect
of the photonic system on the matter. In the original
electron-nuclear factorization, the exact TDPES proved
to be a powerful tool to analyze and interpret time-
resolved dynamics of the system in cases ranging from
dynamics of molecules in strong fields [5,6,8,49–52], to
non-adiabatic proton-coupled electron-transfer [53–55], to
nuclear-velocity perturbation theory [56,57] and dynam-
ics through a conical intersection [58,59]. It provides an
exact generalization of the adiabatic BO-PES.
In the present work, we will study the q-TDPES ǫ(q, t)

of equation (26) for the case of the radiation field coupled
to a two level-system, using the model Hamiltonian (12).

Given a solution
−→
Ψ (q, t) for the coupled system, found

from equation (13), we will extract the exact q-TDPES
by inversion.
To do this, we first ensure that we work in the gauge

where Aα = 0. Similarly to previous work [6,54], this
gauge can be fixed by choosing the phase S(q, t) of the

photonic wavefunction, χ(q, t) = |χ(q, t)| exp(iS(q, t)), to
satisfy

∂qαS(q, t) =
Im
(−→
Ψ (q, t) · ∂qα

−→
Ψ (q, t)

)

|χ(q, t)|2 . (39)

So, from the given solution
−→
Ψ (q, t), we compute

−→
Φ q(r) =

−→
Ψ (q, t)

|χ(q, t)|eiS( ~q,t)
with

|χ| =
√

−→
Ψ †(q, t) · −→Ψ (q, t) (40)
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and insert into the q-TDPES

ǫ(q, t) =
−→
Φ †

q(t) · ĤqBO · −→Φ q(t)

+
∑

α

1

2
|∂α

−→
Φ q(t)|2 +

−→
Φ †

q(t) · (−i∂t
−→
Φ q(t))

= ǫwBO(q, t) + ǫkin(q, t) + ǫGD(q, t) , (41)

where we have identified here the first term in
equation (41) as ǫwBO, a “weighted q-BO” surface,
weighted by the probabilities of being in the q-BO eigen-
states: using the expansion equation (36),

ǫwBO =
|χ1(q, t)|2ǫ(1)qBO(q, t) + |χ2(q, t)|2ǫ(2)qBO(q, t)

|χ(q, t)|2 . (42)

The second term arises from kinetic effects from the
parametric dependence of the conditional matter wave-
function, hence we denote it as ǫkin, and it originates
from the electron–photon coupling operator: in this gauge
the only term that contributes to the electron–photon
coupling operator expectation value is

ǫkin(q, t) =
−→
Φ †

q(t) · Ûep · −→Φ q(t) = −1

2

2np
∑

α

−→
Φ †

q(t) · ∂2
α

−→
Φ q

=
1

2

2np
∑

α

|∂αΦq|2. (43)

Both ǫwBO and ǫkin are invariant under different gauge
choices, while the last term in equation (41) is gauge-
dependent, hence its name ǫGD.

3 Results and discussion

We will consider two extremes within the simplified model
Hamiltonian equation (12). The first is the Wigner–
Weisskopf limit where the two-level system is coupled
to an infinite number of cavity modes. This is the clas-
sic model for spontaneous emission: an atom initially in
an excited state in a vacuum decays to the ground-state
by spontaneously emitting a photon. The second system
we study is the two-level system coupled to a single res-
onant mode. The Hamiltonian is then the same as the
Jaynes–Cummings one, but as we will begin with a pho-
tonic vacuum and excited atom, we will not see the famous
collapses and revivals, but we will see Rabi oscillation type
behavior for weak coupling. In both cases, our central
question is what are the structures and features of the
q-TDPES potential that drives the photonic system away
from its vacuum state?

As initial condition, we take the photon modes in the
vacuum state, and the two-level system in the excited
state. For the single resonant mode case, we will compare
the effect of starting in a fully factorized matter-photonic
state with that of starting in a q-BO state. The fully
factorized initial state would be the physical one when

an excited atom is instantaneously brought into a closed
cavity and just then its dynamics is studied, while the
excited q-BO state results when there is initially an exter-
nal dissipative coupling together with an applied resonant
field to maintain the atom in that excited state before the
dynamics is examined.
We notice that the dipole matrix element and cou-

pling parameter appear only together as a product in this
model equation (12), degλ. Physically, these are fixed by
the problem at hand, specifically the volume of the cav-
ity and the dipole coupling between the two levels in the
atom, apart from fundamental constants. But here, in this
model we choose them arbitrarily, and compare dynamics
for different degλ that range from relatively weak coupling
to strong coupling.

3.1 Wigner–Weisskopf limit

We first consider the Wigner–Weisskopf limit, in which our
two-level system is coupled to an infinite number of modes.
In this limit, the accepted well-known approximate solu-
tion for the coupled system is known analytically, which
makes the q-TDPES particularly straightforward to find.
We begin by briefly reviewing this solution.

The solution for
−→
Ψ of the coupled problem can be found

in the standard literature [60]. The initial state is taken to
be a purely factorized state of the electron in the excited
state and all photon modes in their ground states, i.e.

−→
Ψ (q, 0) = χ0(q)

(

1
0

)

, (44)

where

χ0(q) =
∏

α

(ωα

π~

)1/4

e−ωαq2α/2~ , (45)

which follows from the harmonic nature of the free pho-
ton field. The coupling in the off-diagonal elements of
equation (12) then cause Ψ to evolve in time, as

−→
Ψ (q, t) = a(t)χ0(q)

(

1
0

)

+
∑

α

bα(t)χα(q)

(

0
1

)

(46)

under the reasonable assumption that the coefficients of
the two-photon and higher states are negligible. Here the
one-photon states of the photonic system are

χα(q) =

√

2ωα

~
qα
∏

β

(ωβ

π~

)1/4

e−ωβq
2

β/2~ . (47)

The coefficients a(t) and bα(t) can be found by substi-
tuting equation (46) into the TDSE equation (13). After
making the Wigner–Weisskopf approximations (taking the
continuum limit so V → ∞, taking a(t) to change with
a rate much slower than the resonant frequency ω0 and
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performing a Markov rotating-wave approximation, and
neglecting a divergent Lamb shift), we arrive at

a(t) = e−
iω0t

~ e−
Γt
2 , (48)

bα(t) = eiωα
igα(e

i(ωα−ω0)t−Γt/2 − 1)

i(ωα − ω0)− Γ/2
, (49)

where gα =
√

πωα

2~ λαdeg and the decay (spontaneous

emission rate), Γ = (degλ)
2ω2

0
V
~c3 . The Wigner–Weisskopf

solution is accurate for weak coupling, so that in this limit
the solution also generates accurate q-TDPES.

With this Wigner–Weisskopf solution, we can then find
the corresponding “exact” q-TDPES, equation (41), using
equations (40) and (39). However, this yields an infi-
nite dimensional surface, since q = (q1..qα...q∞), which

is challenging to visualize. Instead, we plot some one-
dimensional cross-sections of the q-TDPES, along the ith
mode, setting qα 6=i = 0. In the following, we use q̄ to
denote all modes not equal to qi. We will abbreviate
quantities such as ǫ(qi, q̄ = 0, t) by ǫ(qi, t), understood to
be looking at the cross-section where the displacement-
coordinate of all other modes is zero. We will choose
two different modes to look along: one resonant with ω0,
and the other slightly off-resonant. With this choice of
cross-sections through the origin of all modes but one, it
can be shown that the phase of the nuclear wavefunction
that satisfies the zero-q-TDVP condition, equation (27),
S(qi, t) ≡ 0. This leads to some simplification in the
components of ǫ(qi, t).

Before we discuss the q-TDPES, in Figure 2 we plot the
autocorrelation function

AΦ(t) =
∣

∣

∣

∫

dqi(
−→
Φ †(qi; t = 0) · −→Φ (qi; t))

∣

∣

∣

2

(50)

as this gives an indication of what time-scales to expect in
the behavior of the q-TDPES ǫ(qi, t) for different coupling
strengths degλ = {0.01, 0.1, 0.4}. In the upper panel, we
have chosen to plot the q-TDPES along the mode of the
radiation field that is resonant with the two-level system.
In this case, the decay of the autocorrelation depends pri-
marily on (degλ)

2, through Γ , i.e. AΦ(t) ∝ e−Γt, although
there are some small polynomial corrections.

In the slightly off-resonant case, we have chosen ωi =
0.41 while ω0 = 0.4. In fact, we observe partial revivals
in the autocorrelation function for very long times in
the case of the weakest coupling shown (degλ = 0.01), as
shown in the inset, with the amplitude decreasing with
each revival. However the initial decay follows a similar
degλ-scaling pattern to that of the on-resonant section.
In either case, the dynamics of the decay is essentially the
same for all coupling strengths, provided the time is scaled
appropriately, and their q-TDPES’s also map on to each
other at the corresponding times. In the following then,
we will focus on the case degλ = 0.01, for both the cross-
section taken along the on-resonant mode and the slightly
off-resonant mode.

In Figures 3 and 4 we show the different components
of the q-TDPES ǫ(qi, t) for the different time snapshots

Fig. 2. The autocorrelation function AΦ(t) where the different
colors describe the different coupling strengths of the system.
The upper panel shows the decay of this function when we
choose to look on-resonance ωi = ω0 = 0.4. The lower panel
illustrates the decay when looking along a slightly-off reso-
nant mode ωi = ω0 + 0.01. The zoom-out shows the same
off-resonance decay for a longer time.

indicated by the colored dots in the decay-plot in the top
left panel, for the on-resonant and off-resonant sections
respectively. The displacement-field density, |χ(qi, t)|2 =
|χ(qi, q̄ = 0, t)|2 at these time-snapshots is shown in the
top middle panel, and we observe the gradual evolution
from the vacuum state towards the state with one photon
during the decay. This is also seen in the conditional prob-
ability amplitudes shown in the top right panel, which we
obtain from

|C1(2)(qi, t)|2 =
−→
Φ

(1(2))
qi,q̄=0 ·

−→
Φ qi,q̄=0(t). (51)

These are the coefficients of expansion of Φqi(t) in
the q-BO basis and are related to the coefficients in
equation (36) via Cj(qi, t) = χj(qi, t)/χ(qi, t). C

(1)(qi, t)

and C(2)(qi, t) begin close to 0 and 1, respectively, as
expected, and as the coupling kicks in and the atom
decays, one might expect them to evolve to 1 and 0,
respectively. This is in fact correct for almost all qi, how-
ever non-uniformly in qi. As expected from the nature
of the bilinear coupling Hamiltonian equation (12), the
conditional electronic amplitude associated with larger
photonic displacements qi couple more strongly than those
associated with smaller ones, so the conditional ampli-
tude on the upper surface falls away from 1 starting on
the outer edges and then moving in. In fact, the con-
ditional amplitude at q = 0 remains forever stubbornly
at the upper surface, unaffected by the coupling to the
field.
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Fig. 3. Wigner–Weisskopf model, looking on-resonance ωi =
ω0. The top left panel shows the decay AΦ(t), where the differ-
ent colored dots depict the times of the different time snapshots
of the dynamics shown within this plot. The middle and right
panels along the top show the photonic distribution |χ(qi, t)|

2

and each coefficient of the conditional electronic distribution
|C(1)(qi; t)|

2 (dashed), |C(2)(qi; t)|
2 (solid) at the correspond-

ing time snapshots. The middle and lower panels show the
different components of the ǫ(qi; t) as well as the full scalar
potential at the given time snapshots. In the middle panels,
the q-BO surfaces are shown in blue for reference.

This non-uniformity is reflected in the q-TDPES ǫ(qi, t),
plotted in the middle panel, and leads to a strong devi-
ation from the harmonic form it has in the absence of
matter. The potential, driving the photonic motion, loses
its harmonic form in the initial time steps as the decay
begins, peeling away starting from the outer qi. The poten-
tial nearer qi = 0 remains harmonic for the initial stages,
but as time goes on, more of the surface peels away from
the upper surface, while a peak structure develops near
qi = 0 that gets increasingly localized and increasingly
sharp as the atom decay process completes and the photon
is fully emitted. It is this peak structure in the potential
driving the photonic system that excites the system from
the zero-photon state towards the one-photon state.

We turn now to the components of this exact surface.
In the weighted BO surface, ǫwBO(qi, t) that is plotted
in the middle right panel, we see the same peeling away
from the outer edges, but sticking resolutely to the original

Fig. 4. As for Figure 3 but looking along the slightly-off
resonant mode in the Wigner–Weisskopf model.

upper surface at qi = 0. As the decay occurs, ǫwBO(qi, t)
gradually melts to the lower surface everywhere except
for a shrinking region near the origin that sticks to the
upper surface. The peak seen in the full q-TDPES on the
other hand comes from ǫkin(qi, t), plotted in the lower left
panel, which gets sharper and sharper as the photon is
emitted. Mathematically, this structure follows from the
change in the conditional-dependence of Φq near qi = 0, as

the electronic state associated with qi = 0 remains on the
upper q-BO surface while away from q = 0, in a shrinking
region, the electronic state is associated with the lower
surface. This gets sharper as χ(qi = 0, t) gets smaller and
smaller there. One can show from the analytic solution,
that, in the long-time limit, the surface at qi = 0 grows
exponentially with t at a rate determined by Γ , while for
q 6= 0, ǫkin(qi 6= 0, t → ∞) → 0.
These features of ǫwBO and ǫkin are very similar for

both the cross-section that cuts along the resonant mode
(Fig. 3) and the section that cuts along the slightly
off-resonant (Fig. 4). The remaining component of the
q-TDPES, ǫGD is much smaller than the other compo-
nents, and has a different structure in the two cases. In
fact, it is straightforward to show from the analytic solu-
tion that ǫGD(qi = 0, t) is independent of t, and that
uniformly shifting ǫGD(qi, t) so that ǫGD(qi = 0, t) ≡ 0
yields ǫGD(qi 6= 0, t ≫ Γ ) → ω0 − ωi for qi large. That is,
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Fig. 5. The ǫ(q, t) for the excited BO initial state and coupling
strength degλ = 0.01. The top left panel shows AΦ(t), where
the different colored dots depict the times of the dynamics
within this plot. The top middle and right plots show the pho-
tonic distribution |χ(q, t)|2 and the electronic coefficients in

the BO basis, |C(1)(qi; t)|
2 (dashed), |C(2)(qi; t)|

2 (solid), for
the time snapshots shown. The middle and lower panel show
the q-TDPES ǫ(q, t) and its decomposition into components
for the given time snapshots. The q-BO surfaces are shown in
the middle panel in blue for reference.

there is a symmetric step-like feature in ǫGD, of the size
of the difference in the mode frequency of interest and the
resonant mode, and as t gets larger, this feature sharpens.

Thus, we can see that in the Wigner–Weisskopf limit,
the potential driving the photonic modes deviates signif-
icantly from its initial harmonic form during the decay,
although once again becoming harmonic almost every-
where (except at q = 0) in the long-time limit. The atom-
photon correlation is required to capture these effects, and
if one wanted to model this exact q-TDPES, the condi-
tional dependence of the electronic amplitude is crucial to
include.

3.2 Two-level system coupled to a single resonant

cavity photon mode

We now turn to the other limit, tuning the cavity so that
there is just one mode that couples appreciably to the
two-level atom, with a mode frequency that is resonant
with the atomic energy difference.

Fig. 6. As in Figure 5 but with coupling strength degλ = 0.1.

The q-BO surfaces can be easily found by diagonalizing
HqBO of equation (34), keeping only one mode with ωα =
ω0 in the field:

ǫqBO(q) =
1

2
ω2
0q

2 ∓
√

ω2
0/4 + (degλω0)2q2. (52)

For couplings λdeg ≪ 1/2, the q-BO surfaces are approx-
imately parallel and harmonic except at large q (see also
Ref. [34]). So in this case if the initial photonic state
is a vacuum, then the ensuing dynamics is driven by
a largely harmonic potential, without much perturba-
tion from the atom, except at larger q. Deviations from
parallel harmonic surfaces, and hence non-q-BO behav-
ior, occurs at larger q and as the coupling increases.
We will investigate the q-TDPES driving the photonic
dynamics for three different coupling strengths, (degλ =
{0.01, 0.1, 0.4}) and will include a plot of the two q-BO
surfaces with our results for comparison with the exact
q-TDPES.
In Figures 5–7, we plot the exact q-TDPES for coupling

strengths degλ = 0.01, 0.1 and 0.4, respectively, beginning
with the atom in the excited q-BO level, multiplied by the
photonic ground-state. On the upper panel (left) we plot
the autocorrelation function

AΨ (t) =

∣

∣

∣

∣

∫

dq
−→
Ψ †(q, 0) · −→Ψ (q, t)

∣

∣

∣

∣

2

(53)
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Fig. 7. As in Figure 5 but with coupling strength degλ = 0.4.

to indicate the approximate periodicity of the system
dynamics. Comparing AΨ (t) in these three figures, we find
a decrease of the approximate period with the increase of
coupling strength until the periodicity breaks down for the
strong coupling degλ = 0.4. The weakest coupling strength
we have chosen is on the borderline of being in the Rabi
regime [61], while the strongest is far from it.
The photonic distribution (middle) and conditional

electronic coefficients (right) are shown in the top panel
of Figures 5–7. The initial coefficients are C(1)(q, 0) = 1
and C(2)(q, 0) = 0. After some time we see a transition of
the electron from the excited state to the ground-state as
indicated by these coefficients. We observe that the trans-
fer begins earlier for higher values of q and then is followed
by lower q-values, and again the conditional amplitude at
q = 0 sticks to the upper surface at all times in all cases as
there is no coupling for q = 0. The q-dependence of these
coefficients has a significant role in shaping the structure
of the q-TDPES that we will shortly discuss. At the same
time, the probability of photon emission increases, as indi-
cated by the morphing of the initial gaussian in χ(q, t)
towards its first-excited profile. For the weakest coupling
strength (Fig. 5), after a half period the system begins to
move back approximately to its initial state, as the pho-
ton is reabsorbed and atom becomes excited again. For
strong coupling degλ = 0.4 (Fig. 7), the periodic charac-
ter is lost and we find more wells and structure appearing
in the displacement-field density profile. With such strong

coupling the q-BO surfaces are quite distorted from a pure
harmonic, as evident in the plot (blue lines in the mid-
dle panel), and the anharmonicity brings more frequencies
into play. A one-photon state that is associated with the
lower q-BO surface has a wider profile with density max-
ima further out than a one-photon state associated with
the upper surface would have, for example. In fact the
character of the coupled cavity-matter system becomes
quite mixed, as is evident from the conditional electronic
coefficients shown on the right, and as one goes along the
photonic coordinate q one associates with different super-
positions of the electronic states. This leads to interesting
structure in the exact q-TDPES, that, when decomposed
in terms of the q-BO surfaces, has components that vary
a lot with q (i.e. not just approximately piecewise-in-q).
The q-TDPES for initial state prepared in the upper

q-BO state begins with the weighted q-BO compo-
nent, ǫwBO (middle right panel) on top of the upper
q-BO surface as expected. For the weakest coupling,
degλ = 0.01, ǫwBO(q, t) then melts down to the lower sur-
face over half a cycle, peeling away from the outer higher
q-values first, in a similar way to what was seen in the
Wigner–Weisskopf limit. This potential approaches the
lower surface before returning back to the upper q-BO
surface, but the region near q = 0 remains bound to the
upper surface. The time-dependent double-well structure
in the potential is again important in driving the pho-
ton emission. A similar trend is seen for the stronger
coupling 0.1 in Figure 6, but for the strongest coupling
degλ = 0.4 of Figure 7, ǫwBO(q, t) shows a more compli-
cated correlation in q, with structures mirroring those in
the displacement-field density discussed above. As for the
kinetic component, for the weaker couplings, a peak struc-
ture in ǫkin(q, t) (lower left panel) develops that grows
and narrows during the photon emission stage, similar to
what was seen in Wigner–Weisskopf, but this then reverses
during the reabsorption here. Again for the stronger cou-
pling, the structure is more complicated, mirroring the
more complicated dynamics. The gauge-dependent part,
ǫGD (lower right panel) is generally a smaller contribution
to the total q-TDPES compared to the other components,
but again we see step-like features for the weaker cou-
plings, and more complicated dynamics for the strongest
coupling.
The dynamics depends significantly on whether the ini-

tial state is the correlated q-BO state of Figures 5–7, or
a fully factorized one, and now we turn to the surfaces,
conditional probabilities, and displacement-field densities
for the latter case, plotted in Figures 8–10. The initial
coefficients were C(1)(q, 0) = 1 and C(2)(q, 0) = 0 when
beginning in the q-BO states, but when beginning in
the fully factorized state, these coefficients deviate from
these uniform values, especially for larger q, with devia-
tion increasing with the coupling strength. Although the
photonic field still begins in the vacuum state, the elec-
tronic state is not purely in the upper q-BO surface; the
electronic state associated with larger q already has some
component in the ground-state. So at these larger values
of q, the initial ǫwBO(q, 0) surface dominates the q-TDPES
and is anharmonic from the very start, lying intermediate
between the upper and lower q-BO surface. In the weak
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Fig. 8. As in Figure 5 with coupling strength degλ = 0.01 but
with the initial purely factorized state.

coupling case, the differences are only large at values of q
much larger than shown in the plot, and these are physi-
cally unimportant given there is very little photonic field
probability there; hence Figures 5 and 8 are almost iden-
tical. For strong couplings, comparing Figures 7 and 10
show that the q-TDPES has a tamer structure for the
fully-factorized initial state than for the correlated q-BO
initial state, especially at larger q; this is likely because
less energy is available at these larger q for the system
to exchange between the atomic and photonic systems
because the atomic state correlated with large q is not
completely in its excited state initially.
To summarize: at time zero the exact q-TDPES starts

on the upper q-BO-surface, which, depending on coupling
strength and choice of initial state, ranges from lying
directly on top of the upper q-BO surface (weaker cou-
pling and with q-BO initial state), to in between the two
q-BO surfaces with deviations from the upper being larger
for larger q (stronger coupling, or fully factorized initial
state). After some time the potential starts to melt down
onto the lower BO-surface, first starting at higher q-values
and then followed by lower q-values, with peak struc-
tures developing in the interior region. Around q = 0 the
kinetic-component dominates, which leads to an increas-
ing and after half a period decreasing peak. For stronger
coupling we observe several peak features in the poten-
tial and significant deviations from the curvature of the

Fig. 9. As in Figure 6 with coupling strength degλ = 0.1 but
with the initial purely factorized state.

q-BO surfaces throughout q small contribution below the
lower BO-surface; the deviations at larger q arise from the
gauge-dependent component.

4 Summary and outlook

We have introduced an extension of the exact–
factorization approach, originally derived for coupled
electron-nuclear systems, to light-matter systems in the
non- relativistic limit within the dipole approximation. We
have presented different possible choices for the factoriza-
tion but in this work have focussed on the one where the
marginal is chosen as the photonic system and the mat-
ter system is then conditionally-dependent on this. This
choice is particularly relevant when one is primarily inter-
ested in the state of the radiation field since the exact
factorization yields a time-dependent Schrödinger equa-
tion for the marginal, while the conditional is described
by an equation with an unusual matter-photon coupling
operator. The equation for the marginal is, in a sense, sim-
pler than that in the electron-nuclear case, since the vector
potential, q-TDVP, appearing in the equation can always
be chosen to be zero, so only a scalar potential remains,
the q-TDPES. We have studied the potential appearing
in this equation in a gauge where the q-TDVP is zero,
for a two-level system coupled to an infinite number of
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Fig. 10. As in Figure 7 with coupling strength degλ = 0.4 but
with the initial purely factorized state.

modes in the Wigner–Weisskopf approximation, and for a
two-level system coupled to a single photonic field mode
with a range of coupling strengths. In all cases we find
a very interesting structure of the potential that drives
the photonic dynamics, and in particular, large deviations
from the harmonic form of the free-photon field. These
deviations completely incorporate the effect of the mat-
ter system on the photonic dynamics. We also studied
the effect of beginning in an initially purely factorized
light-matter state, compared to a q-BO initial state, find-
ing significant differences for larger coupling strengths in
the ensuing dynamics, implying that in modelling these
problems a careful consideration of the initial state is
needed.

To use the exact factorization for realistic light-matter
systems, approximations will be needed, since solving the
exact factorization equations is at least as computation-
ally expensive as solving the Schrödinger equation for the
fully coupled system. The success of such an approxima-
tion depends on how well the q-TDPES is modelled. The
components of the exact q-TDPES beyond the weighted
BO depend significantly on the q-dependence of the condi-
tional probability amplitude; approximations that neglect
this dependence (Ehrenfest-like) will likely lead to errors
in the dynamics. It has been shown recently that mixed
quantum-classical trajectory methods that are derived
from the exact factorization approach can correctly

capture decoherence effects [62–64]. Since photons are
intrinsically non-interacting and therefore even simpler to
treat than nuclei, we expect in analogy to the electron-
nuclear case that semiclassical trajectory methods derived
from systematic and controlled approximations to the
full exact factorization of the light-matter wavefunction
will be able to capture decoherence effects beyond the
Ehrenfest limit for light-matter coupling. This will be
subject of future investigations.
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