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The binding energies of a range of nuclei and hypernuclei with atomic number A � 4 and strangeness

jsj � 2, including the deuteron, dineutron, H-dibaryon, 3He, 3�He,
4He, 4�He, and ��

4He, are calculated in

the limit of flavor-SU(3) symmetry at the physical strange-quark mass with quantum chromodynamics

(without electromagnetic interactions). The nuclear states are extracted from lattice QCD calculations

performed with nf ¼ 3 dynamical light quarks using an isotropic clover discretization of the quark action

in three lattice volumes of spatial extent L� 3:4 fm, 4.5 fm, and 6.7 fm, and with a single lattice spacing

b� 0:145 fm.
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I. INTRODUCTION

The structure and interactions of the light nuclei have

been the focus of experimental and theoretical explora-

tions since the infancy of nuclear physics. Yet more than

100 years later, and despite having made remarkable

progress in describing these systems in terms of nuclear

forces that are well-constrained by experiment, we remain

unable to predict the binding and interactions of any given

nucleus with reliable estimates of the associated uncer-

tainties. It has long been accepted that quantum chromo-

dynamics (QCD) and the electroweak interactions

produce the nuclear forces, and consequently are respon-

sible for the structure and interactions of all nuclei.

Unfortunately, the complexity of the QCD vacuum has

so far prevented the calculation of low-energy and

medium-energy nuclear systems directly from QCD.

Beyond recovering the results of decades of experimental

investigation, it is crucial to establish and verify tools

with which to perform such calculations, with quantifi-

able uncertainties, in order to determine the properties

and structure of exotic nuclei and of matter in extreme

environments or in kinematic regimes where experiments

are not possible or practical.

The only known way to calculate the low-energy proper-

ties of hadronic and nuclear systems rigorously is lattice

QCD (LQCD). In LQCD calculations, the quark and gluon

fields are defined on a discretized space-time of finite

volume, and the path integral over the fields is evaluated

numerically. While LQCD calculations deviate from those

of QCD because of the finite distance between points of the

grid (lattice spacing) and the finite volume of the grid (lattice

volume), such deviations can be systematically removed by

reducing the lattice spacing, increasing the lattice volume,

and extrapolating to the continuum and infinite-volume

limits using the known dependences determined with effec-

tive field theory (EFT). Calculation of important quantities

in nuclear physics using LQCD is only now becoming

practical, with first calculations of simple multibaryon inter-

actions being recently performed, although not at the physi-

cal values of the light-quark masses. Early exploratory

quenched calculations of the nucleon-nucleon (NN) scatter-

ing lengths [1,2] performed more than a decade ago have

been superseded by nf ¼ 2þ 1 calculations within the

past few years [3,4] (and added to by further quenched

calculations [5–7]). Further, the first quenched calculations

of the deuteron [8], 3He, and 4He [9] have been performed,

along with nf ¼ 2 and nf ¼ 2þ 1 calculations of 3He
[10,11] and nf ¼ 2þ 1 multibaryon systems containing

strange quarks [11]. In addition, efforts to explore nuclei

and nuclear matter using the strong coupling limit of QCD

have led to some interesting observations [12]. Recently,

nf ¼ 2þ 1 calculations [13,14] and nf ¼ 3 calculations

[15–17] have provided evidence that the H-dibaryon (with

the quantum numbers of ��) is bound at a pion mass of
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m� � 390 MeV with the physical value of the strange-

quark mass [13,14], and over a range of SU(3)-degenerate

light-quark masses with m� � 469–1171 MeV [15,16].

Extrapolations to the physical light-quark masses suggest

that a weakly bound H-dibaryon, or a near-threshold reso-

nance, exists in this channel [14,18–20]. We have searched

for bound states in other channels at m� � 390 MeV
[13,14], and evidence has been found for a bound state in

the strangeness-4 �0�0 system. This is consistent with

model-dependent and EFT predictions of a bound state in

this channel at the physical pion mass [21–23]. In addition to

the identification of bound states, calculations of hyperon-

nucleon scattering extrapolated to the physical pion mass

(using leading-order EFT) have been performed and directly

compared with the results of phase-shift analyses of experi-

mental data [24].

In this work we focus on the lightest nuclei and hyper-

nuclei and present results of the first LQCD calculations of a

number of s-shell nuclei and hypernuclei with A � 5,
including 3He, 3

�He,
4
�He, ��

4He, and a five-body state

��0pnn in the limit of exact SU(3)-flavor symmetry (and

consequently, exact isospin symmetry). Hypernuclear spec-

troscopy is enjoying an experimental renaissance with

ongoing and planned programs at DA�NE, FAIR,

Jefferson Lab, J-PARC, and Mainz, providing motivation

for enhanced theoretical efforts (for a recent review, see

Ref. [25]). Our LQCD calculations are performed using an

isotropic clover quark action at the SU(3)-flavor symmetric

point corresponding to the physical strange-quark mass,

with m� ¼ mK ¼ m� � 800 MeV. Three lattice volumes

have been employed with a spatial extent of L� 3:4 fm,

4.5 fm, and 6.7 fm, and calculations of systems with nonzero

total momentum (boosted systems) have been performed to

investigate the volume dependence of binding energies

[26,27]. As this is the first calculation of hypernuclei with

baryon number A > 2, it is prudent to establish benchmarks

for future works. The spectra of nuclei will have the simplest

structure at the SU(3) symmetry point, where the up, down,

and strange quarks have the same mass, allowing for a

relatively uncomplicated analysis. While any common

light-quark mass could have been used, the physical value

of the strange-quark mass was chosen so that only the

(common) up and down quark masses deviated from their

physical values, and also so that the four- and five-baryon

systems would be well contained within the three selected

lattice volumes. Further, such a large value of the pion mass,

combined with the temporal extent of the gauge-field con-

figurations, strongly suppresses thermal effects that are

present in all calculations and can provide a systematic

uncertainty in extracting the small energy differences

present in nuclei. Only one relatively coarse lattice spacing,

b� 0:145 fm, has been used in the calculations, dictated by

the available computational resources, and therefore, an

extrapolation to the continuum has not been performed.

Further, extrapolations to the physical light-quark masses

have not been attempted because the quark-mass depen-

dences of the energy levels in the light nuclei are not known.

Future calculations at smaller lattice spacings and at lighter

quark masses will facilitate such extrapolations and lead to

first predictions for the spectrum of light nuclei with com-

pletely quantified uncertainties that can be compared with

experiment.

II. LATTICE QCD CALCULATIONS

A. Computational overview

Three ensembles of isotropic gauge-field configurations,

generated with a tadpole-improved Lüscher-Weisz gauge

action and a clover fermion action [28], are used in this

work. This particular lattice-action setup follows closely

the anisotropic clover action of the ensembles generated by

the JLab group that we have used in our previous calcu-

lations [4,11,13,14,18,24]. The parameter tuning and scal-

ing properties of this action will be discussed elsewhere

[29]. One level of stout smearing [30] with � ¼ 0:125 and

tadpole-improved tree-level clover coefficient cSW ¼
1:2493 are used in the gauge-field generation. Studies

[29,31,32] of the partially conserved axial-current relation

in the Schrödinger functional indicate that this choice is

consistent with vanishing OðbÞ violations, leading to dis-

cretization effects that are essentially Oðb2Þ. The parame-

ters of the ensembles are listed in Table I, and further

details will be presented elsewhere [29]. As multibaryon

systems are the focus of this work, relatively large lattice

volumes are employed for the calculations, with corre-

spondingly large values of m�L and m�T. To convert

the calculated (binding) energies from lattice units (l.u.)

into physical units (MeV), a lattice spacing of

TABLE I. Parameters of the ensembles of gauge-field configurations and of the measurements used in this work. The lattices have

dimension L3 � T, a lattice spacing b, and a bare quark mass bmq (in lattice units) generating a pion of mass m�. Nsrc light-quark

sources are used (as described in the text) to perform measurements on Ncfg configurations in each ensemble. The three uncertainties

associated with the pion mass are statistical, fitting systematic, and that associated with the lattice spacing, respectively.

Label L=b T=b � bmq b [fm] L [fm] T [fm] m� [MeV] m�L m�T Ncfg Nsrc

A 24 48 6.1 �0:2450 0.145 3.4 6.7 806.5(0.3)(0)(8.9) 14.3 28.5 3822 72

B 32 48 6.1 �0:2450 0.145 4.5 6.7 806.9(0.3)(0.5)(8.9) 19.0 28.5 3050 48

C 48 64 6.1 �0:2450 0.145 6.7 9.0 806.7(0.3)(0)(8.9) 28.5 38.0 1905 54
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b ¼ 0:1453ð16Þ fm has been determined for these

ensembles of gauge-field configurations from the �
spectrum [33].

The Ncfg gauge configurations in each of the ensembles

are separated by at least 10 hybrid Monte Carlo evolution

trajectories to reduce autocorrelations, and an average of

Nsrc measurements are performed on each configuration.

The quark propagators were constructed with gauge-

invariant Gaussian-smeared sources with stout-smeared

gauge links. These sources are distributed over a grid, the

center of which is randomly distributed within the lattice

volume on each configuration, and the quark propagators are

computed using the BiCGstab algorithm with a tolerance of

10�12 in double precision. The quark propagators, either

unsmeared or smeared at the sink using the same parameters

as used at the source, give rise to two sets of correlation

functions for each combination of source and sink interpo-

lating fields, labeled as SP and SS, respectively. The propa-

gators are contracted to form baryon blocks projected to

fixed momentum at the sink for use in the calculation of the

correlation functions to be described below. The blocks are

defined as

B
ijk
H ðp; t; x0Þ ¼

X

x

eip�xSðf1Þ;i
0

i ðx; t; x0ÞSðf2Þ;j
0

j

� ðx; t; x0ÞSðf3Þ;k
0

k ðx; t; x0ÞbðHÞ
i0j0k0 ; (1)

where SðfÞ is a quark propagator of flavor f, and the

indices are combined spin-color indices running over

i ¼ 1; . . . ; NcNs.
1 The choice of the fi and the tensor bðHÞ

depend on the spin and flavor of the baryon, H, under

consideration. For our calculations we used the local inter-

polating fields constructed in Ref. [34], restricted to those

that contain only upper spin components (in the Dirac spinor

basis). This choice results in the simplest interpolating fields

that also have the best overlap with the octet-baryon ground

states. Blocks are constructed for all lattice momenta

jpj2 < 4, allowing for the study of multibaryon systems

with zero or nonzero total momentum and with nontrivial

spatial wave functions.

B. Multibaryon interpolating operators

and contractions

To define correlation functions for the multihadron sys-

tems, interpolating operators with well defined quantum

numbers at the source and sink are constructed. As we intend

to perform calculations away from the SU(3)-flavor symme-

try limit at lighter quark masses, the quantum numbers of

parity �, angular momentum J2 and Jz, strangeness s,
baryon number (atomic number) A, and isospin I2 and Iz

are used to define the interpolating operators.2 These

interpolating operators are first constructed recursively at

the hadronic level from the octet-baryon field operators

using the appropriate group products (Clebsch-Gordan

coefficients for isospin and angular momentum) to build

an outer product wave function jspacei � jang:mom:i �
jisospini � jparityi of given strangeness and baryon

number. This approach is similar to that used in Ref. [34]

in the context of excited baryons. The baryons within this

wave function are then replaced by appropriate quark-level

wave functions, of which there are, in principle, multiple

choices, and then a quark-level antisymmetrization is per-

formed (as color is included in the quark level wave

functions). A similar approach has been used to investigate

the ���� system [35].

The quantum numbers defining the systems that we dis-

cuss in this paper are shown in Table II. States are given a

TABLE II. The baryon number A, strangeness s, total isospin
I, total spin and parity J� quantum numbers of the states, and

interpolating operators studied in the current work. For each set

of quantum numbers, the SU(3) irreps that are possible to

construct with local interpolating operators are listed. The last

column lists the SU(3) irrep(s) of the interpolating operators

used in this work, and the dashes indicate that the state is

inferred from other states using SU(3) symmetry.

Label A s I J�
Local

SU(3) irreps

This

work

N 1 0 1=2 1=2þ 8 8
� 1 �1 0 1=2þ 8 8
� 1 �1 1 1=2þ 8 8
� 1 �2 1=2 1=2þ 8 8

d 2 0 0 1þ 10 10
nn 2 0 1 0þ 27 27
n� 2 �1 1=2 0þ 27 27
n� 2 �1 1=2 1þ 8A, 10 -

n� 2 �1 3=2 0þ 27 27
n� 2 �1 3=2 1þ 10 10
n� 2 �2 0 1þ 8A 8A
n� 2 �2 1 1þ 8A, 10, 10 -

H 2 �2 0 0þ 1, 27 1, 27

3H, 3H 3 0 1=2 1=2þ 35 35
3
�Hð1=2þÞ 3 �1 0 1=2þ 35 -
3
�Hð3=2þÞ 3 �1 0 3=2þ 10 10
3
�He,

3
�
~H, nn� 3 �1 1 1=2þ 27, 35 27, 35

3
�He 3 �1 1 3=2þ 27 27

4He 4 0 0 0þ 28 28
4
�He,

4
�H 4 �1 1=2 0þ 28 -

��
4He 4 �2 1 0þ 27, 28 27, 28

��0pnn 5 �3 0 3=2þ 10þ � � � 10

1To be specific, for a quark spin component is ¼ 1; . . . ; Ns and
color component ic ¼ 1; . . . ; Nc, the combined index i ¼
Ncðis � 1Þ þ ic.

2For calculations restricted to the SU(3)-flavor symmetric
limit, it would also be advantageous to work directly with
SU(3) irreducible representations.
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representative hadronic label (first column in Table II) indi-

cating one component of their hadronic level wave func-

tion. To determine which SU(3) irreducible representations

(irreps) are present in the correlation functions, the states

are acted on by the quadratic and cubic SU(3) Casimir

operators, and by V-spin, U-spin, and isospin raising and

lowering operators, the results of which are presented in

Table II (eigenvalues of the Casimir operator for relevant

SU(3) irreps are tabulated in Appendix A). Because of the

overall antisymmetric nature of allowed quark-level wave

functions, a number of the constructed interpolating opera-

tors give rise to correlation functions that contain only one

SU(3) irrep, while others contain more than one.

Given the blocks discussed in the previous section and the

quark- and hadron-level wave functions introduced previ-

ously, the contractions are performed using an algorithm

that is described in more detail in Ref. [36]. For a given set

of quantum numbers, denoted byQ, we have a basis of Nwf

hadron-level and quark-level wave functions,�ðhÞ
i and�ðqÞ

i ,

respectively, for i ¼ 1; . . . ; Nwf . Note thatNwf dependsonQ.

In this work the spatial wave function at the source is re-

stricted to a single point. In addition, the single-baryon inter-

polating fields are restricted to the upper spin components (in

theDirac basis) only. These two restrictions drastically reduce

both the size of the space of allowed quark-level wave func-

tions, and the number of terms each wave function can have.

In all cases, an orthonormal basis ofwave functions consistent

with the above constraints is obtained. The construction, as

well as the simplification of the wave functions, is done

automatically with symbolic manipulation. Finally, after

the construction of the wave functions, independent checks

of transformation properties of these wave functions were

performed, confirming that thesewave functions transform as

expected. As discussed previously, hadron-level wave func-

tions and hadronic blocks with a given total momentum are

used at the sink. These basic building blocks allow for the

construction of more interpolating fields at the sink with

nontrivial spatial hadronic wave functions. In addition,

hadron systems with nonvanishing total momentum can be

constructed, since the point sources couple to all momenta.

The contraction algorithm is then straightforward and

amounts to selecting the appropriate indices in all possible

ways from the hadron blocks building the hadronic-level

sink wave function, dictated by the quark-level wave func-

tion.3 For all the systems studied here, the total contraction

time was an order of magnitude less than the rest of the

calculation. In addition, the biggest contraction burden was

because of the large number of terms contributing to the

wave functions with a nontrivial spatial part at the sink

(moving hadrons at the sink). As an example of the speed

of our contraction code, a 4He correlation function can be

computed in�0:8 s per time slice on a single core of a dual

core AMD Opteron 285 processor.

III. THE PION AND BARYON

DISPERSION RELATIONS

In the limit of SU(3)-flavor symmetry, all members of

the lightest baryon octet have the same mass, and as such,

we compute correlation functions associated with only one

of the octet baryons. Similarly all octet pseudoscalar me-

sons are degenerate, and we refer to them as the pion.

TABLE IV. The ground-state octet-baryon energy (l.u.) as a function of momentum (l.u.), jPj ¼ ð2�
L
Þjnj, calculated on each ensemble

of gauge-field configurations. The infinite-volume baryon mass, determined by fitting the expression in Eq. (2), is provided in the last

row. The first uncertainty is statistical, and the second is the fitting systematic.

Ensemble jnj ¼ 0 jnj2 ¼ 1 jnj2 ¼ 2 jnj2 ¼ 3 jnj2 ¼ 4 jnj2 ¼ 5

243 � 48 1.20317(58)(84) 1.2282(9)(16) 1.2537(9)(23) 1.2785(11)(31) 1.3023(11)(25) 1.3254(12)(29)

323 � 48 1.20396(47)(69) 1.21821(61)(64) 1.23263(65)(70) 1.24685(69)(79) 1.26077(74)(94) 1.2746(08)(11)

483 � 64 1.2032(07)(11) 1.2096(11)(22) 1.2162(11)(21) 1.2227(12)(22) 1.2290(12)(21) 1.2354(13)(21)

L ¼ 1 1.20359(41)(61)

TABLE III. The pion energy (l.u.) as a function of momentum (l.u.), jPj ¼ ð2�
L
Þjnj, calculated on each ensemble of gauge-field

configurations. The infinite-volume pion mass, determined by fitting the expression in Eq. (2), is provided in the last row. The first

uncertainty is statistical, and the second is the fitting systematic.

Ensemble jnj ¼ 0 jnj2 ¼ 1 jnj2 ¼ 2 jnj2 ¼ 3 jnj2 ¼ 4 jnj2 ¼ 5

243 � 48 0.59389(18)(18) 0.64652(16)(19) 0.69482(17)(29) 0.73971(20)(36) 0.77800(30)(72) 0.81946(36)(78)

323 � 48 0.59445(15)(17) 0.62474(15)(18) 0.65326(16)(20) 0.68099(18)(25) 0.70672(19)(28) 0.73194(22)(31)

483 � 64 0.59403(16)(14) 0.60768(16)(15) 0.62101(18)(17) 0.63403(19)(20) 0.64667(21)(24) 0.65915(24)(28)

L ¼ 1 0.59426(12)(11)

3We note that the algorithm proposed in Ref. [37] is quite
similar to the one we have been using in the production of the
results presented here.
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Linear combinations of single-hadron correlation functions

generated from smeared quark sources and either smeared

or point sinks are formed for hadrons with a given lattice

momentum. The lowest energy eigenvalue can be deter-

mined from these correlation functions, the results of

which are presented in Table III (pion) and Table IV

(baryon), and the baryon effective mass plots (EMPs) are

shown in Fig. 1.

For hadrons at rest, the masses of the pion and baryon in

finite volume, mðVÞ
H ðm�LÞ, are extrapolated to infinite vol-

ume using

mðVÞ
� ðm�LÞ ¼ mð1Þ

� þ cðVÞ�
e�m�L

ðm�LÞ3=2
þ � � � ;

MðVÞ
B ðm�LÞ ¼ Mð1Þ

B þ cðVÞB

e�m�L

m�L
þ � � � ;

(2)

where only the first terms in the finite-volume (FV) expan-

sion are required owing to the large pion mass [38]. The

extrapolations to infinite volume are shown as the solid

regions in Fig. 2, and the extrapolated values of the pion

and octet-baryon mass are presented in Tables III and IV,
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M

FIG. 1 (color online). The EMPs associated with linear combinations of baryon correlation functions computed with the 243 � 48
(left), 323 � 48 (center), and 483 � 64 (right) ensembles, with momentum jPj ¼ 0. The inner (darker) shaded region corresponds to

the statistical uncertainty of the extracted energy, while the outer (lighter) shaded region corresponds to the statistical and fitting

systematic uncertainties combined in quadrature. The time extent of each band corresponds to the choice of the fitting interval for each

correlation function.
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FIG. 2 (color online). The volume dependence of the pion mass (left panel) and the baryon mass (right panel) extracted from the

zero-momentum correlation functions. The shaded regions are extrapolations of the form given in Eq. (2).
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FIG. 3 (color online). The squared energy [in ðl:u:Þ2] of the single pion and baryon as a function ofPjsin
2ð2�b

L
njÞ. The points are the

results of the LQCD calculations with the inner (outer) uncertainties being the statistical uncertainties (statistical and systematic

uncertainties combined in quadrature). The red curves correspond to the best linear fits.
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respectively. As expected for calculations with large values

of m�L, the single-hadron FV effects are very small. The

extrapolated pion and octet-baryon masses, using the mea-

sured lattice spacing, are m� ¼ 805:9ð0:6Þð0:4Þð8:9Þ MeV
andmB ¼ 1:634ð0Þð0Þð18Þ GeV, where the first uncertainty
is statistical, the second is the fitting systematic, and the third

is attributable to the uncertainty in the lattice spacing.

To have confidence in the extraction of multibaryon

binding energies and to be able to quantify one of the

systematic uncertainties in these determinations, it is

important to determine the single-hadron dispersion rela-

tion. The energies of the pion and baryon are shown in

Fig. 3 as a function of
P

jsin
2ð2�b

L
njÞ, where the triplet of

integers n ¼ ðn1; n2; n3Þ is related to the lattice momentum

via jPj2 ¼ ð2�
L
Þ2jnj2. In these LQCD calculations, the en-

ergy of the hadron can be related to its lattice momentum

through a dispersion relation of the form

ðbEHÞ2 ¼ ðbMHÞ2 þ
1

�2
H

X

j

sin2
�

2�b

L
nj

�

; (3)

where the anisotropy parameter, �H (or equivalently the

speed of light c ¼ 1=�H), is expected to be unity in calcu-

lations performed with isotropic lattices.4 Fitting �H to the

energy of the pion and baryon, given in Tables III and IV,

respectively, yields �� ¼ 1:0055ð57Þð26Þ and �B ¼
1:019ð10Þð03Þ. Therefore, the dispersion relations provide

only a small uncertainty in the extraction of multihadron

energies.

IV. TWO-BODY SYSTEMS

In general, the two-body states can be classified by

isospin, strangeness, parity, and angular momentum.

In the limit of SU(3)-flavor symmetry, the energy eigen-

states can also be classified by SU(3) quantum numbers.

The lowest-lying baryons transform as 8 under SU(3), and,
therefore, the two-body states have degeneracies deter-

mined by the dimensionality of the irreps in the product

8 � 8 ¼ 27 � 10 � 10 � 8S � 8A � 1: (4)

As the wave functions of such systems are totally antisym-

metric, the s-wave 1S0 channels transform under SU(3)

as 27 � 8S � 1, while the 3S1 � 3D1 coupled channels

1
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FIG. 4 (color online). EMPs associated with jPj ¼ 0 two-baryon correlation functions computed with the 483 � 64 ensemble. The

inner (darker) shaded region corresponds to the statistical uncertainty of the extracted energy, while the outer (lighter) shaded region

corresponds to the statistical and fitting systematic uncertainties combined in quadrature. The time extent of each band corresponds to

the choice of the fitting interval for each correlation function. From left to right, the top row corresponds to the 1, 8A, 10 SU(3) irreps

(corresponding to the H-dibaryon, I ¼ 0 N� in the 3S1 � 3D1 coupled channels and n�� in the 3S1 � 3D1 coupled channels,

respectively), and the bottom row corresponds to 10 and 27 (corresponding to the deuteron and dineutron, respectively).

TABLE V. Two-body binding energies (MeV) calculated with

the 243 � 48 ensemble. The first uncertainty is statistical, the

second is the fitting systematic, and the third is because of the

lattice spacing.

SU(3)

irrep jnj ¼ 0 jnj ¼ 1 jnj ¼ 2

1 77.7(1.8)(3.2)(0.8) 67.2(2.5)(2.5)(0.8) 85.0(3.1)(4.0)(0.9)

8A 40.1(1.7)(2.9)(0.4) 26.5(1.8)(3.6)(0.3) 46.7(2.0)(3.2)(0.5)

10 11.4(1.8)(4.0)(0.1) 6.3(1.9)(4.4)(0.1) 15.3(2.2)(4.5)(0.1)

10 25.4(2.6)(4.7)(0.3) 16.0(2.7)(5.9)(0.2) 40.7(3.6)(7.4)(0.5)

27 17.8(1.7)(2.8)(0.2) 6.9(1.8)(3.8)(0.1) 28.5(2.3)(3.8)(0.3)

4As the lattice hadronic dispersion relations are a priori un-
known, they must be calculated. The form given in Eq. (3) is
expected to capture the leading momentum dependence.
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transform as 10 � 10 � 8A. The source structures we have
employed, in which the quark-level operators reside at one

point in the spatial volume, have vanishing overlap with the

8S irrep, and as a result, we are unable to determine the

energy of this two-body irrep. Correlation functions are not

constructed directly in terms of their SU(3) transformation

properties, but the contributing SU(3) irreps can be deduced

from their structure: 10 from the deuteron, 27 from the

dineutron, 1 � 27 from the H-dibaryon (the 8S is absent),

10 from n�� in the 3S1 � 3D1 coupled channels, and 8A
from I ¼ 0 N� in the 3S1 � 3D1 coupled channels. EMPs

extracted from the two-body correlation functions for

systems at rest calculated with the 483 � 64 ensemble are

shown in Fig. 4. The energies of states that are negatively

shifted relative to two free baryons are presented in

Tables V, VI, and VII, respectively, and displayed in Fig. 5.

The energies of the states that are presented in this work,

along with their statistical uncertainties, are determined

from a single-parameter correlated �2-minimization proce-

dure performed over a specific time interval of EMPs and

from exponential fits to the correlation functions directly,

with covariance matrices determined with either jackknife

or bootstrap. The systematic uncertainty that is assigned to

these energies is determined by varying the fit interval over a

range of values consistent with the identified plateau region.

A number of scattering states with positive energy shifts

relative to two free baryons have also been identified using

different correlation functions, but their uncertainties are

large enough to preclude clean extraction of scattering

phase shifts using Lüscher’s method [39,40], and we defer

analysis of these states to a later time when adequate

statistics have been accumulated.

In sufficiently large volumes, the binding momentum

associated with a two-body bound state at rest in the lattice

volume will scale as

�ðLÞ ¼ �0 þ
6Z2

c

L
e��0L þ � � � ; (5)

where �0 is the infinite-volume binding momentum, �0 ¼
ffiffiffiffiffiffiffiffiffiffiffi

MBB
p

, where B is the binding energy and Zc is the residue

of the bound-state pole [39–41]. Analogous FV scaling

formulas for systems moving in the lattice volume are

known [27], but at this order in the expansion they differ

from the relation in Eq. (5) only by the coefficient of the

second term. In the 323 � 48 and 483 � 64 lattice volumes,

the energies of the two-body bound states do not exhibit

statistically significant volume dependence. Consequently,

using Eq. (5) to determine the infinite-volume binding

energies does not provide a refinement over simply taking

the binding energies determined in the 483 � 64 ensemble,

TABLE VII. Two-body binding energies (MeV) calculated with the 483 � 64 ensemble. The first uncertainty is statistical, the

second is the fitting systematic, and the third is because of the lattice spacing. The second to last column corresponds to an average of

the jnj ¼ 0, 1, 2 calculations, which is taken to be the infinite-volume value. The last column gives the value of �0 times the spatial

lattice size for L ¼ 48.

SU(3) irrep jnj ¼ 0 jnj ¼ 1 jnj ¼ 2 L ¼ 1 �0L

1 73.7(3.3)(5.1)(0.8) 73.7(4.4)(7.6)(0.8) 75.4(3.3)(3.3)(0.8) 74.6(3.3)(3.3)(0.8) 12.3

8A 38.7(2.9)(2.9)(0.4) 34.6(2.8)(3.1)(0.4) 39.7(3.0)(2.7)(0.4) 37.7(3.0)(2.7)(0.4) 8.8

10 6.6(3.4)(4.1)(0.0) 2.8(3.1)(4.1)(0.0) 7.0(3.4)(3.7)(0.0) 5.5(3.4)(3.7)(0.0) 3.3

10 19.7(3.1)(4.1)(0.2) 17.8(3.6)(3.1)(0.2) 23.1(3.9)(5.5)(0.2) 19.5(3.6)(3.1)(0.2) 6.3

27 13.1(2.8)(4.3)(0.2) 14.9(2.7)(2.7)(0.2) 19.3(2.9)(3.3)(0.2) 15.9(2.7)(2.7)(0.2) 5.7

TABLE VI. Two-body binding energies (MeV) calculated

with the 323 � 48 ensemble. The first uncertainty is statistical,

the second is the fitting systematic, and the third is because of the

lattice spacing.

SU(3)

irrep jnj ¼ 0 jnj ¼ 1 jnj ¼ 2

1 76.0(2.3)(2.8)(0.8) 70.3(2.3)(3.1)(0.7) 79.6(2.6)(3.9)(0.9)

8A 38.5(2.3)(4.4)(0.4) 34.0(2.6)(3.4)(0.4) 45.2(3.0)(3.1)(0.5)

10 10.5(2.5)(4.1)(0.1) 1.1(2.4)(4.2)(0.0) 12.9(2.6)(4.5)(0.1)

10 22.5(2.3)(2.6)(0.2) 19.2(2.3)(3.7)(0.2) 31.6(2.7)(3.2)(0.3)

27 15.1(2.0)(2.0)(0.2) 12.3(1.9)(3.6)(0.1) 24.9(2.2)(3.1)(0.3)
deuteron nn H dib n 1s0 n 3s1 n 1s0 n 3s1 n 3s1 p 3s1

10
27
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FIG. 5 (color online). Binding energies in the A ¼ 2 systems

relative to two noninteracting baryons (B ¼ ��E). The points

and associated uncertainties are the results of the LQCD calcu-

lations given in Tables V, VI, and VII. The dark (statistical

uncertainty) and light (statistical and systematic uncertainties

combined in quadrature) horizontal bands denote the average of

the bindings calculated on the 483 � 64 ensemble, which are

taken as the infinite-volume estimate. Where only bands are

shown, SU(3) symmetry has been used to determine the spectrum.
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and the latter is used as the best estimate of the infinite-

volume binding energies, the results of which are shown in

Table VII. The expected differences between the infinite-

volume bindings and those in the 483 � 64 ensemble can

be estimated from the values of �0L given in Table VII.

With the exception of the state in the 10 irrep, the states are
small enough compared to the lattice volume to make the

finite-volume effects negligible.

There are a few important results that should be high-

lighted. The deuteron is found to be substantially more

deeply bound in the present calculations, B
nf¼3

d ¼
19:5ð3:6Þð3:1Þð0:2Þ MeV, than in the quenched calcula-

tions [8] in which a binding energy of B
nf¼0

d ¼ 9:1ð1:1Þ�
ð0:5Þ MeV at a similar pion mass is found. The H-dibaryon

is found to be deeply bound with BH ¼ 74:6ð3:3Þð3:3Þ�
ð0:8Þ MeV, approximately twice as bound as the result

found by HALQCD [17] at a similar quark mass. In recent

work we reported that the n�� interaction in the 3S1 �
3D1 channel was extremely repulsive at a pion mass of

m� � 390 MeV [24], consistent with the phase-shift

analysis of experimental data at the physical pion mass.

At the SU(3) symmetric point, we find that this state has

moved close to threshold and is even consistent with being

bound, indicating that there is significant light quark mass

dependence in this channel at the heavier quark masses

(beyond the regime of applicability of the relevant EFT).

As the calculations have been performed at the SU(3)

symmetric point, the states discussed above provide a nearly

complete set of two-baryon ground states, with only the 8S

irrep being absent. Furthermore, since the determinations of

the various energy levels in the two-body sector are corre-

lated, their differences can be determined more precisely

than their individual values. In Table VIII we present the

splittings between the various irreps. The energy difference

between 10 and 27 corresponds to the deuteron-dineutron

mass difference. This splitting is found to be small, and

consistent with zero within the uncertainties of the calcu-

lation. Theoretically, it has been established from SU(2) that

these states become degenerate in the large-Nc limit of QCD

[42], with a fractional splitting [and violation of Wigner’s

SU(4) symmetry] that scales as 1=N2
c . Extending the argu-

ment to the strange sectors shows that the other splittings are

only 1=Nc suppressed, and not 1=N
2
c suppressed [42]. Such

scalings are consistent with what we have found, but veri-

fication of the scaling will require significantly higher sta-

tistics in the calculations.

V. THREE-BODY SYSTEMS

The correlation functions for the three-body systems are

generated using the procedure described previously. As is

the case for two-body systems, the states in the spectrum

for each system can be classified by their SU(3) quantum

numbers in the limit of SU(3)-flavor symmetry. The three-

body states can be assigned to the SU(3) irreps in 8 � 8 �
8, which can be straightforwardly constructed as

8�8�8¼64�2 35�2 35�6 27�4 10�4 10�8 8�2 1:

(6)

TABLE VIII. Two-body energy splittings, EI1
� EI2

(MeV), between different multiplets

calculated with the 323 � 48 ensemble. The column refers to representation I1 and the row to

representation I2. The first uncertainty is statistical, the second is the fitting systematic, and the

third is because of the lattice spacing.

I2nI1 8A 10 10 27

1 34.3(0.7)(1.2)(0.4) 65.9(0.4)(0.9)(0.7) 49.3(1.4)(1.7)(0.5) 55.4(1.2)(1.8)(0.6)

8A - 31.0(0.8)(1.6)(0.3) 14.2(1.1)(2.0)(0.2) 20.5(1.2)(2.3)(0.2)

10 - - �17:7ð1:4Þð2:2Þð0:2Þ �11:0ð1:4Þð2:4Þð0:1Þ
10 - - - 5.8(1.0)(1.0)(0.1)
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FIG. 6 (color online). EMPs associated with J� ¼ 1
2
þ 3He (3H) jPj ¼ 0 correlation functions computed with the 243 � 48 (left),

323 � 48 (center), and 483 � 64 (right) ensembles. The inner (darker) shaded region corresponds to the statistical uncertainty of the

extracted energy, while the outer (lighter) shaded region corresponds to the statistical and fitting systematic uncertainties combined in

quadrature.
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However, the local sources constructed from only the upper

components of the quark fields produce correlation func-

tions containing a subset of these irreps,

8 � 8 � 8 ! 35 � 35 � 2 27 � 10 � 10 � 2 8 � 1; (7)

and further decomposition into states with J� ¼ 1
2
þ and

J� ¼ 3
2
þ gives

ð8 � 8 � 8ÞJ�¼1=2þ ! 35 � 35 � 27 � 8;

ð8 � 8 � 8ÞJ�¼3=2þ ! 27 � 10 � 10 � 8 � 1:
(8)

It is clear from the SU(3) irreps contributing to the three-

body systems that, with our source structure, a given

correlation function contains contributions from multiple

SU(3) irreps. With a relatively small number of states

identified with the present set of correlation functions,

the SU(3) classification of states is difficult to establish

from the spectra alone. More generally, it is expected that

the spectrum of states in any given correlation function

becomes increasingly complicated with increasing num-

bers of baryons even when constrained by SU(3)-flavor

symmetry. As the focus of this work is systems containing

only a small number of strange quarks, we have chosen to

use the same notation as in hypernuclear spectroscopy.

States in 3He (same as 3H by isospin symmetry), 3
�He

(same as 3
�H and nn� by isospin symmetry), the isosinglet

3
�H, and the isotriplet

3
�He have been identified in the three-

body sector.

Correlation functions calculated with LQCD will con-

tain not only contributions from the ground state and

excited states of the bound nuclei but also continuum states

that consist of all possible subclusterings of the baryons.

For instance, the correlation functions used to extract the
3He nuclear states will also contain contributions from

the deuteron-proton and diproton-neutron in addition to

TABLE IX. The calculated J� ¼ 1
2
þ binding energy of 3He (3H) in the 243 � 48 ensemble.

The first uncertainty is statistical, the second is the fitting systematic, and the third is because of

the lattice spacing.

243 � 48
3He jnj2 ¼ 0 jnj2 ¼ 1 jnj2 ¼ 2

Ground state (MeV) 65.4(5.1)(4.4)(0.7) 42.8(3.8)(8.9)(0.4) 46.3(5.3)(6.7)(0.5)

TABLE X. The calculated J� ¼ 1
2
þ binding energy of 3He (3H) in the 323 � 48 ensemble. The

first uncertainty is statistical, the second is the fitting systematic, and the third is because of the

lattice spacing.

323 � 48
3He jnj2 ¼ 0 jnj2 ¼ 1 jnj2 ¼ 2

Ground state (MeV) 63.2(3.9)(7.0)(0.7) 52.9(5.7)(9.9)(0.6) 55.7(6.4)(10.1)(0.6)

TABLE XI. The calculated J� ¼ 1
2
þ binding energy of 3He (3H) in the 483 � 64 ensemble.

The first uncertainty is statistical, the second is the fitting systematic, and the third is because of

the lattice spacing.

483 � 64
3He jnj2 ¼ 0 jnj2 ¼ 1 jnj2 ¼ 2

Ground state (MeV) 61.9(8.9)(10.9)(0.7) 53.0(7.1)(8.0)(0.6) 50.0(6.1)(9.2)(0.6)
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FIG. 7 (color online). The bound-state energy levels in the

J� ¼ 1
2
þ 3He (3H) sector. The points and their associated un-

certainties correspond to the energies of the states extracted from

the correlation functions with the quantum numbers of the

ground state of 3He. The locations of the scattering thresholds

associated with noninteracting deuteron-proton, diproton-neutron,

and proton-proton-neutron continuum states, determined from

the single-hadron spectrum and the two-body binding energies

given in Table VII, are shown.
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the proton-proton-neutron continuum states. With suffi-

cient precision in the calculation, one will be able to use

these levels to extract, for instance, the deuteron-proton

scattering phase shift [26]. Given that the two-body sector

is well established, the spectrum of such continuum states

can be approximately constructed. Clearly, states of the
3He nucleus can be cleanly identified only when they are

not close in energy to the expected location of noninteract-

ing continuum states. The generalization of this discussion

applies to other systems composed of three or more bary-

ons. In Appendix B, an example of the expected FV

scattering-state spectrum is constructed for each of the

volumes used in this analysis, demonstrating the extent

of this problem in large volumes.

A. I ¼
1
2 , J

�
¼

1
2
þ: 3H and 3He

In nature, the I ¼ 1
2 , J

� ¼ 1
2
þ ground state of the 3He

nucleus is the only bound state of two protons and a

neutron, and it is known to be dominantly composed of

two protons in a 1S0 state coupled to an s-wave neutron.

Four 3He correlation functions, resulting from different

source structures defined by s ¼ 0, I ¼ 1
2 , and J� ¼ 1

2
þ

quantum numbers transforming as a 35 of SU(3), have

been constructed.5 EMPs obtained from correlation func-

tions in each of the three ensembles, from which the energy

of the lowest-lying 3He states have been determined, are

shown in Fig. 6.

The 3He bound-state energies on the ensembles are

given in Tables IX, X, and XI and are shown in Fig. 7

along with the thresholds for noninteracting continuum

states.6 The exact form of infinite-volume extrapolation

of three- and higher-body bound-state energies is as yet

unknown, though expected to be exponential (see

Refs. [43–45] for related discussions). For the current

study, we simply average the results obtained from the

system at rest and from the boosted systems on the

483 � 64 ensemble to provide an estimate of the infinite-

volume binding energy of

Bð1Þð3HeÞ ¼ 53:9ð7:1Þð8:0Þð0:6Þ MeV: (9)

The energy of this state is significantly lower than any of

the expected continuum states, based upon where they

would lie in the spectrum in the absence of interactions.

Therefore, we conclude that this is the ground state of 3He.
While it is tempting to compare these results with the

experimental spectrum of 3He, one should refrain at

present, since these calculations are performed in the

SU(3) limit of QCD and without electromagnetism. The

ground-state binding energy will receive a shift because of

the electromagnetic interaction between the two protons.

On the other hand, the exact isospin symmetry directly

relates this spectrum to that of the triton. In nature the triton

binding energy per nucleon is B=A� 2:83 MeV, while at

the SU(3) symmetric point we find that B=A� 24 MeV,
more than an order of magnitude larger.

The 3He ground-state energy that we have calculated in

this nf ¼ 3 calculation is substantially different from that

obtained with quenched calculations at a comparable pion

mass [9], which find an infinite-volume extrapolated value

of Bð1Þ
nf¼0ð3HeÞ ¼ 18:2ð3:5Þð2:9Þ MeV. A likely explana-

tion for the difference is quenching artifacts, which are

unlikely to cancel between the bound system and the

threshold states. The difference in the total energy (not

the binding energy) of the 3He ground state between the

two calculations is of Oð1%Þ, smaller than the differences

observed between single-hadron masses in quenched and

unquenched calculations [46]. Additionally, the contribu-

tions from continuum states that must be present in both

calculations at some level (see Appendix B) may pollute

the extraction of the 3He ground state, particularly in large

volumes.

B. I ¼ 0, J�
¼

1
2
þ, and

J�
¼

3
2
þ: 3

�H—The Hypertriton

The hypertriton, 3�H, with the quantum numbers of np�
and I ¼ 0 is the simplest hypernucleus produced in the
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FIG. 8 (color online). The EMPs associated with a J� ¼ 3
2
þ hypertriton (3�H) correlation function computed with the 243 � 48 (left),

323 � 48 (center), and 483 � 64 (right) ensembles, with momentum jPj ¼ 0. The inner (darker) shaded region corresponds to the

statistical uncertainty of the extracted energy, while the outer (lighter) shaded region corresponds to the statistical and fitting

systematic uncertainties combined in quadrature.

5The only possible SU(3) irrep with these quantum numbers is
35.

6Finite-volume effects will lead to small shifts in these
thresholds.
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laboratory, having a total binding energy of B�
2:35 MeV. With a �-separation energy of just B� �
0:13 MeV, it is consistent with a � weakly bound to a

deuteron. The ground state has J� ¼ 1
2
þ and has been

identified as a member of the 35 of flavor SU(3) [47]. It

continues to be the focus of experimental efforts, for

instance, in heavy-ion collisions at RHIC [48] and the

HypHI project at GSI, where in the latter it is being used

as a ‘‘phase-zero’’ calibration nucleus for the production

and detection systems [49]. We have calculated correlation

functions in both the J� ¼ 1
2
þ and J� ¼ 3

2
þ channels and

have identified the lowest-lying state in each. Two of the

correlation functions associated with the J� ¼ 1
2
þ channel

are pure 35 and are in the same irrep as 3He, and hence the
energy of the identified states are the same. Further, the

J� ¼ 3
2
þ channel is pure 10. EMPs in the J� ¼ 3

2
þ channel

from these correlation functions are shown in Fig. 8, from

which the energies of the lowest-lying states have been

determined, and are given in Table XII. The EMPs in the

J� ¼ 1
2
þ channel are not shown, as they are identical to

those of 3He, shown in Fig. 6. The extracted spectra of

bound states are shown in Fig. 9. Taking the results

obtained in the 483 � 64 ensemble to be the best estimate

of the 3
�H infinite-volume binding energies gives

Bð1Þð3�Hð1=2þÞÞ ¼ 53:9ð7:1Þð8:0Þð0:6Þ MeV;

Bð1Þð3�Hð3=2þÞÞ ¼ 82ð8Þð12Þð1Þ MeV;
(10)

where we have used the 3He result for the J� ¼ 1
2
þ binding

energy, which includes calculations of boosted systems.

The observed states are significantly below the scatter-

ing thresholds and are consistent with a bound 3
�H nucleus

at these values of the quark masses in the absence of

electromagnetism. Interestingly, the lowest energy state is

in the J� ¼ 3
2
þ spin channel. As the measurements of the

two spin states are correlated, the spin splitting can be

extracted with high precision, resulting in

Bð1Þð3�Hð3=2þÞÞ � Bð1Þð3�Hð1=2þÞÞ
¼ 26:2ð2:3Þð5:5Þð0:3Þ MeV: (11)

C. I ¼ 1, J�
¼

1
2
þ: 3

�He, 3�
~H, and nn�

The isotriplet of states,7 3
�He,

3
�
~H, and nn�, are degen-

erate in the absence of electromagnetism and in the limit of

exact isospin symmetry, and can have J� ¼ 1
2
þ and J� ¼

3
2
þ. The J� ¼ 1

2
þ is expected to be the lowest-lying state,

with a significant component of the wave function having

the two nucleons in the 1S0 channel coupled to �. The

J� ¼ 3
2
þ state cannot have such aNN� configuration in its

wave function by the Pauli principle without placing the

baryons in orbital excitations but will have configurations

of the form of two nucleons in the 3S1 � 3D1 channel

coupled to �þ. In the SU(3) limit, this can be nearby in

TABLE XII. The calculated J� ¼ 3
2
þ binding energies in 3

�H. ‘‘g.s.’’ denotes the ground state.

The energies in the J� ¼ 1
2
þ channel are the same as those of 3He by SU(3) symmetry; see

Tables IX, X, and XI. The first uncertainty is statistical, the second is the fitting systematic, and

the third is because of the lattice spacing.

3
�H 243 � 48 323 � 48 483 � 64

J� ¼ 3
2
þ g.s. (MeV) 90.8(4.5)(6.5)(1.0) 89.6(4.6)(8.9)(1.0) 82(8)(12)(1)
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FIG. 9 (color online). The bound-state energy levels in the

J� ¼ 1
2
þ (upper panel) and J� ¼ 3

2
þ (lower panel) hypertriton

(3�H) sector. The points and their associated uncertainties corre-

spond to the energies of the states extracted from the correlation

functions with the quantum numbers of the ground state of J� ¼
1
2
þ and J� ¼ 3

2
þ 3

�H. The locations of the energy levels associ-

ated with noninteracting continuum states, determined from the

two-body binding energies given in Table VII, are shown.

7We refer to the np� state with the np coupled to I ¼ 1 as 3
�
~H

to differentiate it from the 3
�H state in which the np couple to

I ¼ 0.
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energy, but when SU(3) breaking is included, the energy

for J� ¼ 3
2
þ will increase, largely dictated by the ���

mass splitting, and become less phenomenologically inter-

esting. Consequently, we will focus first on the J� ¼ 1
2
þ

channel. The EMPs from one of the eight correlation

functions of these quantum numbers are shown in

Fig. 10, from which the energies of the lowest-lying states

have been determined.

The extracted spectrum of bound states is given in

Table XIII and shown in Fig. 11. Taking the result obtained

on the 483 � 64 ensemble as the estimate of the infinite-

volume binding energy, we find

Bð1Þð3�Heð1=2þÞÞ ¼ 69ð5Þð12Þð0Þ MeV: (12)

The ground state is significantly more deeply bound than

any of the continuum states, and we identify this as the

ground state of the 3
�He nucleus (and hence also bound

3
�
~H

and nn� owing to isospin symmetry). The correlation

function from which this ground-state energy was

extracted is a superposition of 35 and 27 SU(3) irreps.

Another element of the 27 irrep is in the s ¼ �3 sector,

with I ¼ 1, J� ¼ 1
2
þ and with the baryon structure of

N��. One of the correlation functions associated with

this state is pure 27, and the energy of the lowest-lying

state in this correlation function is found to be the same as

that in the 3
�He correlation function within the uncertain-

ties of the calculations, suggesting that the 27 state is lower

in energy than or nearly degenerate with the 35.
Experimentally, there is no evidence for a bound 3

�He
nucleus as the �-nucleon interactions are not sufficient to

overcome the Coulomb repulsion between the protons.

Further, the small binding of the hypertriton, with a sig-

nificant deuteron-� component, strongly suggests that the

corresponding I ¼ 1 state will be unbound, and it is likely,
but yet to be verified, that the nn� electrically neutral

nucleus is also unbound. However, our calculations pro-

vide compelling evidence for a bound state in this channel

in the limit of SU(3)-flavor symmetry, and we expect that

the bound state persists over a range of light-quark masses.
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FIG. 10 (color online). The EMPs associated with one J� ¼ 1
2
þ 3

�He (
�
3 H and nn�) correlation function computed with the 243 � 48

(left), 323 � 48 (center), and 483 � 64 (right) ensembles, with momentum jPj ¼ 0. The inner (darker) shaded region corresponds to

the statistical uncertainty of the extracted energy, while the outer (lighter) shaded region corresponds to the statistical and fitting

systematic uncertainties combined in quadrature.

TABLE XIII. The calculated binding energies in 3
�He (

3
�H and

nn�). The first uncertainty is statistical, the second is the fitting

systematic, and the third is because of the lattice spacing.

3
�He 243 � 48 323 � 48 483 � 64

Ground state

(MeV)

77.6(3.6)(7.5)(0.8) 74.1(3.9)(7.3)(0.8) 69(5)(12)(0)
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FIG. 11 (color online). The bound-state energy levels in the

J� ¼ 1
2
þ 3

�He (3�H and nn�) sector. The points and their asso-

ciated uncertainties correspond to the energies of the states

extracted from the correlation functions with the quantum num-

bers of the ground state of 3
�He. The locations of the energy

levels associated with noninteracting diproton-�, �N-N, and
�-N-N continuum states, determined from the two-body binding

energies given in Table VII, are shown.

TABLE XIV. The calculated binding energies in J� ¼ 3
2
þ

3
�He. The first uncertainty is statistical, the second is the fitting

systematic, and the third is because of the lattice spacing.

3
�He 243 � 48 323 � 48 483 � 64

Ground state

(MeV)

64.3(4.5)(7.9)(0.7) 58.2(5.2)(7.7)(0.6) 55(6)(10)(1)
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D. I ¼ 1, J�
¼

3
2
þ: 3

�
He

As discussed above, for the I ¼ 1, s ¼ �1, J� ¼ 3
2
þ,

three-body state, an NN� component is forbidden (for all

baryons in a relative s wave), and one important contribu-

tion to the ground-state wave function is pn�, where the

nucleons couple to I ¼ 0, J ¼ 1, as in 3
�H. As yet, the only

observed � hypernucleus is 4
�He (ppn�0) [50,51], but at

the SU(3) point it is possible that this three-body system

binds. The sources used to generate this correlation func-

tion transform as 27 under SU(3)8 and result in EMPs that

exhibit clear plateaus. The ground-state energies extracted

from the three ensembles are given in Table XIV, and the

associated EMPs are shown in Fig. 12. The ground-state

energy and the anticipated continuum thresholds based

upon the noninteracting two-body energies are shown in

Fig. 13.

VI. FOUR-BODY SYSTEMS

There are a large number of four-body systems and

states that could be explored theoretically with LQCD at

the SU(3) symmetric point, dictated by the product of

four 8’s,

8 � 8 � 8 � 8 ¼ 8 1 � 32 8 � 20 10 � 20 10 � 33 27

� 2 28 � 2 28 � 15 35 � 15 35 � 12 64

� 3 81 � 3 81 � 125; (13)

giving a total of 166 lowest-lying states (one per distinct

irrep) with distinguishable quantum numbers. The local

sources that have been used in this work to generate

correlation functions project onto a subset of the irreps,

ð8 � 8 � 8 � 8ÞJ�¼0þ ! 1 � 27 � 28;

ð8 � 8 � 8 � 8ÞJ�¼1þ ! 8 � 10 � 10 � 35;

ð8 � 8 � 8 � 8ÞJ�¼2þ ! 8 � 27;

(14)

which greatly reduces the complexity of individual corre-

lation functions. To restrict ourselves to systems that are

currently of phenomenological importance, we explore

systems containing up to two strange quarks only, the

isosinglet 4He, the isodoublet 4
�H and 4

�He, the isosinglet

��
4H, and the isotriplet ��

4He, ��
4H, and nn��.

A. I ¼ 0, J�
¼ 0þ: 4He

In nature, the 4He nucleus is anomalously deeply bound

when compared to nuclei nearby in the periodic table,

because of its closed shell structure, with a total binding

energy of B� 28 MeV, or a binding energy per nucleon of
B=A� 7 MeV. We anticipate that at the SU(3) symmetric

point, the binding energy of 4He will be even deeper given

the bindings of the deuteron and dineutron found in the

two-body sector. Two of the 4He correlation functions,

resulting from different source structures defined by
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FIG. 12 (color online). The EMPs associated with one J� ¼ 3
2
þ 3

�He correlation function computed with the 243 � 48 (left),

323 � 48 (center), and 483 � 64 (right) ensembles, with momentum jPj ¼ 0. The inner (darker) shaded region corresponds to the

statistical uncertainty of the extracted energy, while the outer (lighter) shaded region corresponds to the statistical and fitting

systematic uncertainties combined in quadrature.
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FIG. 13 (color online). The bound-state energy levels in the

J� ¼ 3
2
þ 3

�He sector. The points and their associated uncertain-

ties correspond to the energies of the states extracted from the

correlation functions with the quantum numbers of the ground

state of 3
�He. The locations of the energy levels associated with

noninteracting continuum states, determined from the two-body

binding energies given in Table VII, are shown.

8This 27 irrep is different from that in the J� ¼ 1
2
þ channel. In

principle the ground state of the system could reside in the 64
irrep, but this is not accessible with our present operator
structure.
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s ¼ 0, I ¼ 0, and J� ¼ 0þ quantum numbers, transform

as an element of the 28 irrep of SU(3).9 EMPs of one of

these correlation functions are shown in Fig. 14, from

which the energies of the lowest-lying states have been

determined. The extracted spectrum of bound states, only

calculated for the system at rest in the lattice volume, is

given in Table XV and shown in Fig. 15. Also shown in

Fig. 15 are the thresholds of noninteracting continuum

states, based upon the two-body and three-body bound-

state spectra. Using the result obtained on the 483 � 64
ensemble as an estimate of the binding energy in infinite

volume, we find

Bð1Þð4HeÞ ¼ 107ð12Þð21Þð1Þ MeV: (15)

While this state is somewhat more deeply bound than any

continuum state, the precision of the calculation is not

sufficient to unambiguously distinguish the state from the

nþ 3He continuum. To eliminate this ambiguity in state

identification, further calculations are required, and addi-

tional source structure should be used to increase the size

of the basis of correlation functions.

The 4He ground-state energy that we have calculated in

this nf ¼ 3 calculation is substantially different from that

obtained with quenched calculations at a comparable pion

mass [9], which find an infinite-volume extrapolated value

of Bð1Þ
nf¼0ð4HeÞ ¼ 27:7ð7:8Þð5:5Þ MeV, close to the experi-

mental value.

B. I ¼
1
2 , J

�
¼ 0þ: 4

�He and 4
�H

In nature, the 4
�He hypernucleus has been well studied

experimentally and theoretically. The �-separation energy

of the 4
�He J

� ¼ 0þ ground state is measured to be S� ¼
2:39ð0:03Þ MeV, and for the J� ¼ 1þ first excited state is

S� ¼ 1:24ð0:05Þ MeV. These two lowest-lying states are

consistent with the � coupled to a 3He J� ¼ 1
2
þ core.

A recent review of this system can be found in Ref. [52].

We have calculated correlation functions in the J� ¼ 0þ

channel, which should provide the ground state, but not the

nearby J� ¼ 1þ first excited state. The sources employed

to produce the correlation functions are elements of the

same 28 irrep of SU(3) as those of 4He, and hence the

extracted states have the same energy.10 The EMPs from

these correlation functions are the same as those shown in

Fig. 14, from which the energies of the lowest-lying states

have been determined, and are the same as those in

Table XV. The spectrum in this channel, and a subset of

associated continuum states, are the same as those in

Fig. 15. There are no continuum states from other SU(3)

irreps lying lower than those associated with the 4He
spectrum (assuming that we have correctly identified the

ground states in the three-body sector). However, because

of the presence of different SU(3) irreps in this channel, the

spectrum of excited states of the nucleus, and the contin-

uum states, is expected to be different from that in the 4He
channel.

As is the case for 4He, while the lowest-lying state

extracted from the correlation functions has a central value

that is lower than any of the noninteracting continuum

states, the precision of the calculation is not sufficient to

completely exclude the possibility that it is a continuum

state, e.g. 3Heþ�, or 3
�Heþ N. The extrapolated binding

energy is given in Eq. (15).

C. I ¼ 1, J�
¼ 0þ: ��

4He, ��
4H, and nn��

At the SU(3) symmetric point, with a deeply bound

H-dibaryon, bound dineutron, and attractive �n interac-

tion, we naively expect to find that ��
4He and its isospin

partners are bound. This is in contrast to the situation at the

physical point, where a doubly strange hypernucleus that is

stable against strong decay has not been conclusively

observed (for recent reviews of the status of experimental

investigations into doubly strange hypernuclei see, for

example, Refs. [52–54]). The states in ��
4He (with s ¼

�2 and I ¼ 1) and its isospin partners can reside in the 27,
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FIG. 14 (color online). EMPs associated with a jPj ¼ 0 J� ¼ 0þ 4He correlation function computed with the 243 � 48 (left),

323 � 48 (center), and 483 � 64 (right) ensembles. The inner (darker) shaded region corresponds to the statistical uncertainty of the

extracted energy, while the outer (lighter) shaded region corresponds to the statistical and fitting systematic uncertainties combined in

quadrature.

9The 28 is the only allowed I ¼ 0, s ¼ 0, A ¼ 4 irrep.

10The s ¼ �1, I ¼ 1
2 systems of various spin configurations

have components transforming in the 81 and 125 irreps that are
inaccessible to our operator construction, but that may in prin-
ciple contain the ground state of this system.
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28, 35, 81, 64, and 125 irreps of SU(3). However, the

sources employed in this work produce correlation func-

tions in the 28 and 27 irreps only, and therefore the com-

plete spectrum cannot be definitively determined. EMPs

from one of the correlation functions are shown in Fig. 16,

from which the energies of the lowest-lying states have

been determined. The extracted ground-state energies,

only calculated for the system at rest in the lattice volume,

are given in Table XVI and shown in Fig. 17. The energy of

the lowest state in the correlation function with contribu-

tions from 28 and 27 is found to be the same within

uncertainties with that from a pure 27 correlation function.

The energy of the lowest state in 28 is that of the ground

state of 4He by SU(3) symmetry and is significantly larger

than that of 27, and clearly 27 is dominating the large-time

behavior of the mixed correlation function. Using the result

obtained on the 483 � 64 ensemble as an estimate of the

binding energy in infinite volume, we find that

Bð1Þð 4
��HeÞ ¼ 156ð16Þð21Þð2Þ MeV: (16)

The ground state is more bound than any continuum state

(although we have been unable to cleanly isolate the

ground state of the doubly strange three-body hypernuclei),

and we identify this as the ground state of the ��
4He, ��

4H,
nn�� isotriplet. However, it is possible that this is an

excited state of the nucleus, with irreps other than 28 and

27 containing a lower-energy state. Further, it is also

possible that this state is a continuum scattering state

associated with Nþ ��
3H. Clearly, further calculations

are also required to unambiguously distinguish the energy

of the 27 ground state from that of the 28 excited state.

VII. FIVE-BODY SYSTEMS

There are a plethora of five-body systems that can be

explored theoretically at the SU(3) symmetric point, dic-

tated, in part, by the product of five 8’s,

8 � 8 � 8 � 8 � 8 ¼ 32 1 � 145 8 � 100 10 � 100 10

� 180 27 � 20 28 � 20 28 � 100 35

� 100 35 � 94 64 � 5 80 � 5 80

� 36 81 � 36 81 � 20 125

� 4 154 � 4 154 � 216: (17)

In this work, we explore one five-body state that can be

produced by local quark-level operators, involving only

their upper components, with all five baryons in a relative

s wave. Unfortunately, this system, with s ¼ �3, has not
been experimentally observed.
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FIG. 15 (color online). The bound-state energy levels in the

J� ¼ 0þ 4He sector. The points and their associated uncertain-

ties correspond to the energies of the states extracted from the

correlation functions with the quantum numbers of the ground

state of 4He. The locations of the energy levels associated with

noninteracting N- 3He, d-d, dineutron-dineutron, dineutron-N-N,
d-N-N, and N-N-N-N continuum states, determined from the

two-body binding energies given in Table VII and the three-body

energies given in Eq. (9), are shown.

TABLE XV. The calculated binding energies in 4He. The first
uncertainty is statistical, the second is the fitting systematic, and

the third is because of the lattice spacing.

4He 243 � 48 323 � 48 483 � 64

Ground state

(MeV)

115(11)(20)(1) 107(15)(20)(1) 107(12)(21)(1)
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FIG. 16 (color online). The EMPs associated with one of the eight J� ¼ 0þ ��
4He correlation functions computed with the 243 � 48

(left), 323 � 48 (center), and 483 � 64 (right) ensembles, with momentum jPj ¼ 0. The inner (darker) shaded region corresponds to

the statistical uncertainty of the extracted energy, while the outer (lighter) shaded region corresponds to the statistical and fitting

systematic uncertainties combined in quadrature.
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A. I ¼ 0, J�
¼

3
2
þ: ��0pnn

The ��0pnn state has I ¼ 0, s ¼ �3, J� ¼ 3=2þ, and
belongs to a 10 irrep of SU(3). Extending the standard

hypernuclear nomenclature, it may be referred to as ��0
5H.

Experimentally, it is not clear how such a state could be

produced and, given the two-body interactions, it is not

expected to be bound at the physical values of the light-

quark masses. The EMPs for this system in each of the

lattice volumes are shown in Fig. 18, from which it is clear

that the lowest state is negatively shifted with the energies

given in Table XVII. It is not clear that 10 contains the

ground state of the system, or if it corresponds to a con-

tinuum state.

While it is interesting to study this state for algorithmic

reasons, the states of more importance are those that can be

accessed experimentally, those with s ¼ 0,�1,�2. These
more interesting systems have baryons in a relative pwave,

i.e. p-shell nuclei and hypernuclei, and require retaining

the lower components of the quark fields in the local

operators by parity considerations. Unfortunately, we find

that such operators have poor overlap onto such systems,

and produce noisy correlation functions. These nuclei can

be accessed with nonlocal operators and are the subject of

future work.

VIII. SUMMARYAND CONCLUSIONS

We have presented the results of lattice QCD calcula-

tions of various of the lightest nuclei and hypernuclei with

A � 5 and with light-quark masses at the (unphysical)

SU(3)-flavor symmetric point equal to the physical

strange-quark mass. These calculations were performed

in three lattice volumes with spatial extent 3.4 fm,

4.5 fm, and 6.7 fm, and with one lattice spacing of b�
0:145 fm. Using a new algorithm to perform the Wick

contractions, ground-state energies of a number of nuclear

states were determined from one or more correlation func-

tion(s) generated from local quark-level operators for sys-

tems at rest or moving in the lattice volumes. A summary

of the binding energies determined in this work can be

found in Table XVIII and is shown in Fig. 19. The approxi-

mate binding energy per baryon, which is seen to be

significantly larger than found in nature, is also shown in

Table XVIII.

In contrast to QCD with the light-quark masses at their

physical values, at the SU(3) symmetric point all two-body

channels except possibly N�ð3S1Þ contain a bound state in
their spectrum. The SU(3) 1 H-dibaryon is the most deeply

bound two-body state, and its excitation, transforming as

27 of SU(3), is also bound. The nature of the sources used

in this work, each derived from the same light-quark

TABLE XVI. The calculated binding energies in ��
4He. The

first uncertainty is statistical, the second is the fitting systematic,

and the third is because of the lattice spacing.

��
4He 243 � 48 323 � 48 483 � 64

Ground state

(MeV)

157(7)(22)(2) 154(14)(19)(2) 156(16)(21)(2)
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FIG. 17 (color online). The bound-state energy levels in the

J� ¼ 0þ ��
4He (��

4H and nn��) sector. The points and

their associated uncertainties correspond to the energies of

the states extracted from the correlation functions with the

quantum numbers of the ground state of ��
4He. The excited state

of the ��
4He, in 28, has the same energy as the ground state of

4He. The locations of the energy levels associated with non-

interacting �-3�He, N�-N�, H-dibaryon-dineutron, N�-N�,

dineutron-�-�, H-dibaryon-N-N, and �-�-N-N continuum

states, determined from the two-body binding energies given

in Table VII and the three-body energies given in Eqs. (9) and

(12), are shown.
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FIG. 18 (color online). The EMPs of the single correlation function for the ��0pnn state. The inner (darker) shaded region

corresponds to the statistical uncertainty of the extracted energy, while the outer (lighter) shaded region corresponds to the statistical

and fitting systematic uncertainties combined in quadrature.
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propagator, are such that states in the symmetric 8S of

SU(3) are not produced in the correlation functions, and

as such, we are unable to locate these states in the two-

body spectrum. The energy splitting between the deuteron

and the dineutron is found to be smaller than the splittings

to the other SU(3) irreps, consistent with what is found in

nature, and the result of a large-Nc analysis. It is interesting

to note that the deuteron remains a finely tuned system

even at this heavy pion mass. In nature, the ratio of the

deuteron binding momentum to the pion mass (which

defines the range of the nuclear force) is
ffiffiffiffiffiffiffiffiffiffiffiffiffi

MNBd

p
=m� �

0:33, whereMN is the nucleon mass and Bd is the deuteron

binding energy. This quantity is exploited as an expansion

parameter in the low-energy effective field theory descrip-

tion of nuclear interactions [55]. Our calculations reveal

that
ffiffiffiffiffiffiffiffiffiffiffiffiffi

MNBd

p
=m� � 0:24 atm� � 800 MeV, which, by this

measure, is even more finely tuned than at the physical

light-quark masses.

In the three-body sector, we are able to cleanly identify

the J� ¼ 1
2
þ ground state of 3He and its isospin partner 3H,

and the total binding energy is determined to be 53.9(7.1)

(8.0)(0.6) MeV. In the case of the hypertriton, 3�H, the states
in both the J� ¼ 1

2
þ and J� ¼ 3

2
þ channels are consistent

with being bound nuclear states and not continuum states.

They are both found to be deeply bound, with the J� ¼ 3
2
þ

state being somewhat more bound than the J� ¼ 1
2
þ state.

This is in contrast to the situation in nature, where the

J� ¼ 1
2
þ hypertriton is found to be very weakly bound. The

J� ¼ 1
2
þ ground state of 3

�He, and its isospin partners 3
�H

and nn�, are cleanly identified, with a binding energy of

69(5)(12)(0) MeV, which is substantially lower than the

corresponding continuum states. Further, the J� ¼ 3
2
þ 3

�He

ground state is observed to be more bound than continuum

states but is somewhat less phenomenologically interest-

ing, as it does not contain an NN� component.

In the case of 4He, a bound J� ¼ 0þ ground state has

been identified, which, while lower in energy than any of

the continuum states, cannot be unambiguously identified

as a bound 4He nucleus because of the precision of the

calculations. As the sources employed for 4�He and
4He are

in the same SU(3) irrep, their spectra are identical in the

present calculations, and as such, this ambiguity is present

for 4
�He also. The ground state of ��

4He and its isospin

partners ��
4H and nn�� can be clearly identified, with a

binding energy of 156(16)(21)(2) MeV.

Finally, we have calculated correlation functions in an

exotic five-baryon channel, with s ¼ �3. Significantly

more calculations will need to be performed to cleanly

identify a ground state in this system, but this calculation

has demonstrated that the contractions for five-body sys-

tems can now be performed.

It is now clear, but hardly a surprise, that the spectrum of

nuclei and hypernuclei change dramatically from light-

quark masses at the SU(3) symmetric point to the physical

point. While we had already learned this from the recent

work on the H-dibaryon, and nucleon-nucleon scattering

lengths, this has now been demonstrated to be true for even

larger systems. While the binding energy per nucleon of

the deuteron (and dineutron) is about 10 MeV, for 3He and
4He it is near 25 MeV. These values are significantly larger

than the 1.1 MeV, 2.6 MeV, and 7.0 MeV, respectively, at

TABLE XVII. The calculated binding energies in ��0
5H. The

first uncertainty is statistical, the second is the fitting systematic,

and the third is because of the lattice spacing.

��0
5H 243 � 48 323 � 48 483 � 64

Ground state (MeV) 273(19)(39)(3) 255(25)(37)(3) 245(28)(81)

TABLE XVIII. Summary of the extracted ground-state binding energies of the nuclei and

hypernuclei studied in this work.

State A s I J�
SU(3)

irrep

Binding

energy [MeV]

�B=A
[MeV]

d (deuteron) 2 0 0 1þ 10 19.5(3.6)(3.1)(0.2) 10

nn (dineutron) 2 0 1 0þ 27 15.9(2.7)(2.7)(0.2) 8

n� 2 �1 3
2 1þ 10 5.5(3.4)(3.7)(0.0) 3

H (H-dibaryon) 2 �2 0 0þ 1 74.6(3.3)(3.3)(0.8) 37

n� 2 �2 0 1þ 8A 37.7(3.0)(2.7)(0.4) 19

3He, 3H 3 0 1
2

1
2
þ 35 53.9(7.1)(8.0)(0.6) 18

3
�H (hypertriton) 3 �1 0 1

2
þ 35 53.9(7.1)(8.0)(0.6) 18

3
�H (hypertriton) 3 �1 0 3

2
þ 10 82(8)(12)(1) 27

3
�He,

3
�
~H, nn� 3 �1 1 1

2
þ 27 69(5)(12)(0) 23

3
�He 3 �1 1 3

2
þ 27 55(6)(10)(1) 18

4He 4 0 0 0þ 28 107(12)(21)(1) 27
4
�He,

4
�H 4 0 0 0þ 28 107(12)(21)(1) 27

��
4He, ��

4H, nn�� 4 0 0 0þ 27 156(16)(21)(2) 39
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the physical pion mass. It will be interesting to learn how

the various thresholds for binding evolve with the light-

quark masses. Providing accurate binding energies for any

given light-quark masses will require the inclusion of

electromagnetic effects, the leading contributions of which

can be determined at the classical level and simply added

to the results of the LQCD calculations. A deeper under-

standing of the origin of the binding energies calculated

in this work will require a series of nuclear few-body

calculations, which are beyond the scope of the present

work. In particular, it is important to understand the rela-

tive contribution from the two-body, three-body, and

higher-body contributions to the A � 3 nuclei and hyper-

nuclei, which can only be accomplished using modern few-

body techniques.

Our results suggest that quenching in LQCD calcula-

tions produces significantly larger errors in the binding

of nuclei than it does in the hadron masses. While the

differences could be attributable to finite lattice spacing

effects and the different quark discretizations, their size is

not too surprising given the modifications to the long-

range component of the nucleon-nucleon interaction

attributable to quenching. It was shown in Ref. [56] that

the hairpin interactions that arise in quenched and partially

quenched theories generate exponential contributions to

the nucleon-nucleon interaction in addition to the usual

Yukawa interactions at long distances. Therefore, one

anticipates significant modifications to the binding of

nuclei, especially for finely tuned systems.

By diversifying and refining the source structure used

to generate the correlation functions, the continuum states

in each channel can be explored. In the case of two-body

continuum states, such as nþ 3He in the 4He channel, the
established scattering formalism of Lüscher will allow for

the scattering phase shifts in nþ 3He to be rigorously

determined from QCD below the inelastic threshold. For

the three-body and higher-body continuum states, further

formal developments are required to rigorously determine

multibody S-matrix elements.

Lattice QCD has evolved to the point where first-

principles calculations of light nuclei are now possible,

as demonstrated by the calculations at unphysically heavy

light-quark masses presented in this work. The experimen-

tal program in hypernuclear physics, and the difficulties

encountered in accurately determining rates for low-energy

nuclear reactions, warrant continued effort in, and develop-

ment of, the application of LQCD to nuclear physics.

Clearly, calculations at smaller lattice spacings at the

SU(3) symmetric point are required to remove the system-

atic uncertainties in the nuclear binding energies at these

quark masses. While not providing quantities that can be

directly compared with experiment, these calculations pro-

vide valuable information about the quark-mass depen-

dence of spectrum of the lightest nuclei, and hence the

nuclear forces, and will shed light on the fine-tunings that

are present in nuclear physics. To impact directly the

experimental program in nuclear and hypernuclear phys-

ics, analogous calculations must be performed at lighter

quark masses, ideally at their physical values.
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APPENDIX A: CASIMIRS OF SU(3)

To classify the states of the nuclei into irreps of flavor-

SU(3), the quark-level sources that generate the nuclear

FIG. 19 (color online). A compilation of the nuclear energy

levels, with spin and parity J�, determined in this work.
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correlation functions are acted on with the quadratic and

cubic Casimir operators of SU(3),

Ĉ2 ¼
X

a

T̂aT̂a; Ĉ3 ¼
X

abc

dabc T̂
aT̂bT̂c: (A1)

The Casimir operators acting on an irrep of SU(3) that has

a tensor representation with m upper and n lower indices,

�̂a1���amb1���bn of dimensionality

dðm; nÞ ¼ 1

2
ðmþ 1Þðnþ 1Þðmþ nþ 2Þ; (A2)

have eigenvalues

c2ðm;nÞ¼1

3
ðm2þn2þmnÞþmþn;

c3ðm;nÞ¼ 1

18
ð2mþnþ3Þð2nþmþ3Þðm�nÞ;

(A3)

the values of which are given in Table XIX for the relevant

irreps.

APPENDIX B: THE EXPECTED CONTINUUM

STATES IN THE FINITE LATTICE VOLUMES

Given the single-hadron and two-body energies that

have been extracted in Secs. III and IV, the continuum

states that are expected to arise in the three-body sectors

with given quantum numbers can be estimated. Similarly,

the information obtained for the three-body systems

extracted in Sec. V allows for an estimate of the contin-

uum states in the four-body sector, and so forth in higher-

body systems. In the figures in the main text, this

information has been presented as the infinite-volume

thresholds for the various possible continuum channels.

Here, we present an example of the expected spectrum of

states in the 4He system in the different lattice volumes

used in this work.

For a noninteracting two-component system, composed

of nuclei A1 and A2, the individual components have only

back-to-back momenta,

EðcontÞ
A1;A2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
A1

þ jpj2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
A2

þ jpj2
q

: (B1)

For three or more cluster continuum states (for example

dþ pþ n in the 4He channel), labeling the clusters A1,

A2; . . . ; An, the system has energies permitted by momen-

tum conservation

EðcontÞ
A1;A2;...;An

¼ 	ð3Þ
�

X

n

i¼1

pi

�

X

n

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
Ai
þ jpij2

q

; (B2)

with the obvious generalization to systems with a nonzero

center-of-mass momentum. These considerations ignore

the interactions between the clusters, which will modify

the position of the corresponding energy levels. For two-

body clusters, it is expected that there will be Oð1=L3Þ
shifts in the continuum energies, but for higher-body

clusters the form of the energy shifts is not known. In

Fig. 20 we present the expected (ignoring interactions)

FVenergy levels in the 4He sector for each of the volumes

used in this work.

With more accurate LQCD calculations and additional

interpolating operators, we aim to investigate these

states in the future. However, this makes clear the diffi-

culty in extracting excited states in nuclei from this type

of calculation. The continuum states rapidly accumulate

as the lattice volume becomes large, and isolating nu-

clear excited states above the lowest-lying continuum

states will be challenging with current technology and

algorithms.

TABLE XIX. The values of the quadratic and cubic Casimir

operators in SU(3), c2ðm; nÞ, and c3ðm; nÞ.

irrep m n c2 c3

1 0 0 0 0

3 1 0 4
3

10
9

	3 0 1 4
3 � 10

9

6 2 0 10
3

35
9

	6 0 2 10
3 � 35

9

8 1 1 3 0

10 3 0 6 9

10 0 3 6 � 9
27 2 2 8 0

28 6 0 18 45

28 0 6 18 �45
35 4 1 12 18

35 1 4 12 �18
64 3 3 15 0

81 5 2 20 30

81 2 5 20 �30
125 4 4 24 0

p p n n d p n nn p p nn pp d d 3He n4He 0150

100

50

0

50

E
M

eV

L 48 , p 0

L 32 , p 0

L 24 , p 0

FIG. 20 (color online). Expected energy levels in the J� ¼ 0þ
4He sector. The dark (blue), medium (green), and light (red) lines

in each column denote the location of noninteracting continuum

levels in the 243 � 48, 323 � 48, and 483 � 64 ensembles,

respectively. The location of the states in the 243 � 48 and

323 � 48 ensembles have been displaced slightly for demonstra-

tive purposes.
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