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LIGHT OPEN AND OPEN MAPPINGS ON MANIFOLDS. II
BY

JOHN J. WALSH

ABSTRACT.  Sufficient conditions are given for the existence of light
open mappings between pJ. manifolds.   In addition, it is shown that a mapping
/ from a p J. manifold Mm, m > 3, to a polyhedron Q is homotopic to an open
mapping of M onto Q iff the index offJir^M)) in itj(0 is finite.  Finally, it
is shown that an open mapping of Mm onto a pJ. manifold Nn, n > m > 3,
can be approximated by a light open mapping of M onto AT.

In [19], D. Wilson constructs examples of light open mappings (with each
point inverse a Cantor set) from any 3 manifold onto any « cell (« > 3) and he
constructs examples of monotone open mappings of any pJ. manifold Mm
(m > 3) onto any n cell (these results answered questions raised by Eilenberg in
[3] ). In the first paper in this series [24], the author gave a complete analysis
of the existence of monotone and monotone open mappings from manifolds
onto polyhedra. In this paper, we give a complete analysis of the existence of
open mappings from manifolds onto polyhedra (using results from [24] and
from the theory of covering spaces); however, the principal content of this paper
is the technique developed in §5 for constructing light open mappings between
manifolds (with each point inverse a Cantor set). The techniques used in this
paper are inspired by those of D. Wilson in [19] and [18] ; indeed, the many
similarities are apparent.

The "key" result which enables us to remove the assumption (of Wilson
in [19]) that the domain manifold have dimension three is contained in the
appendix (it is necessary to study §5 in order to understand the relevance of the
appendix). The philosophy behind removing the assumption that the image is
a cell is exactly the same as in [24] (however, we must assume the image is a
manifold). In addition, the technical difficulties encountered in §5 are numer-
ous.

In order to read this paper, it will be necessary to have a copy of the first
part [24]. Indeed, we will need to refer to [24] so often that we have num-
bered the sections of this paper beginning with 4; any reference to § 1, 2, or 3
will be to that section of [24] (eg., (3.7.1) refers to §3 of [24] ). The notation
used here is exactly as in [24], hence we shall not reproduce it.
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272 J. J. WALSH

4. In this section, we develop an "up to homotopy" monotone open-Ught
open factorization which leads to a proof of the following theorem.

(4.0) Theorem.  A mapping from a compact, connected p.I. manifold
Mm, m > 3, to a compact, connected polyhedron Q is homotopic to an open
mapping of M onto Q if and only if the index off*{nx{Mj) in nx{Q) is finite.

The "only if' half of this result is due to Smale [22] ; we present in Prop-
osition (4.1) a modified version of Smale's result which we prove using covering
space theory. The reader is referrred to [23] for results on covering spaces used
below. RecaU that a mapping is proper provided the inverse image of each com-
pact set is compact.

(4.1) Proposition. Let X and Y be connected metric spaces with Y semi-
locally simply connected and letf: (X, x0) —*■ (Y, y0) be a proper, open mapping
which is also onto.  Then the index off*{nx{X, x0)) in 7ij(Y, v0) is finite.

Proof.  Let p: (Y, y0) —► (Y, y0) be a covering projection with
P*(^i(Y, y0)) = f*{nx{X, x0)); recaU that the index of/»(tt^X, x0)) in nx{Y,y0)
is equal to the cardinality of p~1iy0). Letf: (X, x0) —> (Y, y0) be a Ufting
off; that is, p o / = /. It foUows that / is proper and open and, hence, onto
(recall that Y is connected).  Since / ~1 (p~ 1iy0))=f~1 iy0) is compact, it fol-
lows that p~1iy0) is compact and, hence, finite.

Proof of Theorem (4.0). The "if half is proved as foUows. Let p:
(Ô. ?o) ""* (Q> <7o) be a covering projection with p*{nx(Q, %)) = f*{nX{M, x0)).
Since the index of f*{nx{M, x0)) in nx{Q, q0) is finite, we have that p~1{q0)
is finite; hence Q is a compact, connected polyhedron.  Let /: {M, x0) —►
{Q, y0) be a lifting off. It foUows that ?#: nx{M, x0) —+iix(Q, q0) is onto.
Corollary (3.7.2) in [24] impUes that / is homotopic to a monotone open map-
ping g~ from M onto ß (we do not claim that "g preserves base points). Let
g = p o g; then g is homotopic to / and g is an open mapping of Af onto Q. As
promised earlier, we may view p ° g as a monotone open-Ught open factoriza-
tion off (up to homotopy).

5. This section closely parallels §3 in [24] ; Proposition (5.1) below con-
tains the main technical tool for constructing Ught open mappings (as Proposi-
tion (3.1) did for constructing open mappings). Theorem (5.0) foUows from
Proposition (5.1) (and its proof) and Proposition 3 in [18]. Observe that the
only difference between the hypothesis of the foUowing theorem and that of
Theorem (3.0) is that we assume that the range is a pJ. manifold of sufficient
dimension, not simply a polyhedron.
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(5.0) Theorem.   Let Mm, N" be compact, connected p.l manifolds
(n>m>3) with triangulations K and L, respectively. Let P be a collection of
nonempty subsets of M with pairwise disjoint interiors, with each pEP a union
of elements of t(K), and with P* = M. Let T be a one to one function from P
onto t(L) satisfying:

(5.0.1) T(pj) n ...n T(pq) +0wheneverpx n .. .dpq =£0.
(5.0.2) Each component of T~1(ax) meets T~1(a2) whenever ox n a2

¥=0,ox,o2 Et(L).
Then there is a light open mapping f from M onto N with f~1 (y) horneo-

morphic to a Cantor set for each y EN and with f(x) E st2 (T(p), L)* for x G
pEP.

It is best to view Proposition (5.1) as a (nontrivial) modification of Prop-
osition (3.1). To this end, we will indicate how to modify the first part of the
proof of (3.1); that is, up to but not including (3.5). At this point the two
proofs differ radically and we will continue in detail with the remainder of the
proof of (5.1).

(5.1) Proposition.  Assume the hypothesis of Theorem (5.0); then there
are two sequences of finite collections of polyhedra {Jn)ñ=i and (Kn}~=1
satisfying: (5.1.1), (5.1.2),.., (5.1.7) are exactly the same as (3.1.1), (3.1.2),
...,(3.1.7).

(5.1.8) If]'1 n . . . n/£ =£ 0, then the diameter of each component of
Rntin) u • • • u Rn<Jn) « less than 28/2"-1.

Proof of (5.1).   We shall use (5.1. •)" to indicate condition (5.1. •) for
the nth stage. The construction for « = 1 is done as in (3.1); we now proceed
from the «th stage to the (« + l)st stage.

(5.2) Choose H and e' as in (3.2) with the additional requirement that
st4(a, t(H))* n st4(a', t(H))* = 0 for a G Ajn, a G A,h and a * a. We are
now going to determine /n + 1 and Ln+X; however, in doing so, we will also be
setting up a considerable amount of machinery to be used later. The reader is
advised to develop a schematic picture while going through the next paragraph;
see Figure 1.

Let ß be an integer such that STQ(Afn, t(H\jn))* = Rn(jn) for each /„ G
J„. Choose ln+x as follows. Recall that e is chosen as in (3.2); let Q' = Q +
3m2 + 5 and let / > /„ be such that the diameter of each stQ'+1(o, ßlL)* is
less than e' for each a G ßlL and such that stö'0'„, ßlL)* C st(/„, tfn+1L)*;
this last condition will guarantee the conclusion in (5.0) that/(x) Gst2(7'(p), t(L))*.
Let 3n = minimum of {distance of N - stl'(o, ßlL)* to st,'"2(a, ßlL)*\ a G
ß'"L and 2 < i < Q'}.   Let l' > I + 4 be an integer such that the diameter
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A,= st(st(w„, ft'-2L)*, tfL)

Figure 1

of st(st(w, ßl'~2L)*, tf'L)* is less than 77 for each vertex w G ßl'~3L. Let
ln+x > { be an integer such that if v is a vertex of ß n + 1L and v E
st(w, 0''-2¿)* for some vertex w G ßl'~3L, then st(u, 0,"+1Z,)* C
int(st(st(w, ßl'-2L)*, ßvL)*). Finally, let Ln+X = Q'2In+l~l; the reader should
check that stL»+l(jn, Jn+X)* =stß'(/„, í(j3'Z,))* and that if/n+1 EJn+x =
ß,n+U and o G f(j3'l) with/„+1 ç o, then stL"+1(/„+1. Jn+X)* Q
stö (a, tiß'L))*. In particular, the diameter of stL"+1(jn+x, J„+x)* is less than
e' and, therefore, condition (5.1.2)"+1 holds.

(5.3) Read here exactly the rule stated in (3.3). As in (3.3), this basic
rule guarantees that (5.1.4)"+1 wiU hold and this rule together with (5.1.7)"
(and the above choice of Ln+X) guarantees that (5.1.5)"+1 and (5.1.6)"+1
wiU hold. One fact deducible from the choices of Q, Q' and Ln+ x is that if
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/'„+1 C st3m20„, r(0'¿))*, then Rn+1(jn+l) is to meet every member « G t(M)
in Rn(jn).

(5.4) For each vertex v of Jn+1 (more precisely, v is a vertex of 0 n+1L),
let S(u) = {bd(st(w, ß2H)*)\w i. vertex of /31//}*; each S(v) is a subcomplex of
ß2H.  General position the 5(u)'s with respect to each other and with respect to
c\(jfn-i r\(M- DM)) so that the part of each S(v) in DM (resp. M - bM) re-
mains in DM (resp. M - bM). Let S = \JS(v) and let Bl be a subdivision of H
with each S(u) a subcomplex of Bx.

Let i/= st(S, ß2B1)*, let Ä^ = {*„ n cl(M - t/)|fc„ Gtf„}, and let
/#(/„) - *-„0„) n cl(M - to G *#.

(5.5) Most likely, the collection of components of the sets in K% will not
be simple (a fact we will have to live with). By using ln+x - ln applications
of the construction in (1.3) (begin with the triple (ß^)_1 : KJ¡ —* Jn which
satisfies (1.1.1), but omit the step where the collection of components is made
simple), construct a triple Tv: Pu~+Jn+i satisfying:

(5.5.1) P*, = (K%)* and d(int(p)) = p for each p E Pv; the collection of
components of the sets in Pu may not be simple.

(5.5.2) If/n+1 Qjn,thenTrJ1(i„+l)QRH(}„).
(5.5.3) Tt/pJ n...n Trj(pq) # 0 whenever px n ... n pq * 0.
(5.5.4) If C, C are components of cl(ft - U), cl(h' -U),h ER^(jn)

and «' CR^(j'n), and CC\C' contains an m — 1 cell, then for each pair/n+1
c/„, fH+x Q]"„ with/„+l n/;+1 * 0, int(T^(]n+l) U Tj}xifH+x)) n
int(C U C') is connected (possibly, C = C', jn =j'n, or jn+x =j'n+1).

By running additional tubes during each application of (1.3), we can as-
sume in addition:

(5.5.5) If C is a component of cl(« - U), h C Rn(jn), and a C C n U,
a an m - 1 simplex of j32ßj, then T^1(Jn+x) n a contains an m - 1 cell for
each/n+l C/„.

(5.6) We are now going to alter the triple Tv: Prj ~*Jn+i so that
^rj'On + i) meets each set in t(tf) which R„+i(]'„+l)is supposed to meet (see
(5.3)).

Let C be a component of cl(« - U),hQ Rn(jn) and « G t(H); let r be an
integer such that R„+l(j„+1) is to meet « if and only if jn+x E str(jn, Jn+l).
For each/„+1 G st1^, Jn+1) - st°(/n, Jn+1) alter T¡,l(jn+t) by adding to
it an m cell in intír^^'ñ+i^n int(C) where jn+x n£+, #0 andj'„+x G
st°0'„, ^„+i); remove the interior of the m cell from r^'O'^+i). Inductively,
for *" = 2.r> if fn+i e st''(/n' ̂ /z+i) - st<_1(/'„, ̂„+i), then add to
TÜltin+i) an OT cel1 m intí^rj'O'ñ+i)) n "»tfQ where/„+i n/«+r =¿0 and
Ai+i e st'_10'/,> ̂ n+i); remove the interior of the m cell from r^O'ñ+i).
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Let PCT= {cl(7^1 Qn+1) n int(CY)|/„+1 G str(/„, Jn+X)} and let
T%{d{T¡}l(j„+x) n int(O)) =/„+1 for/„+1 G str(j„, Jn+X). Apply the tech-
niques in (2.5) - (2.8) to the triple 7^: Pfj —* sf (/'„, Jn+i), using the fact that
str(/n, 7„+1)* is simple connected, to alter the sets Tj}l(jn+l),jn+l E
^(/'„.^n+^so that:

(5.6.1) If jn + x,j'„+x estrOn,/n+1)with/B+1 n/;+1 *0,then
int{Tj}l(jn+x) U 7r}1(/'i,+i)) H int(C) is connected.

(5.7) After the alterations of (5.6) have been made for each « G t{H) and
each component C of cl(« - t/), the altered triple Tv: Pu~*~Jn+i wm< still
satisfy (5.5.1), (5.5.3), (5.5.4), and (5.6.1); be warned that the superscript "r"
in condition (5.6.1) depends on the set h for which we have C a component of
cl(« - U). In addition, 7^1(/„+i) meets every member of t(H) which
*2i+i0'«+i) is to meet and 7r}1(/„+1) n Hm~l QRn(jn) where jn+x C/„.

Assessing what we have done so far, we observe that the triple Tv: Pv —►
Jn+X satisfies aU the conditions (5.1. -)n+i (with TJ}1 and Pu in place of

Rn+X and Kn+X) except for (5.1.1)"+1 and (5.1.7)n+1 . The two major prob-
lems we face are that P^^M and that each component of T¡}1ijn+X) may not
meet T¡}l(j'n+X) even though j'n+x n/„+1 * 0.  §§(5.8) - (5.11) deal with
the latter problem and (5.12) the former.

Before proceeding, let us discuss the role of the S(u)'s. IdeaUy, we would
n^e ^n+iO'n+i) n S{v) =0 for each vEjn+x as this would immediately give
us (5.1.8)" + 1. We wiU not have this ideal situation, but we wiU "control" this
intersection so that we can stfll deduce (5.1.8)"+1.

(5.8) Let u be a vertex of Jn+X and let h E tiH) where h QR„{j„). For
each pair D, D' of components of « - S with cl(D) O cl(Z)') containing an m -1
ceU in S(v) make the foUowing alterations.   (Let C, Cf be the unique com-
ponents of« - Uwith C CD, C' CD'.) For each/n+1 Qj„ with/n+1 n Nv{v)
= 0 (recaU that tj was defined in (5.2)), use condition (5.5.5) to connect
Td'O'n+i) n cl(C) to 7t71(/M+1) n cl(C') with a tube in 7f}1(/„+1) U {D - C)
U {D' - C) U Sip). Note that this tube does not meet S - S{v) and be sure that no
two such tubes intersect. Add this tube to 7^}1(/„ + x). Make the above alterations
for each vertex v of Jn+X and each h E tíjí). Observe that we no longer have
P*r = cl{M - U).

(5.9) We will now make the necessary alterations so that if jn+x n j'n+ x &
0, then each component of Tyl(jn+X) wiU meet T^lif'n+X). Let us assume
that the S(u)'s were general positioned in (5.4) so that for each pair h, tí E t{H)
with « n h' an m — 1 simplex, there are components Ch and Cn. of « - U and
tí - U such that Ch C\Ch' contains an «i - 1 cell and such that for each vertex
v ofJn+x the closure of the component Dh {iesp.,Dn<) of h - S{v) (resp.,
tí -S{v')) containing Ch (resp., Ch.) does not intersect bd(«) — « O tí (resp.,
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bd(ft')- « n ft'). Choosing such a "general positioning" is not difficult (in fact,
almost any "natural" choice will do).

For each/„ G /„, let 7(H\jn) ={hE t(H\jn)\h <£Afn).  For each ft G
7(H\jn), let rn be the unique integer with

« G STLn+1~rh(A* , t(H\jn)) - STL"+1~rh~X(A* , t(H\Jn)).
'n 'n

It follows from the choices of Q', Q and Ln+ x in (5.2) that rn > 3m2 + 1.
For each hE7(H\jn), let a(h) E STL"+1~r'1~1(Afn, t(H\j„)) with h O

o(«) an m — 1 simplex and let Cn and Ca^ be the components of« - Í/and
o(ft) - U discussed above.

For each a G A¡ , define a collection 2(a) as follows. For each j'n G
st(/„, /„) with/; #/„" let h'in, h].n G r(/0 with tifn Ca, «^ £*„(&), and
h'j. n «y. an «i - 1 simplex; let Cft t, and C»,.. be components of fl;'- - ¿7
and hy - Í/ discussed above. Let

we emphasize that 2(a) contains exactly one pair (CV.,, C*., ) for each j'n E
st(j„,J„)v/ith j'n*jn.

Let

rjn = {(«, jn+x)\h G 7(H\Jn) and/„+1 G str*+1(/„. /-+1) - **<¡L, /.+l)>.

\={(«Jn+1)\«Z\™à]n+xEstL" + 1 + \-n,Jn+x)-stL"+1Qn,Jn+x)}.

For each («, /n+1) G r/n (resp., (a, ;'„+1) G £2/n) we will make Tj}x{Jn+x)r\
int(ft) (resp., T^On-n) n int(a)) connected and then we will connect
^(/n+l) n Ç, to T^iin+i) n Ca(Ä) (resp., rrJ1(/n+1) n C^ to
rc/1(/„+i) n Cn., where;„+i C/J, and (C^, CHj,j E 2(a)). We emphasize
that the same o(ft) (resp., 2(a)) is used for each pair (ft, jn+x) (resp., (a, ]'n+i))-
The problem we need to remedy is that for (ft, Jn+1)E T¡  (resp., (a, jn+x) E
ni„)>Xin+i estr"+2(/„,/„+1)-st''*+1(/„,/„+1)(resp",/;+1 G

sti«+1+2(/B, /B+1) - st£"+«+1Cr„. J„+l)) wlth/;+1 n/„+1 * 0, then
^rj'On+i) n * =0 (resp., T^Q'n+i) H a =0); hence, the components of
TûX^n+ù m Ä (resP->a) do not meet ^'(/„-n)- However, since T^ii'n+i)
n o(ft) =£0 (resp., T^On+i) n «/„ +0 where/B+1 £/'„), once we have made
the changes indicated above, we will have eliminated this problem. The changes
we now describe are to be made for each/„ EJn.

For each (ft, jn+x) E Tjn make the following alterations. Let D and D'
be components of ft - S with cl(D) n cl(D') containing an m - 1 cell; let u be
such that cl(D) n cl(D') contains an m - 1 cell in S(v). Let/„+1,. . ,/_., =
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jn + 1 be a chain (i.e.,/|,+ 1 n/¡ft?, * 0, i = 1. • • • » t - 1) in str" + 10„, /„ + ,)
with/*+1 C/„,withuÖ/iI+1 fori = f-2, .... 1, and with j\ + x n Nn{v) =
0. In view of the changes made in (5.8), 7y l(jl„+x) n (int(I> UD'U 5(u)))
is connected; connect Tjjl(j2 + 1) C\ D to T^l(j2 + 1) HD' with a tube in
int(7£l(/2+i) U 7rJ1(/i + 1)) n (£> U /)' U 5(u)). The "new" Tyl(j2„+X) meets
int(D Ufl'U S(v)) in a connected set; hence, we can connect 7y1(/31+i) n D
to VCtë+i) n D' with a tube in muT^-n) U 7fJ1(/2+i)) n (£> U£>' U
iS(u)). In this manner, successively for i = 4, ... , f, connect Ty1(j'„+X) <"> Ö
to Tof^+i) n ß' with a tube in int^f/«*,) U T¿l(j„-+\)) n{DUD'
U S(u)). Make the above alteration for each pair D, D' of components of h -
S with cl(Z>) n cl(Z)') containing an m - 1 cell. Let j„+x,. . . ,jn+x =Jn+i
be a chain in str* + 1(/„, /„+,) with/J+1 Ç/„. In view of (5.5.4), T¡}lijn + Í)
n intiC/j U Ca(/¡)) is connected. As above, successively for i = 2,. . . , f, con-
nect T^(jn+l) n C„ to 7fJ1(/¿+1) n Ca(/l) with a tube in

tot(^t(/¿+1) u 7-«(,r+1i)) n int(cA u co(ft)).
For each (a, /„ + ,) G Í2;-   make the following alterations. Using the meth-

od in the preceding paragraph, make 7y1(/„+I) H int(a) connected by connect-
as Ttf'On + i) n-D to 7y10'„+i) n D' for each pair of components A D' of
fl - (5 U /Ym_1) with cl(/)) H cl(/)') containing an m - 1 ceU. (If connecting
across an m —1 cell contained in Hm~l, then any chain/¿+1./* + 1 =
/„ + 1 in st " + 1     Q'„, J„+x) can be used; however, if the m — 1 cell is con-
tained in S(v), then choose the chain so that ¡)0/¿+J for i = f — 2, . . . , 1
and so that jn+1 D Nv{v) = 0.)  FinaUy, let j'„ be such that j„+x Qj'n and let
l'n+u • • • >/« + i =/„+! be a chain in stL"+1 + 1(/„, /n+1) with/> + 1 C/„
and /J, G/^ for i = 2, . . . , f. In view of (5.5.4)

"<#(£«>u ^d» n mt(c/»;., u % >
'22 'n

is connected; hence, we can connect Tyl(j„+X) C\ Ctf., to 7^1(/2 + i) H CV«

with a tube in this set. Now, successively for 1 = 3,. . . , t, connect
T^OUO n ch-r„ to Tûl(jn+l) n Chfn with a tube in

"GS'Ol+i)u ̂ Wi» n (c/,'., u %, )•
'22 '/l

(5.10) We now have that if/„+1 ¥= 0, then the intersection of each
component of 7rJ10'„+1) with 7y10'^,+1) contains an «1 - 1 cell; and, in place
of having T¡}l (j„ + X ) n S(u) = 0 for each y£/B+1,we have that :

(5.10.1) For each vertex v ofJn+x, each component of {7^1(/'„+i)l
v G/n + ,}* is a subset of st3(/z, f(/7))* or st3(a, f(//))* for some « G f(#) or
aGÜA/n.

We wiU now outline a proof of the validity of (5.10.1). Let B be a com-
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ponent of {rf}I0„ + i)lu £/„+i}* and suppose that B n S(v) ± 0(if ß n 5(u)
= 0, then we are done). Let s = minfs'l for some jn G /n and for some ft G
STs'(Af , t(H\jn)) we have that ß n 5(u) n ft # 0}. Let us assume that s * 0
(the case s = 0 is handled similarly; in particular, using the fact that st4(a, t(H))*
n st4(a', t(H))* = 0, a # a, one shows that if ß n 5(u) n a ¥= 0, then ß Ç
st3(a, t(H))*).

Let /„ G /„ be such that there is

ft G ST%4;, «„)) - ST*"1 (A?, t(H\in))
'n 'n

with ß n S(v) n ft =£ 0 (it will turn out that both /„ and ft are unique; this is
not obvious). Recalling the definition of rn, it certainly is the case that s = Ln+l
- rh. One of the "controls" governing the changes made in §(5.9) involved
limiting the possible intersection of T^}1(jn+1) with S(v) for each/„+1 G
st(u, Jn+1) (recall the carefully chosen chains used in the final two paragraphs
of (5.9)); in particular, one can verify that we must have that v E st'O^, J„+1)*
- stq~1(jn, Jn+l)* where q is equal to one of the following: rh + l,rh,ot
r„ — 1. Let us assume that q = rn (the remaining two cases can be handled sim-
ilarly). Let ft,,_ft, be all the sets in STLn+l-r"+1(Afn, t(H\jn)) -
ST¿«+1 'rh(A*n, t(H\jn)) for which o(h¡) = h, i = 1,.. . ,t" Letting G = ft U
o(h) u (U'=i^/)>we da™ that ß C int(G); this fact can be deduced as follows.
Let jn+x E st(u, Jn + l); since v E str"ijn, /n+1)* - strA-10'„, ^n+i)*, we must
have that

We need to know where T^1(fn+1) intersects bd(G). (Before the changes in
(5.9) were made, we had that T^d^^ n H1"-1 QRn(j'n) where jn+x Cj'n;
since G n Rn(j'n)=0,  TyX(jn + l)r\ bd(G) is completely determined by the
changes made in (5.9).) Letting Cx = {Cn> n Co(n)|ft' G ST*^*, t(H\jn)) with
ft' * ft and o(«') = a(ft)}* and C2 = {C„- n C^lft' G STÎ+2(X;J t(H\i'„)) with
o(A') = ft; for some i=l,. . . ,t}*, certainly, we have that T¡}1i]n+X) n bd(G)
QCX U C2. However, the choice of minimal s implies that ß n S(u) fr o(ft) = 0;
therefore, because of the choice of component Ca,hy in (5.9), we have that ß n
Cj = 0. In addition, if a(ft') = h¡ for some i = 1,..., t, then tí E
Sl*+2(A*n, t(H\jn)) - ST°+1(Afn, t(H\jn)) and ^(/„-n) ^ A' =0; therefore
BnC2=0. Hence, we have that ß Ç int(G).

In dealing with the case that q = rn - 1, in place of the set G, it is necessary
to use the set
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G'=^ua(«)u(u«.|

U {«'!«' G STS+2(A* , t{H\jn)) with a(«') = A. for some i = 1.f}*.

If <7 = rft + 1, then the set G suffices.
(5.11) We are now in a position to construct a coUection of m ceUs A;-     ,

for each/n+1 G/n+1, satisfying condition (5.1.7)"+1 for the triple Tv: Pv —■*■
Jn+X. For each/„ + 1 G/n+1 and for each component W of T^}1(}n+X) do the
foUowing. Let ft G t{H) with rVnr^O'^^n int(A) containing an m - 1 ceU
for each/'ñ+j G st(/n+1, Jn+i)'> for certain If such an ft existed before the changes
in (5.9) were made and for the others the changes in (5.9) yield such an ft.
Choose an m ceU in int(R0 n int(ft) of diameter less than 4/2"+ ' and, for each
j'n+i G stO'w+i. ̂ 2+i)> connect 7ü10ñ+i) ^ A to this m ceU with a tube in
int{W U Tj}l(j'n+X)) n int(ft); this m ceU is to be an element of A'f      .

(5.12) Let V= cl(«7- {7'¿/1(/„+1)l/„+1 e/„+1}*) and let\ be a sub-
division of Bx which subdivides V. In this section we wiU construct a (particular)
pJ. mapping from VtoN and in (5.13) we wiU use this mapping to "enlarge"
the 7'¿J10„+1)'s so that they "fffl" aU of M.

Using the machinery set up in (5.2) and Proposition A from the appendix,
we now construct a pi. mapping g: V —► A'' satisfying:

(5.12.1) g{S{v) nV)C\ st(u, Jn+X)* = 0 for each vertex u of Jn+X.
(5.12.2) If oEB2 and o Qbd{V), theng{o) C f) {/B+1k C T¿xQn+x)}.
(5.12.3) g{V n Rnijn)) Q st3m2ijn, ßlL)* for each /„ G /„.
For each vertex vEJn+x, let w„ be a vertex of ßl ~ZL with v G

st(w„, ßl'-2L)* and let Dv = st(st(wu, ßl'~2L)*, ßl'L)*; note that st(u, /n + 1)* Q
int{Dv); see Figure 1. Define g on bd(l0 inductively, for i = 0,.... m — 1, by
mapping each i simplex a EB2 into fH/n+ilo" Ç T^'Ob+i)} (see 0-0 f°r niore
details). Observe that the set S n bd(K) is completely determined by the changes
made in (5.8); in particular, if o Ç5 n bd(I0, then there is a unique vertex u of
J„+x with o C S(ü) n bd(J0- Furthermore, we have that g{o) n int(D„) = 0
(since the diameter of Dv is less than 77, Du Q N^iv); now recaU the condition in
the fourth sentence of § (5.8)).

If j is a vertex of B2 in S C\ V - bd(I0» then let vx,. . . , vs be aU the
vertices of Jn+X with y G 5^), 1 = 1,.... s; because of the general positioning
done in (5.4), we have that s < m. Using the machinery set up in (5.2), we can
find an integer r, 0 < r < 3m, such that Dv. n bd(str(fl{/„ lv e #„(/„)}> ß'/O*) =
0 for each i = 1,. . . , s; in general, the Dv 's wiU be located throughout A/; we
are concerned with avoiding those D 's contained in
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st3m(ri{/„ljeß/i0„)},/3/i)*.

Let giy) E int(str(f)Un b> e Rni]n)}x ß'L)*) but giy) Ö int(U ?=,£>„,)•
If t is a 1 simplex of B2 in S n V (t Ö bd(F)), then let vx,-, vs be

all the vertices of Jn+l with t QS(vt), i = 1,.... s (we have that s <m - 1).
Let r be an integer, 3/m < r < 2(3m), with

Z>u nbd(st'(nf7„|TCßn0„)}, ßlL)*) = 0

for each i* = 1, . .. , s. Extend g to t by mapping t into

int(sf(rH/„|rCßn(/„)}, /?'/)*)
but with g(r) n intiUijPy.) =0 by using Proposition A (see the Appendix)
with q = /' and ß = str(n{/„k CRn(J„)},ß'L)* (ignore those Z>„.'s not contained
inß).

In general, to extend g from the q skeleton of 5 n F to the q + 1 skeleton
of 5 O K, let t be a ? + 1 simplex inSnK(rÖ bd(F)) and let vx,..., va
be all the vertices of Jn+x with t CS(v¡), i= 1, .... s (we have that s < m -
q - 1). Let r be an integer, q(3m) <r <(q + l)3m . . . (continue reading from
the third line of the preceding paragraph).

Extend g to all of V by mapping a q simplex t Ç V (r (IS) into
int(st3m2(C\{]'n\T ERn(jn)},ßlL)*); more precisely, do this inductively beginning
with the vertices of B2 in V - S.

(5.13) Let B3 be a subdivision of B2 such that g- maps each simplex of
B3 contained in F linearly into a simplex of J„+i.

Let t G t(B3) with t (t ßy and with t C\P*,C\ int(ft) containing an m — 1
cell where ft G r(//) is such that t ç ft. Let £> be the component of ft - S with
t Çcl(D). Let/„+1 G/„+1 be such that r n Tü1(jn+l) O int(ft) contains an
/n - 1 cell; property (5.12.2) implies that if j'n+x EJn+l is such that g(r) Ç
/»+i» then/n+1 H/n+1 =£0. Properties (5.12.3) and (5.6.1) and the comment
in the last sentence of (5.3) guarantee that we can run a tube in

™Wi}%+1)VT)nD

connecting r to T^'O'^+i); add t and this tube to T¡}1(j'n+X) and replace
T^O'n + i) by cKT^ifn+^-tube). Let Tu>x: PUfX -+Jn+1 denote this new
triple.

Repeat the alterations of the preceding paragraph using Tv ^-Prj l —*
Jn+l in place of Tv: Pu —*Jn+l subject to the following modifications. Choose
t G rfß3) so that rOPj, n int(ft) contains an m - 1 cell not in S; and if
T n pu,i n int(ft) is not contained in bà(V), then read "g being a continuous
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function" in place of "property (5.12.2)". CaU the new triple TU2: PU2 —*■
^22 + 1-

Continue repeating the above alterations using the "new" triple each time
until, after say q times, we have P*,   = M.

(5.14) FinaUy, let R'„+x = T^]q and K'n+X =Pu¡q. We leave to the reader
to verify that the triple R'n+X: Jn+X —*K'n+X satisfies properties (5.1.1)" + 1 —
(5.1.8)""1"1 except that the collection of components of sets in K'n+x may not be
simple and that some components of Rn+Xi}„+X) may contain more than one of
the m cells in A'f      . Property (5.1.8)"+1 foUows from properties (5.10.1) and
(5.12.1) (it is also necessary to observe that, because of (5.12.3), if C is a com-
ponent of {7fJ 1(jn+x)\vEj„+x} with Cn S{v) i= 0, then Cis not changed by
the alterations made in (5.13)). Let B4 be a subdivision of B3 such that each
element of K'n+X is a union of sets in t{B4). By running "smaU" tubes in vari-
ous of the sets int(st(u, ß2B4)) where v is a vertex of ß1B4, the coUection K'„+x
can be altered so that the coUection of components of sets in K'n+X is simple
(the tubes should be smaU enough so that conditions (5.1.5)"+1 and (5.1.6)" + 1
still hold); at last we have our triple Rn+X: J„+x—* Kn + X. Let A¡  ., be a
subset of A'jn+ j chosen so that each component of Rn +, (/„+x) contains exactly
one m ceU. This completes the proof of (5.1).

(5.15) The following coroUary follows from Theorem (5.0) in much the
same way as CoroUary (3.7.1) followed from Theorem (3.0).

(5.15.1) Corollary. Let Mm, Nn be compact connected p.I. manifolds
with n > m > 3, let f be an open mapping of M onto N, and let e > 0.   Then
there is a light open mapping g from M onto N with d(f{x), g{x)) < e for each
x EM and with each g~liy) homeomorphic to a Cantor set.

Outline of Proof. Mimic the proof of CoroUary (3.7.1) in order to find
a triple T: P—*- f(I) satisfying the conditions of Theorem (5.0); in place of the
statement "Ua =/-1(int(st2(a, t{L))*)) as an open connected set" use the fact
that "each component of Ua is open and maps by/onto int(st2(o, t{L))*)."

The following results are immediate consequences of (3.7.1), (5.15.1), and
(4.0).

(5.15.2) Corollary. Let Mm and N" be compact, connected p.I. mani-
folds with « > m > 3. /// is a monotone mapping of M onto N, then f can be
uniformly approximated by light open mappings.

(5.15.3) Corollary.   Let Mm and N" be as above. A mapping f from
M to N is homotopic to a light open mapping of M onto N if and only if the
index off#{nx{M)) in nx{N) is finite.
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Appendix.   The following somewhat peculiar result is needed in the proof
of (5.1); in fact, it is the "key step" in extending the technique used in [24] to
construct open mappings to a technique to construct light open mappings. The
reader is referred to [6] for the results from pJ. topology used in the proof.

(A)   Proposition. Let Mm be a compact, connected p.l. manifold with
triangulation L, let B be a subcomplex ofL p.l. homeomorphic to an « ball, and
let q be an integer larger than 4. Let vx, . . ., vs be vertices ofßq~3L with each
set st(uf, ßq~2L)* a subset ofint(B), i = 1,. . ., s. Then

intfß) - int(jj st(st(uf ßq~2L)*, ßqL)*)

is m - s - 1 connected.

Proof. Observe that there is no constraint on how ß meets bM and recall
that intfß) is the topological interior. Let K = {(v¡.v¡ ) G ßq~3L\
{%,..., vir} C{vx,...,vs} and nrj^st(v¡r ßq~2L)* # 0}. Then K is a
full subcomplex of ßq~3L and intfß) - intíU^stO;,-, ßq~2L)*) is a strong de-
formation retract of intfß) - K. Since U^i8^^» ßq~2E)*, ßqL)* is a regu-
lar neighborhood of Uj=1st(uf, ßP~2L)*, the

int(ß) - iat(U st(st(ü., ßq~2L)*, ßqL)*\

is a strong deformation retract of intfß) - K. Finally, observe that the dimen-
sion of K is at most s — 1 so that the result follows by general positioning.
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