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Abstract – We derive the exact polaron and bipolaron Green’s functions for a model with a highly
inhomogeneous electron-boson coupling g�q ∝ δ�q, �Q, where

�Q= π
a
(1, . . . , 1). While the polaron

ground-state energy and quasiparticle weight are similar to those of the Holstein polaron with
equal effective coupling, the polaron dispersion is very different. Unlike that of a Holstein polaron,
which is monotonically increasing with the polaron momentum, the polaron dispersion in this
case is folded inside the Brillouin zone. For strong coupling, the polaron and bipolaron effective
masses increase linearly with the effective coupling and exhibit no isotope effect, as opposed to
an exponential increase and a strong isotope effect, in the Holstein model. As a result, this model
exhibits strongly bound yet light bipolarons at strong couplings. Generalizations are discussed.

Copyright c© EPLA, 2008

Introduction. – Exact solutions for interacting
systems are of considerable interest in condensed matter
physics, even for models simplified to a large degree.
Such models can describe non-trivial physics, and exact
solutions provide unique insight into regimes not acces-
sible by perturbation theory or other simple analytical
approximations. Such exact solutions can also be used as
benchmarks for testing of numerical algorithms developed
for simulations of more general models.
The problem we focus on in this letter are the effective

properties of dressed single particles and pairs of parti-
cles, due to interactions with bosons. Such interactions
are ubiquitous in complex materials, the bosons being
phonons, magnons and/or orbitronic degrees of freedom.
The general electron-boson interaction for electrons on a
N -site lattice in d-dimensions is given by [1]

V̂ =
∑

�k,σ,�q

g�k,�q√
N
c†�k−�q,σ

c�kσ

(

b†�q + b−�q

)

,

where c�kσ and b�q are electron and boson annihilation
operators, and momenta sums are over the corresponding
Brillouin zone (BZ). Well-known examples of such interac-
tions are described by the Holstein model (g�k,�q = g) [2,3]

and by the Fröhlich model (g�k,�q ∼ 1/q) [4]. In these cases,
the coupling is either a constant or (apart from the q= 0
region) a rather slowly-varying function of �q.

However, there are also systems where g�k,�q is peaked

in the “corner” of the Brillouin zone. Examples include
coupling to phonon breathing modes, which is essential in

describing the behavior of Bi oxide superconductors [5,6]

and may also play an important role in cuprates [7–10];
to antiferromagnons, e.g. in underdoped cuprates [11]
and in antiferromagnetically ordered phases of mangan-
ites [12]; and to combined spin and orbitron degrees
of freedom in certain manganites [13]. Graphene also
exhibits strong coupling to (its corner) K-point optical
phonons [14], which is promising for the possibility of engi-

neering such models using cold atoms trapped in optical
lattices [15].

In this work, we derive exact finite-temperature Green’s
functions for dressed particles (polarons) and pairs of
dressed particles (bipolarons) for a simple, highly inhomo-

geneous coupling (HIC) which assumes interactions only

with the boson of momentum �Q= π
a
(1, .., 1). All other

bosons are assumed to be irrelevant. This allows us to
calculate exactly various properties of the polarons and
bipolarons, such as effective masses, binding energies, etc.
We can also contrast their behavior with that of Holstein
polarons and bipolarons, to highlight the main differences
due to such a HIC model as opposed to a model with a
(quasi)homogeneous coupling. Several possible generaliza-

tions are also briefly considered.
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The model. – The HIC model that we study is

H=
∑

�kσ

ǫ�kc
†
�kσ
c�kσ +Ωb

†
�Q
b�Q+ g

∑

�k

c†�k−�Q,σ
c�kσ

(

b†�Q+ b�Q

)

.

(1)

Here, ǫ�k =−2t
∑d
i=1 cos(kia) is the free electron

energy corresponding to nearest-neighbor hoping on a
d-dimensional simple cubic lattice of lattice constant a
(generalization to longer-range hopping is trivial). Ω is
the energy of the bosons (we set �= 1 throughout this
work) and g characterizes the coupling to the bosons

of momentum �Q. While the model is rather unphysical,
as it implies an infinite-range coupling in real space, its
exact solutions suggest useful conclusions about models
with long but finite-range couplings, as discussed below.
Furthermore, for more realistic models, weak coupling to
other bosons can be added perturbationally at a second
stage.

Methodology. – The finite-temperature polaron
Green’s function is defined as [1]

G(�k, τ) =−iΘ(τ)Tr
(

ρ̂c�k(τ)c
†
�k

)

. (2)

The trace is over all zero-electron eigenstates
|n〉= 1√

n!
(b†�Q)

n|0〉 with energies H|n〉= nΩ|n〉. The
equilibrium density matrix is ρ̂= 1

Z
e−βH with the corre-

sponding partition function Z = Trρ̂= (1− e−βΩ)−1
and β = (kBT )

−1. Finally, Θ(τ) is the step function
and c�k(τ) = e

iHτ c�ke
−iHτ . In the frequency domain, this

becomes equal to

G(�k, ω) =

∞
∑

n=0

e−nβΩ

n!Z
Gnn(�k, ω+nΩ), (3)

where we introduce the generalized Green’s function:

Gnm(�k, ω) = 〈0|bn�Qc�kĜ(ω)c
†
�k+(n−m)�Q

(b†�Q)
m|0〉, (4)

with the usual resolvent Ĝ(ω) = (ω−H+ iη)−1, and
η > 0 an infinitesimally small real number. These
Green’s functions can be calculated by applying repeat-
edly Dyson’s identity Ĝ(ω) = Ĝ0(ω)+ Ĝ(ω)V̂ Ĝ0(ω),
where Ĝ0(ω) = (ω−H0+ iη)−1 corresponds to the non-
interacting Hamiltonian H0 =H− V̂ , leading to the
recurrence relations:

Gnm = gnm (δn,mn! +mgGn,m−1+ gGn,m+1) , (5)

where, for simplicity, the (�k, ω)-dependence is not written
explicitly and we use the shorthand notation

gnm ≡ gnm(�k, ω) =G0(�k+(n−m) �Q, ω−mΩ), (6)

with G0(�k, ω) = (ω− ǫ�k + iη)−1 being the non-interacting
single electron Green’s function. These equations are
solved in terms of continued fractions [16], and we find

G(�k, ω) =

∞
∑

n=0

e−nβΩ
(

1− e−βΩ
)

ω− ǫ�k −An(�k, ω)−Bn(�k, ω)+ iη
, (7)

where (see eq. (6) for definition of gnm(�k, ω))

An(�k, ω) =
ng2g0,−1

1− (n−1)g2g0,−1g0,−2
1− (n−2)g

2g0,−2g0,−3
...

, (8)

Bn(�k, ω) =
(n+1)g2g0,1

1− (n+2)g2g0,1g0,2

1− (n+3)g
2g0,2g0,3
...

(9)

are finite, respectively infinite continued fractions. If the
coupling depends on the incoming electron’s momentum
�k, one simply has to replace g2→ |g�k|2. For T = 0 only
the n= 0 term is finite, therefore B0(�k, ω) is the polaron

self-energy, with explicit and non-trivial �k-dependence.
Similarly, the bipolaron Green’s function in the singlet

sector is defined as

G( �K1 �K2,�k1�k2; τ) =−iΘ(τ)Tr
(

ρ̂c �K2↓(τ)c �K1↑(τ)c
†
�k1↑
c†�k2↓

)

.

Let �k(+) =�k, �k(−) =�k− �Q, and define the generalized
two-particle Green’s functions:

G±±nm ( �K1 �K2,�k1�k2;ω) =
〈0|bn�Qc �K2↓c �K1↑Ĝ(ω)c

†
�k
(±)
1 ↑
c†
�k
(±)
2 ↓
(b†�Q)

m|0〉.

In terms of these, after a Fourier transform to the
frequency domain, the bipolaron Green’s function equals

G( �K1 �K2,�k1�k2;ω) =
∞
∑

n=0

e−nβΩ

Zn!
G++nn ( �K1 �K2,�k1�k2;ω+nΩ).

(10)

The recurrence relations for G±±nm ( �K1 �K2,�k1�k2;ω) are
generated as before, using Dyson’s equation repeatedly.
They are found to be given by

G++nm = G0(�k1,�k2, ω−mΩ)
[

δn,mn!δ �K1,�k1δ �K2,�k2

+ mg
(

G−+n,m−1+G+−n,m−1
)

+ g
(

G−+n,m+1+G+−n,m+1
)]

,

G−−nm = G0(�k
(−)
1 ,
�k
(−)
2 , ω−mΩ)

[

δn,mn!δ �K1,�k(−)1
δ �K2,�k(−)2

+ mg
(

G−+n,m−1+G+−n,m−1
)

+ g
(

G−+n,m+1+G+−n,m+1
)]

,

G+−nm = G0(�k1,�k2− �Q, ω−mΩ)
×
[

mg
(

G++n,m−1+G−−n,m−1
)

+ g
(

G++n,m+1+G−−n,m+1
)]

and finally

G−+nm = G0(�k1− �Q,�k2, ω−mΩ)
×
[

mg
(

G++n,m−1+G−−n,m−1
)

+ g
(

G++n,m+1+G−−n,m+1
)]

,

where we did not write the arguments ( �K1 �K2,�k1�k2;ω)
explicitly for simplicity of notation, but dependence
on these is implicitly assumed. Also, G0(�k1,�k2, ω) =
(ω− ǫ�k1 − ǫ�k2 + iη)

−1 are the free two-electron Green’s
functions.
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In order to solve this infinite system of coupled recur-
rence equations, we define

Fnm ≡
{

G++nm +G−−nm , if n−m is even,
G+−nm +G−+nm , if n−m is odd, (11)

and

g̃nm ≡
{

g+(�k1,�k2, ω−mΩ), if n−m is even,
g−(�k1,�k2, ω−mΩ), if n−m is odd,

(12)

where again, dependence on ( �K1 �K2,�k1�k2;ω) is implicitly
assumed, and we also introduce

g+(�k1,�k2, ω) = G0(�k1,�k2, ω)+G0(�k1− �Q,�k2− �Q, ω)

and

g−(�k1,�k2, ω) = G0(�k1− �Q,�k2, ω)+G0(�k1,�k2− �Q, ω).

Then, the four original recurrence relations reduce to one
similar to eq. (5), namely

Fnm = δn,mn!fn+ gg̃nm (mFn,m−1+Fn,m+1) ,

where

fn ≡G0( �K1, �K2, ω−nΩ)(δ �K1,�k1δ �K2,�k2 + δ �K1,�k(−)1
δ �K2,�k(−)2

).

This is again solved in terms of continued fractions, after

which the various G(±,±)nm functions can be found from
their original recurrence equations, which depend only on
the Fnm combinations (see eq. (11)). In particular, the
expressions needed in eq. (10) are found to be given by

G++nn ( �K1 �K2,�k1�k2;ω+nΩ)
n!

= δ �K1,�k1δ �K2,�k2G0(�k1,�k2, ω)

+
(

δ �K1,�k1δ �K2,�k2 + δ �K1,�k(−)1
δ �K2,�k(−)2

)

G0( �K1, �K2, ω)

×

[

Ãn(�k1,�k2, ω)+ B̃n(�k1,�k2, ω)
]

G0(�k1,�k2, ω)

1− g+(�k1,�k2, ω)
[

Ãn(�k1,�k2, ω)+ B̃n(�k1,�k2, ω)
] ,

where Ãn(�k1,�k2, ω) and B̃n(�k1,�k2, ω) have the same

expressions as in eqs. (8) and (9), but with g̃nm(�k1,�k2, ω)
of eq. (12) replacing gnm. These expressions show that
the momenta of the two electrons are either unchanged or
differ by �Q, if even/odd numbers of bosons are exchanged
by the pair. Note that all other Green’s functions are also
known, allowing one to calculate exactly any quantity of
interest. Here we continue to focus only on the polaron
and bipolaron Green’s functions, eqs. (7) and (10).
From the Lehmann representation we know that

poles of the T = 0 polaron Green’s function mark the
spectrum of the polaron [1]. We can thus find EP (�k), the

lowest polaron eigenstate for a given �k, and the polaron
effective mass, mP = (limk→0 d

2EP (�k)/dk
2)−1 from its

second derivative at the center of the BZ. The residues
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Fig. 1: (Color online) Results for d= 1. (a) Polaron GS
energy and (in inset) qp weight vs. λ= g2/(2dtΩ), for Ω= 0.5t.
(b) Bipolaron GS energy, for Ω/t= 0.5 and 1 (the two curves
are practically indistinguishable). (c) Ratio of bipolaron GS
energy to twice the polaron GS energy.

are the quasiparticle (qp) weights Z(k) = |〈φ(�k)|c†�k|0〉|
2,

with |φ(�k)〉 the one-electron eigenstate of energy EP (�k).
The spectral weight A(�k, ω) =− 1

π
ImG(�k, ω) is also

a quantity of interest, since it is directly compara-
ble against angle-resolved photoemission experiments
(ARPES) [17]. Similarly, we can find the lowest energy

EBP (�k1,�k2) for a bipolaron, its effective total mass

mBP = 4(limk→0 d
2EBP (�k,�k)/dk

2)−1, binding energies

EBP (�k1,�k2)−min�q[EP (�k1+ �q)+EP (�k2− �q)], etc.

Results and discussion. – In this section we present
typical one- and two-dimensional results and discuss their
significance. The results for the HIC polaron are compared
with those for the Holstein polaron, obtained with the
momentum-average approximation [18,19]. We use the
same g in both cases; this gives equal polaron ground-
state (GS) energy in the impurity limit EP |ǫk=0 =−g2/Ω,
and thus equal effective coupling λ= g2/(2dtΩ) [19].
The polaron GS energies EP (0)≡EP and qp weights are

rather similar for the two models, as shown in fig. 1(a).
This holds for a wide range of Ω/t values, and seems
to suggests that the crossover from a large polaron (at
weak coupling) to a small polaron (at strong coupling)
is rather insensitive to the degree of inhomogeneity of
the electron-phonon coupling. As discussed below, this
quantitative agreement is somewhat misleading, because
the nature of the polaron cloud in the strong-coupling limit
is qualitatively different in the two models, even though
their energies and qp weights are very comparable.
Figure 1(b) shows the bipolaron GS energy EBP (0, 0)≡
EBP . As expected, in the strong coupling limit EBP →
4EP , since here bipolarons are strongly bound on-site
singlets, with a binding energy of EBP − 2EP ∼−2g2/Ω.
EBP /2EP is shown in fig. 1(c). It is unity for λ→ 0,
because here the phonon-mediated polaron-polaron

57008-p3
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Fig. 2: (Color online) T = 0, 1D polaron spectral weight
A(k, ω). t= 1, Ω= 0.5, η= 0.04, λ= 0.3 (a and b), λ= 1
(c and d). HIC polaron (a and c) vs. Holstein polaron (b and d).

interactions vanish, and it asymptotically goes to 2 as
λ→∞. These conclusions also hold for all d > 1.
While the GS energy is not very sensitive to the degree

of inhomogeneity of the coupling, the higher-energy
spectrum is. In fig. 2 we compare spectral weights
of HIC and Holstein 1D polarons. For the Holstein
polaron, the free electron state c†�k

|0〉 mixes with the
continuums of all possible electron-plus-phonons states
c†�k−�q1

b†�q1 |0〉, c
†
�k−�q1−�q2

b†�q1b
†
�q2
|0〉, . . . for all values �q1, �q2, . . .

As a result, a continuum appears at Ω above the GS
energy [20], i.e. the self-energy acquires a finite imaginary
part and the features are broadened and incoherent.
Below this continuum there is a coherent qp state (the
polaron band), whose energy increases monotonically
with k while its qp weight decreases as k→ π [19,21].
For the HIC polaron, the free electron state c†�k

|0〉
mixes only with the discrete set of states c†�k−�Q

b†�Q|0〉,
c†�k
(b†�Q)

2|0〉, . . . and therefore all the high-energy states
remain coherent qp states, with infinite lifetimes (of course,
weak coupling to other phonons would lead to a finite but
long lifetime). Moreover, the HIC polaron dispersion is
doubly-folded, as if the unit cell is doubled (the reason for
this is discussed below). Note that this folding is clearly
visible even at very weak couplings, as shown in fig. 2(a).
Similar folding for the HIC spectrum is observed in all
dimensions, as shown for d= 2 in fig. 3(a). It becomes
even more apparent at finite temperatures, as illustrated
by the comparison between figs. 3(b) and 3(c). This, and
the general behavior at finite T can be understood from
the Lehmann representation of eq. (3):

G(�k, ω) =
∞
∑

n=0

e−nβΩ

n!Z

∑

α

|〈φα(�k)|c†k(b
†
�Q
)n|0〉|2

ω+nΩ−Eα(�k)+ iη
,

Fig. 3: (Color online) 2D HIC polaron spectral weight A(�k, ω)
along several cuts in the Brillouin zone, for t= 1, Ω= 0.5, λ= 1,
η= 0.04, and T/Ω= 0 (a and b), respectively, T/Ω= 2 (c).
Note that the intensity scale is different for each panel.

where |φα(�k)〉 is a complete set of polaron eigenstates
with momentum �k: H|φα(�k)〉=Eα(�k)|φα(�k)〉 (α is the
set of appropriate quantum numbers, besides the total
momentum �k). At T = 0 only the contribution from n= 0
is finite. This equation shows that at finite-T satellite
peaks appear due to n 	= 0 contributions, and are shifted
by multiples of Ω from the T = 0 energies. The associated
weights (residues) are also different from those at T = 0,
since they now measure overlaps between the true eigen-
states and states with different numbers n of phonons.
This is the reason why some weights become larger as
�k approaches the Brillouin zone boundaries, making the
“folding” more clearly visible. Because the appearance
of these satellites peaks with changed weights is the only
consequence of considering finite temperatures, in the
rest we continue to discuss T = 0 behavior and results.
To begin to understand the origin of this “folding”, we

use standard perturbation theory in the strong-coupling
limit. We find the lowest HIC polaron energy to be
given by

EP (�k) =−
g2

Ω
+ ǫ�ke

− 2g
2

Ω2 − ǫ2�k
Ω

4g2
+ . . . (13)

The third term dominates the dispersion for large λ, and is
clearly responsible for the apparent band folding. However
note that the translational symmetry is not broken: for
any finite λ, the full Brillouin zone needs to be used
because of the linear ǫ�k term and higher-order terms that
preserve it. This insures that the “folding” is not perfect,
as indeed observed for weak couplings in fig. 2(a). Of
course, to properly describe that case one needs to either
go to a much higher order in the perturbational expansion

57008-p4
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Fig. 4: (Color online) (a) HIC polaron effective mass for d= 1
(circles) and d= 2 (squares) and asymptotic value mP /m= 2λ
(straight line). (b) Same for Holstein polaron. Here, asymptotic
values are ln(mP /m) = 2dtλ/Ω. (c) HIC polaron effective mass
for d= 1 and boson mode momentum q= π, 2π/3, 2π/4 and
2π/5 (see text for details). Straight lines show the expected
strong-coupling limits. (d) Ratio of HIC bipolaron effective
total mass to twice the polaron mass. In all cases Ω= 0.5t.

given above, or, more appropriately, to use weak-coupling
perturbation theory.
A remarkable consequence of eq. (13) is that it gives a

strong-coupling HIC polaron effective mass

mP
m
=

1

exp
(

− 2dtλΩ
)

+ 1
2λ + · · ·

λ→∞−→ 2λ,

where m= �2(2ta2)−1 is the free electron mass. In
contrast, for the Holstein polaron the first-order
contribution to the analog of eq. (13) dominates the
second-order contribution at strong coupling, and
as a result the Holstein polaron effective mass is
mP /m→ exp(2dtλ/Ω) [20]. These predictions are verified
in figs. 4(a) and (b), for d= 1 and d= 2, which show
a linear as opposed to an exponential dependence on λ
for the effective mass of the HIC polaron. As a result,
the HIC polaron remains rather light even for couplings
where the Holstein polaron is orders of magnitude heavier
than the free electron.
Another significant difference appears with respect to

the isotope effect (dependence on the nuclear mass M
of the atoms that constitute the lattice). It is straight-
forward to verify that the effective coupling λ is inde-
pendent of M [22], and of course, so is the free electron
mass and bandwidth. It follows that the HIC polaron
mass exhibits no isotope effect (IE) at strong coupling,
whereas the Holstein polaron mass has a significant IE,

mP ∼ exp(
√
M), because the phonon frequency that

appears in the exponent is Ω∼ 1/
√
M .

In general, the renormalized mass m∗ can be expressed
in terms of derivatives of the self-energy [1],

m∗

m
=

(

1− ∂Σ
∂ω

)

·
(

1+
m

�2

∂2Σ

∂k2

)−1
,

where all the derivatives are evaluated for �k= 0 and at
the GS energy ω=EGS . The first term is linked to the
qp weight since Z = (1− ∂Σ

∂ω
)−1. As shown in fig. 1(a), the

qp weights are rather similar for the two models, therefore
so is this part of the contribution to the effective mass.
The major difference comes from the second factor. The
Holstein self-energy has rather weak �k-dependence, and
this term contributes 20% or less to m∗ [23]. In contrast,

the HIC self-energy is strongly �k-dependent, resulting in a
significantly reduced effective mass. Using strong-coupling
perturbation for a �q-dependent coupling g�q, we find that
mP ∼ exp(δg2/Ω2), where δg2 = 1

N

∑

�q |g�q|2[1− cos(2qxa)]
for a g�q with cubic symmetry. For the Holstein model the
second term integrates to zero, hence the heavy polaron.
For the HIC model, the two terms exactly cancel out and
the mass enhancement is not exponential. (Note that this

is no longer true for a coupling g�q peaked at �Q but with a

finite support around �q= �Q. In this case, the polaron mass
will acquire exponential dependence on λ, but with a very
small prefactor. As a result, one still expects significantly
lighter polarons than for the Holstein model, though the
precise values will depend on the particular details of the
model of interest).
The same cancelation of the two terms also appears

for a HIC coupling strongly peaked at �q= 0, g�q ∼ δ�q,0,
suggesting a light polaron as well. In fact, in this case
we have V̂ ∼∑kσ c

†
�kσ
ckσ(b

†
0+ b0)≡N(b†0+ b0), where N

is the number of electrons. This term simply shifts the
overall energies but leaves the electron mass unchanged.
Again, one expects lighter (than Holstein) polarons if the
coupling is peaked at �q= 0 but also has support at finite �q.
This has indeed been confirmed, for example in refs. [24,25]
for the Fröhlich polaron.
In the limit λ=∞ (t= 0), the ground state of the

HIC model can be calculated easily to be given by

|GS〉 ∝ c†i exp[−(g/
√
NΩ)

∑

j(−1)i−jb
†
j ]|0〉, i.e. coherent

polaron clouds form at all lattice sites, with staggered
displacements 〈GS|b†j + bj |GS〉 ∝ (−1)i−j(2g/

√
NΩ). This

staggering explains the doubled unit cell in this limit.
It also shows that despite the agreement in energy and
qp weight with the strong-coupling Holstein polaron, the
HIC polaron is very different in that it has an infinite-size
phonon cloud (for λ→∞, the Holstein polaron’s cloud is
limited to the one site where the electron is located).
This provides us with another explanation of the light

mass of the HIC polarons: since the energy of the electron
is independent of its location inside this infinite-size
phonon cloud, it is free to move on its self-defined
sublattice, tunneling through sites on the other sublattice.
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The effective hopping is expected to be t∗ ∼ t2/EP (the
height of the tunneling barrier is ∼EP = g2/Ω) and so
m∗/m∼ t/t∗ ∼ λ. This can be generalized to HIC coupling
to a boson with momentum �q 	= �Q or 0, which can also
be treated exactly. In 1D there are now two distinct
phonon modes to be considered, since now bq 	= b−q. The
HIC phonon cloud in the strong coupling limit will again
be infinite in size, since the GS is a coherent state
involving b†�q and b

†
−�q bosons. For λ→∞ and q= 2π/n,

n= 3, 4, . . ., the electron now has to tunnel through n− 1
sites before it arrives back to its original (favorable)
sublattice. As a result, one now expects t∗ ∼ tn/En−1P and
therefore m∗/m∼ λn−1. This is indeed verified by the
exact solution, as shown in fig. 4(c) for n= 3, 4 and 5
and d= 1. The same is expected to also hold for d > 1.
Thus, the light HIC polaron masses (in particular, the

one for the �q= �Q HIC model) is directly due to the infinite
spatial range of the HIC model coupling. As discussed
above, for long but finite-range coupling (gq strongly

peaked near �Q) we expect a large but finite-size phonon
cloud, and a polaron much lighter than for a short-range
coupling which results in a localized phonon cloud. This
is consistent with earlier work showing that the increase
of the electron-phonon interaction range can considerably
lower the polaron mass [26–28].
HIC bipolarons are also light (see fig. 4(d)) for the

same reasons. If λ→ 0, the phonon-induced interactions
vanish and mBP = 2mP , as expected. For strong coupling,
mBP ∼ 4mP = 8λm, whereas for the �q= 0 HIC model,
mBP = 2m. By contrast, the Holstein bipolaron total mass
is mBP ∼ exp(2g2/Ω2) [20]. These results suggest that for
long-range interactions that are highly peaked around �Q,
it is possible to have strongly bound yet still very light
bipolarons at strong effective coupling λ. This may be of
relevance for models of cuprates and manganites, although
one needs to understand the effects of on-site Hubbard
repulsion, etc., before this can be claimed. Such work is in
progress.
In conclusion, we have derived exact polaron and bipo-

laron Green’s functions for a model with a simplified
electron-boson coupling, and showed that the resulting
polarons and bipolarons remain extremely light even for
very strong coupling. It is worth mentioning that a differ-
ent mechanism for obtaining light polarons and bipo-
larons was recently presented in ref. [29], for a Fröhlich-like
coupling but on a triangular lattice. In their case, the light
bipolarons are due to a peculiar “crab-like” motion of the
pair of electrons. These two examples suggest that other
mechanisms giving rise to light polarons and bipolarons
even at very strong couplings may yet be uncovered.
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