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1. Introduction

Observations and clumpiness. Observations of the universe are inconsistent with

homogeneous and isotropic cosmological models with ordinary matter and standard

gravity (meaning matter with non-negative pressure and gravity that is described by the

four-dimensional Einstein-Hilbert action). Observational results are usually expressed in

terms of their interpretation in the context of the homogeneous and isotropic Friedmann-

Robertson-Walker (FRW) models, in which there is a one-to-one relationship between

the expansion rate and the distance (given the spatial curvature). Analysed this way,

observations imply that the expansion has accelerated in the past few billion years [1,2].

A model-independent statement would be that the observed distances at late times are

a factor of about 2 higher than expected in FRW models with ordinary matter and

gravity. This is usually taken as evidence for exotic matter with negative pressure or

a modification of gravity. In particular, the homogeneous and isotropic, spatially flat

model ΛCDM model fits observations of the distance scale and the expansion rate well

by introducing vacuum energy. (We will refer to all homogeneous and isotropic models

which contain only dust and vacuum energy as ΛCDM, whatever the spatial curvature.)

However, the universe is known to be far from exact homogeneity and isotropy at late

times due to the formation of non-linear structures. Before concluding that new physics

is needed, it is necessary to quantify the effect of clumpiness on the observations.

The influence of inhomogeneity and/or anisotropy on the average evolution was first

mentioned in [3] and was discussed in detail in [4] under the name “fitting problem”. The

effect on the expansion rate is also known as backreaction [5–7]; see [8–10] for reviews.

The possibility that backreaction could lead to accelerated expansion and explain the

observations without new physics was first considered in [11,12] (and briefly mentioned

in [13, 14]). Both metric and matter perturbations were taken into account and the

observables were correctly identified in [15], where first order perturbation theory was
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expanded to second order, and this was extended to a consistent second order calculation

in [16]. In [9, 17, 18] it was explained with toy models that the physical reason for

average acceleration is that faster expanding regions come to occupy a larger fraction

of the volume. Accelerated expansion has also been explicitly demonstrated with the

exact Lemâıtre-Tolman-Bondi (LTB) solution [17, 19, 20]. A semi-realistic model with

an evolving distribution of non-linear structures was studied in [21,22], and it was found

that the expansion rate rises (relative to the homogeneous and isotropic case) by the

right order of magnitude around the right time, some billions to tens of billions of years,

though not rapidly enough to correspond to acceleration. The model involved several

approximations, and a more careful treatment would be needed for detailed comparison

with observations.

However, most observations, including those of the cosmic microwave background

(CMB) [23] and type Ia supernovae [24], do not directly measure the expansion rate,

but rather cosmological distances and redshifts, which are defined in terms of light

propagation. The few measurements that are sensitive to the expansion rate independent

of the distance scale are those of the local Hubble parameter [25, 26], the ages of

passively evolving galaxies as a function of redshift [27], the Integrated Sachs-Wolfe

(ISW) effect [28, 29] and the growth rate of matter fluctuations [30]. Baryon acoustic

oscillations depend on a mixture of the expansion rate and distance [31, 32].

The distance and the expansion rate. In addition to changing the expansion of the

universe, non-linear structures affect the relationship between the expansion rate and

light propagation. In a general spacetime, there is no direct relationship between the

expansion rate and the distance scale, and it would in principle be possible to explain

the observations without accelerated expansion. For example, in models where we are

located near the center of an untypically large spherical void, the distances can be

consistent with the observations, but generally there is no acceleration [33,34]. (See [35]

for a review, [9] for more references, and [36–41] for observational constraints related

to the inhomogeneity of these models.) Even if the large local void models are not

realistic, studying them with the exact LTB solution has established unambiguously

that inhomogeneities with density contrast of order unity and sizes smaller than the

horizon can have a large impact on the distance scale. This is in contrast to perturbation

theory arguments based on the amplitude of metric perturbations in the longitudinal

gauge.

The speculative possibility of an unexpectedly large local void aside, the observed

universe seems to be statistically homogeneous and isotropic on large scales, with a

homogeneity scale of around 100 Mpc [42, 43] (though see [44, 45]). (For discussion of

statistically homogeneous and isotropic but locally clumpy dust universes, see [9, 21].)

The relevant question is then what is the effect of such a distribution of non-linear

structures on light propagation.

It was conjectured in [21] that in a statistically homogeneous and isotropic dust

universe, light propagation can be treated in terms of the overall geometry (meaning the
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average expansion rate and average spatial curvature) if the structures are realistically

small and the observer is not in a special location. Such a conjecture is in agreement

with various studies of light propagation (see [21] for an overview and references), and

it is also suggested by the fact that different observations are well explained in terms

of the evolution of a single scale factor. However, until now there had been no proof

of the conjecture, and it was not known whether additional conditions are necessary in

addition to statistical homogeneity and isotropy.

In the present work, we clarify the relationship between the expansion rate and

the distance scale in statistically homogeneous and isotropic dust universes which may

contain non-linear structures. We relate the redshift and the distance to the dust

geometry, and confirm that light propagation can be expressed in terms of average

geometrical quantities, up to a term related to the null geodesic shear. In fact, the

null shear aside, the average expansion rate (and the matter density today) is sufficient

to determine the distance, and the spatial curvature enters only via its effect on the

expansion rate. This implies that a clumpy model can be consistent with the observed

position of the CMB acoustic peaks even when there is significant spatial curvature. The

result also shows that the Dyer-Roeder prescription of multiplying the matter density

by a smoothness factor does not correctly describe the effect of clumping.

In section 2 we set up the dust geometry, in section 3 we relate the redshift and

the distance to the average geometry, and in section 4 we discuss and summarise our

results.

2. The dust geometry

2.1. The local equations

The gradient decomposition. We are interested in light propagation in a dust spacetime.

The geometry is a solution to the Einstein equation with dust matter,

Rαβ − 1

2
gαβR = 8πGNTαβ

= 8πGNρ uαuβ , (1)

where Rαβ is the Ricci tensor, R is the Ricci scalar, GN is Newton’s constant, Tαβ is

the energy-momentum tensor, ρ is the dust energy density and uα is the velocity of

observers comoving with the dust.

The velocity has unit norm, uαuα = −1. Since the pressure is zero, uα is the tangent

vector of timelike geodesics, uβ∇βuα = 0. We can define a tensor which projects on the

tangent space orthogonal to uα by

hαβ ≡ gαβ + uαuβ , (2)

where gαβ is the full metric. The three-metric hαβ satisfies hαβuβ = 0, h γ
α hγβ = hαβ ,

hα
α = 3.
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It is useful to express the geometry in terms of the decomposition of the covariant

derivative of uα (for reviews of this covariant approach, see [46–50]):

∇βuα = θαβ + ωαβ

=
1

3
hαβθ + σαβ + ωαβ , (3)

where the symmetric part θαβ = ∇(βuα) is the expansion tensor and the antisymmetric

part ωαβ = ∇[βuα] is the vorticity tensor. The trace of the expansion tensor θ = ∇αuα

is the volume expansion rate and the trace-free part σαβ = ∇(αuβ) − 1
3
hαβθ is the

shear tensor. Like hαβ , the tensors σαβ and ωαβ are spatial in the sense that they are

orthogonal to uα, ωαβuβ = σαβuβ = 0. They are also traceless, ωα
α = σα

α = 0.

The scalar equations. The Einstein equation (1) can be conveniently written in terms

of the decomposition (3) and the electric and magnetic parts of the Weyl tensor. For the

full system of equations, see [48] (page 27). We are interested in the overall geometry, in

other words in average quantities. Since only scalars can be straightforwardly averaged

in a curved spacetime (though see [51–53]), we will consider only the scalar part of the

Einstein equation, which reads

θ̇ +
1

3
θ2 = − 4πGNρ − 2σ2 + 2ω2 (4)

1

3
θ2 = 8πGNρ − 1

2
(3)R + σ2 − ω2 (5)

ρ̇ + θρ = 0 , (6)

where a dot stands for ∂t ≡ uα∇α, the covariant derivative with respect to proper time

t measured by observers comoving with the dust, σ2 = 1
2
σαβσαβ ≥ 0 is the shear scalar,

ω2 = 1
2
ωαβωαβ ≥ 0 is the vorticity scalar, and (3)R is the Ricci scalar on the tangent

space orthogonal to uα. The acceleration equation (4) is known as the Raychaudhuri

equation, and (5) is the Hamiltonian constraint.

2.2. The average equations

Defining the average. If and only if the vorticity is zero, the tangent spaces orthogonal

to uα form spatial hypersurfaces, and provide a foliation that fills the spacetime exactly

once. These flow-orthogonal hypersurfaces coincide with the hypersurfaces of constant

proper time of comoving observers. If the vorticity is non-zero, the hypersurfaces of

constant proper time are no longer orthogonal to the fluid flow [46,47].

We assume in this subsection that the vorticity is zero, and follow the formalism

of [6, 7]. The spatial average of a quantity is then its integral over the hypersurface of

constant proper time t orthogonal to uα, divided by the volume of the hypersurface,

〈f〉(t) ≡
∫

t
ǫf
∫

t
ǫ

, (7)

where ǫαβγ ≡ ηαβγδu
δ is the volume element on the tangent space orthogonal to uα,

ηαβγδ being the spacetime volume element.
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In particular, the average expansion rate is

〈θ〉(t) =

∫

t
ǫ θ
∫

t
ǫ

=
∂t

∫

t
ǫ

∫

t
ǫ

≡ 3
ȧ

a
, (8)

where we have defined the scale factor a(t) as the volume of the hypersurface of constant

proper time to power 1/3,

a(t) ≡
(

∫

t
ǫ

∫

t0
ǫ

)
1

3

, (9)

and a has been normalised to unity at time t0, which we take to be today. We will also

use the notation H ≡ ȧ/a.

The Buchert equations. Let us take the average of the equations (4)–(6). The resulting

Buchert equations are [6]

3
ä

a
= − 4πGN〈ρ〉 + Q (10)

3
ȧ2

a2
= 8πGN〈ρ〉 −

1

2
〈(3)R〉 − 1

2
Q (11)

∂t〈ρ〉 + 3
ȧ

a
〈ρ〉 = 0 , (12)

where the backreaction variable Q contains the effect of inhomogeneity and anisotropy:

Q ≡ 2

3

(

〈θ2〉 − 〈θ〉2
)

− 2〈σ2〉 . (13)

The integrability condition between (10) and (11) reads

∂t〈(3)R〉 + 2
ȧ

a
〈(3)R〉 = −∂tQ− 6

ȧ

a
Q . (14)

The Buchert equations (10)–(12) describe the evolution of the volume a3 of a spatial

domain, or equivalently its average expansion rate 〈θ〉. They differ from the FRW

equations by the presence of the backreaction variable Q, and the related fact that

the average spatial curvature 〈(3)R〉 can evolve in a non-trivial manner, as indicated by

the integrability condition (14), whereas in FRW universes it is always proportional to

a−2 [54] (page 720), [55]. If the backreaction variable Q is large enough, the expansion

will accelerate, as indicated by (10), and the spatial curvature will be correspondingly

large, as indicated by (11) and (14) [9, 56].

3. The light propagation

3.1. The redshift

Geometrical optics. When the wavelength of light is much shorter than both the

local curvature radius and the typical scale over which the amplitude and the
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wavelength change appreciably, light propagation can be treated in the geometrical

optics approximation [54] (page 570), [57] (page 93). In geometrical optics, light travels

along null geodesics, and the light rays have no effect on the geometry. The tangent

vector of the null geodesics is given by the gradient of the wave phase S, and it is

identified with the photon momentum, kα = ∂αS. The null geodesic tangent vector

satisfies kαkα = 0 and kα∇αkβ = 0.

We will consider the propagation of a bundle of nearby null geodesics. We are

interested in the redshift and the surface area of the bundle, the latter of which gives

the angular diameter distance. We will not consider caustics, which are not expected

to be important for typical light rays in cosmology (though see [58]).

The general expression for the redshift. The spacetime geometry is determined

dynamically by the Einstein equation (1) and traced by the dust geodesics with tangent

vector uα. Light propagation involves a derived geometrical structure, given by the

solution of the null geodesic equations in the fixed spacetime geometry, traced by the

photon geodesics with tangent vector kα. The tangent vectors uα and kα are parallel

propagated with respect to the dust and photon geodesics, respectively, but not with

respect to each other. It follows that the photon momentum changes along the dust

geodesics. The redshift z of a source is defined as the observed photon wavelength

divided by the wavelength at the source, minus one. The wavelength is inversely

proportional to the energy E, so

1 + z =
Es

Eo
, (15)

where s refers to the source and o to the observer. The energy is the projection of the

momentum onto the observer’s velocity, given by the tangent vector of the dust geodesic,

E = −uαkα . (16)

It is convenient to decompose kα into an amplitude and the direction, and split the

direction into components orthogonal and parallel to the dust geodesics,

kα = E(uα + eα) , (17)

where uαeα = 0, eαeα = 1. The vector eα is spatial in the sense that it lies in the

three-space which has the metric hαβ, hα
βeβ = eα.

To find out how the energy evolves along the null geodesic, we take the derivative

with respect to the affine parameter λ,

∂λE ≡ kα∇αE

= − kαkβ∇αuβ

= − kαkβ(θβα + ωβα)

= − E2eαeβθαβ

= − E2

(

1

3
θ + σαβeαeβ

)

, (18)
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where we have applied the decompositions (3) and (17) and taken into account

kα∇αkβ = 0. Note that the vorticity tensor drops out due to its asymmetry. We

can integrate (18) to obtain E ∝ exp
(

−
∫

dλE θαβeαeβ
)

(the factor E is retained in the

integrand for later convenience). Using (15) we then have for the redshift

1 + z = exp

(
∫ λo

λs

dλEθαβeαeβ

)

= exp

(
∫ λo

λs

dλE

[

1

3
θ + σαβeαeβ

])

, (19)

where the integral is from the source to the observer along a specific geodesic. The above

relation gives the redshift in a general dust spacetime in terms of the dust geometry

and the spatial direction eα of the null geodesics. (Vorticity enters indirectly via the

geodesic equation which determines eα.)

Looking at the redshift from the viewpoint of observers on dust geodesics, uα is

constant, and the momentum kα decreases. However, following the null geodesics instead

makes the relation to the change in the dust geometry more transparent. Along a null

geodesic the momentum kα is constant, and the product −uαkα changes because uα

is turning along the photon path, which is precisely what ∇βuα quantifies. (Following

the dust geodesics by taking the derivative ∂t = uα∇α instead of ∂λ would lead to an

expression for the redshift in terms of the turning of the null geodesics.)

Let us assume that the vorticity vanishes. Then the hypersurfaces of constant

proper time are orthogonal to uα, and t(λ) is monotonic. We can therefore parametrise

points along the geodesic with the value of the proper time t on the hypersurface

that the null geodesic is crossing‡. We can then invert ∂λ = E(uα + eα)∂α to obtain
∫

dλ =
∫

λ
dtE−1, so we have

1 + z = exp

(
∫ t0

t,λ

dt

[

1

3
θ(t, x(t)) + σαβ(t, x(t))eα(t, x(t))eβ(t, x(t))

])

, (20)

where the subscript λ indicates that the integral is from the source to the observer along a

specific geodesic, which crosses the hypersurface of proper time t at spatial position x(t).

Statistical homogeneity and isotropy. In a FRW universe, the shear is zero, and only

the expansion rate remains in the integral (20). Since the universe is homogeneous

and isotropic, it does not matter in which direction the geodesic goes, and the result

1 + z = a(t)−1 immediately follows from the definition of the scale factor (9).

In a general dust universe, the shear can be important, and the result depends on

the direction of the null geodesic. In [57] (page 136), it was assumed that the average

of θαβeαeβ along the ray reduces to the FRW expansion rate, and that this may be

considered as part of the incomplete definition of a model being “on average FRW”. We

‡ When rotation is present, it is not obvious that a light ray could not pass from a higher value of t to

a smaller value. Note that light propagating from an observer with a larger proper time to one with a

smaller proper time does not necessarily violate causality.
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will try to make this reasoning somewhat more explicit, and take into account that the

average expansion rate does not necessarily reduce to the FRW one.

In a general dust spacetime, there is no direct relationship between the redshift

(20) and the scale factor (9). The redshift is given by the integral of the local expansion

rate and projected shear along a null geodesic, while the scale factor is given by the

time integral of the spatially averaged expansion rate. However, in a statistically

homogeneous and isotropic universe, the two quantities are closely related. If structures

are identical in all directions up to statistical fluctuations, and if the coherence scale of

the distribution (related to the homogeneity scale) is much smaller than the distance

over which we consider light propagation, then the redshift should be the same in all

directions, and it should not depend on the specific geodesic we are looking at. We can

view this in the following manner.

The dust shear σαβ is related to the structures through which the light travels. If

the structures have no preferred orientation, the shear is uncorrelated with the direction

of the null geodesic, and the integral of the shear projected on the geodesic should vanish

over long distances. In other words, the integral of θαβeαeβ should be the same for all

eα, which implies that only the trace contributes. Furthermore, the integral of the local

expansion rate along the null geodesic can be related to the integral of the average

expansion rate over time. Neglecting the shear, we split the expansion rate at each

point along the geodesic into the average value on the hypersurface of constant proper

time at that point (given by (8)) and the variation,

1 + z = exp

(
∫ t0

t,λ

dt

[

1

3
〈θ〉(t) +

1

3
∆θ(t, x(t))

])

, (21)

where ∆θ ≡ θ(t, x(t))− 〈θ〉(t). (In what follows, we will use the notation f = 〈f〉+ ∆f

for any scalar quantity f ; there is no assumption that ∆f is small, and hence no loss

of generality.) If the distribution of structures evolves slowly compared to the time it

takes for light to cross the homogeneity scale (i.e. for the null geodesic to integrate

over a statistically homogeneous and isotropic sample), then the contribution of the

variation ∆θ should be small compared to the contribution of the average 〈θ〉. Consider

two geodesics passing from the hypersurface with proper time t to one with proper

time t + ∆t. If the geodesics cross the hypersurfaces at different points, they will go

through different structures on the way and will in general gain different amounts of

redshift. However, if the structures evolve slowly compared to the passage time ∆t, the

distribution of structures is essentially static between t and t + ∆t. If the distance ∆t

is at least as large as the homogeneity scale, the redshift gained is the same for both

geodesics, up to statistical fluctuations.

In the real universe, the size of structures and the homogeneity scale are indeed

small compared to the Hubble time, which is the timescale of the evolution of the

distribution of structures. For typical supersymmetric weakly interacting dark matter

candidates, the size of the first structures, which form around z ∼ 40–60, is of the order

10−8H−1 [59]. The size of structures relative to the Hubble length grows as structure

formation proceeds, and today the largest typical structures have sizes of around 10 Mpc
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≈ 10−3H−1. The homogeneity scale today is of the order of 100 Mpc ≈ 10−2H−1 [42,43]

(though see [44, 45]).

If the contribution of ∆θ in (21) can be neglected, the redshift does not depend on

the specific geodesic, and we have

1 + z ≈ 1 + 〈z〉 = a(t)−1 , (22)

where a(t) is the scale factor defined in (9). The average redshift on the hypersurface

of proper time 〈z〉 can by statistical homogeneity and isotropy also be understood as

the average along a specific geodesic taken over a distance longer than the homogeneity

scale (but much shorter than the Hubble scale). In a statistically homogeneous and

isotropic universe, the redshift is independent of direction, and it is related to the

volume expansion rate in the same way as in the exactly homogeneous and isotropic

FRW models. The change in the wavelength of a typical photon is, over long distances,

only determined by the overall expansion of the volume. (This conclusion disagrees

with [60, 61], where the redshift was considered using ad hoc treatments for the spatial

curvature; see also [55].)

While the relation (22) between the expansion rate and the redshift is simple, the

result is not entirely obvious. For example, it is vital that the shear and the expansion

rate appear linearly in the redshift integral (20). In comparison, the shear and the

expansion rate contribute quadratically to the dust equations of motion (4) and (5),

so the shear does not drop out when considering large regions, and the variance of the

expansion rate plays an important role.

The parametrisation of the null geodesics in terms of the proper time is crucial.

The evolution of structures is governed by proper time, so the hypersurface of proper

time is also the hypersurface of statistical homogeneity and isotropy. It is the statistical

homogeneity and isotropy which makes it possible to neglect the shear and ∆θ, and relate

the scale factor (9) to observables. This expresses in more detail the relation between

the redshift, the scale factor and statistical homogeneity and isotropy discussed in [9,21].

For making this argument sharper, it would be worthwhile to have a more precise notion

of statistical homogeneity and isotropy in a general dust spacetime.

This connection with the observable redshift establishes the observational relevance

of the expansion rate averaged over the hypersurface of constant proper time. Studying

the average expansion rate has been criticised [62] on the grounds that it depends on the

hypersurface of averaging [63, 64], and also because the average is taken on a spacelike

hypersurface, while observations are made along and inside the past light cone. Though

there is a preferred foliation for dust, given by the hypersurface of constant proper time

of comoving observers [9,21,65], ultimately the usefulness of the expansion rate averaged

on that hypersurface is determined by relating it to observed quantities, which we have

now done for the redshift.

The expansion rate and the shear can have large variations along the null geodesic,

of the order of the average values. A crucial reason for why it is sufficient to consider

only the averages is that the coherence length of the variations is much smaller than
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the scale over which the averages change significantly. (The large amplitude of local

variations in the expansion rate is clear from (4)–(6) and the fact that there are large

differences in the local density. This can be seen explicitly in the spherical collapse

model and its underdense equivalent [66, 67].)

Deviations from the mean. In a universe which is only statistically and not exactly

homogeneous and isotropic, the contribution of the shear to the redshift integral (20)

is not zero, only suppressed compared to the contribution of the expansion rate. The

fact that the null geodesics are affected by the dust shear also leads to a correlation

between the shear and the spatial direction of the null geodesic eα. However, from

observations it is known that the change in eα for typical light rays is small, at the

percent level [68]. Similarly, because there are statistical fluctuations and because the

distribution is not exactly static, the integral of the spatial variation of the expansion

rate will not completely vanish even over scales much longer than the homogeneity

scale, though its contribution to (21) will be small compared to the contribution of the

average expansion rate. In perturbed FRW models, the contribution of the shear and

∆θ reduces, in addition to the local dipole term, to the ISW effect and the Rees-Sciama

effect. (For covariant treatment of CMB perturbation theory, see [69]. The covariant

formalism was also recently applied to the CMB in [70].)

Another source of variation is the fact that the cancellations discussed above

only happen when integrating over long distances. For distances smaller than the

homogeneity scale, directional variation in the redshift due to differences in the local

expansion rate and shear should be expected. Typical variation of the expansion rate

in different directions within 70 Mpc around our location was found to be 20% in [71]

(see also [72]). For the nearby supernovae, these variations are well known under the

name peculiar velocities. (In the comoving approach we follow, peculiar velocities are

zero by definition. For a covariant way of defining peculiar velocities, see [73].) Because

the homogeneity scale is small compared to the distance over which most cosmological

observations are made, the effect of these deviations is expected to be small.

A rough estimate of the contribution of the local variation in the geometry to the

redshift (20) would be
∫

dt∆θ ≈ L〈∆θ〉, where L is the size of the region where there

is significant uncancelled variation, and 〈∆θ〉 is the typical magnitude of the variation.

For L = 70 Mpc and |〈∆θ〉| = 0.2H0, where H0 is the Hubble parameter today, we

get 10−3. This may be an overestimate, because in the linear regime perturbations in

the expansion rate and the shear mostly cancel, apart from the dipole (for which the

contribution of local structures is indeed observed to be 10−3). There does not appear

to be a reason for such a cancellation in the non-linear regime, but the importance of

the deviation from the linear results for the local universe remains to be determined§.
§ In the average expansion rate, the deviation from FRW behaviour does not become significant until

fourth order, because of a similar cancellation between the local expansion rate and the shear at second

order. This can be understood in terms of the Newtonian limit [9, 74]. It is not clear whether the

cancellation in the redshift can be understood in a similar manner.
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In any case, the correction is negligible for cosmological probes other than the CMB.

For the CMB, the effect might give an important contribution at large angles (where the

variation in the expansion rate is large), and could possibly explain some of the observed

anomalies [75,76] (see [9] for discussion and more references), particularly since some of

them are correlated with the dipole.

Observationally, we know from the CMB that the redshift of the last scattering

surface is the same in all directions, i.e. for different geodesics, to the level 10−3, or

10−5 if we exclude the dipole. Assuming that our location is typical in space, this is the

variation over the hypersurface of constant proper time. The variation is likely be at

least as small at earlier times, because structure formation is less advanced. In addition,

deviation of the CMB spectrum from the blackbody shape is observed to be small [77].

The sum of two blackbody spectra at different temperatures is not a blackbody, so finite

angular resolution inevitably changes the spectral shape when different directions have

different CMB temperatures [78]. Scattering of the CMB leads to a similar effect [79]

(this was used to constrain local void models in [36]). The limit on the y-distortion

relevant for both cases is |y| < 1.5× 10−5 [77]. So the cancellations discussed above are

well realised in the universe.

Inapplicability of the ‘almost EGS theorem’. There is an ’almost Ehlers-Geren-Sachs

theorem’, which states that if the observed CMB anisotropy is everywhere small, then

the universe is close to FRW [80] (see also [81]). This is contrary to our conclusion

above. The crucial assumption in the proof of the theorem which is not satisfied in

the real universe is that magnitude of the spatial and time derivatives of the CMB

anisotropy ∆T/〈T 〉 is at most |∆T |/〈T 〉 times the expansion rate‖. Here T ∝ E is the

CMB temperature, and the average on the hypersurface of constant proper time 〈T 〉
can via statistical homogeneity and isotropy be also understood as the average over the

sky measured at one position.

As we have seen, it is true that |∆E| ≪ 〈E〉 at every point, but this does not imply

that the derivatives of ∆E would be smaller than the derivatives of E. Since the local

variation in the expansion rate is of the order of the average expansion rate, |∆θ| ∼ 〈θ〉,
it follows from (18) that the derivative (uα + eα)∂α(∆E) is of the order |θ|〈E〉, rather

than |θ||∆E|. Stated the other way round, large derivatives of the CMB temperature

anisotropies do not imply a large variation in the CMB temperature between nearby

points. The temperature difference is the integral of the derivative over some length, and

as long as the spatial derivative remains large only over length scales small compared

to the inverse derivative, the difference is small. The small correlation length of spatial

variations is at the heart of the argument which leads from the general expression for

the redshift (20) to the simple relation (22).

‖ It has been earlier pointed out [21] that the theorem is not valid in the real universe, because it also

indicates that the gradient of the local matter density is at most the density divided by the Hubble

length, times the CMB anisotropy of (neglecting the dipole) 10−5. However, the reason why the theorem

fails was not identified.
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3.2. The distance

The two-metric. Cosmological distances are defined in terms of observations of light.

Two commonly used distance measures are the angular diameter distance DA, which

measures apparent size, and the luminosity distance DL, which measures apparent

brightness. These distance measures are in a general spacetime related to each other

by the reciprocity relation DL = (1 + z)2DA, so there is only one independent distance

[47], [57] (page 111), [82]. Other distances can be defined by multiplying with different

powers of 1 + z; for discussion of different distance measures in the context of FRW

models, see [2, 83].

It is convenient to analyse the null photon geodesics in terms of the decomposition

of the covariant derivative of the tangent vector, like we did with the timelike dust

geodesics. In the case of timelike geodesics, the tensor hαβ defined in (2) provides a

natural three-metric orthogonal to the flow. For null geodesics, the situation is more

involved, because it is not possible to construct a metric orthogonal to kα using only gαβ

and kα: a new vector field is needed. There is no unique choice, and different vectors

are used in the literature [57] (page 106), [84,85]. For example, we can use the timelike

vector uα, which is already defined. It is straightforward to identify the observed area of

a source as the projection onto the two-space orthogonal to both kα and the observer’s

velocity uα. This corresponds to the two-metric

h̃αβ ≡ gαβ − E−2kαkβ + E−1uαkβ + E−1kαuβ

= gαβ + uαuβ − eαeβ , (23)

where we have applied the decomposition (17) on the second line. The expression

in terms of eα is particularly transparent: the two-metric h̃αβ spans the subspace of

the three-space orthogonal to uα that is also orthogonal to the spatial direction of

the null geodesic eα. The two-metric (23) satisfies h̃αβuβ = h̃αβeβ = 0, h̃αβkβ = 0,

h̃ γ
α h̃γβ = h̃αβ, h̃α

α = 2. While conceptually clear, the choice (23) is not the most

convenient for practical calculations, because uα is not parallel propagated along the

null geodesic. However, the area is independent of the choice of two-metric [84]. We will

mostly keep the two-metric completely general and use only the condition h̃αβkβ = 0.

The angular diameter distance. Given any two-metric orthogonal to kα, we can

decompose the covariant derivative of kα as follows,

∇βkα = θ̃αβ

=
1

2
h̃αβ θ̃ + σ̃αβ + k(αPβ) , (24)

where the trace θ̃ = h̃α
β∇αkβ = ∇αkα is the area expansion rate, σ̃αβ = h̃ γ

α h̃ δ
β ∇γkδ −

1
2
h̃αβ θ̃ is the shear and Pα is a vector which depends on the choice of h̃αβ and plays no

role in what follows. We have σ̃αβkβ = 0, Pαkα = 0. The vorticity is automatically

zero (unlike for uα), because kα is the gradient of a scalar. Also in contrast to the

decomposition of uα, the shear is not the symmetric trace-free part of the full ∇βkα,
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but rather the symmetric trace-free part of ∇βkα projected onto the two-space with the

metric h̃αβ . Thus the shear, unlike the area expansion rate, depends on the choice of

two-metric.

Denoting the local scale factor which describes the linear size of the null geodesic

bundle two-space by s(t, x), the area expansion rate is θ̃ = 2∂λs/s. The angular diameter

distance is proportional to the linear size, DA ∝ s (see for example [85]), so

DA ∝ exp

(

1

2

∫

dλθ̃

)

. (25)

As noted, the distance is independent of the choice of the two-metric h̃αβ (in particular,

it does not depend on the observer’s velocity uα).

Evolution of the angular diameter distance. To determine how the angular diameter

distance changes along the null geodesic, we need the evolution equation of θ̃. As in the

case of the redshift, we take a derivative with respect to λ,

∂λθ̃ = kα∇α∇βk
β

= kαR βγ
αβ kγ + kα∇β∇αkβ

= − Rαβkαkβ −∇βk
α∇αkβ

= − 8πGNρE2 − 2σ̃2 − 1

2
θ̃2

≡ − 2µ2 − 1

2
θ̃2 , (26)

where Rαβγδ is the Riemann tensor, and we have used the condition kα∇αkβ = 0 and

the decomposition (24). On the next to last line, we have used the Einstein equation

(1). We have defined σ̃2 ≡ 1
2
σ̃αβ σ̃αβ ≥ 0 and µ2 ≡ 4πGNρE2 + σ̃2 ≥ 0. Note that σ̃2,

unlike σ̃αβ , is independent of the choice of h̃αβ. The Raychaudhuri equation (26) for the

null geodesics is analogous to the Raychaudhuri equation (4) for the timelike geodesics.

Given the relation (25) and the equation (26), we obtain the equation satisfied by

the angular diameter distance:

∂2
λDA = − (4πGNρE2 + σ̃2)DA

= − µ2DA . (27)

The right-hand side is non-positive (and the initial condition for ∂λDA is negative),

so the distance is monotonic along the null geodesic. We also see that the dust energy

density and the photon shear can only make distances smaller (i.e. objects appear larger

and brighter) compared to the non-sheared vacuum case. In particular, neglecting the

null shear would give an upper bound on the distance.

We need the evolution equation for σ̃αβ , or at least for σ̃2. The equation for σ̃αβ

will be different for different choices of h̃αβ, since the components σ̃αβ depend on h̃αβ .

However, the equation for σ̃2 can be written in the simple form

∂λσ̃
2 = σ̃αβ∂λσ̃αβ
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= σ̃αβkγ∇γ

(

∇αkβ − 1

2
h̃αβ θ̃ − k(αPβ)

)

= σ̃αβkγ∇γ∇αkβ

= σ̃αβkγRγαβδk
δ + σ̃αβkγ∇α∇γkβ

= − σ̃αβkγkδCαγβδ − 2θ̃σ̃2 , (28)

where Cαβγδ is the Weyl tensor. We have used the properties kα∇αkβ = 0, σ̃αβkβ = 0

and the relations σ̃ γ
α σ̃γβ = h̃αβ σ̃2 and σ̃αβ∂λh̃αβ = 0. Equation (28) is not closed; as in

the case of the dust geodesics, the shear equation of motion cannot be reduced to scalar

form.

For practical use, (27) should be written in terms of the observed redshift rather

than λ, and the contribution of the null shear term (28) should be evaluated. We will

first go through this in the FRW case and then consider the clumpy situation.

Exact homogeneity and isotropy. The symmetry of a FRW universe implies that (in

the appropriate coordinate system) the diagonal components of σ̃α
β should be equal, and

the off-diagonal components should vanish, since σ̃α
β is a spatial tensor. This implies

that σ̃α
β vanishes, since it is traceless. However, the shape of the source can break the

symmetry, generating non-zero shear. Since the Weyl tensor vanishes in FRW models,

(28) gives σ̃2 ∝ s−4 ∝ D−4
A . So σ̃2 can only decrease along the geodesic, and if it is zero

initially, it will remain zero. We can thus neglect the null shear.

Because of the symmetry, the distance is independent of spatial position, so

∂λDA = E∂tDA = −E(1 + z)H∂zDA. Since E ∝ 1 + z and ρ ∝ a−3 ∝ (1 + z)3,

(27) reduces to

H∂z[(1 + z)2H∂zDA] = − 4πGNρDA

= − 4πGNρ0(1 + z)3DA . (29)

Given the initial conditions DA(0) = 0, ∂zDA(0) = H−1
0 , the distance DA is completely

determined by the evolution history H(z) and the present value of the matter density

ρ0. The spatial curvature enters only via it effect on H . For general matter content, ρ

on the right-hand side of (29) would be replaced by ρ + p, where p is the pressure.

Instead of using the Einstein equation to substitute the energy-momentum tensor

for Rαβ in (26), we can express Rαβ directly in terms of H and the spatial curvature
(3)R = 6K(1 + z)2. Essentially, we are swapping ρ + p for the spatial curvature. This

makes it possible to integrate (29) in a closed form, regardless of the matter content

or the theory of gravity: the result only depends on the metric having the FRW form.

Substituting 4πGN(ρ + p) = −Ḣ + K(1 + z)2 on the left-hand side of (29) and making

the change of variable v =
∫ z

0
dz′/H(z′), we obtain

∂2
v [(1 + z)DA] = −K(1 + z)DA , (30)

which integrates into the well-known expression

DA = (1 + z)−1 1√
−K

sinh

(√
−K

∫ z

0

dz′

H(z′)

)

. (31)
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The fact that the spatial curvature evolves like (1 + z)2 in all FRW universes is the

reason why DA can be written in this universal form, which depends only on H and K.

However, we may equally view DA as being determined by H and ρ + p. While these

quantities are related to the spatial curvature in a simple manner in the homogeneous

and isotropic case, the situation is different in a clumpy space.

In [86], the universal FRW relation (31) was formulated as a consistency condition

between DA and H . (A similar consistency condition, but specific to the ΛCDM model,

was presented in [87].) If the relation (31) between DA and H is violated, the metric

cannot be the FRW one. This is a null test: if the condition is not violated, we

cannot conclude that the metric has the FRW form, especially as recovering H from the

observations requires assumptions about the geometry, with the FRW metric usually

adopted to begin with.

Statistical homogeneity and isotropy. In a general dust spacetime, the first obstruction

to finding DA(z) is that no such function exists. While the angular diameter distance

is a monotonic function of λ, the redshift is not. As (18) shows, the redshift can both

increase and decrease along the null geodesic. Physically this is clear: in a region which

is collapsing (or strongly negatively sheared in the direction along the null geodesic),

the light gains a blueshift, i.e. a negative redshift. There is a unique redshift at each

point along the null geodesic, but more than one point may share the same redshift.

Therefore, while the function DA(λ) exists (and is monotonic), the expression DA(z) is

not single-valued, and the same redshift may correspond to several distances. This is

true even for a single geodesic, variation in different directions on the sky aside (see [88]

for an example).

In a statistically homogeneous and isotropic universe which expands on average, the

redshift accumulated over a section of the null geodesic passing through a homogeneity-

scale sized region is always positive. So while DA(z) does not exist, there is a function

DA(〈z〉). As before, by statistical homogeneity and isotropy, 〈z〉 can be interpreted as

either the spatial average or the average over a section of the null geodesic longer than

the homogeneity scale, but much shorter than the Hubble scale.

In the case of the redshift, it was possible to directly integrate equation (18) in

terms of the variable λ, so we could straightforwardly discuss the smoothing in terms

of average quantities related to the dust geometry. For the area expansion rate θ̃,

or equivalently the angular diameter distance DA, we cannot write down the solution

explicitly¶. Nevertheless, we can still follow a similar line of reasoning than with the

redshift, but consider smoothing at the level of the equation instead of its solution. The

objective is to see whether it follows from statistical homogeneity and isotropy that the

mean of the area expansion rate θ̃ dominates over the variation, |∆θ̃| ≪ |〈θ̃〉| (and if

not, what additional assumptions are needed), and find the equation relating 〈θ̃〉 to the

¶ While the equation (26) for θ̃ looks simple, it is a sub-case of the Riccati equation which does not

have a general solution. Switching to DA gives (27), the one-dimensional Schrödinger equation, for

which there is no general solution either.
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average dust geometry.

The source term µ2 in the equation (26) for θ̃ has large local variations, just like

the right-hand side of the redshift equation (18). In fact, the variation is stronger

than in the redshift case, since the matter density can change by orders of magnitude,

|∆ρ| ≫ 〈ρ〉. However, analogously to the redshift case, θ̃ can depend on µ2 only via the

integral
∫

dλµ2 (and its further integrals). (This is transparent with the substitution

θ̃ = f(λ) − 2
∫

dλµ2 into (26).) We can write this quantity as
∫

dλµ2 =

∫

dλ(4πGNρE2 + σ̃2)

=

∫

λ

dt
1

E
(4πGNρE2 + σ̃2)

≈
∫

λ

dt
1

〈E〉
[

4πGN(〈ρ〉 + ∆ρ)〈E〉2 + 〈σ̃2〉 + ∆σ̃2
]

, (32)

where we have again assumed that vorticity vanishes so that we can parametrise points

along the geodesic uniquely with t, and we have taken into account |∆E| ≪ 〈E〉.
For the matter density, we can use the same reasoning as with the expansion rate

in (21) to argue that the contribution of ∆ρ to (32) is subdominant to the contribution

of 〈ρ〉 over sufficiently long distances. (Via (6), the matter density is related to the

expansion rate by ρ(t, x) = ρ(t0, x)e
−

R

t

t0
dtθ

.) In fact, the argument is now stronger,

because fluctuations in the density necessarily cancel due to conservation of mass.

In [89,90], the line average of the density in a Swiss cheese model was found to be smaller

than the volume average. However, the structures in the model are not distributed in a

statistically homogeneous and isotropic manner (and they are also unrealistically large).

Randomising the structures leads to a suppression of the deviation from the FRW result

for the distance [90–92], and we expect this to hold also for the density.

There is one additional complication compared to the redshift case, namely

correlation between ∆ρ and ∆E. We have neglected ∆E because it is small compared to

〈E〉, and ∆ρ because its mean vanishes. However, ∆E and ∆ρ are correlated (the density

is anti-correlated with the expansion rate, which is correlated with the redshift), so the

contribution of the term 8πGN∆ρ∆E〈E〉 in (32) does not vanish over long distances,

and |∆ρ|/〈ρ〉 can be locally orders of magnitude higher than unity. However, highly

overdense regions can take up only a small fraction of the volume, because mass is

conserved. In particular, since |∆ρ|/〈ρ〉 in underdense regions cannot exceed unity, the

typical value in overdense regions is also at most unity, and the overall mean amplitude

of |∆ρ|/〈ρ〉 cannot compensate for the suppression factor |∆E|/〈E〉 ∼ 10−5.

For the null geodesic shear, there is no such simple argument. Integrating (28), we

have

σ̃2(λ) = σ̃2(λ0)e
−

R

λ

λ0
dλ′2θ̃ − e

−
R

λ

λ0
dλ′2θ̃

∫ λ

λ0

dλ′e
R

λ
′

λ0
dλ′′2θ̃

kγkδσ̃αβCαγβδ . (33)

The first term vanishes if the initial shear is zero, and anyway decreases along the null

geodesic, as in the FRW case. The second term is less straightforward. Using the
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decomposition (17), the Weyl term in the integrand can be written as

kγkδCαγβδσ̃
αβ = E2(uγuδ + eγeδ + 2u(γeδ))Cαγβδσ̃

αβ

= 2E2(Eαβ + ǫ̃µ(αHβ)
µ)σ̃αβ , (34)

where we have decomposed the Weyl tensor in terms of its electric and magnetic

components, defined as Eαβ ≡ Cαγβδu
γuδ, Hαβ ≡ 1

2
ǫ γδ
α Cγδβµuµ, and we have denoted

the volume element on the two-space orthogonal to both uα and eα as ǫ̃αβ ≡ ǫαβγe
γ .

The tensors Eαβ and Hαβ are traceless, symmetric, and orthogonal to uα. Writing the

null shear in terms of eα and quantities related to the dust geometry using (3) and (17)

and adopting the two-metric (23), we have

kγkδCαγβδσ̃
αβ = 2E3(Eαβ + ǫ̃µ(αHβ)

µ)

(

h̃ γ
α h̃ δ

β − 1

2
h̃αβ h̃γδ

)

(σγδ + ∇(γeδ))

= 2E3Eαβ

(

h̃ γ
α h̃ δ

β +
1

2
eαeβh̃

γδ

)

(σγδ + ∇(γeδ))

+ 2E3Hαβh̃ γ
α ǫ̃ δ

β (σγδ + ∇(γeδ)) . (35)

We could argue that if there is no preferred direction on the two-space orthogonal

to uα and eα, the diagonal components of Hαβ , as well as σαβ +∇(αeβ), in the directions

parallel to that space should contribute equally when integrated over long distances.

Then the contribution of the magnetic Weyl term on the second line of (35) to the

integral (33) would vanish. A similar argument for Eαβ would leave a product of the

off-diagonal terms of Eαβ and σαβ + ∇(αeβ), and it is not clear why its integral would

vanish. We could try to formulate an argument along the lines that the contribution

of the term involving ∇(αeβ) should vanish in a statistically homogeneous and isotropic

space, since the result should not depend on eα (though this is not obvious), but this

would still leave the dust shear. There is no clear symmetry reason for Eαβ and the

dust shear σαβ , or in terms of (34), the null shear σ̃αβ , to be uncorrelated, especially

as the Weyl tensor acts as a source for the null shear. We cannot get rid of all terms

not directly related to the average dust geometry with symmetry arguments leading to

a lack of correlation over long distances, unlike in the case of the redshift integral (20).

However, if the amplitude of the Weyl tensor is highly suppressed compared to

the Ricci tensor (specifically, to 8πGN〈ρ〉), the null shear can be neglected in (32),

regardless of the correlations of the Weyl tensor. In general, the components of the

Weyl tensor are locally not smaller than the matter density. (In particular, in vacuum

regions the Ricci tensor is zero, and the curvature is manifested entirely via the Weyl

tensor; see [93] for an example in a Swiss cheese model.) However, it is possible that

in a statistically homogeneous and isotropic space the contribution of the Weyl tensor

to scalar observables is small compared to the contribution of the Ricci tensor, when

integrated over scales larger than the homogeneity scale.

From observations, the null shear is known to be small in the real universe [68].

The smallness of the shear is theoretically supported by studies of various models which

find only small effects on the distance when the expansion rate is the FRW one (see [21]
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for an overview and references). Nevertheless, since we do not have a general theoretical

argument for the smallness of the Weyl contribution, we will retain σ̃2 in the equations.

Even though the Weyl tensor (and its relative contribution to µ2) can vary strongly

between different regions, we assume that since the Weyl tensor affects θ̃ only via a

double integral, the contribution of the variation ∆σ̃2 is small compared to the mean

value 〈σ̃2〉, when integrated over long distances.

In addition to
∫

dλµ2, the area expansion rate θ̃ can explicitly depend on the affine

parameter λ. So we should also divide λ into the mean and the variation. We have
∫

dλ =
∫

λ
dt
E
≈
∫

dt
〈E〉

−
∫

λ
dt ∆E

〈E〉2
, again assuming that vorticity vanishes so that we can

parametrise the null geodesic with t, and taking into account |∆E| ≪ 〈E〉. This gives

〈λ〉 and ∆λ, and shows that the variation of λ on hypersurfaces of constant proper time

is small, |∆λ| ≪ 〈λ〉. In the first term, we have dropped the subscript λ to indicate that

it is independent of the specific geodesic. We can write+ (with some abuse of notation)

θ̃

(

λ,

∫

dλµ2

)

≈ θ̃

(

〈λ〉 + ∆λ,

∫

dt

〈E〉〈µ
2〉 +

∫

λ

dt
∆µ2

〈E〉

)

, (36)

where we have taken into account |∆E| ≪ 〈E〉. The correction terms in both arguments

of θ̃ are small compared to the mean, so if we expand θ̃ in a Taylor series around the

average values of the arguments, the next order terms are suppressed and we have the

result |∆θ̃| ≪ |〈θ̃〉|. (It is crucial that θ̃ depends on µ2 only via an integral: otherwise

the result would not hold, since |∆µ2| ≫ 〈µ2〉.)
We cannot simply substitute θ̃ = 〈θ̃〉 + ∆θ̃ into (26) and drop all terms involving

∆θ̃, because, as in the redshift case, we do not in general have |∂λ(∆θ̃)| ≪ |∂λ〈θ̃〉|.
In fact, |∂λ(∆θ̃)| ∼ |∆µ2| ≫ 〈µ2〉 ∼ |∂λ〈θ̃〉|. However, we can integrate (26) once to

get an equation where
∫

dλθ̃2 appears instead of ∂λθ̃. All terms involving ∆θ̃ are then

subdominant, and can be dropped. The resulting equation depends only on the time t,

not on the spatial coordinates. Taking a time derivative, we obtain

〈E〉∂t〈θ̃〉 +
1

2
〈θ̃〉2 = − 2〈µ2〉

= − 8πGN〈ρE2〉 − 2〈σ̃2〉
≈ − 8πGN〈ρ〉〈E〉2 − 2〈σ̃2〉 , (37)

where we have taken into account |∆E| ≪ 〈E〉. This is the equation that we would have

gotten by naively replacing all quantities by their averages in (26), putting ∂λ → 〈E〉∂t,

and neglecting variance and the non-commutation of taking the derivative and averaging.

We now have all the ingredients for the equation for the angular diameter distance

in terms of the average redshift. From the relation (25) we get, using similar reasoning

as above, 〈DA〉 ∝ exp
(

1
2

∫

dt
〈E〉

〈θ̃〉
)

and |∆DA| ≪ 〈DA〉. Inverting, we have 〈θ̃〉 =

2〈E〉∂t〈DA〉/〈DA〉. Recall that E ∝ (1 + z) ≈ 1 + 〈z〉 = a−1, and H = ȧ/a. From (12)

we have 〈ρ〉 ∝ a−3 ∝ (1 + 〈z〉)3. Putting the pieces together, we obtain

H∂〈z〉

[

(1 + 〈z〉)2H∂〈z〉〈DA〉
]

= −
[

4πGN〈ρ〉 + 〈E〉−2〈σ̃2〉
]

〈DA〉
= −

[

4πGN〈ρ0〉(1 + 〈z〉)3 + 〈E〉−2〈σ̃2〉
]

〈DA〉 , (38)

+ We omit possible dependence on further integrals of µ2.
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where

〈E〉−2〈σ̃2〉 = 2(1 + 〈z〉)−2〈DA〉−4

∫ 〈z〉

0

dz′

H
(1 + z′)〈DA〉4 ×

×
〈[

Eαβ

(

h̃ γ
α h̃ δ

β +
1

2
eαeβh̃γδ

)

+ Hαβh̃ γ
α ǫ̃ δ

β

]

(σγδ + ∇(γeδ))

〉

, (39)

where we have assumed that the initial shear is small and can be neglected, and we have

taken into account |∆DA| ≪ 〈DA〉.
The equation (38) is our main result for the distance. It shows that the average

angular diameter distance can be written in terms of the average dust geometry, plus the

null shear. Aside from the null shear term, (38) has the same form as the corresponding

FRW equation (29) in the case when ρ + p ∝ (1 + z)3, i.e. when the matter consists

of dust and vacuum energy. When the null shear is negligible, differences between the

distances of a clumpy model and the ΛCDM FRW model are completely encoded in the

expansion rate and the redshift. A clumpy model with the same H(〈z〉) (and present-day

matter density) as the ΛCDM model has the same average distance-redshift relation,

even though the spatial curvature will in general evolve quite differently, as discussed

in section 2.2. (This conclusion disagrees with [60, 61, 94], where the distance was

considered using ad hoc treatments for the spatial curvature; see also [55].) This is in

contrast to FRW models with matter other than dust plus vacuum energy, where the

distance deviates from the ΛCDM case because of a different ρ + p in addition to a

different H . Of course, this depends on writing the equation for the angular diameter

distance in terms of H and ρ + p instead of H and the spatial curvature. In the FRW

case, it is possible to eliminate ρ + p in favour of the spatial curvature. Let us see why

this does not work in a clumpy universe.

Analogously to the FRW case, we can use (10) and (11) to substitute 4πGN〈ρ〉 =

−Ḣ + 〈(3)R〉/6 + Q/2 on the left-hand side of (38) and make the change of variable

v =
∫ 〈z〉

0
dz′/H(z′) to obtain

∂2
vD = −

(

1

6
〈(3)R〉 +

1

2
Q + 〈E〉−2〈σ̃2〉

)

(1 + 〈z〉)−2D , (40)

where we have denoted D ≡ (1 + 〈z〉)〈DA〉. We could express Q in terms of 〈(3)R〉
using the integrability condition (14). However, there is a simple integral (31) in terms

of v only when the right-hand side of (40) is independent of 〈z〉, which requires the

expression inside the parentheses to be proportional to (1 + 〈z〉)2, such as when Q = 0

and 〈σ̃2〉 = 0. (When Q = 0, it follows from (14) that 〈(3)R〉 ∝ a−2.)

4. Discussion

4.1. Observational and modelling issues

Spatial curvature and the position of the CMB peaks. The position of the CMB acoustic

peaks is often considered to be a measurement of spatial curvature. The reason is

that the peak location in multipole space corresponds to the apparent size of the last
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scattering sound horizon, which provides a measure of the angular diameter distance

to the last scattering surface at z ≈ 1100 [95] (page 99). The observed position of the

peaks is consistent with spatial flatness in a ΛCDM universe [23].

However, the peak position does not imply spatial flatness, even in a FRW universe.

It is clear from the way H and K enter the distance (31) that for any value of K, it is

possible to adjust H to compensate for the spatial curvature so as to keep the distance

fixed. For example, the peak position is consistent with a FRW universe with large

positive spatial curvature [96]. Such a model is not viable due to other constraints, such

as the value of the Hubble parameter today. By replacing the vacuum energy with exotic

matter with a time-dependent equation of state, it is possible to do a similar adjustment

and allow spatial curvature without changing the expansion history as radically [97,98].

In the FRW case, it is true that given the expansion history H(z), the peak position

provides a measurement of the spatial curvature. The root of this argument is the

relation (31), which expresses the distance in terms of the expansion rate and the

spatial curvature. In a clumpy universe the distance is instead completely fixed by the

expansion rate and the matter density (as well as the null shear), according to (38)∗.
As (40) shows, the expression (31) is inapplicable due to the non-trivial evolution of the

spatial curvature as well as the fact that clumping contributes to the expansion rate via

Q. In terms of the density parameters defined by dividing the expansion law (11) by

3H2, the density of matter and the density of curvature do not sum to unity, because of

the contribution of Q [6,99]. In a FRW model, any additional contribution that changes

H enters the distance also via ρ+ p (which is related to the spatial curvature), but that

is not the case here. In the FRW case with arbitrary matter, the spatial curvature is

always proportional to (1+z)2, and the evolution of ρ+p is not fixed, while in a clumpy

dust universe, ρ + p is always proportional to (1 + z)3, but the evolution of the spatial

curvature is complicated.

It is somewhat trivial that the spatial curvature enters the distance only via its

effect on the expansion rate, since the spatial curvature can be written in terms of H ,

Ḣ and 〈ρ〉 ∝ (1 + 〈z〉)3 using the Buchert equations (10) and (11). However, it is not

obvious that the equation for the average distance (38) depends only on H and the

matter density, or that the dependence on H is the same as in the FRW case, so that

we recover the ΛCDM equation (because ρ + p is the same in both cases).

In summary, the CMB peak position can be consistent with large spatial curvature

in a clumpy model. All that is required is that the expansion history and the matter

density today is sufficiently close to that of the spatially flat ΛCDM model. (Since the

Hubble rate enters via an integral, significant variation in H(〈z〉) is still allowed [100].)

The effective equations of state. Observations of distances are typically analysed in

terms of an effective equation of state in a FRW model. (Regarding the dependence of

∗ Note that we are comparing a clumpy universe with only dust to a FRW universe with arbitrary

matter content. If we allowed other matter in the clumpy situation, the distance would also depend on

the non-trivial 〈ρ〉 + 〈p〉. In this case, the Buchert equations would also be more complicated [7].
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the results on the adopted parametrisation for the equation of state, see [100].) The

equation of state determines the evolution history H(z), which then gives the distance

DA(z) via (31). If we want to express the evolution of a clumpy dust model this way,

there are two different effective equations of state, because the relation between H and

〈DA〉 is different than in FRW models.

For the expansion rate, we can define an effective equation of state wH(z) such

that a FRW model with this equation of state would have the same expansion history

as the clumpy model. Formally this is done by writing the spatial curvature and

the backreaction variable Q as a single component in the Buchert equations (10)–

(12) [7, 101]. For comparison to distance observations, we should introduce another

equation of state wD(z), defined so that the resulting H reproduces the real distance

function 〈DA〉 when plugged into the FRW distance formula (31). In both cases, we

have to make a choice for the spatial curvature of the FRW fitting model. The simplest

choice, which does not involve any loss of generality, is to take the FRW model to be

spatially flat. In general, wH 6= wD, so the effect of clumpiness cannot be treated just

as an effective source in the FRW equations. This limits the usefulness of an effective

description of backreaction in terms of a scalar field [101] (also, wH can violate the null

energy condition, unlike the equation of state of a scalar field [21]).

Until calculations of the impact of structure formation are accurate to more than

an order of magnitude [21,22], it is not known how large the expected difference between

wH and wD is. However, even without a theoretical prediction, it is possible to test the

null hypothesis that the equations of state inferred separately from observations of the

expansion rate and distance do not show any difference. This is the essence of the FRW

consistency check proposed in [86].

At the moment, while distances are measured relatively well, there are few

observations probing the expansion rate as a function of redshift independent of the

distance scale. The ages of passively evolving galaxies provide an interesting way to

measure the expansion history, but at the moment the constraints are rather weak [27]♯.

Another measure is provided by baryon acoustic oscillations, which are sensitive to a

combination of expansion rate and distance [32]. (This was used to constrain local void

models in [41].) There does appear to be some discrepancy between the observations

of the luminosity distance of type Ia supernovae and measurements of baryon acoustic

oscillations, but only at the 2σ level [102], so it is not statistically significant. When

analysing the data in the context of FRW models, this discrepancy would be interpreted

as a violation of the reciprocity relation DL = (1 + z)2DA instead of the FRW relation

(31) between H and DA.

The expansion rate also has a role in the ISW effect, i.e. deviations of the redshift

from the mean value 〈z〉 in different directions, as well as in the growth of density

perturbations [30]. The ISW signal is slightly higher than the spatially flat ΛCDM

♯ In a space which is not statistically homogeneous and isotropic, this data does not measure purely

the expansion rate, since the shear also contributes to the redshift (20). This was used to constrain

local void models in [39].
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prediction, but the difference is not statistically significant (it is evaluated as 2σ in [28]

and 1σ in [29]). Neither the ISW signal nor the growth factor can be used at present to

put accurate constraints on H as a function of redshift.

Average observables. The equation (38) determines the average angular diameter

distance as a function of the average redshift, given the average expansion rate. The

averages are taken on the hypersurface of constant proper time. However, we observe

the redshift and the distance only in one fixed location. Nevertheless, for practical

purposes, the averages 〈DA〉 and 〈z〉 do correspond to directly observable quantities.

In order to model what could be observed in principle, we would have to know the

details of the structures along each line of sight to calculate the relation between DA and

z for each direction. As noted earlier, the distance-redshift relation cannot in general be

expressed as a function DA(z), because several values of DA can correspond to the same

redshift. In practice differences between redshifts corresponding to the same distance

are likely to be smaller than the observational resolution, except for nearby sources (or

the CMB, for which the redshift is very accurately measured), because the regions which

are collapsing (or have strong negative shear in the direction of the null geodesic) are

small. Using the redshift integral (20), a naive estimate of the blueshift due to a region

one Mpc across which is collapsing with a rate of the present-day Hubble parameter is

10−3. As long as the variations in DA and z are smaller than the observational errors, we

can safely say that the averages correspond to the observed quantities. Observationally,

the variation of the CMB peak position with direction is known to be small [103]. Note

that standard CMB analysis also predicts only an ensemble average, and that in practice

cosmological observations are often analysed using an average over the full sky, which

by statistical homogeneity and isotropy corresponds to the average over the spatial

hypersurface.

The Dyer-Roeder approximation. An approach where the effect of clumping on light

propagation is modeled assuming that the light rays encounter only a fraction of the

mass in the universe was introduced by Zel’dovich [104] and is known as the Dyer-Roeder

approximation [105]. In this prescription, the FRW equation (29) for the distance is

modified by multiplying the matter density by a constant α, which varies between

0 and 1, corresponding to a universe where the lines of sight are completely empty or

completely filled with matter, respectively. The smoothness parameter α was generalised

to a function of redshift in [106] to account for the evolution of structures, and change

of the expansion rate due to clumping was added to the equation in [107].

According to our result (38), clumping is irrelevant for the contribution of the

matter density, which is always proportional to (1 + 〈z〉)3, with no extra prefactor. The

reason is that mass is conserved, so if the line of sight goes through an underdense

region somewhere, it must correspondingly go through overdensities elsewhere when

considering distances of the homogeneity scale or larger, as discussed in connection with

equations (21) and (32). The Dyer-Roeder parameter α is always unity, and clumping
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enters instead by changing the expansion rate. In addition, there is the null shear

term; if interpreted as an effective, redshift-dependent α, it would correspond to α > 1,

contrary to the Dyer-Roeder case. In summary, the Dyer-Roeder prescription does not

correctly describe the effect of clumping.

One possible caveat is that we have not taken into account the possibility that

the observer or the sources could be in a special location, or that observations could

be made along special lines of sight. For example, we would expect supernovae to

be preferentially located in very overdense and thus highly untypical regions. The

possibility that observations might be biased towards empty lines of sight has been

brought up in [107,108].

The effect of the location of the observer is likely to be small, because the deviation

from the mean is significant only over regions which are small compared to the overall

distance travelled by the light, and the amplitude of the deviation is typically not

correspondingly large (except in very special locations, such as near a black hole). This

is another way of saying that the homogeneity scale is small. For the same reason, the

location of the sources is not expected to have a large impact, though there could be

a secular effect, as the degree to which the source locations are untypical could evolve

with redshift. In any case, cosmological observations rely on various different sources,

not only supernovae. Since different observations roughly agree, these kind of selection

effects must be subdominant. This is also an argument against large effects due to

special lines of sight used in observations. In particular, the CMB covers the full sky, so

it is not subject to this kind of bias (apart from some uncertainty in the direction of the

Galactic plane). Furthermore, since most cosmological observations (apart from nearby

objects) are made over scales much larger than the homogeneity scale, the variation in

the density along lines of sight should be small, and empty lines of sight should be very

rare. Note that a clear line of sight is not necessarily empty, because most of the dust is

dark matter, which is transparent. (See [102] and references therein for more on cosmic

transparency.)

4.2. Conclusion

Summary. It was conjectured in [21] that light propagation in a statistically

homogeneous and isotropic dust universe which may contain non-linear structures can

be expressed in terms of average geometrical quantities (namely the expansion rate and

the spatial curvature), assuming that the observer is not in a special location, and that

structures have realistically small sizes. As reviewed in [21], the literature on light

propagation is mostly in agreement with this statement, but there had been no proof

thus far.

We have now derived the equation for the angular diameter distance, assuming that

the dust universe is statistically homogeneous and isotropic as well as rotationless, and

that structures are small and their distribution evolves slowly compared to the time it

takes for light to cross the homogeneity scale. It follows from these assumptions that
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the distance can be expressed in terms of the average dust geometry, apart from a term

related to the null geodesic shear. Of the average geometry, the only term that is required

is the average expansion rate, along with the present value of the matter density. In

particular, the spatial curvature enters only via its effect on the expansion rate, unlike in

Friedmann-Robertson-Walker (FRW) models with arbitrary matter content. Therefore,

significant spatial curvature is not necessarily inconsistent with the position of the cosmic

microwave background acoustic peaks. If the expansion history and present-day matter

density of a clumpy model is close to that of the spatially flat ΛCDM FRW model, the

peak position will also be near the ΛCDM case, and thus consistent with observations.

This is important, because accelerated expansion due to structure formation involves

large negative spatial curvature [9, 21, 56]. The result also shows that the clumping is

not correctly described by the Dyer-Roeder approximation, which changes the evolution

of the matter density (which is in fact fixed) and misses the change of the expansion

rate.

To complete the proof that the redshift and the distance can be expressed in terms

of the average geometry alone, it would be necessary to show that the contribution of

the null shear can be neglected. Observationally, the shear is known to be small [68],

but this should be shown to follow from statistical homogeneity and isotropy (or, if this

is not the case, the required additional assumptions should be identified).

Since the distance-redshift relation is determined by the average expansion rate, we

should calculate the average expansion rate in a realistic model to evaluate the effect of

structure formation on cosmological observations. Using the Buchert equations [6], this

backreaction can be determined from purely statistical quantities (the variance of the

expansion rate and the average dust shear). Evaluating these quantities in a realistic

model is a challenging task, especially as the backreaction is a general relativistic effect

related to spatial curvature and has no counterpart in Newtonian gravity [5,6,10,21]††.
A first step was taken in [21, 22], where the average expansion rate was calculated in

a semi-realistic model with an evolving distribution of structures. To compare with

observations of distance and the expansion rate in detail, a more rigorous treatment is

needed, with well-quantified errors. After that, the calculation of fluctuations around

the average should follow, in order to evaluate the Integrated Sachs-Wolfe effect and the

growth of density perturbations.

Before detailed analytical results on the effect of structure formation are worked

out, it is possible to make general tests. The relation between the expansion rate and

the distance scale in clumpy models is different than in FRW universes. Therefore,

observations which probe the expansion rate and the distance separately can be used

to test the null hypothesis that the two are related by the FRW consistency condition,

as proposed in [86]. Comparing observations of type Ia supernovae, baryon acoustic

oscillations and the ages of passively evolving galaxies seems promising in this respect.

††Regarding the differences between Newtonian gravity and the weak field limit of general relativity,

see [47, 109–111].
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