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Abstr act—Propagation of el ectromagnetic wavesin stratified bianisotropic chiral structuresisdescribed by the
4 x 4 matrix method. At arbitrary layer parameters, the amplitude and the polarization characteristics (intensity,
polarization azimuth, and ellipticity) of reflected and transmitted electromagnetic waves are studied as func-
tions of the angle of the wave incidence onto the structure. © 2000 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Recently, we have evidenced the fast development
of the theory of electromagnetic waves (EMW) propa-
gation in bianisotropic chiral media, such as composite
materials, liquid crystals, and other optically active
substances [1]. Chiral media exhibit two basic proper-
ties: the optical activity (difference of phase velocities
for the left- and right-handed circular polarizations)
and chiral dichroism. Within the microwave range,
such media are formed by the inclusion of metallic or
ceramic helicoidsinto adielectric matrix [2, 3]. Within
the optical range, the role of such helicoids can be
played by molecules possessing no mirror symmetry
[4]. These properties are inherent in cholesteric and
smectic liquid crystals, which, despite the appreciable
differences in the properties and structures, have one
common characteristic—they are all formed by mole-
cules possessing the left- or right-hand symmetry
(chiral molecules) and spatialy periodic with the
period usually lying within the optical range [5, 6].
Similar phenomena can also be obtained by using heli-
coid swastikaor Q likeinclusions[7, 8]. In the genera
case of arbitrary orientations of the anisotropy axes, the
symmetry axis of the stratified structure and the propa-
gation directions, the analysis of the characteristics of
EMW propagation in bianisotropic chiral mediais an
important but rather complicated problem. Today, a
number of particular problems of electrodynamics of
bianisotropic and chiral media has been solved. The
studiesin thisfield are progressing rapidly [9-12].

Below, the propagation of electromagnetic wavesin
chiral structures is described by the method of 4 x 4
matrices, which is efficient for any kind of anisotropy
and number of layers. Vanous modifications of this
method are used to describe the EMW propagation in
mediawith the anisotropy of different nature, in partic-
ular, in dielectric, magnetic and liquid—crystal struc-
tures [13, 14]. In the majority of publications, the
authors restricted themselves to the consideration of
particular cases of chiraity and the simplest stratified

structures. Below, such cases are considered as particu-
lar cases of the general method. In these cases the
parameters of the reflected and the transmitted EMWs
(intensity, polarization azimuth, and ellipticity) are
determined.

4 x 4 PERMITTIVITY MATRIX

Consider a medium composed of anisotropic chiral
layers parallel to the XY-plane, with the Z-axis coincid-
ing with the symmetry axis of the structure. Let aplane
monochromatic EMW with the wave vector k, parallel
to XZ-plane propagate in this medium. Then, the elec-
tric and the magnetic fields of the wave, E, D, H, and
B, are proportional to expl[i(wt — k.x)], and the Maxwell
equations have the form

OE = —ik,B, OH —ik,D, (1)

_ O 90 _ -
where 0 = ik Kk, O, 350 k, = w/c, wisfrequency, and

c is the velocity of light in vacuum. To describe the
bianisotropic chira medium in the genera form, we
write the material equations as[15]:

D = §E-GH, B = [iH +BE. 2)
The above eguations include four tensors—those of
dielectric € , magnetic fi, and magnetooptical G and
permittivities, which relate the strengths of the electric
and magnetic fields with the electric and magnetic

inductions. Substituting (2) into (1), we arrive at the
following system of equations:

E, = iko(fiH + BE)x, H} = —iko(2E + GH),,
Ey = —iko[(fiH + BE)y +n,E],

(3)
H, = iko[(BE +aH),—nH,],
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nE, = (AH +BE);, nH, = —(EE+aH),,
where prime denotes differentiation with respect to z
and n, = k/k,. Excluding the field components E, and
H, paralld to the structure axis and introducing the vec-
tor g = (E,, -E,, H,, H,), having four tangential field
components, we can represent the system (3) of the
wave equations for planar layered medium in terms of
the following differential matrix equation:

g = —ik,Gg, 4)

where, the matrix G of the dimension 4 x 4 is deter-
mined by the local properties of the medium, i.e., has
the same form in both homogeneous and inhomoge-
neous mediaand contains no differential operators. Itis
constructed using four permittivity tensors and allows
the most general consideration of bianisotropic and

chiral properties of the medium. In order towritethe G
matrix in the most concise form, introduce the follow-
ing notation:

& & Qj, Hij Biz Mi;
i = gy e, 0, My =] ay e, 0,
sz Bzz MZZ sz Bzz sz
aj; €, Aj; Bij Biz Mz
i =l oy e,0, Bi =g, e,a,l|
p'zj Bzz “zz sz Bzz uZZ
e 8ij ai; m. = uij Biz d € Uz
] ] ] ] ]
sz uzz azj 8zz Bzz “zz
a, = Uiz &, , 8y = Oz Oz ,
azz 8zz IJ-zj uZZ
biz - Biz “iz , sz sz Bzz ,
Bzz p-zz szj szz

wherei, j =X, y, and |A| isthe determinant of the matrix A.

Now, thematrix G can be represented as asum of three
terms proportional to different powers of n,:

%yx 973yy Myx J‘/Lyy E

> 1 %xx %xy -/‘/Lxx '/M'xy E
dl:l %yx %yy 'Sﬁyx QS&VYE

U %xx %xy &qxx 'ﬂxy U
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EO C‘zZO—sz%
n_DO 0 0 0 O )
"d00 ¢ o B, o
O 2z zz []
Ho oo 0O
Eezx my;—€; ax a-zy"- byz%
_E}EO my, 0 bxz E
dgbzx_ yz bymzxmzy eyz%
oo a, 0 e, O

For a homogeneous medium, G is independent of the
z-coordinate, and the solution of matrix equation (4) is
the superposition of the eigenwaves

=1 ..

g = ZajgjeXp(—iksz): » 4, (6)

where a; are waves amplitudes corresponding to the

eigenvectors g; of the G matrix. The eigenvalues N, =
sz/ko of thismatrix are the roots of the dispersion equa
ion

det(G-n,l) = 0, @)

where 1 is the unit matrix. In general casg, it follows
from (6) and (7) that there are four eigenvalues with dif-
ferent polarizations, propagation directions, and refrac-

tiveindicesny = ,/nZ + n3 quarticin n, and defined by
equation (7).

If the medium is homogeneous along the z-axis, the
study of EMW propagation is reduced to the solution of
the boundary—value problem: the medium is divided
into thin layers, whose boundaries lie in the XY plane
and the material parameters are constant within each

layer.

PLANAR LAYERED STRUCTURE

Consider EMW propagation in a planar layered
medium. The tangential components of the electric-
and magnetic-fields strengths or, which is equivalent,
the four-component vector g, should be continuous
across the boundaries of the adjacent layers. Let the
superposition of the eigenwaves with the amplitudes

(”) be incident onto the boundary between the nth and
(n + 1)th layers. For the wave entering the (n + 1)th
layer, the amplitudes obtained from the continuity con-
ditionsfor the g vector components at the boundary are
determined by the matrix eguation:

""" = mPa”, ®)
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where the elements of propagation matrix M at the
nth boundary have the form

~ 1
M = g Vgl ©
are the vectors complementary to g}”) ,i.e,

the vectors satisfying the condition g"g{"” = &;. The

EMW propagation through the homogeneous nth layer,
with no account for the boundary, is described by the

diagonal T matrix with the elements

Here, g

n _ i, (N
T = 8,ep(-ikl,), 10

wherel, isthe thickness of the nth layer. For the system
consisting of p layers, the resultant propagation matrix
isthe product of the propagation matrices for particular
boundaries and layers

|\7| — (M(p)-i-(p))(m(p—l)i—(p—l)).“(M(l)-i-(l))l\“/l(o).(11)
The amplitude of the transmitted wave is given by
a® = Ma". (12)

Let us mark the eigenwaves propagating in the forward
direction with subscripts 1 and 2 (n, > 0), and those
propagating in the backward direction, with 3 and 4
(n, < 0). The waves with subscripts 1, 3 and those with
subscripts 2, 4 have the same polarization. Now, intro-

duce the matrix N = M~ inverse with respect to M
and write down the corresponding elements of reflec-
tion and transmission matrices of the layered structure:

rll:£ =L_:§z7 r12:£ =L—§,
a(10) a®=0 L1y a(lo) a%=0 L1
r21:£ :L_%’ r22:£ :L—%,
a(20) =0 L1 a(ZO) O Li1 "
_ agp) _ [_\|£2 _ agp) _ _[\12_1( )
: a? a®=0 e a? =0 L3
t21:£ =—N_12: 22=£ :N_ll-
a(20) a®=0 ﬁ a(20) a®=0 Lﬁ

Above, we uwj the nO'[aII on lejl = Niij| — Ni|Nkj'

In semi-infinite media, labelled with subscripts “0”
and “p,” separated by the layered structure, the vectors
g; are normalized in such away that the energy fluxes
corresponding to each wave are equal (e.g., [Sj| = [E; x
H¥ + E} x Hj| = 1). Then the quantities |r|* = |r;,|* +
Irjol* and [t* = [t;, > + [t,,J* determine the ratios of energy
fluxes of the reflected and the transmitted waves to that

of the incident wave. Other types of normalization are
also possible, e.g., such that r and t would be the ratios
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of the amplitudes of the corresponding fields. In inter-
mediate layers, normalization is not necessary, because
no determination of the eigenwave amplitudes is
required.

The method under consideration is a unified
approach to the problem of EMW propagation in planar
layered structures. It allows the consideration of vari-
ous problems of electro- and magnetooptics, including
the optics of bianisotropic and chiral media.

APPLICATION OF THE METHOD TO SIMPLEST
CHIRAL STRUCTURES

1. Bianisotropic medium. For an isotropic
medium, €, [i, &, and [3 arethe diagonal tensors of the

type g; = €3, so that the G matrix acquires the smple
form

EO sa—fB 0 u(l—s)%
g=0B 0 p O

EO €(l-s) 0 sp-a

e 0 o O
Then, the solution of dispersion equation (7) yieldsthe
following eigenvalues of the G matrix:

2
Ny

Eu—af’

(14)

OOo0d

n = [en(1-9) +3la(sB-a) + B(sa )]
2 (15)

+i(a—p) 8u—(a+8)2/4]

Using the expressions for n;, we can determine the
refractive indices of the eigenwaves as:

n, = Jep—(a+P)/4+i(a—p)/2.

The eigenvalues of the G matrix, determined from the
equation (G — n,1)g© = 0, have the following compo-
nents:

(16)

g©

. . (17)

= (n(n, Fia),xien+B(n, Fia), xien;, en,).

The above vectors specify the eigenwaves of the biiso-
tropic medium, which are the left-hand (upper signs) or
right-hand (lower signs) polarized waves propagating
in the forward (n} > 0) or the backward (n; < 0) direc-
tions.

Introducing the parameters of nonreciprocity x =
(a + B)/2 and chirality kK = i(a — 3)/2 instead of magne-
toelectric permittivities, we obtain the refractive indi-
ces for the eigenwaves in the medium in the form:

n.= A/su—xz * K. With due regard of complexity of



490

the introduced parameters (X = X' + iX", K = K' + iK"),
the above relations lead to two genera types of biiso-
tropic non-absorbing media. For such media, the imag-
inary part of the chirality parameter iszero, while either
imaginary or real part of the nonreciprocity parameter
has nonzero value. The dependence of the refractive
indices of eigenwaves on nonreciprocity for two types
of mediaisquite different. For thefirst type (x" = 0) the
refracting index monotonically decreases; for the sec-
ond type (X' = 0), the value of n, monotonically
increases.

2. Reflection from the dielectric—chiral medium
interface. Let a wave from di€lectric with materid
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dielectric, al the wavesirrespectively of their polariza-
tion are eigenwaves; therefore, we may resolvethefield
into the p- and s-polarized waves, for which the vector
g has the components

(0) = (%00, 0,0,ny), ggO) = (0, 1, £n,0,, 0),

where g, = l—nf/souo, No = /€My, and the
signs“+” correspond to two opposite directions of

wave propagation. According to (9), the propagation
matrix Mi(jo) at the boundary between the media can be

parameters €,, |, be incident onto the plane interface  written as M = g.(c)gjo) thentheN; = gl(o)gfc) matrix
with a semi-infinite chira medium. For an isotropic  hasthe form
E N 0 O 00%
. O 0
R =g 0 neog 1 O a3
E_no 0 0 00 D
0O 0 neoo-10Q
(18)
E n,(n,—ia) n,(n_+ia) —n,(n, —ia) —-n,(n_+ia) E
% gen+B(n,—ia) —igp+B(n_+ia) iep+P(n,—ia) —igp+B(n_+ia) %
0 _ _ 0
a ien, ien, ien, ien, a
O en, en_ en, en_ U
Using of (13) and (18), one may find the coefficientsof  they have the form
the EMW reflection from the interface between the
dielectric and chiral media. For normal incidence, these _ 2X' W&o E = 2X" J/€oMo o1
coefficients for the s- and p-polarized waves are 6 T Elg—gl " EHg—EH 1)

n°-ne
2 2 !
n°+no+2nney
2xXnNo/ Ve
N’ +ng+ 2NNy

r = T =
(19)

Fps = Isp =

wherey = /1 —x%/ep ann = Jfe/p . Thus, the charac-
teristics of reflected wave are independent of the
medium chirality specified by the parameter k but are
essentially dependent on the nonreciprocity parameter
X. The polarization characteristics of the reflected
wave, i.e., polarization azimuth 6, and ellipticity angle
E,, are obtained from the relationship

Fps 2er0/«/_li
AU

pp rl —No

At low values of the nonreciprocity parameter (|x|< 1),

tan(0, —iE,) = (20)

-

For a non-absorbing chiral medium, either the rotation
of the polarization plane (the medium of the first type)
or the ellipticity (the medium of the second type) of the
reflected radiation can take place.

For an oblique EMW incidence onto the interface
between two media, we obtain in the first approxima-
tion in small parametersk and x:

_ Noy,—Ne0
PP nogt+neo’
2NN40o(X0° + k(0 1))
O/EU(N6T, + N0) (T, +N60)’

ps

, ) (22)
2NN0o(X0" —iK(0"—1))
rsp : b
0@("]000 +N0)(Na,+Ne0)
_ NoGo—NO
*  nNeop+tna’
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(a)

Fig. 1. (a) Ellipticity angle E, and (b) polarization azimuth
6, asfunctionsof theincidenceangle ¢ of p- and s-polarized
reflected wave: (a) k = 0.1, X = O (solid curve), x = 0.04
(dashed curve); (b) k = 0, x = 0.06 (solid curve), x = 0.02
(dashed curve).

where g = /1 —s. Inthis approximation, r,, and r are
of the standard form, i.e. coincide with the well-known
expressions for reflection of an electromagnetic wave
from the interface between two dielectrics. The polar-
ization characteristics of the reflected wave depend on
both nonreciprocity and chirality of biisotropic
medium. Figure 1a showsthe dlipticity and Fig. 1b the
polarization azimuth of the reflected wave asafunction
of the angle of incidence ¢ at the interface between the
dielectric and chiral mediawith € =4 and pu = 1. The
curves are obtained at various values of the nonreci-
procity and chirality parameters. The dependenceE, ()
is plotted for the medium with chirality k = 0.1 and
nonreciprocity X = 0 (solid curve) and x = 0.04 (dashed
curve). The dependenceE, () isplotted for the medium
with chirality Kk = 0 and x = 0.06 (solid curve) and & =
0.02 (dashed curve). If theincident wave is s-polarized,
the polarization characteristics of the reflected wave are
amost independent of the incidence angle. For a
p-polarized incident wave, the changesin 6, and E, are
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Fig. 2. Power transmittance T (a, curve 1) and reflectance R
(a, curve 2) versus chiral layer thickness at x = 0.01 and (b)
their variations, AT and AR, with respect to the dielectric
layer with the same permittivitiesand x = 0.

most pronounced near the angle ¢ closeto the Brewster
angle ¢, At ¢ = ¢y, the reflected p-wave is linearly
polarized with the polarization plane being rotated by
angle of 172 with respect to that of the incident wave.
On departure of ¢ from ¢,-value the elipticity angle
first rapidly increases (at x = 0 it reaches the value 174,
i.e., the wave becomes circularly polarized) and then
gradually decreases and becomes almost zero, at the
normal and the grazing incidence. When the incidence
angle ¢ attains the value of the Brewster angle, the
polarization plane of the reflected p-wave is rotated by
an angle close to 180°. This rotation occurs the slower,
the higher the nonrecipracity of the medium.

Typical values of the chirality parameter k normal-

ized to the refractiveindex ./ep for natural and synthe-
sized biisotropic media range from 0.05 to 0.3. The
nonreciprocity effect observed in Cr,O5 natural crystals
is much weaker, the corresponding parameter for these
crystalsisaso lower, x = 10°[16]. For aclearer repre-



492

sentation of the nonreciprocity effects, we use higher
values of this parameter.

3. Chiral layer in dielectric. To find the reflectance
and transmittance of an EMW in alayer of thicknessd
in a dielectric with the material parameters €, and |,
we represent the resultant propagation matrix (11) as
the product of transmission matrices for the first inter-
face, layer, and second interface:

M = Mo T Mo,

T = 6ijexp(—ikonzjd). (23)

Using thisrelationship and formula (13), we can obtain
the expressions for amplitude coefficients of reflection
and transmission for an EMW normally incident onto
the layer:

tp = tss = (2/D)Nngycos(kked),
tps = _tsp = (ZID)nnOyS‘n(KkOd)i
op = —Tss = (1/D)i(n*—ng)sin(dkey/El),
_ . X
o = Ig = (1/D)2inno—2=sin(dkoy/ep),
p p 0@ 0

_,
|

(24)

ﬂ
I

D = 2nnycos(dkey/ep)
+i(n*+ng)sin(dkey/ep).

In this case, the ratio r4/r,, determining the polariza-
tion characteristics of the reflected wave, coincides
with the analogous expression (20) for the interface
between two semi-insinite media. Polarization charac-
teristics of the transmitted wave linearly depend on the
layer thickness and are determined by the chirality
parameter, namely, 6, — iE; = kk,d. For non-absorbing
medium (K" = 0), the transmitted wave shows only the
rotation of the polarization plane by the angle 6, = k'k,d.
Figure 2 presents dependences of the transmittance T =
[tool” + [to* @nd reflectance R = |ry* + |re* ON the layer
thickness (Fig. 1a), and also their variations AT =
TX) - T(0) and AR = R(X) — R(0) (Fig. 1b) due to
medium nonreciprocity. For a non-absorbing medium,
the total energy of the reflected and transmitted waves
is conserved, with AT being equal to -AR.

CONCLUSIONS

The above solutions and their analysis demonstrate
the efficiency and versatility of the method based on the
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reduction of the Maxwell equations for plane EMW
propagating in a layered bianisotropic medium, to the
matrix first-order differential equation for a four-com-
ponent vector, with the tangentia field components.
The method proposed can be used for determining the
intensity and polarization characteristics of transmitted
and reflected EMWs for continuous inhomogeneous
chiral structures and structures with an arbitrary num-
ber of uniform layers.
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