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Light-regulated crystal growth of π-conjugated
luminophores in an azobenzene matrix
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Control over the phase transition of functional molecules is a key to design stimuli-responsive

materials. Although many efforts have been devoted toward controlling the phase transition

of functional molecules by various stimuli such as temperature, solvent vapor, and

mechanical stimuli, indirect control using other stimuli-responsive molecules has been hardly

explored. Here we demonstrate the potential of this methodology by using a luminescent and

a photoresponsive molecule. We prepare blend films composed of an oligo(p-phenylenevi-

nylene) amphiphile showing intrinsic luminescent chromism through isotropic-to-crystalline

phase transition and a photo-liquefiable azobenzene amphiphile. The two materials are

designed to co-assemble on the molecular level by introducing identical alkyl and oligo

(ethylene glycol) chains. The blend films exhibit a luminescence color change from orange to

green upon rubbing and subsequent exposure to UV light. Structural analyses reveal that the

crystallization of the luminescent amphiphile is regulated by the photoinduced isotropization

of the azobenzene amphiphile.
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O
rganic solid materials that exhibit tunable luminescent
properties in response to external stimuli hold enormous
promise for a range of applications in display, sensing,

switching, and recording devices1–12. In many cases, luminescent
properties change as a result of phase transitions, e.g., crystal-to-
amorphous13,14 or crystal-to-isotropic liquid transition15,16,
crystal-to-crystal transition17–22, liquid crystal-to-crystal transi-
tion23, and liquid crystal-to-liquid crystal transition24, which can
be triggered by various stimuli such as temperature, solvent
vapor, and mechanical stimuli. Through these phase transitions,
intermolecular interaction and/or the molecular conformation of
luminogens alter, and these alterations are generally major origins
of changes in luminescent properties. For all applications, precise
stimulation in terms of resolution and switchability is of para-
mount importance, because it directly influences the performance
of devices. As for such a “spatiotemporal controllability”, none of
the stimuli is superior to light25,26. So far, control over the
luminescent property of organic molecules by light has been
addressed only through an intricate molecular design that allows
a compatible but interactive photochromic reaction and lumi-
nescence property in a single molecule27–43. In this context,
indirect control over the phase transition of luminogens with
other stimuli-responsive materials in a properly blended state can
be proposed as an alternative approach and undoubtedly applied
to many functional molecules; nevertheless this has been hardly
addressed.

Herein, we demonstrate the potential of this approach by using
a luminescent π-conjugated amphiphile and a photoresponsive
azobenzene amphiphile. Self-assembly underpinned by molecular
design enables the creation of functional organic materials with
desired properties, which may be due to the high fidelity in
controlling molecular arrangements on the atomic to nanoscopic
level. This approach also enables co-assembly of two or more
functional molecules in order to synergistically integrate their
functional properties. Thus, we prepare blend films composed of
an oligo(p-phenylenevinylene) amphiphile that shows a lumi-
nescent chromism from orange to green upon isotropic-to-
crystalline phase transition, and an azobenzene amphiphile that
shows a photoinduced liquid crystalline-to-isotropic phase tran-
sition. The two materials are designed to co-assemble on the
molecular level, which is accomplished by using similar amphi-
philic structures based on an identical hydrophobic alkyl chain
and a hydrophilic oligo(ethylene glycol) chain. The blend films
exhibit a luminescence color change from orange to green upon
rubbing and exposing it subsequently to irradiation with UV
light. Our structural analyses reveal that the crystallization of the
luminescent amphiphile is regulated by the photoinduced iso-
tropization of the azobenzene amphiphile.

Results
Molecular design. In a previous study, we have applied an
amphiphilic molecular design to develop luminescent materials
that respond to mechanical stimuli44. Amphiphile 1 (Fig. 1a),
which bears a push–pull-type oligo(p-phenylenevinylene) lumi-
nophore, forms solution-processed aggregates that convert into
metastable liquid crystals upon pressing, and further crystallize
upon rubbing. This sequential phase transition is accompanied by
a color change of the luminescence from yellow to orange and
green. The yellow emission of the aggregates arises from π‒π-
stacked luminophores (π‒π-stacked emission). In the present
study, we focused on the orange→green color change of the
luminescence that was observed for the liquid-crystal→crystal
transition. In the liquid-crystalline state, the intramolecular
charge-transfer (CT) emission (CT emission) with a large Stokes
shift (~8500 cm–1) is allowed for the dynamically twisting π-

conjugated system, which is suppressed in the crystalline state on
account of the diminished degrees of freedom of the π-conjugated
system and the results in green emission (crystal emission).
During further investigations on 1, we discovered that the iso-
tropic phase that resides above the liquid-crystalline phase (Tiso
= 47 °C) can directly crystallize by crystal seeding at Tiso (Fig. 1b,
c). Without crystal seeds, the isotropic phase is stable, and only a
transition to the liquid-crystalline phase is observed upon cooling.
We anticipated that this isotropic–crystalline phase transition
might be controlled by light upon properly sequestering isotropic
molecules of 1 in a photoswitchable molecular matrix (Fig. 1f, g).

For this purpose, we designed and synthesized azobenzene
amphiphile 2, which is based on the molecular structure of 1
(Fig. 1d). The molecular length of the benzyloxyazobenzene core
in 2 is similar to that of the π-conjugated core of 1, and
hydrophobic dodecyl chains were introduced on the azobenzene
side via the amino group, while a hydrophilic oligo(ethylene
glycol) chain on the benzyloxy side was incorporated via the ester
group. We expected that the comparable molecular lengths and
amphiphilic structures of 1 and 2 might suppress their
macroscopic phase separation.

Phase-transition behavior of azobenzene amphiphile. Polarized
optical microscopy (POM) and differential scanning calorimetry
(DSC) analyses showed that films of 2 that are cast from acet-
onitrile solution form a monotropic liquid crystal between 24 and
36 °C upon heating (Supplementary Figures 1and 2). A powder
X-ray diffraction (PXRD) analysis revealed a bilayer structure for
the mesophase with an inter-bilayer spacing of 57.0 Å (Supple-
mentary Figure 3a). When the mesophase of 2 was irradiated with
UV light (λ= 365 nm), a reversible isotropization was confirmed
by POM, optical microscopy (OM), and a PXRD analysis (Fig. 1e,
f and Supplementary Figure 3b). This UV-induced isotropic
phase was fluidal, suggesting that it was an isotropic liquid. While
only a minuscule absorption change was observed upon irradia-
tion with UV light (Supplementary Figure 4), clear spectral
changes reflecting the photoisomerization were observed by
absorption and 1H NMR spectroscopy when 2 was dissolved in
THF (Supplementary Figure 5). This is most likely due to a trans-
to-cis UV-induced photoisomerization followed by a rapid cis-to-
trans thermal isomerization, given the thermal instability of the
cis-isomer; this mutual trans–cis isomerization should be
responsible for the photoinduced isotropization of 245–47.

Phase-transition behavior of a blend film. Figure 2a displays the
stimuli-responsive photoluminescent color change of a blend film
of 1 and 2 under weak irradiation with UV light. The blend film
was prepared by casting an acetonitrile solution of an equimolar
mixture of 1 and 2. The as-prepared film exhibited red/orange
color under irradiation with UV light. Fluorescence spectroscopy
measurements showed an emission band at 587 nm, which is
consistent with the CT emission from 1 44. Upon rubbing the as-
prepared film, we obtained a waxy film that exhibited orange
photoluminescence with an emission maximum at 605 nm
(Figs. 2a, b). The bathochromic shift of 18 nm by rubbing might
be more homogeneous mixing of 1 within the liquid-crystalline
matrix of 2, which could cause stabilization of charge-transfer
excited state of 1. Henceforth, we will refer to this film as the O
film. When the O film was irradiated with UV light (LED lamp,
λ= 365 nm), the luminescence color gradually changed from
orange to green (Fig. 2a). The time-course fluorescence analysis
using a microscopic spectral apparatus (ϕ= 0.1 mm) revealed
that the CT emission of 1 gradually decreased upon UV irra-
diation, which was compensated by the growth of a structured
emission with a maximum at 540 nm and a shoulder at 498 nm
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(Fig. 2c), which is similar to that of the crystal emission of 1. After
30 min of UV irradiation, the luminescence color of the film had
changed from orange to green. The degree of this emission color
change was dependent on the intensity of UV light (Supple-
mentary Figure 6). These observations suggest that UV irradia-
tion of the O film induces the crystallization of 1, even though it
does not respond to UV light itself. The thermal effect of the LED
light source, which could also accelerate the crystal growth of 1,
was excluded based on a thermographic analysis (Supplementary
Figure 7). Henceforth, we will refer to this UV-induced green-
emitting film as the G film. It is worth noting that the conversion
of the as-prepared film to the G film requires both (i) rubbing and
(ii) UV irradiation in this order; if the as-prepared film was
exposed to UV irradiation prior to rubbing, a luminescence color
change was not observed.

Mechanism of phase transition. The mechanism of this stimuli-
responsive luminescence color change was investigated by PXRD
analysis and DSC. The PXRD pattern of the solution-cast film
involves two sets of diffractions that can be assigned to lamellar
structures with interlayer spacings of d= 57.0 Å and d= 42.7 Å
(Fig. 3a). The former, stronger diffraction set can be attributed to
the liquid crystals of 2, whereas the latter, weaker diffraction set
arises from the π‒π-stacked aggregates of 144. Accordingly, upon
solution-casting the mixture of 1 and 2, a part of 1 forms phase-

separated π‒π-stacked aggregates, while the remaining part might
be mixed with liquid crystals of 2 in a molecularly dispersed state
that shows CT emission. In the DSC trace of the as-prepared film,
only a single endothermic peak was observed at 31 °C (ΔH= 5.4
kcal mol–1), which was attributed to the isotropization of liquid-
crystalline 2 (Fig. 3b). The phase-transition peaks of aggregated 1
to the liquid-crystalline phase (37 °C) and subsequently to the
isotropic phase (47 °C) were not observed.44 This suggests that
above 31 °C, aggregates of 1 can be molecularly dissolved in the
isotropic liquid pool of 2. This was further confirmed by
the PXRD pattern measured at 36 °C, wherein the diffraction of
the aggregates of 1 disappeared completely (Supplementary
Figure 8).

When the solution-cast film was converted into the O film by
rubbing, the diffraction set of liquid-crystalline 2 remained
unchanged, whereas that of aggregated 1 was replaced with an
intense lamellar diffraction set with an interlayer spacing of
d=39.1 Å (Fig. 3a). This new diffraction set is consistent with that
of crystalline 1, which suggests that the mechanical stimulation of
the as-prepared film produces crystalline domains of 1 in the
liquid-crystalline matrix of 2, which can subsequently act as seeds
for further crystal growth44. However, continuous rubbing of the
O film did not induce the transformation into the G film.
Accordingly, the mechanical stimulation does not induce
spontaneous crystallization of the molecularly dispersed 1 with
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liquid crystals of 2 but does transform the aggregated domains of
1 into crystalline seeds (Fig. 3c).

The formation of a crystalline seed of 1 by rubbing was
supported by the DSC trace of the O film, wherein a small
endothermic peak was observed at 42 °C (ΔH= 0.42 kcal mol–1)
after the isotropization of liquid-crystalline 2 at 31 °C (Fig. 3b).
As the pure crystalline 1 shows the isotropization transition at 54
°C44, the transition peak at 42 °C can be attributed to the
dissolution of crystal seeds of 1 in the isotropic liquid of 2. This
was also confirmed by a dissolution experiment of separately
prepared crystals of 1 in the isotropic phase of 2 at 43 °C
(Supplementary Figure 10). Despite the formation of crystal seeds
of 1, the fluorescence of the O film is governed by the orange CT
emission of molecularly dissolved 1 as has already been shown in
Fig. 2b. It is therefore most likely that the majority of the
molecules of 1 are dispersed and sequestered within the liquid-
crystalline matrix of 2 in the O film (Fig. 3c), which provides a
reasonable explanation for why crystal seeds of 1 cannot grow
spontaneously in the O film.

The PXRD pattern of the G film showed only diffractions
arising from crystalline 1, which suggests a selective photo-
induced isotropization of 2 (Fig. 3a). This result is corroborated
by the disappearance of the isotropization peak of liquid-
crystalline 2 at 31 °C in the DSC trace of the G film (Fig. 3b).
Importantly, the transition enthalpy (ΔH= 4.0 kcal mol–1) of the
melting transition of crystalline 1 into the liquid-crystalline
matrix of 2 in the G film is by one order of magnitude higher than
that of the O film (ΔH= 0.42 kcal mol–1). Grazing-incidence
wide-angle X-ray diffraction (GI-WAXD) measurements revealed
a 1.8-fold increase in diffraction intensity of crystalline 1 after the
O→G conversion (Supplementary Figure 11). These results
corroborate that the photoinduced isotropization of 2 can induce

the crystal growth of 1. Namely, molecules of 1 sequestered in the
liquid-crystalline matrix of 2 can be liberated upon UV-induced
isotropization of 2, and the increased mobility of 1 in
the isotropic liquid matrix of 2 thus accelerates the crystal
growth (Fig. 3c). Reflecting this mechanism, heating the O film
above 31 °C (above the m.p. of 2) but below 42 °C (below the m.p.
of 1 in the liquid matrix of 2) caused the O→G conversion
without UV irradiation (Supplementary Figure 9).

To shed further light on the photoinduced crystal growth,
POM measurements were carried out for the O→G conversion. In
Fig. 3d, the top four panels show a time-course change (15 min)
of POM images of crystalline seeds of 1 in the O film just after
preparation. The birefringent crystalline domains of 1 propagate
very slowly (30 μm/h) in the less birefringent liquid-crystalline
matrix of 2 that includes molecularly dispersed 1. On the other
hand, the bottom four panels show the subsequent time-course
change under irradiation with UV light. The crystal growth is
accelerated by a factor of 4 (120 μm/h) under UV light, and after
15 min, the observation area was mostly covered by crystalline
domains of 1.

Reversibility. We also explored the reversibility of the photo-
generated G film into the O film by mechanical stimuli. Upon
rubbing the G film, the luminescence color reverted to orange,
albeit to a slightly greenish orange (Fig. 4a), which was spectro-
scopically reflected in a broad emission from 450 to 700 nm
(Fig. 4b). In this context, we should thus discriminate this second
orange-emitting film (O′ film) from the original O film that was
prepared from casting a solution. In fact, a DSC analysis of the O′

film showed ΔH= 4.2 kcal mol–1 for the transition at 42 °C,
which is comparable to that of the G film. This G→O′ conversion
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is thus probably caused by the mechanical fragmentation and
possible dissolution of crystallized 1 in the isotropic liquid-
crystalline matrix of 2. The O′ film could be converted into a
green-emitting film (G′ film) by exposure to UV light (Fig. 4a).
The emission spectrum of the G′ film is sharper than that of the
G film due to decreased contamination from the CT emission
arising from molecularly dispersed 1 (Fig. 4b).

The difference between the G and G′ films was more clearly
demonstrated by a photo-patterning experiment involving a
sequential O→G→O′→G′ conversion and a photomask (Fig. 4c–g).
For the O→G and O′→G′ conversions, the identical UV
irradiation conditions were applied. While crystalline grains of
1 can be clearly seen in the POM image of the G film (Fig. 4h, i),

no such crystalline grains were observed for the G′ film (Fig. 4j,
k). As a result, the G′ film shows much better photo-patterned
images with a resolution below 50 μm (Fig. 4k). As the crystal
seeds of 1 in the O film are provided by a mechanical conversion
of the aggregated 1, their formation should be limited. As a result,
they can be fed with a large amount of molecularly dispersed 1
through the photo-isotropization of 2, and thus grow into larger
crystals to give the G film (Fig. 4h, i). At the same time, the
limited formation of crystal seeds should hamper the complete
consumption of photo-liberated molecules of 1, which would
result in a crystalline emission that is contaminated with the CT
emission in the G film. In contrast, the crystal seeds in the O’ film
are provided by mechanically crushing such large crystals of 1 in
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the G film. As a result, the photoinduced crystalline growth may
be initiated by a large amount of the resulting fine crystals, which
would enable high-resolution photo-patterning as well as more
efficient consumption of the photo-liberated molecules of 1.

Discussion
In conclusion, we have presented a rational self-assembly strategy
to impart a mechanochromic luminescent material with photo-
responsive properties. A key to realizing this strategy is seques-
tering a crystallizable luminescent chromophore within a liquid-
crystalline matrix of a photoswitchable molecule through
amphiphilic co-assembly. This specific ensemble of two func-
tional molecules can realize the light-induced liberation of the
sequestered luminophores through a phase transition of the
photoswitchable molecules. Although we have applied an
amphiphilic molecular design in this study to develop the
aforementioned molecular ensemble, we may be able to employ a
wider variety of supramolecular assembly strategies to integrate
two or more molecules of orthogonal functionality in the bulk.

Methods
General information. Solid-state UV/Vis absorption spectra were recorded on a
JASCO V660 spectrophotometer. Fluorescence spectra were recorded on a JASCO
FP6600 spectrofluorometer and a Hitachi F-7000 spectrometer. Fluorescence
microscopic spectra of the blend film were recorded on a photonic multichannel
analyzer (Hamamatsu Photonics). 1H and 13C NMR spectra were recorded on
JEOL JNM-ECA500 spectrometer and chemical shifts are reported in ppm (δ) with

the signal of TMS as internal standard. ESI-HRMS was measured on a Exactive
(Thermo Scientific).

Materials. Compound 2 was synthesized according to the method reported in
the Supplementary Methods and characterized by 1H and 1C NMR (Supplemen-
tary Figures 12 and 13, respectively) and ESI-MS spectrometry. Column chroma-
tography was performed using 63–210-μm silica gel. All other commercially
available reagents and solvents were reagent grade and used without further pur-
ification. The solvents for the spectroscopic measurements were all spectral grade
and used without further purification.

Film preparation. All film samples were prepared on a glass substrate except for
those for GI-XRD analysis, which were prepared on a silicon substrate. The blend
film was prepared by drying an equimolar mixture of 1 (2.4 mM) and 2 (2.4 mM)
in acetonitrile on a grass substrate. The resulting film was converted to the O film
by rubbing using a spatula.

Photoirradiation experiments. Photoirradiation experiments were performed
using a UV LED lamp (λ= 365 nm) with an intensity of 17 mW/cm2 (at a distance
of 5 cm). The distance between the light source and the samples was 5 cm. With
this condition, the diameter of the light spot on the sample is ca. 5 cm, which
completely covers the whole area of the samples (1.2 × 1.2 cm2).

Differential scanning calorimetry measurements. DSC was performed on SII
DSC6220. For the DSC analysis of the mixtures of 1 and 2, we first separately
prepared the as-prepared, O and G films on glass plates. Then we scraped the film
by a spatula and transferred it to DSC pans.
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Polarized optical microscopy. Polarized optical microscopic observation was
carried out using an Olympus BX51 optical microscopy system with a Linkam
temperature-controlled heating stage.

Powder X-ray diffraction analysis. PXRD analysis was carried out with a Rigaku
Rint-2200 X-ray diffractometer with monochromated CuKα (λ= 1.54 Å) radiation
and temperature-controlled heating stage.

Grazing-incidence X-ray diffraction analysis. X-ray diffraction experiments were
carried out on the BL45XU beamline at SPring-8 (Hyogo, Japan) using a Pilatus3X
2M (Dectris) detector. The scattering vector (q= 4πsinθ/λ) and the position of the
incident X-ray beam on the detector were calibrated using several orders of layer
reflections from silver behenate (d= 58.380 Å), where 2θ and λ refer to the scat-
tering angle and wavelength of the X-ray beam (1.00 Å), respectively. The sample-
to-detector distance was 0.30 m.

Data availability
All relevant data supporting the findings of this study are available within the article and
its Supporting information files, and from the corresponding author upon reasonable
request.
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