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Abstract

The single-scattering properties of Gaussian random spheres are calculated using the discrete dipole approximation. The

ensemble of model particles is assumed to be representative for a feldspar dust sample that is characteristic for weakly

absorbing irregularly shaped mineral aerosol. The morphology of Gaussian random spheres is modeled based on a

statistical shape analysis using microscope images of the dust sample. The size distribution of the dust sample is based on a

particle sizing experiment. The refractive index of feldspar is estimated using literature values. All input parameters used in

the light scattering simulations are thus obtained in an objective way based on the true properties of the mineral sample.

The orientation-averaged and ensemble-averaged scattering matrices and cross sections of the Gaussian random spheres

are compared with light scattering simulations using spheroidal shape models which have been shown to be applicable to

the feldspar sample. The Gaussian random sphere model and the spheroidal shape model are assessed using the measured

scattering matrix of the feldspar dust sample as a reference. Generally, the spheroidal model with strongly elongated

prolate and strongly flattened oblate shapes agrees better with the measurement than the Gaussian random sphere model.

In contrast, some features that are characteristic for light scattering by truly irregular mineral dust particles are rendered

best by the Gaussian random sphere model; these features include the flat shape of the phase function and a minimum in

the scattering matrix element F22=F11 as a function of the scattering angle.
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1. Introduction

Atmospheric aerosols are monitored with ground-based and satellite-based sensors measuring scattered
sunlight [1,2]. An accurate knowledge of the light scattering properties of the aerosol is essential for the
e front matter r 2005 Elsevier Ltd. All rights reserved.
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interpretation of measured intensity and polarization data. In practice, a numerical model is required that
describes the single-scattering properties of aerosol as a function of the refractive index, the size distribution,
and the shape of the aerosol particles. A large fraction of the aerosol mass present in the Earth’s atmosphere is
irregularly shaped mineral dust [3]. It has been shown in various studies that neglecting the nonsphericity of
mineral aerosol particles can yield large errors in simulated radiances and retrieved aerosol parameters [4–6].
In a recent study it has been shown as well that simulated radiation flux data can be erroneous if irregular
aerosol particles are approximated by spheres [7].

In order to take the nonsphericity of mineral aerosol into account in light scattering simulations, shape
approximations are used. Irregular aerosol particles may be represented by ensembles of simple nonspherical
shapes such as spheroids, prisms, cylinders, or more complex shapes [8]. The single-scattering properties of
these model particles must then be calculated using numerical light scattering codes which in general impose
constraints on the ensemble of model particles (cf. [9]).

We simulate light scattering by mineral aerosol using the Gaussian random sphere geometry [10]. With this
model the morphology of the particles of a feldspar dust sample is modeled statistically (Section 2). This
mineral sample is representative for weakly absorbing irregularly shaped mineral dust aerosol. The statistical
shape parameters used in the Gaussian random sphere model are extracted from scanning electron microscope
(SEM) images of a feldspar dust sample using a method described in Nousiainen et al. [11] and in Nousiainen
and McFarquhar [12]. The generated model shapes used in the Gaussian random sphere model have no
symmetry. In that sense, the statistical shape model using Gaussian random spheres is more representative for
natural irregular particles than shape models using spheroids which are rotationally symmetric. We use the
discrete dipole approximation (DDA) to calculate the orientation-averaged scattering matrix and the cross
sections for scattering and absorption (for definitions see [8]) of the model particles at a wavelength of
l ¼ 632:8 nm (Section 3).

Nousiainen et al. [11] have simulated light scattering by Gaussian random spheres representing large
Saharan dust particles with a modified ray-optics approximation. Due to the limitations of the modified ray-
optics approximation, this study accounts for model particles representing large soil-derived airborne particles
in dust storms with volume-equivalent sphere radii of rvX2mm. In the study presented here we consider small
feldspar particles that are representative for tropospheric aerosol in background conditions. The light
scattering simulations presented here are made without using optimizations regarding the shape, the refractive
index, or the size distribution.

Feldspar is a silicate that is very abundant in the Earth’s crust. This mineral occurs in the forms of alkali-
feldspar and plagioclase and has pronounced cleavage planes [13]. The feldspar sample studied here originates
from grinding a bulk crystal. The size distribution of this sample is estimated based on a light scattering
measurement using a laser particle sizer. The estimates for the effective radius and the effective variance are
reff ¼ 1:0mm and veff ¼ 1:0, respectively (for definition see [14]). The refractive index of feldspar is estimated to
be m ¼ 1:57� 0:0005i. The real part is taken from Huffman [15] while the imaginary part is adopted from
other weakly absorbing silicate minerals (mica) [16]. The feldspar sample can be considered representative for
weakly absorbing atmospheric mineral aerosol [17–19].

The scattering matrices F of the feldspar sample and various other irregularly shaped mineral dust samples
have been measured with a so-called nephelometer experiment [20,21]. The scattering matrix elements FijðYÞ
of dust samples are measured as a function of the scattering angle in the range from Y ¼ 5� to 173� at the
wavelengths l ¼ 441:6 and 632.8 nm. The scattering angle Y is defined as the angle between incoming and
scattered beams, whereas Y ¼ 0� denotes forward scattering. The nephelometer experiment is set up such that
the scattering particles are randomly oriented [20]. The scattering matrix of the feldspar sample measured at
l ¼ 632:8 nm is used as a reference for the light scattered simulations presented in this study.

A widely used approach is to represent irregular aerosol particles by an ensemble of rotationally symmetric
spheroids with various aspect ratios. The aspect ratio � ¼ a=b is defined by the length of the symmetry axis b

and the length of an axis a that is orthogonal to the symmetry axis. The single-scattering properties of small
spheroidal particles can be calculated using the T-matrix code [22]. Nousiainen and Vermeulen [23] have
compared T-matrix calculations for a mixture of prolate and oblate spheroids with the feldspar measurement.
An equiprobable shape distribution is used, i.e. particles with different aspect ratios are assumed to be present
in equal numbers. Based on the same reference measurement, Veihelmann et al. [24] have investigated the
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impact of shape approximations on polarimetric satellite observations including their sensitivity with respect
to the optical thickness and the single-scattering albedo of the aerosol. Recently, Nousiainen et al. [25] have
derived optimal estimates as well as a practical parameterization for the aspect ratio distribution based on the
feldspar measurement. Kahnert et al. [26] applied this parameterization as well as the measured phase function
of the feldspar sample for atmospheric radiance and flux simulations in the visible.

The conclusion of these studies is that the spheroidal shape approximation constitutes a major improvement
over the spherical shape approximation for the simulation of light scattered by irregular particles. The
agreement between measured and simulated scattering matrices depends critically on the aspect ratio
distribution. Optimal estimates for the aspect ratio distribution derived by Nousiainen et al. [25] for the
feldspar sample strongly weight the more extreme spheroids while the weight of the nearly spherical shapes is
reduced. However, systematic differences remain between the measured scattering matrices and the
simulations based on the spheroidal shape approximation. These discrepancies may be related to the
symmetry of the model particles which is not found for natural mineral aerosol particles. The discrepancies
may as well be due to the absence of inhomogeneities in the model particles, or to the absence of small scale
structures in the shapes of the model particles.

We investigate the agreement and the differences between the Gaussian random sphere model and the
spheroidal shape approximation (Section 4). For this purpose, we compare the simulations for Gaussian
random spheres using the discrete dipole approximation with T-matrix calculations for ensembles of prolate
and oblate spheroids with the same refractive index and the same particle volume. For the shape averaging we
use parameterized shape distributions including a parameterization that was found to be appropriate for the
feldspar sample [25]. In Section 5 we compare the results of the Gaussian random sphere model and the
spheroidal models for individual size classes.

The simulated scattering matrices are size-averaged using the size distribution of the feldspar sample. With
the DDA calculations we include about 86% of the total scattering cross section of the feldspar sample. With
the simulations for spheroidal particles 97% of the total effective scattering cross section is accounted for. We
merge the DDA simulations for Gaussian random spheres with radii rv ranging from 0.1 to 1:3mm with T-
matrix simulations for spheroids with radii rv ranging from 1.3 to 2:6mm. This enables us to assess the
Gaussian random sphere model and the spheroidal model using the measured scattering matrix of the feldspar
sample as a reference (Section 6).

2. Gaussian random sphere geometry

Natural mineral aerosol particles are irregular in the sense that there is no simple function that could
describe their shape. We use the Gaussian random sphere geometry [10,27] to model the statistical properties
of the shapes of the feldspar dust sample. The Gaussian random sphere is a statistical shape described by the
radius r as a function of the spherical coordinates y and f

rðy;fÞ ¼
affiffiffiffiffiffiffiffiffiffiffiffiffi

1þ s2
p expðsðy;fÞÞ (1)

and depends on the mean radius a, the relative standard deviation of the radius s, and the logradius s

sðy;fÞ ¼
X1
l¼0

Xl

m¼�l

slmY lmðy;fÞ (2)

which is the sum of spherical harmonic functions Y lm

Y lmðy;fÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1

2

ðl �mÞ!

ðl þmÞ!

s
PlmðcosðyÞÞeimf (3)

that are weighted with the complex coefficients slm. Plm denote the associated Legendre functions. The complex
coefficients slm have zero mean values and a variance

VarðRealðslmÞÞ ¼ ð1þ dm0Þ
2p

2l þ 1
Cl , (4)
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VarðImagðslmÞÞ ¼ ð1� dm0Þ
2p

2l þ 1
Cl (5)

for l ¼ 0; 1; 2; . . . ;1 and m ¼ �l; . . . ; l (see [27]). The Kronecker delta dmn is unity for m ¼ n and zero
otherwise. Note that the variance of the coefficients slm depends only on the coefficient Cl of the same degree l.

The coefficients Cl are related to the covariance function SrðgÞ of the radius r expressed as a function of the
angular distance g between two directions ðy1;f1Þ and ðy2;f2Þ. The covariance function of the radius is a
measure of the particle morphology. Naturally, the covariance function SrðgÞ of a sphere is a constant. For
nonspherical shapes Sr has a maximum at g ¼ 0. The smaller the scale of the shape features, the faster SrðgÞ
drops with increasing angle g from its maximum value Srð0Þ ¼ s. The covariance function Sr of the radius is
related to the covariance function of the logradius Ss

Ss ¼ lnðSr þ 1Þ, (6)

which can be expanded in a series of Legendre functions

SsðgÞ ¼
X1
l¼0

ClPlðcosðgÞÞ. (7)

The sum of the coefficients Cl equals the variance of the logradius b2, viz.

X1
l¼0

Cl ¼ b2 ¼ lnð1þ s2Þ. (8)

By analogy with the concepts used in Fourier analysis, the coefficients Cl can be regarded as a power spectrum
of the logradius. The shape of a Gaussian random sphere is isotropic in the sense that the covariance function
of a Gaussian random sphere is independent of the orientation of the intersection. That is why an ensemble of
generated Gaussian random sphere realizations is randomly oriented.

We generate a finite ensemble of Gaussian random sphere realizations with shape statistics that are
representative for the feldspar sample following the approach described in Nousiainen et al. [11] and in
Nousiainen and McFarquhar [12]. We determine the covariance function SrðgÞ of an ensemble of feldspar
particles in order to obtain an estimate for the statistical properties of the feldspar particles. The particle
intersections of the feldspar particles cannot be measured with the devices available. Instead, we analyze the
particle projections taken from scanning electron microscope (SEM) images. A microscope image of the
feldspar sample showing very large particles has been published by Volten et al. [20]. The images used in the
shape analysis show particles with irregular shapes as well as particles with sharp edges and planar surfaces.
Most particles, for which the 3D shape can be guessed, exhibit no apparent preferential orientation. Therefore
we assume that the morphology statistics extracted from 2D projections is representative for the ensemble of
3D particles. The radius rðgÞ of the projections of more than 200 particles is evaluated. The morphology of the
feldspar sample is now captured in terms of the ensemble-average of the series of coefficients Cl . The
coefficients Cl extracted from the SEM images of the feldspar sample follow reasonably well the power law
relation Cl / l�n with n ¼ 2:5. We obtain a value of 0.2 for the parameter s. A morphology analysis of a
Saharan dust sample yields a similar power law relation with the parameter n ¼ 4 [11]. According to the
exponent n, the Saharan dust particles have less sharp edges than the feldspar particles. This finding is in
agreement with the shapes observed on microscope images of both dust samples.

A part of the information regarding the fine structure of the particle surfaces is lost when using the particle
projections instead of the particle intersections. This is partly due to shadowing effects. Therefore, we cannot
extract the high-degree Legendre coefficients Cl from the particle projections. We assume the power law
relation mentioned above to be applicable up to the degree lmax ¼ 15. Including even higher degree
contributions has very little impact on the particle shape.

The coefficients slm in Eq. (2) with l ¼ 0 and 1 are mainly responsible for a variation of the particle volume.
These coefficients are set to zero in order to generate an ensemble of Gaussian random sphere realizations with
a controlled volume. The remaining variance of the particle volume is small and acceptable for our purposes.
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The ensemble-averaged volume hVi is [28]

hVi ¼ 4
3 a3 exp½3 lnðs2 þ 1Þ�. (9)

With the parameter s ¼ 0:2, the ensemble of generated Gaussian random sphere realizations has a very
narrow distribution with an effective radius of reff ¼ 1:04a and an effective variance of about veff ¼ 0:0002.

Due to the statistical nature of the Gaussian random sphere model the relative phases of the spherical
harmonic functions are not taken into account. Therefore, this shape model does not render sharp edges and
flat surfaces. A comparison of light scattering simulations for polyhedral prisms and spheroids dedicated to
the feldspar sample [25] shows that the presence of sharp corners and plane surfaces is not very important for
its light scattering properties. Therefore, we consider the Gaussian random sphere model well suited for light
scattering simulations of the feldspar sample.

3. Light scattering by Gaussian random spheres

We have tested two numerical codes for the calculation of the single-scattering properties of Gaussian
random spheres with linear dimensions comparable to the wavelength. This includes the code DDSCAT 6.1
which is based on the discrete dipole approximation [29], and SScaTT which is based on computing the
T-matrix with the null-field method using discrete sources [30]. The convergence of the calculations using
SScaTT turned out to be sensitive with respect to the particle shape, especially for the larger particles. We were
able to compute a larger range of particle sizes with DDSCAT. That is why we chose the discrete dipole
approximation for the light scattering calculations based on the Gaussian random sphere model.

In the discrete dipole approximation the target is replaced by an array of dipoles with a chosen
polarizability. The electro-magnetic response of each dipole is determined as a function of the external field
and the fields scattered by all other dipoles [31]. Targets are generated as 3D arrays of dipoles with a Gaussian
random sphere realization as an envelope [10]. The elements of the scattering matrix are calculated accurately
(with errors less than a few %) if the condition

jmj
2p
l

do0:5 (10)

is satisfied [32]. This poses an upper limit to the lattice spacing d of the dipole array. The required number
of dipoles for a spherical particle with a given radius and a refractive index, m ¼ 1:57� 0:001i, can be
estimated by

N � 100 � x3, (11)

where x ¼ 2prv=l is the size parameter. The largest particle size we can take into account is therefore limited
by the internal memory of the computers used, and by the computing time that increases dramatically with
increasing number of dipoles.

The light scattering problem is solved for 196 target orientations. The scattering matrices, the scattering
efficiency and the absorption efficiency are averaged over all orientations. The scattering matrices of all shapes
in each size class are averaged using the scattering cross sections as weight. Measured scattering matrices of
large ensembles of natural irregular shapes have a block diagonal form. This indicates that the measured
particle ensemble has no chirality, as it is the case when particles and mirror particles are present in equal
numbers. For each model particle of the ensemble we include as well the mirror particle. With this we ensure
that the ensemble of Gaussian random sphere realizations with a limited number of individual shapes with no
plane of symmetry has no chirality. For size classes with a volume-equivalent radius rvp1mm we include 50
pairs of particles and mirror particles. For the size classes with larger radii, not more than 10 particles are used
due to computation time reasons. With the computational resources available, the light scattering by particles
with volume-equivalent radii up to 1:3mm are simulated at a wavelength of l ¼ 632:8 nm. In total, we have
invested more than six months of computing (CPU) time in the DDA calculations.

All scattering matrices that were obtained in this work have been tested for consistency. The Cloude test is
satisfied for all scattering angles [33]. The conditions for the scattering angles 0� and 180� given by Hovenier
and van der Mee [34] are also satisfied.
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4. Spheroidal shape approximation

The widely used spheroidal shape approximation is used to put the results of the Gaussian random sphere
model into context. The scattering matrix and the cross sections for scattering and extinction of an ensemble
of randomly oriented spheroids are calculated using the T-matrix code developed by Mishchenko [22]. This
code is based on calculating the T-matrix using the null-field method. The spheroidal shapes can be
characterized by the shape parameter x

x ¼
�� 1 : �X1 ðoblateÞ;

1� 1
� : �o1 ðprolateÞ;

(
(12)

where � of an oblate (prolate) spheroid is defined as the ratio of the major to the minor (minor to major) axis
length. Following Nousiainen et al. [25], a parameterized shape distribution hnðxÞ is used for the shape
averaging

hnðxÞ ¼
Cjxn
j : xminpxpxmax;

0 : otherwise;

(
(13)

where C is a normalization constant. This shape distribution gives more weight to the extreme aspect ratios
with increasing parameter n. We consider spheroidal shape models with the equiprobable shape distribution
with n ¼ 0, and the shape distributions with n ¼ 1 and n ¼ 3. In the following, these shape approximations
will be referred to as spheroidal-xn models. The shape distribution of the spheroidal-x3 models strongly
weights the extreme aspect ratios while the near-spherical shapes are suppressed. The value n ¼ 3 was found
to be appropriate for the feldspar sample [25]. We include spheroids with shape parameters x ranging from �2
to 2 in equidistant steps. This corresponds to aspect ratios � between 1

3 and 3.

5. Size-specific results

The single-scattering properties simulated using the Gaussian random sphere model are compared with
simulations using spheroidal models with various shape distributions. We compare the simulations for
particles with the same volume. This is a commonly used approach for small particles with typical dimensions
smaller than the wavelength. The surface area is more appropriate for describing the size of larger particles
(e.g. [8]). In this study we consider size distributions that include significant contributions in both size
domains. It is desirable to characterize consistently the size of all particles. To this end, we chose the particle
volume since the surface area of the Gaussian random spheres is much more difficult to determine. Light
scattering calculations are made for 22 size classes with radii ranging from rv ¼ 0:01mm to rv ¼ 1:3mm at a
wavelength of l ¼ 632:8 nm. The radii are evenly spaced on a logarithmic scale. The T-matrix simulations for
spheroids are made for narrow log-normal size distributions with the same effective radii and variances. We
simulate the light scattering by spheroidal particles for size classes with effective size parameters x ranging
from 0.01 to 26.

In Fig. 1 we show the simulated scattering cross sections cscat in terms of the scattering efficiency Qscat ¼

cscat=ðpr2vÞ (upper graph) and the asymmetry parameter g (lower graph) as a function of the size parameter x.
The results from the Gaussian random sphere model (thick solid) are compared with results from the
spheroidal models with n ¼ 0 (thin solid), n ¼ 1 (thin dashed). The asymmetry parameter g

g ¼ hcosðYÞi ¼

R p
0 cosðYÞ sinðYÞF 11ðYÞdYR p

0 sinðYÞF11ðYÞdY
(14)

is the average cosine of the scattering angle. This parameter is used in radiation flux simulations. The higher its
value the more light is scattered into directions with Yo90�. Its value equals zero if scattering is symmetric
with respect to the scattering angle Y ¼ 90�. The asymmetry parameters and the scattering efficiency Qscat of
all shape models coincide for size parameters up to x ¼ 4. For sizes close to x ¼ 7, the spheroidal models
predict a larger scattering efficiency than the Gaussian random sphere model. In the size range with 5oxo10,



ARTICLE IN PRESS

0 10 20 30
0

2

4

Q
sc

at
t

0 10 20 30
0

0.4

0.8

Size parameter x = 2πr/λ

<
co

s(
Θ

)>

spheroid−ξ0 
spheroid−ξ1 
spheroid−ξ3 
GRS           
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the scattering efficiency of the spheroidal model with n ¼ 0 fits best to the results of the Gaussian random
sphere model. The same holds in the size range 5oxo8 for the asymmetry parameter.

In Fig. 2 the non-zero elements of the simulated scattering matrices of particles with a size parameter x ¼ 10
are depicted as a function of the scattering angle Y. We show the average (thick solid lines) and the variation
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of scattering matrices of the ensemble of 100 Gaussian random sphere realizations in one size class. The gray
shaded areas indicate the 1� s environment of the matrix elements of the ensemble. Note that the phase
function F 11ðYÞ is plotted on a logarithmic scale and is normalized using the condition

1

2

Z p

0

sinðYÞF 11ðYÞdY ¼ 1. (15)

The scattering matrices of the spheroidal models with n ¼ 0 (thin solid) and n ¼ 3 (thin dashed) are included.
The differences between the scattering matrices of the spheroidal models and the Gaussian random sphere
model exceed the standard deviations in all elements at various scattering angles. The differences between the
shape models are therefore regarded as significant. Note that the phase function close to 140� of the Gaussian
random sphere model exceeds the phase functions of the spheroidal-x3 model by a factor up to 2.

The differences between the scattering matrices of the Gaussian random sphere model and the spheroidal
model depend on the size parameter, the shape distribution used in the spheroidal model, the matrix element,
and the scattering angle. In Fig. 3 the elements F11ðYÞ, F12ðYÞ=F 11ðYÞ, and F 22ðYÞ=F 11ðYÞ of simulated
scattering matrices are shown. We include results of the Gaussian random sphere model (thick solid), the
spheroidal-x0 model (thin solid), and the spheroidal-x3 model (thin dashed) for the size parameters of xv ¼ 1.7,
4.1 and 12.8. The simulated scattering matrices of particles with a size parameter close to x ¼ 0:1 are similar to
the scattering matrix of Rayleigh scattering. For these particle sizes, the scattering matrices of Gaussian
random spheres and spheroids coincide. The Gaussian model and the spheroidal model agree well in the phase
function F11 at scattering angles close to the forward scattering direction for all particle sizes considered. For
x42, the phase function of the spheroidal-x3 model has lower values than the phase function of the Gaussian
random sphere model in the range of scattering angles 100�oYo150�. In this range of scattering angles, the
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Fig. 3. Phase function ðF11Þ and the elements F12=F 11 and F22=F11 of the simulated scattering matrix using the Gaussian random sphere

model (thick solid), the spheroidal-x0 model (solid), and the spheroidal-x3 model (dashed) for the size parameters x ¼ 1:7, x ¼ 4:1, and
x ¼ 12:8.
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phase functions differ by a factor of up to 1.5 ðx ¼ 1:7Þ, 1.7 ðx ¼ 4:1Þ, and 2 ðx ¼ 12:8Þ. The largest differences
in �F 12=F11 between the Gaussian random sphere model and the spheroidal-x3 model are observed for size
parameters close to x ¼ 2 (not shown). The spheroidal models show a similarity with the Gaussian random
sphere model in the shape of �F12=F 11 for size parameters up to x ¼ 6:5 (not shown). All models considered
predict �F 12=F11 to show decrease in amplitude and to exhibit more peaks and dips with increasing particle
size.

The element F 22=F11 at angles Y460� is known to be very sensitive with respect to the particle
nonsphericity. For spherical particles, F22=F11 is unity for all scattering angles. The values of F22=F 11 decrease
with increasing nonsphericity especially in the range of scattering angles from 100� to 160�. For size
parameters xo2:6, the Gaussian random sphere model predicts higher values than the spheroidal models. The
opposite is true for large particle sizes (see size parameter x ¼ 12). For small particles with xo4, the low
values of F22=F 11 appear to be a measure for the global oblateness or prolateness of the shapes rather than for
the fine structure of the particle shapes. In summary, we note that the spheroidal model with n ¼ 0 agrees
better with the Gaussian random sphere model than the spheroidal-x3 model regarding the simulated
scattering matrix in the size range between x ¼ 1 and x ¼ 6. For larger sizes, the differences between the
Gaussian random sphere model and the spheroidal models have a similar amplitude as the differences between
the spheroidal-x0 and the spheroidal-x3 models.

The differences between the scattering matrices of individual sizes simulated using the various models are
large enough to affect radiative transfer simulations (for comparison see [26]). A comparison of the models
with an independent objective reference is therefore relevant.

6. Size-averaged results

In order to compare the simulated scattering matrices with the feldspar measurement, the simulations are
size-averaged using the size distribution of the feldspar sample. We use a log-normal size distribution with an
effective radius reff ¼ 1mm and an effective variance veff ¼ 1. As discussed in Section 3, the light scattering
simulations for Gaussian random spheres are confined to volume-equivalent sphere radii smaller than
rvp1:3mm. Therefore, it is important to estimate the fraction of the total scattering cross section of the dust
sample that is accounted for by the simulations. To this end, the scattering cross section of spheroidal particles
with the spheroidal-x3 model are determined for a large range of particle sizes. The cross sections of spheroids
with aspect ratios ranging from 1

3
to 3 and with volume-equivalent sphere radii up to 100mm are calculated

using a light scattering model developed by Min et al. [35]. In this way, the total scattering cross section of the
entire distribution can be compared to the total cross section of truncated size distributions. Using the
Gaussian random sphere model we account for 86% of the total scattering cross section of the feldspar
sample. With the spheroidal models, particles with volume equivalent sphere radii up to 2.6 are included. With
this, 97% of the total scattering cross section of the sample is taken into account.

We investigate whether the simulations of light scattering by Gaussian random spheres can be extended to
larger particle sizes using the ray-optics approximation (ROA). To this end, scattering matrices of Gaussian
random spheres with a size parameter x ¼ 26 are calculated using the ray-optics approximation. This
approximation is applicable to weakly absorbing spherical particles with size parameters xX80 [36]. This size
limit is expected to decrease with increasing nonsphericity of the scatterers. A comparison of simulations with
various models for the size parameters x ¼ 13 and x ¼ 26 indicates that the ROA provides useful values for
the phase function for Gaussian random spheres with size parameter of x ¼ 26 (Fig. 4). The phase functions of
spheroids with the size parameters x ¼ 13 (dotted) and x ¼ 26 (dashed) are very similar except for scattering
angles close to Y ¼ 0. The same is true for DDA calculations for Gaussian random spheres with a size
parameter x ¼ 13 (thin solid) and ROA calculations for Gaussian random spheres with a size parameter
x ¼ 26 (thick solid). The phase functions of the Gaussian random spheres are significantly flatter than the
phase functions of the spheroidal particles for both size parameters. The phase function of particles in this size
range appears to be rather insensitive with respect to the particle size. Based on this notion we may conclude
that ROA calculations for the phase function at a size parameter x ¼ 26 capture the features that are
characteristic for the Gaussian random sphere geometry. For the other scattering matrix elements, the
comparison of the scattering matrices does not provide the basis for a conclusive statement of this kind.
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The feldspar sample has only a negligible fraction of the total scattering cross section in the size range where
it is known for sure that ROA simulations produce reliable results for the entire scattering matrix. That is why
the DDA simulations for Gaussian random spheres are extended to larger sizes using the results of the
spheroidal-x3 model. An effective scattering matrix is considered that comprises contributions from Gaussian
random spheres with volume-equivalent sphere radii rp1:3mm and from spheroids with radii between 1.3 and
2:6mm. Another valid approach would be to compare the DDA simulations for Gaussian random spheres
directly with the measured scattering matrix keeping in mind that 14% of the total scattering cross section of
the sample is not accounted for in the simulations. Both approaches are practically equivalent, since the
merged scattering matrix is very similar to the result using the Gaussian random sphere model with the
truncated size distribution.

In Fig. 5 we compare the merged scattering matrix (thick solid) with the results of the spheroidal-x0 model
(thin solid), the spheroidal-x3 model (thin dashed), and the measurement (gray with black dots). In order to
apply the normalization (see Eq. (15)) to the measured phase function, the measured data have been extended
to the full range of scattering angles as explained in Liu et al. [37]. The phase function of the Gaussian random
sphere model is flat in the range of scattering angles from 100� to 170�. This is characteristic for phase
functions of irregular mineral particles and has been observed in many measurements of mineral dust samples
[38]. The simulated phase functions of the spheroidal models show a broad dip with a minimum between
Y ¼ 120� and 140�. The Gaussian random sphere model and the spheroidal-x0 model overestimate the phase
function for scattering angles Y460�. Close to Y ¼ 150� both models overestimate the phase function by a
factor of about 1.7. A variation of the size distribution shows that this overestimation cannot be caused by an
error in the size distribution alone. None of the models tested here captures the large values of the element
�F 12=F11 in the sideward scattering directions. For the element �F 12=F11, the result of the Gaussian random
sphere model lies between the results of the spheroidal models at most scattering angles. Note that the
simulated values of F22=F 11 using the Gaussian random sphere model are close to the measured values,
especially in the range of scattering angles from 120� and 160�. In this respect, the nonsphericity of the
Gaussian random spheres appears to be adequate for the feldspar dust sample.

The differences between the scattering matrix of the Gaussian random sphere model and the results from
the spheroidal models are on the same order of magnitude as the differences between the results from the
spheroidal models. The best agreement with the measured phase function could be achieved with the
spheroidal-x3 model. This is true for the phase function, for �F12=F11 in the sideward scattering directions,
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F22=F11 at scattering angles Yp110�, F 33=F11 and F 44=F11. The Gaussian random sphere model shows a
better agreement with the measurement only for F22=F 11 at 120�oYo160� and F 34=F11 at 40�oYo100�.
7. Conclusions

The single-scattering properties of an ensemble of Gaussian random spheres are calculated using the
discrete dipole approximation. We assume that the ensemble of Gaussian random spheres is representative for
a feldspar dust sample regarding the morphology, the refractive index, and the size distribution. The results
are considered to be relevant for weakly absorbing mineral aerosol. The morphology of the Gaussian random
spheres is modeled based on microscope images of the mineral dust sample. The size distribution of the dust
sample is based on a particle sizing experiment. The refractive index of feldspar is estimated using literature
values. All input parameters are thus obtained in an objective way based on the true properties of the mineral
sample. With the computational resources available, light scattering simulations for sizes parameters up to
x ¼ 13 are made. With this 84% of the total scattering cross section of the feldspar sample is taken into
account.

We include light scattering simulations using spheroidal model shapes in order to put the results of the
Gaussian random sphere model in relation. We consider a spheroidal model with an equiprobable aspect ratio
distribution (spheroidal-x0 model). Such shape distributions are often used in light scattering simulations for
mineral dust. We also include a parameterization based on shape distributions that are optimized by fitting
simulations to the feldspar measurement (spheroidal-x3 model). We note that the shape distribution of the
Gaussian random sphere model is determined based on true shape properties of the dust sample without using
such optimizations. This has to be taken into account when the Gaussian random sphere model is compared
with the spheroidal-x3 model.

The scattering properties obtained using the Gaussian random sphere model are compared with the results
of the spheroidal model for individual sizes. The simulated scattering cross sections and scattering matrices of
individual sizes, defined by the particle volume, agree very well for size parameters xp1. The largest
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differences between the scattering cross section simulated using the Gaussian random sphere model and the
spheroidal models are found in the size range between x ¼ 5 and x ¼ 10. In this size range the scattering cross
sections of the Gaussian random sphere model agree best with the results of the spheroidal model with an
equiprobable shape distribution. The differences between the scattering matrices of the various models tend to
increase with increasing particle size. In the size range from x ¼ 1 to x ¼ 6 the Gaussian random sphere model
agrees best with the spheroidal model with an equiprobable shape distribution.

After size-averaging, the simulated scattering matrices are compared with the measured scattering matrix of
the feldspar sample. Overall, the spheroidal-x3 model agrees better with the measurement than the Gaussian
random sphere model. This is true especially for the quantitative agreement of the phase functions from 120�

to 170� and the elements �F12=F11 from 60� to 120�. In various respects, the Gaussian random sphere model
reflects the light scattering properties predicted by the spheroidal-x0 model, which comprises larger
contributions of mildly nonspherical shapes. On the other hand, the Gaussian random sphere model
qualitatively renders best the flat shape of the phase function in the range of scattering angles from 100� to
170�, and the F 22=F11 element from 120� to 170�. These features are characteristic for light scattering by truly
irregular mineral dust particles.

The Gaussian random sphere model has been applied especially in order to capture the nonspherical and
nonsymmetric nature of the particle shapes. However, the Gaussian random sphere geometry cannot
reproduce the sharp edges and the flat surfaces of the feldspar particles that are observed on microscopic
images. This may explain partly why light scattering predicted by the Gaussian random sphere model shows
similarities with light scattering of more mildly nonspherical shapes in various respects. Furthermore, we
cannot rule out completely that the shape statistics extracted from the microscope images is biased due a
preferential orientation of the particles on the object carrier or due to the fact that the small particles that
dominate the size distribution of the sample are under-represented in the shape analysis. Such a bias may be
responsible for a mismatch between the simulations using Gaussian random spheres and the measurement.

The light scattering simulations shown in this study are based on the assumption that the particles can be
modeled using homogeneous model particles with simplified shapes. Small-scale structures of the surface and
inhomogeneities in the volume of mineral dust particles are thus not accounted for. This may be the cause for
differences between the measurement and the simulations using the spheroids or the Gaussian random sphere
model. Until light scattering by true mineral aerosols can be reproduced accurately by models, light scattering
measurements remain a benchmark relevant for further developments.
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