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ABSTRACT

An investigation ef the relationship between surface micro-
structufe and radiant energy scattering has been conducted.‘ Light
‘scattering from optical surfaces is treated as a diffraction process
in which the pupil function has randomrphese variations in addition
to ‘any existing amplitude variations. A new theory of surface scatter
phenomene has been formulated by utilizing the same Fourier techniQues
that have proven sc-successful'in the area of image formationQ An
analytical expression has been obtained for a surface transfer func-
tion which relates the surface micro-roughness to the scattered dis-
tribution cf radiation from that surface. The existence of such a

transfer function implies a shift-invariant scattering function which

does not change shape,With the angie of the incident beam. This
result greatly reduces the quantity of data required to completely
characterize the scattering properties of a surface. ~For a large
class of well-behaved'surfaces this transfer function is described

in teims of only the rms surface roughness and the surface: autocovari-
ance function. It thus provides e straightforward solution to the
inverse scattering problem (i.e., determining surface characteristics
from scéttered light measurements); Once the surface characteristics
are known, .the same fheory provides aﬁ equally simplefmethod of pre-

dicting the wavelength depehdence of the scattered light distribution.

xii
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An ‘extensive eﬁperimental program has accompénied this theoret-
ical development. The apparatus and.experimental procedures utilized
in measuring the angular distribution of light scattered from a variety
of optical suffacés for several differentvangles of incidenée‘and Qave-
lengths are'describe& in detail. Experimental verification of the
‘shift-invariant scattefing function has been successfully demoﬁstrated
for smooth surfaceS'(0W<<A)i The scattered light measurements from
Eéggh_(diffusely reflecting) surfaces results in a scattefing function
‘which i§ shift-invariant over only a sméil_range of angles.an& departs
significantly from>the'predicted behavior at large scattering angles.

A computer program has been developed that operatés upon scat-
“tered light data to yield the total integrated scatter, the surface
transfer'functidn, the rms surface roughnéss, and the surface:autoco-
variance function. Although accurate determination ofﬁmicrdsfructure
on optical surfaces is extremely difficult to accomplish by direct mea-
surement (thus the motivation for attempting to solve the inverse scat-
tering problem), favorable comparisons of predicted surface
characteristics with the corresponding measured quantities have been
demonstrated for both. smooth éurfaces and:moderately rough surfaces.
In addition, experimental verification of the inverse scattering pro-
gram was accomplished indirectly by supplying scattered light data of
‘one wavelength as input to the inverse scattering program in order to
determine the relevant surface characteristics; then this information

. was used to predict the scattering function at a different wavelength.



xiv
Excellent agreement with the measured scattering function at that wave-
length was achieved. -

Since the above technique involvés numefical_computationSVOn 7
sampled data,-an aﬁalyticél expression for a wavelength scaling law is
not required to determine the séattering function at any desired wave-
length. However, in order to gain insight into the:wavelength depen-
dence of surface scatter phenomena; a wavelength scaling law.for smooth
surfaces was derived and verified. This scaling law consists of a~
change in the scattering angle as well as a change in the dmplitude of
the scattering function with changes in wavelength. It therefore pro-
vides arValuable tool for predictihg the scattering behavior in certain
angular regions or wavelengfh ranges where direct measurements are

difficult to obtain.



CHAPTER 1
INTRODUCTION

The relationship between surface micro-structure and radiant
energy scattering plays an»imporfant role in many areas of téthnical
interest. These include thé trade-off between cos£ and performance in
the fabrication of optical surfaces, design considerations for stray-
light rejéction.systems, evaluation of machined metal mirrorsrfor'high-
energy laser apélicatidns, laser-radar backsﬁatter signature pfograms,
and a host of other applications requiring exteﬁsive scattering data.
If the scattering mechanism were completely understood, surface prepa-

ration techniques or measurement programs. in many of these areas could

possibly be changed to obtéin more favorable results.

Background

If a propagating wave is incident upon a perfectly plane sur-
face, the reflected wave is concentrated in the specular direction as
determined by the well—knéwn laws of reflection. Another idealized
surface is the perfectly diffuse reflector which scatters light accord-
ing to Lambert's cosine law. A more physically realistic situation is
shown in Fig. 1.1, which illustrates the optical scattering that occurs
when light is reflected from a rough surface. If the surface -is not

too rough the reflected light consists-of a specular componént plus a



- SPECULAR BEAM

INCIDENT BEAM

Fig. 1.1. Schematic Representation of Reflectance
’ from a Rough Surface.

diffuse component which is scattered over a wide range of angles cen-
tered upon the specular beam.

One ofvthe earliest investigators of scattering from a.rough
surface was Lord Rayleigh. In 1896 (Rayleigh, 1945) he was investiga-
ting thé reflection of acoustic waves, and later (Rayleigh, 1901) he
noted the effects of poorly polished surfaces on optical performance.
Hé examined the effects of surfaée roughness, wavelength; and angle of
inéidenCe on the reflected beam. Chenmoganadam (1919) derived a theory
of scattered light based on the phase shift of the reflected beam due

to the rough surface.
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However, it was not until the problem of background élutter in
radar applications became apparent that a determined effort was made
to solve the scatteriﬁg_problem for randbm sﬁrfades. For example, scat-
teriﬁg from the sea motifated the wbrk of Davies (1954) as well as
others (Blake, 1950; Barrick, 1970; Bass, 1968; Beard, 1961; aﬁd-Puks,
1966) . Considerable wofk‘has also been done in attempts to explain
‘radar reflection from the moon (Daniels, 1961; Evans and Pettengill,
1963; Fung and Moore, 1964; Fung, 1967; and Hagfors, 1964).

Randomirough surfaces have been treated in two different ways.
Rough surfaces made up of a fandom.array of objectsbdrishapes with
known_scattériﬁg>characteristics were investigated by Ament (1960},
- Twersky (1957), Spetnér (1958); and.-Peake (1959). ‘The other approach
téken by Isakovich (1952j, Ament (1953), Eckart (1953), Feinstein
(1954), Dévies (1954), and Beckmann (1957), treats the rough surfdce as
a stochastic process. |

Since optical surfaces clearly fall into the second classifica-
tion of random surfaces, Bennett and Porteus (1961) expanded and experi-
mentally investigated the scattering:theory of Davies (1954); From this
and gubséquentAwork (Bennett, 1963;7and Porteus, 1963) the reflectanée
properties of samples with a measured surface roughness were directly
cqmpared to theory with-good results. Interest in these measurements
led to investigations.at the Optical Sciences Center, University of
Arizona, by Mott (1971), McKenney, Orme and Mott (1972), Orme (1972),
DeBell»and'Harvey (1974); Shack and DeBell (1974), and Shack and

" Harvey (1975).
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The-Bidifectional Reéflectance Distribution Function (BRDF) was
introduced by Ni;odemus (1970) as a quantity which completely describes
rtherreflectance (or scattering)_properties of a given surféée. |
Bidirectional refiéctance data for spectral regioné extending into the
infrared have been collected in connection with heat—traﬁsfer analysis.
Anotheriarea of interest involves the possibilities for spectro-
chemical analysis by reflected fadiation, principally in comnection
with remote éensing of the earth'énd'otherVplanétary surfaces. Also
BRDF measufeméﬂts have been made dn many proposed,baffle maferiéls for
ruse in the Large Space Telescope program (Breault énd Fannin, 1973).
Recently there has been a great deal of activity in the areé of BRDF
measurements of.machined metal mirrors to be u;ed»in high-energy 1asér
-appliéatioﬁs (Young, 1975; Curcio, 1975; Decker;_Bennett and Bennett,
1975; Church and Zavada, 1975; and Stover, 1975).

Dissertation Conteént

In this dissertation the scatter?ng of iight from optical
elements is considered to be solely a surface phenomenon. Light-
scattering from optical surfaces is then,treatéd as a diffraction
process in which the pupil function has random phase variations in
 addition féhéﬁy ékisting~émpiitudé variatioﬁs;biA cémplete Fourier
" treatment of near-field scalar diffraction theéry is therefore devel-

oped in Chapter 2. This diffraétion fheory is genéralized in Chapter 3
to include phasézperturbations thét lead to scattered radiation. Appro-
_priate assumptions are then made concerning the statistical properties

of optical surfaces and an analytical expression is obtained for the



transfer function of a scattering surface. The existence of such a

fransfef functipn implies a shiftfinvariant1scattering function which
does not change.sﬁape with the anglé of the incident beam. This result
greatly reduceé the Quantity of data requiréd to completely character-
ize therscattering properfies of a surface. Fér a large class of well-
behaved suffaceé.thig transfer fuﬁctioﬁ‘is-déscribedliﬁ terﬁs of"éélx
fhe rms surface roughness and the surface autocovariance function. It
thus provides a straightforward éolution to the iﬁverse scattering'
problem (i.e., detefmining surface charactefistics from scattered light
measurements). Once the surface‘characteristics are known, the same
theory prbvideS‘an equa11y éimple_method of predicting the wavelength
dependence of the scattered light distribution.

An extensive experimental program has accompanied this theoreti-
cal development. Chapter 4 describes in detailrthe apparatus and experi-
mental prgceduies‘ufilized in méasuring the angular distribution of light
scattered from a Variety/of optical surfaces for several different angles
of incidence and wavelengths. The results of these experiments are
reported in Chapter 5 and compared to theoretical predictions with
generally good.agréement..

Consistent with most research efforts, not all questionsrcon-
cerning this topic are completely answered in this diésertation. After
a brief summary of resﬁlts, Chaptér 6 is therefore devoted to a few
comments concerning new theoretical consideratiéns and suggestions for

future research.



CHAPTER 2 _ 7 -

A FOURIER TREATMENT OF NEAR;FIELD
SCALAR DIFFRACTION THEORY

The phenomenon of diffraction involves a wave field incident
‘upon dne or mere objeets or apertures withrabsorbing or conductiné
surfaces. The calculation of the wave field emerging from such a
diffrecting system is the goai of all diffraction theories.

_It should be emphasized that both the Klrchhoff and Raylelgh—
Sommerfeld theorles, as well as the present dlscu551on in this paper,
treat light as a scalar phenomenon. (For a detailed treatment of the
historicel development of diffraction theory, see Goodman, 1968,
pPP. 30—56.) Such an epproach entirely neglects the fact that the
various components of the electric and magnetic field vectors are
coupled through Maxwell's equa#ions and cannot be treated independently.

.Microwave experiments have shown that scalar theory yields
very accurate results provided that: (1) the diffracting aperture is
large compared to a wavelength, and (2) the diffracted wave field is
observed far fiom’the aperture. It is significant that although the
present treatment ie limited by.being a ecalar theory, the above
approximations are not imposed during the»matheme?ical formulation as
they are in the Kirchhoff theory. Furthermore, the following devel-
opment provides much more insight than the conventional Rayleigh-

Sommerfeld theory.



The Diffracted Wave Field
as_a Superposition of Plane Waves

The fundamental diffraction problem consists of two parts:. tl)
determining the effect of intrdducing the diffracting screen upon tﬁel
field immediately behind the diffracting screen, and (2) determining
how it affects the field downstream‘frdm the diffracting screen (i.e.;
what is the field immediately behind the diffracting screen and how
doesvit propagafe),'

o Consider first fhe propagation broblém and.iet thé complex
amplitude distribution of the optical diéturbante in.plane P, be repre-
seﬁted by the scalar function Up(&,5;0). This scalar disturbance in P,
will be considered the only radiatidn contributing to the fiéld
.U(x,g;g) ih piéne P (éee Fig. 2.1); 2 has a parametric relationship
éince it is é function of the obser?ation plane. Note that a scaled

coordinate system is utilized in which & = x/k, g =y/x, 2= 3/

Initial Conditions.

It will be assumed that the complex amplitude o% any monochro;
matic optical disturbance propagating through free space must obey the
timeeindepeﬁdent wave eﬁuation (Helmholtz equation). We Will also

assume that the Fourier transform of the scalar field U,(£,7;0) exists.

This is not a severe restriction, however, as Bracewell (1965) points



>

L0

8>

U, (z,750)

Fig. 2.1.

Geometry of Planes Pjp and P.

Ux,y;2)

0>



out that physical possibility is a valid sufficient condition for the

existence of a Fourier transform.

The Direct Application of Fourier Transform Theory
We can thus define the following Fourier transform relation-

ships that exist for planes Py and P.

A, (2,8;0) = ﬁo U, 2,5;0) e “2m (BB gy (1)
U,(2,§;0) = E A, (a,8;0) e 2" C2*ED) g (2)
A(c,B;2) = ﬁ U(2,5;8) o t2m(o2+88) gogn (3)
y@s8 f’ Ala,8:8) e-2"(o2+60) 7 48, (4)

Equations (2) and (4) indicate that the monochromatic scalar
wave field in planes Py and P can be decomposed into plane wave compo-
nents whose amplitudes are a function of the direction cosines of the
propagation vector. The functions 4,(a,B;0) and 4(a,B;2) will be

referred to as the direction cosine spectrum of plane waves contributing

to the disturbance U,(2,7;0) and U(Z,7;2) respectively. The direction
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cosine spectrum of plane waves is used here in lieu of the angular
spectrum of plane waves discussed by Ratcliffe (1956) and others. This
is consistent with a more general treatment which is not restricted to
small angles.

In the scaled coordinate system V2 = A2v2, and k2 = A2k2 =

(21)2. Hence the Helmholtz equation becomes
[62 + (2'")2][](_'%’?;2) = 0. (5)

Now by applying Eq. (4) and requiring the individual plane wave

components to satisfy the Helmholtz equation, we find

12ny2

A(G,B;%) = AO(G,B;O) € (6)

where

B =2 S B,

The Transfer Function of Free Space
Since Eq. (6) relates the Fourier transforms of the scalar
fields in planes Py and P it can be rewritten in terms of a transfer

function for free space, H(a,B;2)

A(a,B;28) _ ei2wy2

H(x,B3;28) = A, (a,B;0) (7)

We have thus far applied no restrictions on y and two regions
of interest are apparent: that for real values of y and that for

imaginary values,
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‘ for (a? + 82) s 1 y is real

y = T @ED

for (a2 + 82) > 1 Yy is imaginary.
(8)

Consider now a unit circle in the a-8 plane of direction cosine
space as shown in Fig. 2.2. Inside this unit circle y is real and the
corresponding part of the disturbance will propagate and contribute to
the wave field in plane P. However, those components of the direction
cosine spectrum which lie outside the unit circle have imaginary values
of y and represent that part of the disturbance which experiences a
rapid exponential decay. This is the part of the disturbance which is

commonly referred to as the evanescent wave (Goodman, 1968).

Let UOG%,Q;O) be the product of the complex amplitude transmit-
tance of a diffracting screen and the complex amplitude distribution
incident upon it. Figure 2.3(a) illustrates this quantity broken down
into the part which propagates and the part which makes up the evanes-
cent wave for the case of a unit amplitude plane wave normally incident
upon a circular aperture. The direction cosine spectrum of plane waves
associated with these respective optical disturbances are shown in Fig.
2,55 1)1

Note that the sharp corners on the original disturbance in
Fig. 2.3(a) correspond to Kirchhoff's unnecessary boundary conditions.

It is the propagating part only that accurately represents the
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- O

Fig. 2.2. Unit Circle in Direction Cosine Space.

The plane wave components inside this
circle will propagate, and the plane
wave components outside this circle
contribute to the evanescent wave.



u_(8)

Uo(g) * Jy(218)/8

> 8 = > 8 ———Jhceoadjﬂvﬂdﬁﬂdh———rﬁ

Original disturbance

12

AO(D)

Fig. 2.3.

Propagating part Evanescent part

b7 )7
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Il1lustration of the Propagating and Evanescent
Parts of the Diffracted Wave Field.

(a) Original disturbance separated into its
propagating and evanescent parts.

(b) Direction cosine spectrum separated into
its propagating and evanescent parts.
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disturbance immediately behind the diffracting aperture which will con-
tribute to the disturbance downstream.

It is now clear that the complex amplitude distribution in plane
P can be determined by Fourier transforming the original disturbance
Uo(é,“;O), then multiplying the resulting direction cosine spectrum of
plane waves Ao(a,B;O) by the transfer function of free space given in
Eq. (7), and finally by applying the inverse Fourier transform integral
of Eq. (4). However, the limits of integration on Eq. (4) must be
changed such that the integration is performed only over the unit
circle instead of over the entire a-B8 plane.

The above analysis, in which an optical disturbance is repre-
sented as a superposition of plane waves, corresponds to the transfer
function approach in image formation and yields considerable insight
into the behavior of these plane wave components during the phenomenon
of diffraction.

The Diffracted Wave Field
as a Superposition of Spherical Waves

The convolution theorem (Bracewell, 1965) of Fourier transform
theory requires that a convolution operation exists in the domain of

real space that is equivalent to Eq. (6).

The Point Spread Function
We thus have the alternative method of expressing the complex

amplitude distribution in the observation plane by the convolution of
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the original disturbance with a point spread function. The point
spread function is obtained by taking the inverse Fourier transform of
the transfer function found in Eq. (7).
Starting with the well-known Weyl expansion formula (Weyl, 1919),
Lalor (1968) obtained a result which, with straightforward modification,

yields

S . sl 2P
JJ ezZWYz eLZn(ax+By)dad8 K I B ], (9)

where
22 - =Thps i 92 82
The left side of Eq. (9) is the inverse Fourier transform of the trans-

fer function of free space. The appropriate point spread function is

thus given by

Huygens' Principle

Recall now the assertion by Christiaan Huygens (Thompson, 1912)
in 1678 that each element of a wavefront may be regarded as the center
of a secondary disturbance which gives rise to spherical wavelets; and
moreover that the position of the wavefront at any later time is the
envelope of all such wavelets. These intuitive convictions, sometimes

called Huygens' wavefront construction, are an excellent description of
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a convolution operation in which the initial disturbance is convolved
with a Huygens' wavelet. It is therefore quite appropriate to think of
the point spread function of a diffraction system as the intersection of
a Huygens' wavelet with the observation plane.
Equation (10) is therefore an exact mathematical expression for a
Huygens' wavelet which is valid right down to the initial disturbance

itself. However, for » >> 1,

eiZﬂ? eiZN(ﬁ - 1/4)
h(z,5;8) = -i(2/7) — = (2/P) % s (1185}
P

it reduces to the familiar expression for a spherical wave with cosine

obliquity factor and a m/2 phase delay.

General Rayleigh-Sommerfeld Diffraction Formula
If we write down the convolution integral for the disturbance in
the observation plane, using the expression in Eq. (10) for h(Z,j;3), we

obtain the general Rayleigh-Sommerfeld diffraction formula

o ( 1 "/2 ei27r2 dx dy
U(E,9:8) = ”U(i:',g';OJ — -4} 2 — d2'd)' (12)
b 2 WA i
where
22 = (3-2M)2 + (§-§")2 + 32. (13)

This is an exact expression for the diffracted wave field which is valid

throughout the entire space in which the diffraction occurs--right down
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to the aperture. No approximations have been made in this scalar

theory. Furthermore, the above equation expresses the disturbance on
the observation plane as a superposition of spherical waves which

corresponds to the spread function approach in image formation.

Geometrical Configurations of the Observation Space

In order to insure a space invariant point spread function our
equations have been restricted to mapping an optical disturbance from
an input plane to an output plane, where 2 has a parametric relation-
ship since its value determines the location of the output plane. How-
ever, the summation of these Huygens' wavelets is valid over any
surface. The above treatment thus gives us a far more powerful concep-
tual tool than provided by the equations themselves.

We will therefore investigate the properties of the diffracted
wave field on two particular geometrical configurations of the

observation surface.

The Diffracted Wave Field on a Plane
Equation (12) reduces to the more familiar but less general

form of the Rayleigh-Sommerfeld diffraction formula when 2 >> 1,

ot 5 eian
uR,5,8) = -1 jj u (@',y';0) = dg'dy’ . (14)
o A
't o
The following algebraic substitutions
£-3

2 = 3(1+98), 8

o]
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allow us to rewrite Eq. (14) as

1212

0,950 = S [ 0,000 hyr T EBaray. as)

- 00

Note that we have imposed no restriction upon the size of the aperture
or the size of the observation space. The only limitation on the above
equation is that the observation plane must be many wavelengths from
the aperture.

The above diffraction formula is a rather unwieldy integral to
solve explicitly for most problems of practical interest. The Fresnel
and Fraunhofer diffraction formulas are obtained by retaining only the

first two terms in the binomial expansion for the quantity
2 = 2(1 + [(ﬁ2+g2)/§2 + (£'2+g'2)/22 3 z(ﬁv,,_ggn)/ézl)li.

However, severe restrictions are then imposed upon the size of the
aperture and the region over which the calculations are valid in the
observation plane. In order that we do not impose these restrictions,
all terms from the binomial expansion must be retained. This can be
accomplished by rewriting Eq. (15) as the following Fourier transform

integral

U(,533) = U, (2,7 :2,9) e dz'dg', (16)

where the complex quantity
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by " - R 1 12miW
G, IV BRI LS e a ! (17)

can be regarded as a generalized pupil function. To(é,g;O) is the com-

plex amplitude transmittance of the diffracting aperture (or aperture
function), and all of the terms from the binomial expansion for the
quantity (2-2), except for the term which was extracted for use as the
Fourier kernel, are lumped together in the quantity ¥ along with any
phase variations in the incident wavefront.

Equation (16) clearly reduces to the conventional Fresnel dif-
fraction formula when a plane wave is incident upon the aperture and
when 2 is sufficiently large such that £ is adequately approximated by

retaining only the first two terms of the binomial expansion.

The Diffracted Wave Field on a Hemisphere

Let us now examine the diffracted wave field on a hemisphere
centered upon the diffracting aperture as illustrated in Fig. 2.4. The
position of an arbitrary observation point will be specified by the
direction cosines o and B of its position vector, and the radius # of

the hemisphere upon which it resides. Note that
&, = [ BN = D Py and iy ey R (18)
where
P2 = 22 + §2 4+ 32, (19)
The following algebraic substitutions
2 = p(l+e); e = (B-m)/p (20)

allow us to rewrite the general Rayleigh-Sommerfeld diffraction formula
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Fig. 2.4. Geometrical Relationship Between Incident Beam, Dif-
fracting Aperture, and Observation Hemisphere.
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expressed in Eq. (12) as

e [ o ce.9050

v

U(a,B;2)

[]
2

-0

X

1 . 1 L28(8~P) 10 20t
[7?§TTIET - z] [6TTHL e dz'dy'. (21)

We now have an exact expression for the diffracted wave field on an
observation hemisphere which is valid throughout the entire half-space
behind the plane of the diffracting aperture.

If we now require that # >> 1 and make the appropriate binomial
expansion for the quantity (Z-ﬁ), we again obtain a Fourier transform
integral

eiZw?
U(a,B;P) = v

“%(ﬁ',y';a.s)e'“"(“' F B g, (g

- 00

~

ir

where the generalized pupil function is given by

S B ol o 1 i2nW
@o(m'»y',ﬁxﬁ) e To(x':y';o) W e . (23)

Once again, all of the terms from the binomial expansion for the quan-
tity (2-?), except for the term which was extracted for use as the
Fourier kernel, are lumped together in the quantify W along with any

phase variations in the incident wavefront.



22

Aberrations of Diffracting Systems

The quantity W in Eqs. (17) and (23) represent phase variations
in the diffracted wavefront emerging from the aperture. Therefore, W
can be interpreted as a conventional wavefront aberration function
(Hopkins, 1950) which is conveniently expressed as a general power
series expansion of the pupil coordinates and the appropriate field
parameters.

For the case of a rotationally-symmetric diffracting aperture we

can, without loss of generality, choose the observation point to lie on

the y-axis (& = 0). The wavefront aberration function can then be

written as

b ag
I

Wa0002 + Woped® + Wi11pa cos¢
+ Wygoo® + Wouoa+ Wi31p@ cose + Wppop2a? cosZp
+ Wa20p2a2 + W3110%a cos ¢
+ higher-order terms, (24)

where p is a normalized field position of the observation point and a
is a normalized pupil height.

By equating coefficients of the corresponding terms in the
appropriate binomial expansions and the above wavefront aberration func-
tion, we obtain expressions for the aberration coefficients in terms of
the aperture diameter, the observation distance, and the appropriate

field parameter. These aberrations, which are inherently associated with

the diffraction process, are precisely the effects ignored when making

the usual Fresnel and Fraunhofer approximations. Furthermore, these
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aberrations have the same functional form as the familiar aberrations
caused by the refraction or.reflection process in imperfect imaging
systems. |

The expressions for these aberration coefficients are derived
in Appendix A and tabulated in Table 2.1 to enable .easy comparison of .
several different geometrical configurations of the incident wavefront
and the observation space. |

Consider first a plane wave illuminating the diffracting aper-
ture and a plane observation space.: We see from the first column of
Table 2.1 that all aberrations are present except for iateral magnifi-
cation error (Wyii) which is absent for all geometrical configurations
becauée this term of the binomial expansion for 2 is extracted for use
as the kernel of the Fourier transform integral. It is clear that very
large observation distances are required to reduce defocus (ﬁozo) to a
negligible Valué. Also, distortion (ngl) imposes severe restraints
upon thevfield angle over which the diffracted wave field is accurately
described by the Fourier transform of the aperture function. These
resfrictiOns are the same as those usually imposed during the develop-
ment of the Kirchhoff theory and in most applications of the Rayleigh-
Sommerféid diffraction theory.

The effect of illuminating the aperture with a spherical wave
converging to the observation plane is to eliminate defocus (Wozo) and
all orders of spherical aberration (quo). This removes the require-

ment for an. extremely large observation distance, but the Fourier
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Tabulation of Expressions for the Aberration Coefficients
for Several Different Geometrical Configurations.

(a) Incident wavefront.
(b) Observation space.

a. Plane a. Sphere 2. Plane a. Sphere

b. Plane b. Plane b. Hemisphere b. Hemisphere
X Yy 2 N 2
Piston Error i(ymax > _{(ymax ) 0 0
Defocus 3 ({d\2 »fd\?2
s 7 e 0 T 0
W20 22 2r

Lateral Magni-
fication Error

Wi11

3rd-Order 3 y 4 {5 4
Piston Error =i mfx = % _"";?i 0 0
F71&00 £ £
Spherical ~ 3\ 4 A s\ &
Aberration - %(—d—> 0 5 38'. 4 0
E}O‘GO 2 2r
Cona Ul | e RN S (f’—)3 o (£
131 St ) s € A28 2 "max \,n Z "max \ 35
s R = 2/h 002 j 3 . i
Astigmatism _3 ymax> i)z _g( max> (_fi_) e 2(_(1)2 I80 2(}_)2
Wa22 2\ : 22 A3 25 Z "max \ 2 Pmax” \ 5z
Field Wi 2f 2\, sy 2f 5\,
Curvature - :’i—( m;“) (—%) - %( m'r:.x —d: 0 0
,}220 2 2z z 2z
YRy 3 e g S
Distortion i(ymax> i £< max) N 0 0
W311 4 z 2z 2 z /v 2z
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: )
transform of the aperture function is still valid only over a small
region about %he 6pticalraxis in the observation plane.
| Choosing the observation space to be a hemisphere centered upon
the diffracting aperture eliminates field curvature .(Ws50), distortion
(W311), and all orders of piston error.(@éoo and quo).

Hence for the case Qf a spherical incident wave coﬂverging to
the intersection of the optical axis and an observation hemisphere,
only coma (ngl) and astigmatism (Wézz) are present. And the values of
the aberration coefficients can be calculated from the relationships
provided in the last column of Table 2.1.

Thus, for a system with an aperture diameter of 1 mm and an

observation hemisphere with a radius of 1 m, we have for A = 0.5 um and

ﬂ/131 1.25 x 10—4

W20 -2.50 x 10-1. , (25)
Hence there is only 3/4 of astigmatism at the edge of the field (i.e.,
90° field angle).

Similarly for an £/10 system (&/? = 0.1) with an aperture diam-

eter of 5 cm and a maximum field angle of 0.5° (Bpax = 0.00872), we

have for A = 0.5 um,

Wis1 = 0.545

Wppo = =-0.095. - | (26)

" Hence coma dominates at the edge of the field with a value of

approximately A/2.
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Finally, for an £/10 system with an aperture diameter of 1 cm
and a field size equal to the size of the aperture (i.e., a pair of

£/10 relay lenses 1 cm in diameter), we have for A = 0.5 um,

-0.625

W31

-0.625. : (27)

Wo2o

We find slightly more than A/2 of coma and astigmatism at the edge of
the field.

It should be pointed out that in each of the above cases the
radius of the Airy disc in direction cosine space is approxihately
equal to 0.001 Bmax' Hence the off-axis aberrations are of little more
- than académic interest ﬁnless there is some structure in the aperturé
with high spatial frequency content which will diffract light at large
angles from the direction of the incident beam.

Howéver, the above analysis of.the aberrations associated with
the diffraction process can be rea&ily applied to holographic systems
or systems containing diffraction gratings..

For example, an f/6 system with a 1b—line-per-mm Ronchi rdliﬁg
placed in a 40-mm diameter aperture produces the diffraction pattérn
shown in Fig. 2.5. The diffracted order at three different field posi-
tions WaS'photographed through a microscope with the following fésults:
af B = 0 no aberrations were appareht; at B = 0.04 coma was predominant
with a valué of apﬁroximately 5); and at B = 0.10 coma and astigmatism
both have values of approximately 15A. These values were estimated by

visual inspection of the aberrated diffracted orders.
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OBSERVATION'
HEMISPHERE

—
i

240 mm
d=40mm

Fig. 2.5. Diffraction Pattern of a 10-Line per mm Ronchi Ruling Placed in
an £f/6 Cone of Light with a 40-mm Diameter.

Magnified images of diffracted orders at various field positions
indicate that coma is predominant for small field angles with
astigmatism also becoming significant at larger field angles.
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By stopping the aperture down to a diameter of 12 mm (£/20
system) and observing the diffracted orders at larger field angles,
astigmatism becomes the predominant aberration as shown in Fig. 2.6.
The sagittal focus lies on the observation hemisphere of radius r and
the medial and tangential surfaces have smaller radii as indicated.
The diffracted order at 8 = 0.020 exhibits about 6X of astigmatism.
This order was observed through focus with the microscope and the mag-
nified images are displayed.

In both of the above examples the observed aberrations are in
good agreement with those predicted from the coefficients presented in

Table 2.1.

Shift Invariance of the Diffracted Wave Field

We have shown that any departures of the actual diffracted wave
field from that predicted by the simple Fourier transform of the aper-
ture function take the form of conventional wavefront aberrations.

If we neglect these aberrations, Eq. (22) reduces to

2P

Ua,B;2) = v 2

" s 2'+84" -
P ” 7 (2',9'50) e 2T R ) gpgpr (28)

But this is merely the Fourier transform of the aperture function mul-

tiplied by a spherical Huygens' wavelet.

eiZW?
U(a,B;P) = v . o Jr{TO(Q,g;O)}. (29)
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Fig. 2.6. Diffraction Pattern of a 10-Line per mm Ronchi Ruling Placed
in an £/20 Cone of Light with a 12-mm Diameter.

Magnified images of a diffracted order at different focal
positions indicate that astigmatism is predominant. The
relationship of the sagittal, medial, and tangential sur-
face to the observation hemisphere is also shown.
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This relationship is valid provided that the observation space is a
hemisphere centered on the diffracting aperture and if the incident
radiation is a unit amplitude spherical wave whose center of curvature
lies on the intersection of the observation hemisphere with the =z-axis.
Furthermore, if » is large compared to the size of the diffracting
aperture, the Fourier transform relationship is accurate, not merely
over a small region about the z-axis, but instead over the entire
hemisphere.

Now consider the situation where the incident radiation strikes
the diffracting aperture at an angle 6, as illustrated in Fig. 2.7.
This is equivalent to introducing a linear phase variation across the
aperture. By applying the shift theorem (Bracewell, 1965) of Fourier
transform theory to Eq. (29) we find that the complex amplitude distri-

bution on the hemisphere is a function of (B-B8y),

Ua,8-B0i?) = ¥ 37';:— FT2,9;0) exp[i2n8o5]}, (30)
where B8 is the direction cosine of the position vector of the observa-
tion point, and B, is the direction cosine of the position vector of
the undiffracted beam. Note that these direction cosines are obtained
by merely projecting the respective points on the hemisphere back on to
the plane of the aperture and normalizing to a unit radius. The com-
plex amplitude distribution at an arbitrary point on the hemisphere can

now be said to be a function of the distance of the observation point

from the undiffracted beam in direction cosine space.
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Fig. 2.7. Geometrical Configuration when the Incident
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As a specific example, suppose we‘have incident light striking
a diffragtion grating at an angle 8o. Thé diffracted ordefs will
strike the observation hemisphere in a cross section which is not a
~ great circle but instead a latitude slice as shown in FigL72.8. Thus
for large angies of incidence the various orders appear to lie in a
straight line only if they are projected doWn 6nto the a-8 plane‘in
-direction cosine space. ‘It is therefore clear that varying the angle
of incidence merely shifts the diffracted wave field in direction |
cosine space without changing its functional form. This has been veri-
fied experimentally by mountihg a diffraction grating at the center of
a transparent_hémisphere, placing:graph paper on the plahe of the dif-
fraction grating (afB piane), and scribing apprqpriate latitude lines
on the hemisphere upon which the diffraéted orders fall wﬁen illumi-

nated with a small laser beam.

§ummary'

- We have developed a very useful treatment of near-fiéld scalar
diffraction theory that ?ields much more insight than the conventional
Rayleigh—Sommerfeld theorym.

By‘describing the.diffraction procesé in terms of the direction
cosines of the propagatiﬁg light we have obtéined the extremely power-
© ful fesult that the diffracted wave field on an observation hemisphere
is given directly by the Fourier transform of the aperture function,
This allows us to apply thé well-known techniques of linear éystems

theory that have proven so useful in the area of image formation.



Fig. 2.8,

Illustration of the Position of the
Diffracted Orders in Real Space and
Direction Cosine Space.
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: Furthermore,‘we haﬁe shown that any departures of the actual
diffracted.Wave field from those predicted by the Fourier transform
relationship take the form of conventional aberrations whose behavior
is well understood in terms of the dimensions of the diffraction-aper—

ture, the radius of the observation hemisphere, and the appropriate

field parameters.



CHAPTER 3
SURFACE SCATTER THEORY

In‘the following treatment the scattering of light from opticai
elements-is consideréd to be solely a surface phenomenon. It is recog-
nized that bulk scattering mechanisms, such as photon-phonon interac-
tions (Bloembergen and Shen, 1965) and scattering from free electrons-
(Vachaspati, 1964), can exist if the substrate material is not perfectly
conducting.__The excitation of surface plasmons has also been suggesfed
by several investigators as contributing‘to short wavelength scattering
from polishéd metal surfaces (Beaglehole, 1970; Beaglehole and Hunderi,
1970; Crowell and Ritchie, 1970; Elsoﬁ and Ritchie, 1971; and Daudé,
Savary, andﬂRobin; 1972). However, the above effects>are believed to
be small for most visible and infrared radiation scattered from mefal

surfaces.

Surface Scatter Phenomena as a Diffraction Process

In_Chapter 2 it was shown that, under the propef circumstances,
the diffracted wave field on a hemisphere is given directly by the
Fourier transform of the complex amplitude transmittance of the diffrac-
ting aperture. Usually a diffracting aperture consisté of a "hole'" in
some opaque surface. This is a binaryramplitude diffracting aperture.
Ciearly, a continuous amplitude diffracting aperture (a piece of photo-
graphic film, for example) can also exist. A more general situation'
is the complex diffracting aperture which exhibits both amplitude and

35
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phase variations. It is these phase perturbations that lead to scat-
tered radiation. Surface scatter phénomena can thus:be dgscribed as
a diffraction procéss'in which the pupil function has random phase
variations in addition to any existing amplitude variations. The dif—
fraction theory of the previous chapter can fherefore be applied
directiy to the problem of predicting the complex amplitude distribution
on an observation hémisphere of radius r resulting ffom an incident

beam of light being reflected from a rough surface.

The Sy§tem‘Pupi1 Function

: A simple treatment of surface scatter theory can be formulated
by considering the effect of the scattering surface to be a space-
dependent modifier, or random compbnent, of the effective‘pupil func-

tion of the system. The disturbance emerging from. the scattering sur-

face is then given by

UO(&:g;O) 'dop(%:g;o) = aOpL(&’y:O)BR(ﬁ:g;O)- (31)

Here the pupil function of the systeh producing the incident
beam is given by

120k (%,430)
ar(8,5;0) e , (32)

pL(%’g;O)
where qj describes the amplitude variations across the exit pupil of

the system, and W describes any phase variations or aberrations in

the wavefront of the incident beam.
The random component of the pupil function due to the scatter-

ing surface'similarly has an amplitude and phase component
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i4nhp(Z,7;0)

pp(&,§;0) = YR(2,5;0) e (33)

Here R is the reflectance of the scattering surface and WR is the sur-
face height. Note that the phase variations on the reflected wavefront
are twice as large as the actual variations on the reflecting surface.
Figure 3.1 illustrates the surface height variations, ﬁR, as a
function of distance along the surface. This surface profile has
associated with it an autocovariance function and a surface height

distribution function as indicated.

Autocovariance

function
/

e

Surface —
height Surface
distribution height

/‘Q\VA /\/\/w/\\/

Fig. 3.1. Illustration of Surface Height Variations and Associated
Statistical Parameters.
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Intensity Distribution of a Scattering System
(29)], indicate that

The results of the previous chapter, [Eq.
the complex amplitude distribution on the observation hemisphere is
given directly by the Fourier transform of Ub(&,g;O)

12
(34)

Ula,B37) = vy —— FUo(2,7;0)}.
1r

The total reflected flux ¢ is obtained by applying Rayleigh's

theorem from Fourier transform theory

=]

I\2 -
¢ = J[ $T |U(a,B8;%) |2dads = a02 ,[Ip(&',g';O)Izd&'dg'.
-c0 (35)

-0

Noting that dw = dadB/y, the radiant intensity of the scattering

system can be written as

o
2 = u(a,8:#) |2 = aozy]y{p(a”c,g;O)}P.

B0 5) SR =
(36)

Utilizing the autocorrelation theorem of Fourier transform theory, this

is equivalent to

1,8 = a e || p@ng0p @ -2 50-g:08 @ . (57)

@

For the special case of a Lambertian surface, the autocorrela-

tion function approaches a Dirac §-function; hence, its Fourier trans-

form is constant and we obtain

K = constant (38)

I, (e,8) = vk,

which is consistent with Lambert's cosine law.
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The System Spread Function
Following the standard procedure used in image evaluation, the
effective transfer function of the scattering system is defined as the

normalized autocorrelation of the pupil function

[ p@r gm0 @ 2.90-5:008 0@
H(2,5;0) = T ; (39)
[f |p(.’i","';0)lzd‘i§'dg'

The effective spread function of the scattering system is now
defined in the usual way as the Fourier transform of the transfer

function

o
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- 00

B(a,8) = F{H(2,5:;00} =

©

” lp&',5';0)|2d&'dg' (40)

i
-

Direct substitution from Eq. (35) and Eq. (38) results in the following
expression for the effective spread function in terms of the radiant

intensity of the scattering system

o o o (e8]
48(0’8) ) I(a,B) = m . (41)

Scattering from Optical Surfaces

Let the height variations WR of a given illuminated area on a

scattering surface be a two-dimensional sample function Wﬁi(&,g;O). A
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random process, @k(&,g;o), is made up of an ensemble of such functions

as shown in Fig. 3.2. For fixed spatial coordinates, Wh(&l,gl;O) is a

random variable. And, for a specific sample function with fixed

spatial coordinates, @ki(&l,gl;O) is a single number.

Wy [ir;')

W(xz,¥2)

Fig. 3.2. An Ensemble of Two-dimensional Sample Functions W;(2,7)
Representing Surface Height Variations Constitutes a Random
Process W(Z,7).

Two random variables, W(&,J;) and W(Z,,5,) with fixed
spatial coordinates are also shown.
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The Statistical Properties of an Optical Surface
We are primarily interested in the scattering behavior of opti-
cal surfaces. The following assumptions are made concerning the sta-
tistical properties of an optical surface prepared by conventional
fabrication techniques on ordinary optical materials:

1. The reflectance R is constant over the entire surface. This
assumption is not essential but it is reasonable and furthermore it has
been shown by Shack (1967) that phase fluctuations will dominate over
amplitude fluctuations in their combined effect on the spread function.

2o WR(é,Q;O) is a single-valued Gaussian random process.

3. WR(&,Q;O) is at least locally stationary in the statistical
sense (i.e., surface is homogeneous and isotropic).

4. The random variables WR(él,Ql;O) and WR(&Z,yz;O), produced by
any two fixed pairs of spatial coordinates, are jointly normal.

5. ﬁk(&,g;O) is weakly ergodic (i.e., the mean and autocorrela-
tion function determined by space averages using a single sample func-

tion @ki(ﬁ,y;o) are the same as those determined by ensemble averages).
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The Transfer Function of a Scattering Surface

Substituting Eq. (31} into Eq. (39) we obtain

=

i2n[Wpg-Wpol <4n[Wp1-Wral
JJ ariars e e az'dy'

H(E,5;0) = — -

H lag, |2 a&'dg’ (42)

where

a,, = a&",§"';0)
a, = a,@&'-%, §'-j; 0)
E/Ll = i/L(fc',g';O)
‘;"Lz = izL(sc'-sc, §'-§; 0)
Way = Wo@'.§'50)
Woy = W@ -2, §'-95 0). (43)

The above expression for the transfer function contains the ran-

dom variables Wﬁl and W PY therefore, taking the expected value we have

R

't iZn[&LzuﬁLQ] 7:4"“:/1?1'5]1‘?2:“ 1w o)
” iRy ' )de'dy'
E{(z,y;0)} = = T

ﬁ Jag | 22y

-0
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Since the random variables involved are assumed to be stationary,
the expected value under the integral is independent of &' and §' and

can be taken outside the integral

J iZW[ﬁlLl-ﬁ’Lz]dx'd
: y [ JE, SRS o
(Zan[Wpz-WRal) 12 e
E{H(2,7;0)} = E<e

(45)

x©

[[ laz |22y

We now recognize the normalized autocorrelation function in the above
equation to be the transfer function of the optical system producing the

incident beam

«©

jJ SR <

Ky (2,5;0) = - (46)

€0

JJ |lag |2z &5

-0

12n[Wr1-Wral

The average quantity in Eq. (45) is therefore the equivalent transfer
function of the scattering surface

i4n[Wp1-Wgol
E<e : (47)

But this is merely the joint characteristic function (Papoulis,

1965, p. 225) of the two random variables VR2 and WRZ' Since WRl and

-~

WRZ are jointly normal random variables, it can be shown
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that (see Papoulis, 1965, p. 226)

i [Wg1-Fral :
E{e RISk } . ot4m(ni-n2) -8n%(012-2C12+0,%) (48)
where
C12 = E{(Wgz-n1) (Wr2-n2)} (49)
is the covariance function of the random variables Wh and ¥_.. But i »
R1 R2 RI

and WRZ are identical functions merely displaced from one another; hence
01 = 02 = cﬁl’ nl = nz (SO)
and

autocovariance of QR' (51)

1]
—
I\

"
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=
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The equivalent transfer function of the scattering surface is thus given

by
g CW(&,Q)
- (4naogy) 1 —-——557——
Hp(2,550) = e (52)
where cﬁz is the variance of the surface height distribution function

and CW(&,Q) is the two-dimensional autocovariance function of the
surface.

Considerable insight into the scattering process can now be
obtained by considering the nature of this transfer function. The auto-

covariance function approaches the value owz as the displacement
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approaches zero. The equivalent transfer function thus approaches unity
as expected. As the displacement approaches infinity the autocovariance
function approaches zero and the equivalent transfer function
approaches a plateau of height exp[-(2mof)?].

The equivalent transfer function of the scattering surface can
thus be regarded as the sum of a constant component and a bell-shaped
component as shown in Fig. 3.3(a). Equation (52) can therefore be

rewritten as

H,(Z,5;0) = A+ BQ(&,5;0), (53)
where
-(4Trc*)2
A e W (54)
- (4mofy)?
B lgee J (55)
5 Ch&,8)
(411’05/) ——c’_;:;/T—
QE,5:0) = 2 -2/ (56)
(4mopy)?
e -1

The Spread Function of a Scattering Surface
The significance of this interpretation of the equivalent trans-
fer function of the scattering surface is dramatically shown by the

inferred properties of the corresponding spread function. Since the
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transfer function is the sum of two separate components, the equivalent
spread function of the scattering surface is the sum of the inverse

Fourier transforms of the two component functions,

B(a,8;1)

JT'I{ﬁﬁ(ﬁ,Q;O)} = A8(a,B;P) + S(a,B;P)

(57)
where

S(a,B8;7)

B«F‘l{Q(a‘c,z};O)}

The constant component transforms into a delta function, and the bell-
shaped component transforms into a bell-shaped scattering function as
shown in Fig. 3.3(b). Hence the scattering surface reflects an incident
beam of light as a specularly-reflected beam of diminished intensity
surrounded by a halo of scattered light. Furthermore, the relative
power distribution between the specular component and the scattered
component of the effective spread function are given by the quantities

4 and B respectively.

Note that as more and more light is scattered, energy is
transferred from the specular component of the spread function into
the scattered component of the spread function. For a perfectly
Lambertian reflector the specular component disappears completely

from the spread function.

A Shift-invariant Scattering Function
In general, the scattered light distribution on an observa-
tion hemisphere will change with the angle of the incident light just

as the point spread function of an optical imaging system will, in
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general, Vary with the field Position of the ﬁbint source. However,
the anaiysisvof imaging systems is greatly simplified by assuming an
: isoplanatic system. in which the point spread function does not chaﬁge
with field position (and thié,is a reasonable éssumptioﬁ fdr'many
praétical imaging systems). Similarly, the analysis of 1light scatter-
' ing systemé will be greatly simplified if they can be shown to be
shift—invariant (i.e., if the shape of thé scattering function does
not change with the angle of incidence).

From the discussion in the previous section it is clear that
the scattered light distribution on an obsefvation hemisphere will
appear fo.consist of the sum of two componenté, a core which is the'
delta'functionﬁconvolved withvfhe spread fuhction of the opticali
system producing the incident beam, and a scattering function whichr
is the Eell—shaped halo donvolved with the spread functibn of the
optical system.

In Fig. 3.4 we have merely replaced thg diffracting aperture
of Fig. 2.7, page 31, with a scattefing surfacé énd the geometry of
the measurements has been folded about the feflecting plane. Hénce,
we have the incident beam striking the scattered surface at some angle-
of incidence, a specularly-reflected beam striking the observation
hemisphere, and thé'scattered“1ight distribution being sampled at an
,arbitrary point with direction cosine coordinates o and B. The scat-
tered light distribution on the hemisphere wili, in general, change
shape drastically with angle of incidence-—becoming quite skewed and

asymmetrical at large angles of incidence. However, our theory
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indicaﬁes that the data collected on the hemisphere should be plotted
as a functien of the direction cosines of the position vector of the
observation point. For certain surfaces with well-behaved statistics, '
this hew scattering function will not change shape but Will merely be
shifted in direction cosine space with changes in angle of incidence.
The foUr-dimensionei Bidirectional Reflectance Distribution Function
CBRDF), which is the basic quantity that completely characterizes the
scattering propertiee of a surface (see Appendix B), will therefore
degenerate inte a siﬁgle two-dimeneional spread function. This is a
rather significant development which has brofound implications regard-
ing the quantity of data required to compiefely characterize a scatter-
ing surface. However, it remains to be experimentally verified that

scattering surfaces of practical interest obey these predictions.

. The Inverse Scattering Problem

The probleﬁ of determining surface chaiacteristics from scat-
tered light measurements.is frequently referred to as the inverse
scattering problem. A general treatment of electromagnetic inverse
scattering has been discussed by Bojarski (1971). Several attempts
have ‘been made (Daniels, 1961; Fung and Moore, 1964; and Berrick,
1965) to determine properties of the lunar surface by applying
inverse scattering techniQues to radar returns from the moon. Bennett
and. Bennett (1967) were able to.obtain the rms roughness and autocovar-
iance length of the surface structure of mirrors by assuming a Gaussian
shape for both the‘serface height distribution function and the surface

autocovariance function. More recently Scheele (1973) met with little



success in attempfing to ascertain under what conditions the exact
autocovariance function can be obtained from scattered light data.
The treatment presented in this chapter describes surface
sqatter»phenomena as a linear, shift-invafiant procesé which is
completely characterized by the effective transfer function of the

scattering surface. Furthermore, for a large class of well-behaved
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surfaces this transfer function is described only in terms of the rms

surface roughness and the surface autocovariance function and hence
provides an elegant solution to the inverse scattering problem.

-The surface‘autocovariahce function is thus obtained from -

scattered light data by rewriting Eq. (52) as

' Cle,y) = (4%)2 W <%(% > %)) + op%]

where

e, 9 - s fden})

x/ X

NP

The rms surface roughness is given by
a1
%y T 4 VM 13

y/x .

(58)

(59)

(60)

where B (the total integrated scatter expressed as a fraction of the

total reflected light) is obtained by applying numerical integratibn

techniques upon the measured data describing the scattered light dis-

tribution. Note that although we are limited by a scalar theory, we
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“have made no explicit approximations regarding the size of the surface
variations. If we make a‘smooth.surface apprbximation (GW<<A), theﬁ
the total iﬁtegrated scatter is small (B<<1l) and we obtain the usual

expression for the rms surface roughness

I ' (61)

Wévelength Dependence of the Scattering Function

A successful theoretical model of Surface.scatter phenomena
must provide a method of determining the wavelength dependence of the
scattered light characteristics. This would allow one’tovinfer the
scattering behavior of a surface for any desired wavelength from a
limited aﬁount'of data obtained at a given wavelength. Since the scat-
tering mechanism is a diffraction process, ‘it is clear ﬁhat light of a
‘particular anelength scattered .in a given direction corresponds to
surféce structure of a given spatial freqﬁency. This spatiél frequency
component of the surface structure will scatter light of some other
wavelength into a différént direction. An analytical expressioﬁ de-
scribing the wavelength dependence of the scattering funétion must
,theréfore involve a change in the scatter angle with wavelength as
:well as the expected change-in-scattered intensity. Thus, if we
wish to determine how the relative intensity at a fixed scatter angle
véries with wavelength, the surface characteristics corresponding to
the appropriate spatial frequency components éf the surface structure

must be known for each wavelength of interest.
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The above discuésion perhapsnexplains the failure of various
éxperimental invéstigatorsrto agree in their attempts to establish the
wavelength scaling behavior from empirical observations of scattered
light data.- Shack and DeBell (1974) made scattered light measurements
on mirror'surfaées at two visible wavelengths. Their data indicated
a 1/22 wavelength scaling law.v Leinexrt énd Klupelberg (1974) also made
mirror scatter measurements at two wavelengths in the visible. They
vfound a 1/) wavelength dependence. Perkin-Elmer (1975) mirror scatfer
measurements were made at a visible wavelength and at A=10um. This
data showed a I/A% wavelength scaling behavior.

The transfer function characterization of scattered surfaces
developed in the previous section offers a simple means of determining
this wavelength dependence. Once the surface characteristics are known
[whether from direct measurement or calculated from scattered light data
by means of Eq. (58) and Eq. (60)], the same theory provides an équally
simple method of predicting the scattering function at any desired wave-
length.

Since this technique involves numerical computatibns on sampled
_data; an analytical ekpression for the wavelength séaling law is not
required. Howevei; in order to gain more insight into the nature of
surface scatter phenomena; we will proceed to derive the wavelength
scaling law for the s?ecial case of a normally incident beam upon a
smooth surface (cw{sx). Under.this con&ition the surface transfer func-

tion.expressed in terms of real pupil coordinates x and y is given by
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Ho(w,y) = A + BQ(x,y) . (62)
where
’ /4T o \2 »
A4 = 1-<'X'W> | (63)
’ 41 o, \2 |
B = < . W) (64)
and ' |
- Cylmy) |
Qlz,y) = —“5;7“* . (65)

From Eq. (57), we see that the scattering function for a particular

wavelength is given by

seen = (3) s o0e). (66)

Applying the similarity theorem of Fourier transform theory we obtain

a1, ‘
s@50 = () 285 1) (67)
where
@ (0,8) = FCE,)) . (68)

If we now scale the wavelength by a factor a, we obtain
R _ (41 1 o By _ 1 (a B_>
Sla,B3ar) - = (57) (ar)2 %b<ai" ax) = am NG g (69)
Therefore, the appropriate wavelength scaling law for smooth surfaces
is given by _
) = Lg% B e
S(U.,B,a)t) = E‘T S(-a— s ‘a ,)\). (70)

Note that, in addition to the 1/a" change in magnitude, the width of the

scattering function in direction cosine space is scaled by the factora.



CHAPTER 4
SURFACE SCATTER MEASUREMENTS

Apparatus.

An instrument has been designed and built‘at fhe Optical
Sciences Center foi making scattered light measurements on a hemisphere
"as described in the previous chapter. A schematic diagram of this
apparatus is shown in‘Fig. 4.1. The incident light passes through-a
chopper so that synchronous detection with a PAR lock-in amplifier éan
be made. The mechanical apparatus shown in Fig. 4.2 is loéated in a
small photometric-darkroom in which the experiment is conducted. A
movable arm with- folding mirrors can be positionéd to direct the inci-
dent beam onto the sample at any desired angle. A'lens positioned on
this arm focuses the incideﬁt radiation onto the hemisphere mapped out
by the detector; hence, the geometrical configuration is consistent
with that illustrated in Fig. 3.4 of the previous chapter. Two sepa-
rate driving mechanismé allow us to measure the scattered light distri-

bution over the entire hemisphere bounded by the plane of the sample.

The Light Source
The light source employed is a Spectra-Physics Model 165 Argon
Ion Laser. The laser is operated with a light-regulated, single-

frequency output which assures intensity regulation to within

55
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Fig. 4.1. Schematic Diagram of Scatter Measurement Apparatus.



Fig. 4.2.
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Apparatus for Measuring Scattered Light Distribution from
Optical Surfaces.

(1) Precision rotary table, (2) worm gear drive for arm
supporting detector, (3) photomultiplier tube and fiber-
optic probe, (4) sample holder, (5) movable arm with fold-
ing mirrors and lens for directing and focusing incident
beam, (6) P.A.R. lock-in amplifier, (7) high voltage power
supply for PMT,
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one percent. The measurements were made with approximately 20 mw of
power in the incident beam at wavelengths of 0.5145 um and 0.4579 um.
An He-Ne laser was also available for making measurements at a wave-

length of 0.6328 um.

The Detector Unit

The detector is a Phillips one-inch, end-on photomultiplier
_tube (PMT) having an $-20 photocathode. Light reaches the photomulfi—,
plier'by way of a rigid fiber-optic probe. Such a probe offers several
‘distinct a&vantagesvin light sa@pling. :In_gddition_to allowing
increased angﬁlar resolution throughout the sampling space, and.
enabling us tb sample withiﬁ‘one,degree of the incident or specu-
.lariy reflected beams, it prdvides the ability to control the field
of view of the detector for the purpose of stray light rejection.
o The originél_cqnfiguration consisted of a rigid fiber-optic
bundle bent_such that'one éndeaé pointed toward the illuminated
spof on the sample. This end of the bundle thus acted as the col-
lecting aperture for the detection system. The otﬁer end of the
fiber-optic bundlelprotruded into the photomultiplier tube housing
followed by a series of baffles to limit:the field of view of the
detector as shown -in Fig. 4.3(a). This regultéd in a detector
fesponse which had a Gaussian dependence upon field angle.

However, by infroducing a small collecting lens and a field
stop in front of the fiber-optic bundle as shown in Fig. 4.3(b), the

baffles can be elimindted and a well-defined field of view of any

desired size can be obtained by properly choosing the size of the



519

Fiber-Optic
Probe

(a)

e 'r:' =

Baffles

I I-.—— Detector

Field
Stop
Lens ~\\‘\
~=—— Fiber-Optic
Probe
(b) “1 ;i 1

: —
I I-— Detector

Fig. 4.3. Illustration of Detector Probe Unit.

(a) Previous Configuration,
(b) New Configuration.
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field stop. This is more clearly illustrated in Fig. 4.4. A coated
doublet with a 10-mm focal length was edged down and mounted in a
black anodized brass tube 3-mm in diameter. A field stop allowing
a 5-degree field of view was fabricated and inserted into the tube
at the'rear focal plane of the lens. This assembly was then posi-
‘tioned onto the end of the fiber-optic bundle. The detector.response
from a small (point source) light source was then recorded as a
function of field angle for both detector probe configurations.

The results are displayed for comparison in Fig. 4.5. Both the flat
reéponse and the sharp cutoff obtained with the modified unit are
highly'desirabie features. The flat response promises to eliminate
signal variations due to slight misalignment or wobble in the mechani-
cal instrument while scanning over the hemisphere. The ability !

to keep the field of view small with a very sharp cutoff is essential
for stray light rejecfion.

The scattered light flux from a polished surface varies by
several orderé‘of mdgnitude.over'the éngular range to be measured.
Hence the linearity of the PMT was measured using a calibrated neu-
tral density wedge and several known néutral density filters to &ary'
the incident flux. Thé resulting 1inéarity curve is shown in Fig.
4.6 and indicates a deviation of less than 1% over a range of five

orders of magnitude of the incident flux.
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Fig. 4.4. Detailed Illustration of New Fiber-Optic Probe.
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Fig. 4.5. Detector Response as a Function of Field Angle for Detector

Configurations Shown in Fig. 4.3.

(a) Detector configuration shown in Fig. 4.3(a).
(b) Detector configuration shown in Fig. 4.3(b).
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The Scanning Mechanism

The mechanical apparatus for measuring the angular distribu-
tion of light scattered from optical surfaces was shown in Fig. 4.2.
The detector probe unit is mounted on a rigid arm that can be rotated
in either of two orfhogoﬁal directions. Rotatioﬁ about a vertical
axié‘is accomplished by means of a massive precision rotary table.
The rigid arm is attached to the rotary table by means of a wofm gear
arrangement that allows rotation about the horizontal axis. These
two separate driving mechanismé allow us to measure the scattered
light distribution over the entire hemisphere bounded by the plane of
the sample. However, in order to limit the quantity of data to be
collected, the scattered radiation field is'sampled in two principal
directions. These include the entire plane of incidence and a plane
perpendicular to both fhe‘piane of incidence and the plane of the
sample which also.passés through the intersection of the specular beam
with the observation hemisphere (see Fig. 4.7). This particular sam=
pling procedure was chosen because each Sampling-direction then involves
one fixed'coordinate in direction cosine space; F;rther$oré; the
apparatus was designed such that each of the two independent drive
mechanisms corresponds directly to a given coordinate in direction
cosine space. Hence for a given observation point determined by the
angles 6 and ¢ displayed on the apparatus, the corresponding coordinates

in direction cosine space are given by

Q
I}

cosf sing

™
i

sing. | (71)
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The Incident Beamk

A iarge movable arm with appfopriate folding mirrors is used
;to direct -the incident béam onto the sample at any desired angle of
incidence; The origiﬁal configurationiincluded a single lens posi-
tioned_on'thig arm to focus the incident radiation onto the hemisphere
mapped out by the detector as shown in Fig. . 4.8. This configuration |
allowed s;attefed light from the folding mirror M3 to reach the observa-
tion'hémispheré after‘beingVréflectedffrom.the'test'samplé;' The scat-
tered'light:lévél’fiom;MSiOften'e&éeeded‘that'from.the’test'sample;
thuS'renderiﬁg the'Scatterédilight”data at small observation angles -
completely useless: (Shack andaDeBell,71974).

An improvéd coﬁﬁiguration is shown in Fig.-4.9. Immediately
following the last folding mirfor the beam is focused onto.a pinhole"
which acts as a spatial fiiter.‘ This spatial filter assemb1y e1imi<
nates from the beam incident upon the sample any light scattered from
- the folding Mirrors .as wéll és' any.diffraction effects from the chopper
blade.” Lens L2 then forms an image of the pinhole upon the hemisphere
mapped out by ‘the collécting aperture of fhe>scanning fiber-optic
probe. The dramatic improvement obtained with this configuration is -
illustrated by comparing Fig. 4.10(a) with Fig. 4.10(5). These photo-
graphs were obtained by placing a piece of photographic film in the
observation space at position B in Eig.l4.9 along with a small obstruc-
tion to block the specular beam. The six bright spots in Fig. 4.10(b)
were the weld marks on the back side of the pinhole which were illumi-
nated by thé light feflected from L2 then imaged by L2 onto the observa-

tion space.
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Fig. 4.8. Original Configuration of Beam-forming Optics.
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Improved Configuration of Beam-forming Optics.
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The acquisition of a p%nhole in a black substfate with no visi-
ble weld joints resulted in the phofograph displayed in Fig. 4.10(c).
Based upon measurements made with the-insfrument with no sample in
place, the stray light in the observation space has fhus been reduced
by almost two orders of magnitude.

The aberrations éssociated with the scattered light distribu-
tion on the observation hemisphere were considered in determining the
- geometrical parameters of the inciaent beam and the detector scanning
mechanism. The aberration coefficieﬂts presented in the last column of
Table 2.1 yield the following values for coma and astigmatism at the
edge of the field (6 = 90°) when a spot 4 mm in diameter is illuminated

on the sample and the observation distance is 250'mm,

0.128

Wi31
ﬁ]zzz = 16. : . (72)
Although a substantial amount of astigmatism exists at the edge of the
field, our tolerance is quite loose as we have a 3 mm diameter collec-

ting aperture on the fiber-optic probe.

Experimental Procedures

The goal of the research reported here was to examine the
scattering properties of samples whose surface characteristics span

those typically produced with optical fabrication techniques.
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Sample Preparaﬁion
| Surface preparation techniques used to produce a set of samples
are outlined in Table 4.1. All samples were finished to be nominally
flat.
| The'prepared samples were cleaned prior to coating with alumi-
Vnum. vCleaning consisted of careful washing with Liquinox, a mild
detergent, under very warm, filtered tap water. Samples were then
mounted in a sample holder while held in distilled water. Once in a
holder, samples were moved to an ultrasonic cleaner filled with dis-
tilled water for rinsing. Once rinsed the samples were set to dry in a
‘dust-free ‘atmosphere. Dry samples were removed frqm the sample holdérs
and placed -in individual boxes and supported by the edge of théir back-
side. Mott (1971) used a similar cleaning techniqué; Which he
describes more completely.

Cleaned dry samples were thenrplaced in a high vacuum chamber
and coated to near opacity with pure aluminum. The coéting technique
varied from standard procedures only in that excessive care was taken
to allow the chamber to reach a pressure below 2 x 1078 torr prior to
‘ coéting. The samples were allowed to cool to room temperature prior to
removal from -the chamber. Each coating rﬁn containedAten differentv
samples. Once coated, samples were returned to their individual storage
boxes.- After all samples wefe coated, the best samples of each type
were selected for measuremenf. This selection was made on the basis of
individual inspection of each sample while held uﬁder a microscope
illuminétor in an otherwise dark Toom. Samples fhat héd coating non-

uniformities, sleeks or pinholes were rejected as were those with
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Table 4.1. Surface Preparation Techniques.

Substrate ‘ ' Polishingm Force Applied

No. of Substrate Set # Material Lap Méferial : Polishing Medium Time Kg/cm
151-153-154-166-165-164-163  1-2 Quartz Optical Pitch -~ CeO* (milled 2000 hr.) . 8 hr. 0.2
151-153-154-166-165-164-163  1-2 ° Quartz .Optical Pitch Distilled H20 w/same lap 8 hr. 0.2
163-164-165-166 : 2 Quartz Optical Pitch Distilled Hy0 w/same lap - 12 hr. 0.2
167-168-170-172-174-175-176 4-5 Quartz Cast Iron A12°3 {2-ym diam.) 20 min. 0.15
172-174-175-176 5 Quartz Plate Glass A12°3 (1-ym diam.) . 1 hr, ©0.12
219-213-203-200-198-196~194  6-7 Quartz °~ Cast Iron ‘ A12°3 (SO-um diam.) 20 min. . : 0.15
200-198-196-194 , 7 - Quartz Optical Pitch Ce0 (milled 500 hr.) 4 hr. 0.12
192-190-188-186-184-180-178  3-10 . Quartz Optical Pitch CeO (milled 500 hr.) 4 4 hr. 0.12
186-184-180-178 ’ , 10 Quartz Optical Pitch  A15°3 (2-ym diam.) 1 min. 0.12
10-8-7-6-5-3-2 8-9 EDF 3 Optical Pitch CeO (milled 500 hr.) 4 hr. 0,12

6-5-3-2 : 9 EDF 3 Optical Pitch CeO (milled 2000 hr.) ' 4 hr. 0.12

- 6-5-3-2 9 EDF 3 Optical Pitch Distilled Hy0 S 8 hr. 0.12

*Closed circulation system.

ZL



73
waferspots, large scratches, or.otherwiée qﬁestionablé appearance. -
Prior to-each set of scatter measurements, samples were again individu-
'é@ly inspected for flaws. Dust was>removed using a commercially avail-
able pressurized air can. After each sample wasrmeasured for scatter,

.it was returned to its individual box.

‘System Alignment

Before any meaningful scatter measurements could be made it was
'ﬁécessary té éyétematically align.the entire system.

The incident laser beam was first adjusted to lie in a horizon-
fal plane. Then the mechanical apparatus was positioned such'that the
axis of‘rotationiof the movable arm supporting the folding mirrors (see
‘Fig. 4.9) was colinear with the incident béam. This was accomplished
by means of four massive leveling screws at the bése of the stand sup-
.porting the entire apparatus.

With mirror Ml removed the laser beam passed through the small
hole in the center of the bearings upon which the movable arm rotates.
This assured thét the incident beam was indeed colinear with the axis
of rotafion and furthermore allowed the sample holder, which was
mounted oﬁ a shaft passing through the axis of.the precision rotary
" table, to be accurately positioned with the center of the scattering
surface lying at the intersection of these two perpendicular axes. The
precision rotary table was then positioned such that the beam was
accurately centered on the detector at positién A, then rotated pre-

cisely 90°, leaving the detector at position B.
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Mirror Ml was then put into place and adjusted until the laser
beam was centered upon mirror M2. Similarly, M2 was adjusted until the
beam was centered upon M3,

With the lenses L1 and L2 and the pinhole P removed from the
system, mirror M3 and .mirror M2 were systematically adjusted until the
beam was centered upon both the sambie holder and the detector at
position B. |

The incident beam was thus--accurately positioned perﬁendicular
to the axis of rotation of the movable -arm. A polished sample was then
placed in. the holder and adjusted until the specularly—refleéted beam
reﬁurned precisely along the incident beam. The sample holder was thus
accurately positioned perpendicular to the incident beam and iockéd
into this position...

Lenses L1 and L2 were then placed.in the beam and properly cen-
tered. And finally, the pinhole P was accurately positioned at the
baék focal position of lens LI1.

| With the system properly aligned, the movable arm could be
rotated to direct the incident beam at any desired angle without
requiring other adjustments to keep the beam centered upon the sample.

An additional requirement was that the PMI with its associated
' fiber—optic probe be positioned and aligned such that the field of view
of the PMT remain accurately'centeféd on the illuminated portion of the
sample throughout the entire range of its scanning motion. Provisions
were therefore made to ailow three degrees of freedom (one translation

and two rotation) in adjusting the position and orientation of the PMT
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housing. Removing the PMT from its housing and illuminating the fiber-
optic prébe from the back side greatly.facilitated this alignment pro;
‘cedure as it allowed one to directly observe the field of view on the

sample holder while making the necessary adjustments.

Measurement Technique

The sample to be measured was placed in the holder ahd the mov-
able arm positioned to achieve the desired angle of incidence. A cali-
brated attenuator was then placed in the incident beam and the detector
centered on therspecularly-réflected beam. The collecting aperture of
the fiber—optic probe was 1argé enough to collect the entire specular
beam; hence, the butput signal; Vo, of the fMT-inrthis position Was
~proportional to the total flux in the specular beam;

The detector was then moved a known ‘angular distance (approxi-
mately one degree) from the specular beam and the attenuator femoved.
A profile of the scattered iight distribution was then measured by
scénning the observation hemisphere with the fiber-optic probe.
Approximatély 30 separate readings were taken at different angular
?ositions between the specular beam and the plane of the sample. These
readings constitute the raw data.

The sample Was then removed and the incident beam.allowed to
.pass unobstruéted through the sample holder and into a black absorbing
Réyleigh horn. Background measurements were thén made aiong the Same
profile as above and subtracted from the raw data. These background

measurements were found to be completely negligible in most instances.
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The data now represents the spread function of the scattering

syStém, which is made up of the spread function of the scattering
‘suiface confolved with the spread function of'the optical system pro-
‘Hucing the incident beam. These are shown in Fig. 4.11.

| The spread functién of the incident beam is then measured by
again placing the calibrated.atteﬁuator in the incidenf bean and cen-
tering the detector oﬁ the direct beam passing through the empty sample
'holder. Since the collecting aperture of the fiber-optic probe is.
large enough to collect the entire incident beam, the:output signal,
'Vé, of the PMT in this position’is proportional to the total flu& in
the incident beam. The detector is then moved a known angular dis-
tance (approximately one degree) from the direct beam-and the atten-
uator removed. A profile of fhe incident Beam is then measured. These
readings rapidly diminish to zero within five degrees of the peak Value!

Since the spread funétion of the incident beam [Fig. 4.11(a)] is

narrow compared to the scattering function of the surface [Fig. 4.11(b)],
the scattered portion of éhe surface spread function is virtually un-
changed by the convolution opération wﬁile the delta function component
_mérely replicates the beam spread function. The desired scattering

function can thus be obtained by subtracting the beam spread function

readings from the raw data.

It is éustomary,to present scattered light data from diffusely
reflecting surfaces in a polar format. Three experimental curves and

one ideal reference curve are illustrated in Fig. 4.12. Note that we
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Fig. 4.11. Illustration of Components Comprising
System Spread Function.

(a) Spread Function of Incident Beam.
(b} Spread Function of Scattering Surface.
(c) Spread Function of Scattering System.



Scattering Angle




79
have plotted the quantity V—ZEK along the radial coordinates where
Aw 1s the solid angle subtenZed by the fiber-optic probe. Since V is
proportional to the power collected by the fiber-optic probe and Vb
is proportional to the total power in the incident beam, this quantity
is the relative intensity of the scattered light distribution (i.e.,
scattered intensity normalized by the incident power). For smooth
mirror surfaces this same quantity is usually plotted in a cartesian
format as a function of the scattering angle as shown in Fig. 4.13.

Dividing this data by the cosine of the scattering angle

(y = cos6), we obtain

14 P/ (AyAw) Ly
— = L - (73)
VOAmY PO/A E;

where 4 is the illuminated area on the sample. This quantity is

equivalent to the reflected radiance in the sampled direction divided

by the incident irradiance, which is precisely the manner in which the
BRDF is defined. The resulting scattering curve, exhibited in Fig.
4.14, is therefore a one-dimensional profile of the four-dimensional

BRDF. Also, in accordance with our theory we are plotting this function

versus the quantity B—BO, which is the distance of the observation

peint from the specular beam in direction cosine space.

It can be readily shown that the BRDF is merely an infinite
family of two-dimensional spread functions which are scaled by the

total reflectance of the surface,
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BRDF = z R8(a,B). A (74)
AL

Since we measure only the scattered component of the spread function
(See Eq. 57) and are primarily comncerned with the scatﬁered light
behavior rather than the total reflectance, the scattering function

can be written as

S(a,8) = ety . (75)

All measurements are thus normalized by the reflectance of the surface
so it does not appear to have better scattering characterisfics due to
its lower reflectance.

The MgO surface, which is a fairly good diffuse reflectance
standard, yields a straight horizontal line as a Lambertian reflector

should. Since the radiance of a Lambertian source is given by

L =

3[R

(76)

where M is the total emittance into a hemisphere, the value of the
MgO scattering function can be shown to be %—. A Lambertian surface
of known refléctance, Ry, thus makes a convenient reference sample
and the scattering function of a test sample of reflectance, R, is
given by

v(a,B8) Ry

S(OL,B) =
R VL Y

(77)

where Vy is tne PMT voltage signal from the Lambertian reference sur-

face at a=p=0. A freshly coated MgO sample with a total . -
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hemispherical reflecténce RLV= 0.98 was routinely used as a reference
sample for the remaindef of the measurements. Unless stated btherWiée;
the'scattering.function.of Eq. (77) will be used for presenting the
data in this disseftation. Furthermore, in accordance with the theory
H-présénted in Chapter 2, this scattering function will be plotted as a.
function of distance from the specular beam in direction cosine space
(B-8,) as shown in Fig. 4.15. Note that by plotting both ordinate énd
abscissa on a log scale the scattering function for the polished sample

takes the form of a straight line.
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CHAPTER 5
.~~~ DATA AND RESULTS"

The angular distribution of scattered light measured from a
variety of surfaces, angles of incidence, and wavelengths are reported
in this chapter. ' The results.obtained are then compared with theoreti-

cal predictionms.

Surface_Roughness Effects

The'écéffered-light-profile for a normally incident beam on a
variety of samples with a wide range of rms surface roughnéss values
are exhibited in Fig. 5.1. Note that the polished samples are charac-
terized by a straight liﬁe curve with a slope between ;3/2 and‘-Z. ‘The
ground glass samples yield curves which’are flat forra'substantial
angular range before falling off rapidly at the larger angles. We
were unable to produce samples that satisfactofily bridged the obfioué
gap in the:data betweeﬁ the grqund and polished sémples. A separate
study of thgkgrinding and polishing process on fused silica‘(Shevlin,
1974) utilizing electron micfoscopic examination of the surface also
iﬁdicates a very rapid change in the surface chara;ter between the fine
" grind and the.polishing operation. This is dramaticaily iliustrated in

Fig. 5.2.

85
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Fig. 5.2. Electron Micrographic Display Illustrating the Surface Structure of Fused
Silica at Various Stages of the Grinding and Polishing Process.
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it-is also inétructive to compare the scatteiing curves
resulfing from speciai materials or‘unusual fabrication techniques with
those. of more conventional optical surfaces. For example, the results
6f.scattering measurements-on a polished beryllium sample and an
ionically-polished fused quartz sample are shown iﬁ Fig. 5;3 along with

'some curves from conventional optical surfaces.

Incident Angle Effects

Rather extensive scatter measurements have been made on two
'representative surfaces. 'One is a ground glass sﬁrface (Sample #172)
whi;h is a very diffuse reflector. The other is an 6ptically—p01ished
surface (Sample #200) which is a nice specular reflector. Both samples
were coated with aluminum prior té making the measurements. Four
separate scattéring profiles from the specular beam to the plane of the
saﬁple (see Fig. 4.7) were measured at several angles of incidence.

' The backscattering profile of the séattered light distribution
for these two samples is shown in Fig. 5.4 for several different angles
of incidence. . For the polished sample, the various- curves coincide
almost perfectly for angles of incidence between zero and 60°. Hence,
if is .apparent tﬁat the scattering_function does not appreciably change
with the angle of incidence. The corresponding curves for the roﬁgh
sémple coincide for a substantial range of angles then begin to depart
somewhat at the large angles.

The four separate profiles of the scattered light distribution

from the same two samples with the incident beam at 45° are shown in
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Fig. 5.5. Again the curves for the polished sample céincide almost
perfectly, suggesting a rotationally-symmétric distribution in direc-
tion cosine space. Some asymmetfy is néﬁed in the séattered light
‘distribution from the rouéh sample. |

The data on Figé; 5.4 and 5.5 confirm that for a certain class
of surfaces (in which optically-polished glass is definitely a member,
and ground glass can perhaps be included to a lesser extent), the scat-

tering properties are indeed shift invariant as predicted by the theory

presented in Chapter 3, and can be completely characterized Pz_ggsingle

set of measurements at a fixed angle of incidence!

Figure 5.6 dramatically illustrates the importancé of the-
coordinate system within which the écattering process 1is discussed.
The curves_ih Fig. 5.6(a) cdrrespond»to the scattered light distribution
'_illustrated in Fig. 3.4 and confirms fhe well-known fact that a curve
vrepresentihg the scattered intensity as a function-of observation angle
will change shape drastically with angle of incidence--becoming quite
_ skewed and asymmetrical at large angles of incidence. However, these
saﬁe data, when plotted in accordance with our theory, describes a new
scaftering function which does not change shape but will merely be
shifted in direction cosine space with changes in angle of incidence as
shown in Fig. 5.6(b).  This is a rather significant development which
greatly redﬁces the quantity of data required to completely character-

ize the scattering properties of a surface.
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The Inverse Scattering Problem

The problem of determining surface characteristics from scat-
tered light measurements. plays an iﬁportaﬁt‘role in many areas of
technical interest. Recall that the surfate‘autocovariance function
and the rms surface roughness are two relevant surface characteristics’
which are related to tﬂe-scattering properties of the surface by the

transfer function described in Chapter 3.

Predictions of Surface Characteristics
A computer program has been written (see Appendix C) for cal-

culating the effective transfer function and the surface aufocovariance
fuﬁction from scéttered light data. The measured data are assuméd to
, be a radial profile, S(p), of a rotationally-SymmetricAscattering,func—
tion. An intermédiate quantity, BQ(8), is first determined by calcula-
ting.the fwo-dimenéional Fourigr-Bessel Transform of this scattering
function. The surface transfer function is then calculated from
Eq.b(SS), where 4 = 1-B. And finally, the surface autocovariance func-
tion is computed from Eq. (58). Representative curves for a diffusely

reflecting ground glass surface and a specularly reflecting polished
gléss surface are shown in Fig. 5.7 and Fig. 5.8. Note that the total

integrated scatter, B, and the rms surface roughness, oy, are also pro-
vided from these curves. Figures 5.9 through 5.13 illustrate thé pre-
dicted surface characteristics from other samples which we wish to

compare with independent measurements.



.
RN
T

£
T

.0 . : : .
0.6 0.8

1.0

oSurface Transfer Function--¥R(3)

for Sample #172 (

l‘p

9.

A

.003

95

1)

00

. 004}

.002¢

.001}

0.0

--cp}’- = 0.00348 um?2

0.5

1500 18 « 250 2.8

Computer Output from Inverse Scattering Program
0.5145 um).



96

0.25¢ Scattering Function--S(p) 0.0025f Fourier-Bessel Transform--BQ(3)
----- B = 0.00212

0.20 0.0020\
0.15 0.0015}
0.10 0.0010 }
0.05 0.0005 }
0.0 130 0.0 ' A 2 s " n >§

0 .8 2 4 6 8 10 12

5 Surface Transfer Function-- p(5) 0.5 Surface Autocovariance Function--Cy(s)
0.8 0.4}

-===gf = 0,357 x 105
0.6 D
0.998
0.4 0.
0.2 0.
0.0 > 3 A A S
12 5 6

Fig. 5.8.

Computer Output from Inverse Scattering Program
for Sample #184 (X =

0.5145).



Surface Autocovariance Function (x 107® um?)

r
----- 02 = 3.29 x 10" um?
W
-
» » - N 2 2 2 Il 2 2 .l A 'Y *,,x
R T2 T s 5 o 6 s LRGN 108 L2 WS
(um)
Fig. 5.9. Surface Autocovariance Function for Sample #198

Predicted from Scattered Light Measurements at
A = 0.5145 um.

97



Surface Autocovariance Function (x 10~° um2)

20r

lep

----02 = 1.23 x 10”5 um
W

0 i) I i . * }x
1 2 3 4 5
(um)

Fig. 5.10. Surface Autocovariance Function for Sample
#186 Predicted from Scattered Light
Measurements at A = 0.5145 um.

98



Surface Autocovariance Function (x 107 pm?)

2.0

1.6

192

0.8

0.4

----- g2 = 1.16 x 10°% um?
\ W

A ' 2 ’ X
1 2 3 4 5

(um)
Fig. 5.11. Surface Autocovariance Function for Sample

#163 Predicted from Scattered Light
Measurements at A = 0.5145 um.

99



Surface Autocovariance Function (x 107® um?)

Bc

2%

e

L

0.

5

0

5

2.0 2.4 2.8 3.2 3.6 4.0

Surface Autocovariance Function for

"\----0.2 = 2.44 x 1075 um2
W
Bl 048 o, 2h %6
(um)
Fig. 5.12.

Sample INWC Predicted from Scattered

Light Measurements at X

0.5145 um.

100



Surface Autocovariance Function (x 10°° pm?)

20
[
———eg. 2 = -6 2
O il 79 il um
1.6
1 27l
0.8pF
0.4 4
O L] . - » 2
0.4 0.81.21.6 2.02.4 2.8 3.2 3.6 4.0
(um)
Fig. 5.13. Surface Autocovariance Function for

Sample 2NWC Predicted by Scattered

Light Measurements at )

0.5145 um.

101



- 102

.Surface Structure Measurements

Three traditional teéhniques for obtaining surface structure
information involve profilometry, eleétroémicroscopy, and FECO inter-
ferometry. Most profilometers provide tbo-coarse a measurement for
optical surfaces. As illustrated in Fig. 5.2 the electron microscope
works nicely on the rough ground glasé surfaces but fails to yield
sufficient information about thé smooth polished surfaces. The FECQ
‘interfe¥ometer works well on smooth surfaces with a strong specular‘
~ beam but does not yield good results for the rough diffusely reflecfing
surfaces since it requires multiple reflections. The latter two com-
plementary techniques were fhus utilized in our research effort.

Surface profiles of rough samplés can be detefmined from
electron—micrograph stereo pairs using conventional stereo-
photogrammetric techniques (Moffitt, 1959). Nankivell (1963)7discusses
some of the stefeo—photogrammetric problemé unique to electron micro-
scope applications. Electron-micrograph stereo pairs were produced
with both a conventional transmission electron microscope and a
scanning electron microscope at a variety of tilt angles and magnifica-
tions for several surfaces with known characteristicsi"Considerable
‘preliminary experimentation with stereo-photogrammetric techniques was
tﬁen performed with. a variety of stereoscope-parallax bar configurations.

A typical electron-micrograph stereo pair is shown in Fig. 5.14
with a line scribed to indicate the position of a set of preliminary
surface height measurements that were méde with a standard Fairchild

‘Stereocomparagraph. This instrument consists of a mirror stereoscope
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fitted with'a-paraliax bar containing a micromefer for measuringjthé
‘parallax of eaéh desired pair of points. The resulting surface profile
is also shown in Fig. 5.14. This surface is a very rough ground glass
produced with_SO um grit.:_The tedious procedure of obtaining surface
profiles iﬁ this ﬁanner becomes increasingly more difficult as the
surface becomes smoother. |

The two statistical parameters which determine the scattered
light characteristics are the variance of the surface height distribu-
tion and the éurface autocorrelatiénrfunction. A computer program (see
Appendix D) was written which takes the surface profile data and
determines the above two parameters. An electron micrograph showing
the surface of Sample #172 magnified 10,000 times is illustrated in
Fig. 5.15 élong with the sﬁrface profile, surface height distribution
‘function, and the surface autocovariance function. One hundred-twenty
data points were used for obtaining these surface parameters. Addi-
‘tional data was recorded to determine the degree to which the surface
was homogeneous and isotropic.

- Surface profiles of several smooth samples were measured by
Dr. Jean BenneEt at thé Naval Weapons Center on a scanning FECO inter-
errometer (see Appendix E) capable of determining very small height
differences with a lateral resolﬁtion of 2 ym. This instrument, along
with auxiliary equipment which includes a slow-scan TV éamera, signal
averager, minicomputer, and teletype unit, yields the surface profile,
- rms roughness, surface height distributién function, surface autocovar-

iance function, and other statistical properties of optical surfaces.
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The results of these measurements on Sample #198 are shown in
Bl ©qlE):

The rms surface roughness was also predicted from visual mea-
surements of the FECO fringe widths, as well as from total integrated
scatter measurements performed at the Naval Weapons Center. Additional
scattered light measurements made on a few samples allowed the autoco-
variance length to be calculated when assuming the autocovariance

function to be Gaussian.

Comparison of Predictions with Measurements

Theoretical predictions of surface characteristics for Sample
#172 were shown in Fig. 5.7. Direct comparison with the results of the
surface measurements shown in Fig. 5.15 indicate that the values for
the rms surface roughness differ by approximately a factor of three and
the widths of the autocovariance function (distance to the first zero)
differ by approximately 20 per cent. Under the circumstances involved
this can be considered to be remarkably good agreement since this sur-
face is so rough as to make the theory somewhat suspect and not rough
enough for the electron-micrograph stereo measurements to be considered
reliable.

The predictions of surface characteristics based upon scattered
light measurements from smooth surfaces are tabulated in Table 5.1 along
with the results of independent measurements performed at the Naval
Weapons Center. The rms surface roughness of a few samples was

determined both from total integrated scatter measurements and from
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Table 5.1. Surface Characteristics.

OPTICAL SCIENCES CENTER

NAVAL WEAPONS CENTER

RMS Roughness

Autocovariance Width

Sample = RMS Roughness. Autocovariance Width ' (Scatter) (FECO) (Scatter) .(FECO)
198 18.1 R 0.323 um 20,88  18.6 R 18.4 um
186 35.1 R 0.245 um 42.2 R 15;7 ] 42.2 ym
163 10.8 R 0.227 um 18.5 R 7.4 ] 28.9 m

INWC 15.6 ] 0.287 um 9.7 & 0.233 um
NG 13.4 R >0.2>78 um 10.1 & 0.282 ym
SNWC 14.88 0.288 um 15.8 R 0.384 um
6NWC 15.0 & 0.260 wm 12.9 8 0.287 um

80T
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visual measurement of the FECO fringe'widths.A The wide variation in
'the results of these two techniques for Sample #186 and Sample #163 was
attributed to nonuniform roughness over the'surface‘of the sample. Thé
surface autocovariance width determined from the scanning FECO inter-
ferometer is one to two orders of magnitude larger than that théoreti_
cally predicted from scattered light measurements. This is due to
the poor lateral resolution of the instrument. The surface autocovari-
ance width predictéd from a simple theory which assumes a Gaussiaﬁ
shape for fhe autocovariance function does compare favorably with our
predictions. The autocovariance widths tabulated in Table 5.1 are
arbitrarily chosen to be the half-width of the surface autocovariance

function at 1//3 times its maximum height.

Indirect Verification of Inverse Scattering Solution -

The accurate determination of micro-structure on an optical
- surface has been shown to be extremely difficult: to accomplish by
direct measurement (therein lies the motivation for attempting to solve
the_in&erse scattering problem). However, our theoretical treatment of
the.inverse scattering problem can be tested indirectly by using the
surface characteristics predicted from scaftered light measurements at
a given wavelength fo calculate the scattered light behavior at a dif-
ferent wavelength. This calculated scattering function can then be
readily compared tq'the directly meésured scattering functiqn at that
wavelength. Figure 5.17 provides a direct comparison of the measured
scatfering function from Sample #184 at A = 0.6328 um to that predicted

from surface characteristics determined from scattered light
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Sample #184
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Fig. 5.17.
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Indirect Verification of Inverse Scattering Problem.
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meaéurements at A = 0.4579 um. The remarkable agreement displayed pro-
~vides experimental verification of our theoretical treatment of the

inverse scattering problem, at least for smooth surfaces.

Wavelength Effects

The tfansfer function characterizétién Sfrécafteriné surfaCeg
~developed in Chapter 3 offers a simple means of determining the wave-
length dependence of the scattered light behavior. Once the surface
characteristicé are known (whether from diréctrmeasurement or calcu-
lgted from scattered 1light data), the same theory provides a simple
method of predicting the scattering function at any desired wavelength.
This technique of predicting the scattering behavior as a func-
tion of wavelength has been experimentally verified (see Fig.‘5.17j for
wavelength ranges.limitéd to the visible spectrum. Furthermore, the
same data can be used to verify the wavelength scaling law for smooth .
surfaces stated in Eq.,(70j. This is illustrated in Fig. 5.18.
Siﬁilar1attempfs to'predict fhe scattering properties of a sur-
face at a wa?elength of 10.6 pym from measured data in the visible was
not successful. This failure was due to the greatly expanded angular
width of the scattering function at long wavelengths as described by
the wavelength'scaling law, and is illustrated inAFig; 5.19. Note that
scattered light measurements over angular range from 1° to 46° at a
wavelength of 0.4579 um can be used to predict the scattering behavior
from 1.4° to 90° for a wavelength of 0.6328 um. However, these same
measurements provide only a few data points in.the angular range frpm

1° to 2.5° that are useful in predicting the scattering behavior for a
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Sample #184
90=0
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102
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A = 0.4579 um
2.1} ... -
1074 3 . - i gy o‘x 0.6328 um
0 0.2 0.4 0.6 0.8 1.0

B-Bp

Fig. 5.18. Experimental Verification of Wavelength Scaling Law
for Smooth Surfaces.
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Diagram Illustrating the Effects of the Wavelength Scaling Law.

eIT



114
wavelength of 10.6 um, énd no-information)ié obtained concerning the
'scattered light behavior at angles less than 24°,

It is now clear that it may nét‘be possible to compare the
scattered inteﬁsity of two widely separated wavelengths in a given
direction without extrapolating one curve. However, this behaviér has
the advantage of alioﬁing one to determine the Scattering characteris;
tics at very smali angles {unobtainable by direct measurement due to
mechanical'constrainfs) by making large'angle scatter measurements at a
longer wavelength. The angular range of Validity for predictionsrof
scattered light behavior bésed upon measurements from 1° to 80° at
10.6 um is presented as a function of wavelength in Fig. 5.20. For
example, measurements from 1° to 80° at a wavelength of 10.6 um could
be used to predict the scattering properties of visible light
(A = 0.5 um) in an>angular range from approximately 0.045° to 2.7°. Or
conversely, if one hés the capability of making very small angle mea-
surements in the visible, the wide angle scattering characteristics at

a longer wavelength can be determined.
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CHAPTER 6
CONCLUSION

This study has been a general iﬁvestigation of surface scatter
phenomena dealing with several different aspects of'scattered 1ight
behavior. An elementary theoretical development based upon scalar dif-
fraction theory has been presented. Linear systems theory and modern
Fourier techniques result in a theoretical model of light scattering
éystems which closely parallels the highly successful théory of isd—
planatic imaging systems. An extensive expériﬁental program has
accompanied this theoretical development in an attempt to verify

theoretical predictions.

Summary of Results

“An analytical expression has been obtained for a surface trans-
fer function which relates the surface micro-structure to the scattered

distribution of radiation from that surface. The existence of such a

tranéfef function implies aAshifp-invariant_scattering.functiOn which
does not change shape with the angle of the.incident4beam} This is a
rather significant development which greatly‘réduces the quantity of
data required'to.completely charaéterize the scattering properties of a
surface. For a largé class of well—behéved surfaces this tranéfer
function is described in terms of only the rms surface roughnesé and
~the surface autocovariance function. This transfer function thus
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provides a straightforward solution to the inverse scattering problem
(i.e., detérmining the surface charactefistics from scattered lighf
measuremeﬁts).. Once the surface chéracteristics are known, the same
theory provides an equally simplevmethOd.of predicting the waveléngth
dependence of the scattered iight distribution.

Experimental verification of the shift-invariant scattering
function has been successfully demonstrated for smooth surfaces (GW§<A).
The scattered light measurements fromrggggi (diffusely reflecting) sur-
faces results in a Scattering function which is shift-invariant over
only a small range of aﬁgles and departs significantly from the pre-
dicted behavior at 1afge scattering angles. |

A computer program has been developed that operates upon
scattered light data to yiéid the total integrated scatter, the surface
transfer function, the rms‘surfacebréughness, and the surface auto§o~
variance function. Althdugh accuraté determination of micro-structure
on optical surfaces is ektremely difficult to accomplish by direct
measurement (thus the motivation for attempting to solve the inverse
scattering prbblem), favorable comparisoné of predicted surface charac-
teristics with the corresponding meaSured'quantities'have’been dem§n—
strated for both smooth surfaces and moderately ﬁqugh Surfaces. In
}addition,‘éxperimental verification of the inverse scattering program
was accompiisﬁed indirect1y>by supplying scattered Light data of one
wavelength as input tO'tﬁé inverse scattering program in order to deter-
mine the relevant surfaée characteristics; then this information was

used to predict the scattering function at a different wavelength.
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- Excellent agreement with the measured scattering function at that
wavelength was achieved. |

Since the above technique involves numerical computations on _
sampled data, an analytical expression for a wavelength scaling law is
not required to determine the scattering function at any desired wave-
length. However, in order to géin insight into the wavelehgthrdepen-
dence of surface scatter phenomena, a wavelength scaling law for smooth
surfaces was derived and verified. This scaling law conéists of a
change in the scattering angle as well as a change in the amplitude of
the scattering function with changes in wavelength. It therefore pro-
vides a valuable tool for predicting thé scattering behavior in certain
angular regions’or wavelength ranges where direct measurements are

difficult to obtain. .

Further Theoretical Considerations

No explicit appfoximations concerning the size of the surface
variations were made in the.theoretical development preSented in Chap-
ter 3. However, a simplifying assumption was made regarding the random
component of the pupil function described in Eq. (33). It was assumed
that the phase variations in the disturbance emerging from the scatter-
ing surface were equal to the perturbations introduced onto a normally
incident wavefront. Careful‘examination of‘Fig. 6.1 reveals that the
phase difference introduced by reflection from a rough surface dépends
upon both the angle of incidence and the angle of observation in addi-
tion to the surface height‘at‘the point of reflection. The phase

variations along the scattering surface can thus be expressed as
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Surface
Height

A

Fig. 6.1. Illustration of the Phase Variation
Introduced by Reflection from a
Rough Surface.
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$(2,) = 2m(y+y IWo(2,9)
where (78)

Y = cosé, s coseo.

The effective transfer function of a scattering surface is now

given by the following general expression

[roevgep |1 - EEL
Hy(&,y) = e o (79)
This expression can be interpreted as a two-parameter family of trans-
fer functions, one for every possible angle of incidence and every
possible scattering angle.

This generalization still leaves us with a theoretical model
closely paralleling that of non-isoplanatic imaging systems which can
be characterized by a different transfer function for each off-
axis object point. It therefore seems reasonable that an ''aberration
theory'" of scattering systems can be developed to provide more insight
into the scattering behavior of rough surfaces.

A preliminary empirical search for a new scattering function
of the form (Y+Yo)m)3(a,8) plotted versus the quantity (B-Bo)/(Y+YO)n
resulted in the following interesting dilemma. When m=2 and n=1, the
scattering function for Sample #172 indeed becomes quite shift-invariant
with respect to changes in the incident angle (there is a theoretical
basis for this particular form of the scattering function if some

assumptions are made concerning the shape of the surface autocovariance

function). However, this same scattering function degrades the
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shift-invariance of Sample #200. Clearly a more general theory should

s

also work for the special case of smooth surfaces.

Suggestions for Further Research
 The following suggestions are made forAfurther reseérch in the
area of surface scatter phenomena:

1. Continue the theoretical development on the transfer function
characterization of scattering surfaces. This should inclﬁde an
attempt to solve the inverse scattering problem for rough surfaces
by using the general expression for the transfer function described
by Eq. (79). Empirical curve fitting techniques may be useful in an
attempt to discover new scattering functionsror plotting techniques
which resulf'in'shift~invariant behavior with‘respecf to changes in
the incident'angle. Generalizing the surface scatter theory to a
comélete vector treatment whiie maintaining the transfer function
approach would be a major contribution to the understanding of sur-
face scatter phenomena. |

2. Improve the scattered light measuring capabilities by
obtaining laser sources that span a larger wavelength range. -

3. Automate the scattering apparétus for high-speed acquisi- -
tion and analysis.

4. .Acquireisamples and perform measurements upon selected
moderately rough surfaces (0.1<5<1.0) and compare with theoretical

predictions.



APPENDIX A

CALCULATION OF ABERRATION COEFFICIENTS
FOR DIFFRACTED WAVE FIELDS
For the case of a plane wave incident upon an aperture, the

diffracted wave field on an observation plane is given by Eqs. (16) and

(17), where

Wo= (R-2) + (&'2 + §'9)/2. (A.1)

~

The quantity £ can be written as

b = VEZEIZF (552 + 32
= 2 /1 + [§2+8'2 - 2(2&'+57')]/22, (A.2)
where
82 = 232, g2, 312 = 2, g|2.

A binomial expansion of the above square root results in the following

expression for W

o= 3 [82 + a12]/22

N 2

[8%+814+4 (221 +5f) 1) 242828124382 (22" +5 ') -48 ' 2 (xx ' +yy ') ] /24

!
ooj 2w

+ higher-order terms. (A.3)
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If we assume a rotationally-symmetric diffracting aperture we

can, without loss of generality, choose the observation point on the

y-axis. Let us therefore set £ = 0. We can then let 8 = j and
y' = 8' cos¢, hence
R N Y
W = —2-[y + 8 ]/z
£ %.[g4 + 8'™ + 4528'2 cos2¢ + 2028'2 - 4338 cos¢

- 438'3 cos¢]/3%

+ higher-order terms. (A.4)

If we now substitute

A ]

9 = pymax9 Shera =

2

Ny

into the previous equation, we obtain

Vo= 2524 (3/2)2 42]/52

[NSTRSE

[gmax

]
oof b

[gmax“p“ + /2% a+ + 4gmax2(&/2)2 02&2 cos?g

252 (3/2)2 0242 - 45 3(d/2) 03a cosé

zymax ymax

- 4Qmax3(&/2)3 p&3 cos¢]/z"

+ higher-order terms. (A.5)

Equating coefficients of corresponding terms between this equa-
tion and the wavefront aberration function given by Eq. (24), we obtain

the aberration coefficients tabulated in the first column of Table 2.1.
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If we now have a spherical wave incident upon the aperture, the

quantity ¥ in Eq. (17) is given by

~

Vo= (8-3) - (Bp-2) + (&' + §§')/%, (A.6)

where

b, = VEZ+g2+32 = z/1+82/z0.

A binomial expansion of this quantity results in

2

-2 = 2aU/nT-56E /B .. : (A.7)

oof 2

But these will merely cancel identical terms in the previous expansion
thus resulting in the aberration coefficients presented in column two of

Table 2.1.

For the case of a hemispherical observation space the diffracted
wave field is given by Eqs. (22) and (23). With a plane wave incident

upon the aperture, we have
W = (L-7) + (ax' + BY"). (A.8)

The quantity £ can be written as

£

V(2-2')2 + (Q-g')Z + 32

r V1l + [8'2 - 2%(aR' + BG'))/D2 , 4. 9)

where
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A binomial expansion of the above square root yields

W=

[T

@'/#)2 -

oo}rs>

[§:u & 4?§'2(G§'+BQ') e 4?2(a£.+BQV)2]/?u
+ higher-order terms. (A.10)

If we again assume a rotationally-symmetric diffracting aperture
we can, without loss of generality, choose the observation point on the

fy-axis. Let us therefore set a = 0. We can also let y' = §' cos¢ which

results in

W= g (8'/#)2 - T [8'" - 4788'3 cose + 472828'2 cos2¢]/p
+ higher-order terms. (A.11)
If we now substitute
! . d
= J = E—
B pBmax’ gl avg

into the previous equation, we obtain

d/2)2? &2 -

b
1]
IS¢

[(d/2)"% &% - 4PBpax (4/2)3 Bo3 cosé

oo}

v 4P2g, .2 (d/2)2 8202 cos2¢]/p"
+ higher-order terms. (A.12)
Again equating coefficients of corresponding terms between this

equation and the wavefront aberration function given by Eq. (24), we

obtain the aberration coefficients tabulated in column three of

Table 2.1.
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If we now have a spherical wave illuminating the aperture and a

hemispherical observation space, the quantity W in Eq. (23) is given by

Vo= (@) - Bo-p) + (&' + BF"), (A.13)
where
ZO = BT+ g2+ = »/1+a2/pe.

A binomial expansion of this quantity results in

b -2 = Leumz-Leumte : (A.14)

Once again these terms merely cancel identical terms in the previous
expansion, leaving only coma and astigmatism present in the diffracted

wave field as indicated in the last column of Table 2.1.



APPENDIX B
BIDIRECTIONAL REFLECTANCE DISTRIBUTION FUNCTION

The basic quantity that characterizes (geometrically) the
reflecting properties of a surface element d4 is the bidirectional

reflectance distribution function (BRDF). This quantity

Fp(8s055 8psdp) = dL,(87,07; Opsbps Eg)/dE.(87,07)

dL, (87,873 Opsbps E{)/L,(07,¢1)da, (sr™1)
(B.1)

is defined by Nicodemus (1970), as the reflected radiance

dLp(07,975 Op>dp; E;) of the surface element d4 in the direction (8p,$p)
divided by the incident irradiance dE;(64,¢:) = Li(8%,d£)dQ7 producing
it. The geometry of this situation is illustrated in Fig. B.1, where
the element of projected solid angle is given by dQ = cosédw.

The numerical value of the BRDF for a given pair of incident and
reflected ray directions may vary from zero to infinity. In particular,
consider two ideal cases. The BRDF is a constant for all reflected
directions for a perfectly diffuse (Lambertian) surface; and it becomes
infinite (as a Dirac delta function) for a perfectly specular reflector.
The BRDF, defined above as a ratio of infinitesimals, is an idealized

concept that can never be measured exactly. Real measurements are
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(3]

dw.
i

Fig. B.1., Geometry of Incident and Reflected Elementary Beams
Used to Define the Bidirectional Reflectance Dis-
tribution Function.
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always made over some finite solid angle and wavelength interval and can
therefore yield only average values f; over those parameter intervals.
The BRDF is basic in the sense that all other reflectance or
. scattering functions can be derived from it. For example, Judd (1967)
lists nine different kinds Qf reflectance functions based on the angular
extent of the incident and reflected radiation. All df them can be
derived from the BRDF.
Note that the BRDF is a four-dimensional:quahtity that can be
' thought‘of as anvinfinité'family of two#dimensional light distribution
functions--one for every pbssible angle at which the incident beam can
stfiké the surface element. This involves an overwhelming quantity of
data, especially where high directional fesolution is needed to

describe glints and specularities.



. APPENDIX C
COMPUTER PROGRAM FOR INVERSE SCATTERING PROBLEM

' uThe following is a computer program for calculating the effec-
‘tive trénsfer>function, the rmsfsurface roughness and the surface -
autocovariaﬁce function from scattered light data; Once these surface
characteristics are known, the samé program'can.be used to predict the

scattering properties at a different wavelength.
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C awx
251400
9997

C nax

C wxx

10

n
@

a0

99

C xxaxn

AR
9oy
9eae
9949

. 993
99722
9943
9924

C #xnxn

C #xa

[}

C arx
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PROGRAM sSMAIN(INPUT QUTPHIT, TAPES= INPUT TAPEGZOUTPUT)

INTEGER ROUTE

CoMMON HS(39r), BR{3VA), CSUBN(3AR)Y, H(30n), SCALE, WAVE, RMS§
CoMmaN DS, 1S, IA, ROUTE, SAMPLE

DaTa TYPEY{, TYPE2, TYPE3, ERNRDP/4HSURF, &4HAUTG, aHSCAJ, 4HENDR/
DATA IFLAG//
wﬂﬁﬁﬁi*ﬂk#hﬁtk*k*ﬁﬁv*ﬁ*ﬁ#a*kﬁﬁﬂk*ﬂﬁ**kkﬂ*ﬁﬁut#******#ﬁﬁ#k#ﬁ*#ﬁ*&ﬁﬁ
FORMAT (A4, 12,A4)

FORHAAT(IML A (/) 198 (1AX, 31HERKROR IN PTYPE? 0OF PROGKARM DATA,/7/))
LA AR R RS EEEESEFERREESSEESEEEEEREREEASREEFELETSEEEERELESEEFEEEEEEEE 2831
READ TYPE 0OF DATA USFD

HEAD(5,9241)  SAMPLE, ROUTE, TYPE

IF(TYPEEQ,TYPF1) GO YN 23

IF(TYPE,EQLTYPRR) GO TO 39

IFITYPELEN,TYRPESX) GO TN 4~

IFCTYPE (SGLENDP) GO TU 99

WRTTE (6, 999)) ’

D TD 99

CALL SURF

TFL A=y

CAlL AUTOCIFLAR)

IFLAG=A

Ga TD 18

ALl 3CAT

7Y T 12

CALL EXTT

END

SUARCUTINE SURF

TNMTEGER ROUTF

REAL M, My, A(320), EC(4), F(58)Y, D(3Ga) -

ComMONn BS(368), RAC3G2), CSURW(3AW), H(3@R), SCTALE, WAVE, RMS
COomMmNN DS, NTOT, 14 , ROUTE, SAMPLE

EGUIVALENCE (S,E(1)), (Sl.E(aJ).(SE,E(BJ),(S3.E(4))

DATA ISTAR/{H#/

*t#*ﬁ#*w#***ktﬁ#k*******w*w#*ﬁﬁ*w**ﬁ*#k#ﬁ*w##**ﬁ*ﬁ#*k**ﬁ*ﬁ*ﬁ##**#*
FORMATCFR,2,1X, 13, 1%, F2,1,1%X,E10,4)

FORMATI(FS ﬂplX,FZ 1'1x I3,‘X 12)

FORMAT(26F3,2)

FORMATCIHMY, P2B(/), S2X, 2QHSURFACE PROFILE BATA,//,

: 53X, 19HWITH WAVELENGTH OF ,E10,4,7H MICRON,;//,
52X, PRHGRAPHED WITH A SCALE FACTOR , F3,¢%,//,
5Ax, 1@H3AMPLE NO,., 1X, Ad4)

FUQbATtle.iﬁﬂsuprEF PROFTLE)
FORMAT(/,16%X,4HRMS82,E9,3,6H YMINS,E9, S.bH YMAX=,E9,3,//)
anﬁnTtbx,I3,1ﬂ1A1)

FORMAT( //,6Y%,9HHISTOGRAM)

IR T I EEE L FE- L4 LS EAEELERFLERSIEEEEFEELESFEEEEEEEEEESSEEESEE-ES X2 X 8]
NTNT =} .

08 I8 SAMPLING DISTANCT ON PHOTO IN MM

REAQ(S,9004) DS, IA, SCALE, WAVE '

READ (5,9461) M1, Z, MOEX, NREX

2=72/57,2958

DO 5 I=f1“

ECI) = @,

READ (5,9002) (A(CI),T=1,MDEX)

PARALLAX EQUATION

B=A(1).

CagsMinSIN(CZ)

0O 18 I=1,MDEX
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A(T)=(A([)=B)/C-
10 8=S+A (1) )
C waz DATA CONVERSION FOR SURFACE PROFILE
X=MNEX/?,
Y5 /MDEX
B 22 I=1,MNEX
StES 1+ (I~X)2(A(I)=Y)
82382+ (I=X)xnd,
20 83=53+.(A(1Y=Y)n42,
M=s§1/0G2
BaYmMuX
DO 25 I=1,MDEX
ACTI)=A{I)=(Mx]lel)
1D=MNTOT + I
25 0D(IBY=A(T)
MTOT = NTOT + MDEX
IF(MDEXLE ®) GO TO 4
DS=20S/ML %1306 :
WRITE(6,990u) WAVE, SCALE, SAMPLE’
WRITE(4,9901) :
: CALL PRINT(D,DS,NTNT,2)
C #u& FIND YMAX AND YMIN ’
S=0 '
Yi=D(1)}
ye=n (1)
NG 35 T=21,NTOT
$5a5+N (1) #x2,
T IF(Y1,6E.D(I)) GO YO 3@
Yi=R(I)-
60 TH 35 .
30 IF(Y2.LE.DC(L)) GO TO 35
ya=n(1) .
39 CONTINUE
C wxx TARULATE THE HISTOGRAM AND CALCULATE RMS
X2 (Y1=Y2)/NDEX
DO 49 I=t,NDEX
4D FL1)sR,.
DD 60 I=t,NTOT
DG S? K=1,NOEX
LaK=NREX/2,
IF(NET)GT,LuX) 6O TO 58
FLK)=F(R) #!
GO TO 60 :
50 LONTTIMUE
€0 CONTINUE
WRITE (6,9904)
RMS=(S/NTOT) %% ,5
WRITE (6,9908) RMS, Y2, Y1
Dy 70 I=1,NDEX
MH=f (1)
NH Y aMHs] J
W OWRITE(6,9973) NH, (ISTAR,KAP3{,NH1)
C xx4 CALCULATE THE SURFACE AUTOCDVARIANCE
DO 92 I=1,NTOT
CSURBW({I)=9, .
NTT=(NTOT=T) +1{
DO B2 K=1,NTT
£Q CSUBW(II=CSUBRH(I) + DK} #D(K+I=1)
90 CSUBW(I)=CSURN(T)#DS
RETURN



C

c .

g}

AR
9AN@
9921
e
9910

394 %
992
9933
9924
99M9
RAK

o %

k4w

* AR

k14

"hE

END

SUBROUTINE: AUTO(IFLAG)

INTEGER ROUTE _

coMenn 25(3ma), RG(379), CSURW(3QB), H(3@3), SCALE, WAVE, RMS
COMNON DS, IS, JA, ROUTE, SAMPLE

DATA PI/3,1415327/

AR R R B R R R A A A A A R A AR I AR A A A AN A AR KRR A AR R R ARR A AL R RO AT R RN ALY

FORMAT(FP 1,1%,E18,4)

FORHMAT(F4 .4, 2(I3, 1x), F2.1, 1X, Elﬁoa. 1X, E993)

FORMAT( 8(E9,3,1X)) - ™ ‘

FORHAT (1M1, 28(/), SAX, 2THSUKFACE AUTOCQOVARTANCE DATA,//;

. SAX, 19HRITH WAVELENGTH OF ,E1h.4,7H MICRON,//,

50X, 28HGRAPHED WITH A SCALE FACTOR , F3.1,/7,
SAX, 1VUHSAMPLE MND,, 1X, Ad4)

FDQMAT(aHi,lQquATTEQIMu FUNCTTION) :

FURMAT(//,29H THE RmS 3:URFACF ROMGHNESS IS, E%.3, 7H MICRON)

FORMAT(1H1, JQHCSYSTFH) FOURTER=BESSEL TRANSFORM FUNCTION)

FORMAT (1H], 3I1HSURFATE AUTOCOVARIAMCE FUNCTION)

FORMAT (1H1, 1 THTRARSFER FUNCT{ON)

*!‘(***#ﬂ#***t*‘c’k**ﬂ*w#ﬂ*t*k**ﬁﬁ'&*kkﬁ*#k*)&#k*ﬁﬂ****k***ﬁﬁ#*#*#ﬂ***ﬁﬁ

IF(RNUTELEQ D) GO TO &

READR(S,9200) SCALE, WAVE .

WRITFE (&, 9942) HAVE, SCaLE, SAMPLE

IF{IFLAG,EQ,1) GO TO 5

READ(S, omwi) NS, 18, 1A, SCALE, WAVF, RMS

READ{5,93492) (CIUBYITY, I1=21,I8)

WRITE (A,.9993) WaVE, SCALE, SAMPLE

WRITE (6,9944) ‘

WRITE(H,9932) RMS :

CALL PRINT(CSUBW,05,15,2)

NSsNS/WAVE

- CALCULATE THE TRANSFER FUNCTION

0O 12 131,718

H(T)= r”P((u*PI/HAVt)**Z 2 (COSUBW(I) =RMS %22, )
WRITE(6,9905)

CaLL,. PRINT(H,0S,158,1)

CALCULATE f# FROM RM3 SURFACE ROUGHNESS

B21,01 , /EXP((RMSHAxPI/WAVE) 222 )
FIND THE (SYSTEM) FOUKICR=BESSEL TRANSFORM FUNCTIONM
00 23 I=21,18 .

Bu(I)= H(IJ+(R~1,)

URITE (6,9903)

CALL anuT(sm,ns 15,1)

DPTE’MXNF THE DUTPUT INTFRVAL DA
NA=_,02 .

FIND THE SCATTERING FUMCTION
CALL HANKEL(BD,0S,I5,835,DA,1A)
WRITE(6,9991)

CALL PRINT(BS,DaA,IA,3)

FIND THE (SYSTEM) FDURIER-BESSEL TRANSFORM FUNCTION
XM= Ia=1

Do 32 1=1,IS8

X2]=q
BRCLISRECIIREXP (=P TR (X/XM) 23 ,)
WRITE (6,9393)

CALL PRIHNT(BA,08,1S8,1)

FIND THE SCATTERING FUMCTION
CALL HANKEL (BW,DS,I5:8B53,04,1A4)
WRITE(H,9901)

CALL PRINT(8S,DA,14,3)
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c

R84
9y
9pn2
99 a

9901

L

9972
9933
99¢ 4
99as
L. 8-2

frRE

wRw

RAW

2@

AR R

Rhw

30

RETURN

END

SUBROUTINE SCAT

INTEGER ROUTE

coMmMnn AS(390), HBA(3AB), CSUBW(3IBB), H(3@A), SCALE, WAVE, RMS
commoM DS, 1S, 1A, ROUTE, SAMPLE

DATA PL/3,1415927/
*wﬁk**Qw**t&**ﬁ**tﬂ*ﬁﬁ#ktﬂﬁt#*kttﬁﬁ*ﬂ*#ﬁﬁﬁ*ﬁﬁ***ﬁﬁ*###**ﬁﬂﬁ#ﬁﬁ**tﬁ
FURMAT(F3,2, ¥, 2(1%, 1X), FPoil, 11X, E1¢,.4)

FORMAT( B(E9,3,1%)) ) )
FORMAT (1ML, 20(/), SAX, 24HSCATTERING FUNCTION DATA,//,

. 50%, Y9HWITH WAVELENGTH OF ,E10.4,7H MICRON,//,
50X, PBHGRAPHEDR WITH A SCALE FACTOR , F3,%1,7/7,
50X, 1CHSAMPLE NO,, 1X, A4)

FORMAT(1H1,19HSCATTERING FUNCTION) ’

FORMAT(//,294 THE RMS SURFACE ROUGHNESS IS, E9,3, TH MICRON)
FORMAT(IHY, 4PH(SYSTEM) FOGURIER=RESSEL TRANSFORM FUNCTION)
FORMAT(1HL, 3IHSURFACE AUTOCOVARIAMCE FUNCTION)

FUORMAT(LH], R24H3YSTEM TRANSFER FUNCYION)
***ﬁ***k*#**#***#kﬂﬁ*hkR*aﬁﬁ*****kf*ﬁ*nﬂﬁﬁ**ﬁ*ﬂ**a*ﬁﬁ****ﬂﬁﬁ***kﬁ#
READ(S,94481) DA, IA, IS, SCALE, WAVE

READ(5,9@22) (BS(I), I=1,1A)

WRITE(6,9904) wAVE, SCALE, SAMPLE

WRITE (&,99031)

CALL PRINT(RS,DA,1A,3) _

DETERMINE THE DUTPUT INMTERVAL NS (ASSUMING AR IS -NOM=INCREASING)
CALL INTER(HBS,NDA,IA,DS,15,@)

IF(ROUTE EQ,R) OS=,2/4AVE

PS=N8uSCALE

FIND THE (SYSTEM) FOURIER-RESSEL TRAMSFORM FUNCTICN

CALL HANXEL(RS,NA,TIA,BQ,DS,I8)
WRITE(5,9993)

CALL PRIHT(RQ NS,I18,1)

CALCULATE THE TRANQFER FUNCTION

B=BQ (1)

DD 20 121,18

H{I1=(1,=B) + BR(I)

WRITE (6,9905)

CALL PRIMT(H,NS,15,1)

CALCULATFE SIGMA SGUARED AND RMS
SIGSA=(WAVE/ (4.%F1)) %2, ﬁAL”G(l /(1,=8))
RMS = SICSO*& 5

CALCULATE THE SURFACE AUTDCOVARIANCE FUNCTION
00 39 1=1,18

CUBL (L) = (WAVEZ (4, ﬁPI)J*aE #ALOG(H(I)) + SIGSQ
D8 = US«WAVE

WRITE (4,9904)

WRITE(5,99@2) RMS

CALL PRINT(CSUBW,NS5,158,2)

IF(ROUTELEQ,1) CALL AUTOC(Y1)

RETURN

END

SURRAUTINE INTER(X,DX,IX,0Z2,1Z2,IFLAG)
REAL X(32a), 0Z5(%)

DATA EPS/.@17, D2S/410 o025 o025, oS5 Yo/
IMAX=2

¥YMAXeX (1)

Ny S5 Tap,!IX

TFLYMAXGEX(IY) 60 TO S

Yiaxsx (1)
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c

C

30
a4

RRR
93@14

9902
AW

10

3u

10
an

ImAxs]

CONTINUFR

DZ2YHAXREPS :

IF(IFLAGLER,L) GD TO 2%

DO 1Y TsTMAX,IX '

IFIXCLYLT,DZ) GO TO 29

CONT THUE

02=21,/7(1=1)Y/NXx/1223,

IPfIbIAbeEd e) nNZ=1, /(I 1)/DX/IZ/3

B= ALNGIZ(NZ)

ke INT(n)*}

IF(RLTA) K=INT(B)

TEST= 18,%%(B=K)

on 32 1=z1,5

IF(TEST, LFVDZSCI)) GO TO 4@

CUNTfRUE

0Z= NZ8(I)=x19, waK

RETURN

END

SUBROUTINE PRINT(wW,DX, T, 1Y)

REAL W(322), PT(181), UNITS(3)

DATA UNITS/Z6HLAMBDA, AHMICRON,6H BETA /

R RS NESERESERSEEERSRELESNEEEREEEEEERERAEEEDEEEEEE S E-E]
FORIMAT(//,28X, 810, p5(12X,EB,2) / A4X,2KX(,A6,1H),3X,9HAMPLITUDE,
C X iH8,5(3(Snmeems) ,SHrem=e))
FORMAT(AX,FE9,%,3%,F9,3,4X,10141)

LR R EERS AR ELDEMEEELESEEE SR EEEE SRR LSRR RSN ]
Do 18 I=s1,101

PT(I)=1H

=@

caLL INTEW(W OX, IW,DANMP,120,1)

WRITE(H,9901) (HAMPxT, T22(,170,20), UNITS(IU)
DU 3@ I=t,IW ’

PT(1)=1H L

PTCiA1) =11}

K2ABS(W{I)Y/DAMP)Y + 1,5

IF(K,GT,101) Ke1dt

PT(KY=12%

IFIR(IY.LT,.8) PFT(X)=1HO

WRITE (5,3902) X,d4(1),PT

PT(KY=iH

XzX+X

CONTINUE

QETURN

END ’

SUBROUTINE HAHKEL (W,DR,IW,V,DRHO,IV)

REAL #1290, v(iam)

DATA C/6,28318%4/

DO 26 1=21,1V

A=,

RHO=(I=1)%DRHO :

D0 1@ TR=&,Inw

R=DR®* (IR=2}+DR/2,

Az A+Pw(:(IR)+”(IR=1))*HJh(C*RHGﬂR)
V(1)=AzDRxC/2, :

RETURN R _ ) !
END : :
FUNCTION RJIR (%)

IF(X,LT,A,)STOP
BdfR=i,9
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IF(X,EQ,@,IRETURN
CONST=2,/%

Ma18+1 30X

FM1=2] ,0E=28

FM=22, ’

ALF=9,
ME(M/2)#2+1 "
MisMeay

M2 2Mmd

DD & K=y,Mp,2
BMK= M—&;melsCOVST=F“
FM=FMY

FMI =2BMK
BMK=(M]{=K) nFMl*CDNSTeFM
Fr=F MY

FMYzMK

ALF = ALF +BMK

ALF =2, 0= ALF»3MK
BJO=RMK/ALF
RETUNN

END
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APPENDIX D

COMPUTER PROGRAM FOR PROCESSING SURFACE
PROFILE DATA FROM ELECTRON-MICROGRAPH STEREOCOMPARATOR
The following is a computer program for processing surface
- profile data from -the electron-micrograph stereocomparator. It
..provides the surface height distribution, the rms surface roughness,

and the surface autocovariance function.
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STF

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420

R3 13:0APDT 097177174

PIM AC200), F(200)

READ M, Z, N, Ki
Z=Z/57.2958

FBR I = 1 TG N
READ ACI)

NFXT I

R = AC1)

G = 2%xMxSINCZ)

FOR I = 1 T@ N
ACIY = cacI) - AH/C
NFXT I

S =S1 =82 =583 =0
FBR I = 1 T@ N

S= S + ACD)

NEXT 1

Y = S/N

X = N/2o

FGR I = | TO N

St = S1 + €¢I - XI)RCACI) -Y)
S2 = S2 + (1 =-X)2

S3 = 83 + (ACIY - Y)®2
NFXT I : ‘
M = S1/52°

R = Y - MxX

G = S1/SQR¢(S2%53)

S = YI = Y2 =0

FGR 1 = 1| TO N

ACIY = ACI) - (M*I + B)
S =S + ACIY®2

IF Y1 > ACIY THEN 330
Yl = ACI)

G8 T2 350 7

IF Y2 < ACI) THEN 350
Y2 = ACI)

NFXT 1

PRINT "RMS™, *"MRERIT FUNCTIGN", "“YMAX™, “YMIN®

PRINT

PRINT SOR(S/NY, C» Y1, Y2
N = (Y1 - Y2)/Kl1

FGR' 1 = 1 T@ K1

FCI» =0

NEXT I
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430
440
450
260
470
480
490
500
510

520
530
540
550
560
570
580
590

1600
610
620
630

640
650
660

670
680
690
700
710

720

730
740
750
760
770
780
790
800
810
- 820
830
840
- 850
860
870
880
890
999

F@rR I

1 T@ N

FGR K = 1 T@ K

J = K =K1rs2

IF ACTIY = J*D THFEN 490

FCKY. = FCK)

PRINT ™ HEIGHT DISTRIBUTION"

+ 1

2 K1

PRINT *"N*, "Y"x."A@TQC@VARIANCE"

g N

1 T2 (N=1)
FCIY = FCI) + ACKI®ACK + 1

PRINT Is ACI), FCI)

Gg T@ 500
NEXT K
NFXT 1
PRINT

PRINT

PRINT

FOR I = 1 T
PRINT FCI)
FCIy = O
NEXT 1
PRINT

PRINT

PRINT

FGR I =1 T
FOR K =
NFEXT K

NEXT I

DATA 10000»
DATA 2.20,
DATA 2.905
DATA 2.865
DATA 2.81>
DATA 2.88>
DATA 2.475
DATA 2.58,
PATA 1.845

DATA 2,00,
DATA 2.03»
DATA 2,87,
DATA 3:005
DATA 2.80.>
DATA 2.74,
DATA 2.73s
DATA 2.00»
DATA 2.30,
DATA 2.29,
NDATA 2.25,
DATA 2615,
FND

4, 40, 11

2875
2675
2:65»
300,
303>
2¢33»
253>
1.925
1.94,
2.00>
2845,
297,
2T,
p°83,
293,
2.08s
2:39>
P27 »
2275

223>

2.8052:.8353-00>
2.725.

276>
2.90-»

3-.05,

2.83>»

2.88,3-29

2.34,
2.35,

2095

2.10>
2-.03>»
285,
3:145
2795
301>
2.905
2235
2.31,

2:01:20:19:2.28>»

2415,

2.38,
2365
2.235
2.23,
196

2.71,
P98
3.00,
Ao1bs
3.00

2.02,
2.21,

P34,

2:31s 2044, 2,52

13

3.05, 3.12, 3.12,

278>
2.895

2285
230>
. 2.27>
P .21

209a,
3.00>
.20,
306,

2225
.42,

2040,

2905

227>

2.78>
2.90>

2.33>»
2.20>»
2.31>
2.00»

2875
2.985
20975
2:795

2.20>
P38

2.22>»

2232 2o

2.96>
298,
20435
20195,
219
189>

3.08>
306>
3.115
2.735

2.14,
2.38>

2215 25

2155

313>
875 2-
2825
2:865

2,485
2.225
1955
Pel?Ps

3-10»
2705

276,
2 .85,

2.245
2.375

34, 2o

20165

325
&3

2.93
3-.05

O N -

ob
o]

-0
o2

V0NN

309‘5
2,87
2 .86
"2.90

2.30

2.33

08>
2:.19
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APPENDIX E

- DESCRIPTION OF SCANNING FECO INTERFEROMETER
USED FOR DETERMINING STATISTICAL
PROPERTIES OF OPTICAL. SURFACES
The following is the manuscript of a paper presented at the

1974 Annual Meeting of the Optical Society of America in Hoﬁston,.

Texas (J. Bennett, 1974).
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Use of Interferometry for Determining the rms Roughness, Autocovariance
Function, and Other Statistical Properties of Optical Surfaces*

Jean M. Bennett
Michelson Laboratory, Naval Weapons Center
China Lake, Callfornla 93555

ABSTRACT

A FECO Scanning Interferometer will be described that can
measure very small height differences with a lateral resolution
of 2 microns to yield statistics for optical surfaces.

The other papers in this Symposium on Techniques in Surface
Interferometry have mainly considered the use of interferometers
to study the contours on optical surfaces, or more specifically
the deviations from the desired surface contours. These devia-.
tions are sometimes called the figure of the surface, and opti-
cians frequently talk of half-wave or quarter-wave optical
surfaces when they mean that the deviations from a perfect plane
or curved surface are one-half or one-quarter of the wavelength
of the light used to test the surface (traditionally the mercury
green line at 5461 &). The figure of an optical surface is
important in determining the resolving power, focusing proper- -
ties, and aberrations in an optical system. For this reason
much work has been devoted to interfacing the interferometer,
which can sense figure errors, to the polishing machine which
can eliminate them.

Optical technology has now progressed to the point where
another parameter, the microroughness, also becomes important.
Microroughness on the surface scatters some of the light into
unwanted directions. - Scattering cannot only reduce the contrast
in optical images by removing light from the bright areas and
filling in the dark ones, but it can also drastically reduce
the optical throughput of a system long before the resolving
power is affected. Scattering is also a serious problem when
one is trying to observe a weak object that is very close to
a bright object. This situation occurs frequently in astronomy
when, for example, one is trying to observe details in the solar
corona near an occulting disk, or when looking at a faint star
.located close to the moon or a bright star.

The problem of scattering from optical surfaces has been
around for a long time. Even before 1900 Albert A. Michelson,
the man best remembered for his measurements of the velocity of

*Réprdduéed here with permission of the author.
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light and the Michelson-Morley experiment; thought about light
scattering. At the Michelson Museum in China Lake we found
an entry scribbled in one of Michelson's pocket notebooks

-along with shopping .lists, a prescription, notes for a coming

~

lecture, possible causes of error in an experiment, and other
diverse items. The entry is shown in Slide 1 and reads, '"Find
relation between roughness of surface and angle of scattering.
Much has happened in the 80 or so intervening years, but we
still have not satisfactorily solved the problem Mlchelson
hastily noted down around 1890.

What we have learned about the relation between surface
roughness and scattered light is that the total hemispherical
scatter from a surface (i.e., all the light scattered into a
hemisphere) is related primarily to the heights of the surface
irregularities when these heights are small compared to the
wavelength of light. By measuring the total hemispherical
scatter (frequently called TIS for short) and assuming a
Gaussian distribution for the heights of the irregularities,
we can obtain a value for the rms roughness of the surface.
For many types of surfaces, particularly polished glass, fused
quartz, calcium and magnesium fluorides, etc., this rms rough-

.ness value is in excellent agreement with the roughness value

obtained from  interferometric measurements, a technique I will
describe in detail in a few minutes. However, where the scat-

‘tering theory falls short is in predicting the effects of

scattered light from unusual optical surfaces such as polished
alkali halides, polished metals, electropolished metals, and ‘
micromachined metals. In these cases TIS measurements can
yield an effective rms roughness value that is either consid-
erably smaller or considerably larger than the interferometri-

.cally measured value. More troubling even than this is the

observation that we are not able to correctly predict the
angular dependence of scattered light about. the specular dir-
ection even for the smoothest polished glass surfaces. - This
situation arises because all the scattering theories assume

a Gaussian autocovariance or autocorrelation function for the

~surface and none of the real surfaces we have studied have

Gaussian autocovariance functions. For this reason, in order
to have a theory which correctly predicts the effects of scat-
tering from a surface, we need to know the autocovariance func-

tion and other statistics.of the actual surface., How to

measure these statistical properties is the subject I am going

‘to discuss for the remainder of my talk.

Interferometry has beén shown to be an excellent method
for looking at very small height differences on surfaces, height

-differences of 4 few angstroms, i.e., a féw thousandths of the

wavelength of light. Tolansky pioneered this type of inter-
ferometric technique dnd gave the interference fringes the
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enigmatic name of Fringes of Equal Chromatic Order, or FECO for
~short.- The two main things that are important about this type
of intereference fringes are (1) that they contour height varia-
“tions on surfaces, and (2) they occur as wiggly black lines in
a continuous spectrum of light reflected from the interferometer.
I am making the second point to distinguish FECO fringes from
the more common Fizeau fringes which also centour irregularities
on optical surfaces, but which are formed in monochromatic light.
'FECO fringes have advantages over Fizeau fringes in that the
order of interference of the fringe is always known, and small
areas of the surfaces can bé studied at will without hav1ng to
readjust the tilt of the interferometer plates.

I am now going to describe a FECO system we have built to
measure the statistical properties of various types of optical
surfaces and ‘I will show you samples of the data we have obtained
with this system. I will also mention some types’ of experiments
we are planning for the future.

A photograph of the FECO Scanning Interferometer is shown
in Slide 2. Most of the instrument consists of a signal averager,
minicomputer and teletype, and the interferometer, the heart of
the experiment, is the smallest part. The optical arrangement
is shown in Slide 3. The interferometer I consists of the sample
to be studied, coated with an opaque layer of silver (upper
plate) and a super smooth surface of polished fused quartz
coated with a semi-transparent film of silver of approximately
95% reflectance. The two optical surfaces are very close
together, being separated by only a few half wavelengths of
light. The actual spacer consists of the dust particles on
the two surfaces. The interferometer is illuminated in reflec-
tion by a collimated beam of white light from a xenon arc. The
important feature of the FECO system is lens L, which focuses
an image of the interferometer surfaces on the slit S of a con-
stant deviation spectrograph Thus, the interference fringes
which are viewed in the focal plane of the spectrograph contour
the irregularities on the pair of optlcal surfaces. A picture
of what might be observed is shown in the circular inset.

Three mercury lines are included for wavelength calibration
purposes, but the information about the surface topography is
given in the wiggly interference fringe.  There is a one-to-
one correspondence between the wiggles on the interference
fringe and height variations on the pair of optical surfaces.
To get an idea of the magnitudes of the quantities we are deal-
ing with, the wavelength variations can yield information about
variations of the heights of irregularities of the order of a
few angstroms. The lateral resolution is much smaller, so that
" the length of the interference fringe corresponds to a distance
of one mm on the interferometer surface. The width of the
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spectrograph slit determines the other dimension, so we are
actually looking at an area one mm long by about 2 microns
wide. '

To obtain the statistics for the section of the inter-
ferometer surface we are observing, we scan the spectrum line
by line using a special slow scan TV camera. After suitable
" ageraging, the information on one scan line appears as shown
in the upper right hand part of the slide. The desired infor-
mation is the wavelength of the portion of the interference
fringe included in the scan line and this is obtained from
the computer analysis. . The information from the entire frane
consists of wavelengths of 512 equally spaced points on the
interference fringe, so we have data for 512 different areas
on the surface, each one of which is a little square 2 microns
on a side. In the statistical analysis a least squares ‘
quadratic curve is calculated from all 512 wavelengths and
defines the mean surface level. Then wavelength differences-:
from this curve are converted into height differences above
and below the mean surface level. Using the height differences
we can determine the rms. roughness, height distribution func-
tion, slope distribution function, rms slope, autocovariance
function, and other statistical parameters for the surface.

I am now going to show some data that are typical of what
we have obtained for various types of surfaces. We have
studied very smooth glass-type surfaces such as fused quartz,
Cervit, calcium fluoride and magnesium fluoride, polished
alkali halides (potassium chloride and sodium chloride),
polished metals (copper, beryllium copper, titanium and titan-
ium alloys, molybdenum, and stainless steel), electropolished
nickel, machined copper, and holographic gratings. All of the
smoothest polished glass-type materials have similar statistics,
and Slide 4 shows results for one of these. This is an .
extremely smooth calcium fluoride surface polished by Abe
Klugman of the Northrop Corporation and had a visually measured
roughness of 9.4 R rms. At the top of the slide is a Polaroid
photograph of the interference fringe and directly below it is
a TV scan of .the center line of the fringe. Note that the
wiggles on the fringe represent height differences of consid-
erably less than 10 R.  The autocovariance function shown below
can be roughly considered as the correlation between points
on the surface separated by the amount shown on the x axis.

For the very smooth surfaces there is positive correlation
between closely spaced points but those farther away are
random. ‘

The height and slope distribution functions for the same
‘surface are shown on Slide 5. Note that both measured distri-
bution functions (the histograms) are very close to Gaussian,



and actually the smooth curves are Gaussians having the same
areas under the curves as do the measured ones. The slope
distribution function is only half a Gaussian curve because
we do not distinguish between positive and negative slopes.

Polished alkali halide surfaces and some polished metal
surfaces are similar in that both are compesed of macro and
microscratches with no smooth areas in between. In Slide 6
we see the scanning camera trace for a polished KC1 surface -

- and the autocovariance function. Note the oscillations in

 the autocovariance function which indicate longer range cor-
relations than those observed for the smoothest surfaces.

Note also that neither this autocovariance function nor the
preceding one were Gaussian . in shape. In fact, we have never
observed an autocovariance function that did have a Gaussian -
shape. 1In Slide 7 we see that there is slight asymmetry in
the height distribution function although the slope distribu-
tion function seems to be a very good Gaussian. Incidentally,
I should point out that the rms roughness values shown on the
height distribution function.histograms are about a factor of
two smaller than the visually measured values. This is because
the scanning camera does not take into account the width of
the fringe, only its center line. Visually we measure the
extreme width of the fringe and convert the eak-to-valley
roughness to an rms value by dividing by 2/2. There is a very
good linear relationship between visually measuréd,roughnesses
and the values obtained from the scanning camera.

In Slide 8 we see data for molybdenum, a typical ‘polished
metal surface. The autocovariance function with the oscilla-
tions is similar to that for -KCl. The height and slope distri-
bution functions shown in Slide 9 are reasonably good Gaussians
although there is some raggedness on the height distribution
function.

Recently very low scatter electroless nickel mirrors have
become available. In Slide 10 is shown the autocovariance
- function- for one of these, which had a visually measured rough-
" ness of 23.6 & rms.. This surface is a gradually undulating
one with almost. no obvious scratches. The autocovariance func-
tion also has a lower frequency oscillation than was observed
for the KCl and molybdenum surfaces. In Slide 11 we see that
there is a definite asymmetry in the height distribution func-
tion., There are proportionately more small bumps on the sur-
face than there are small holes. However the slope distribu-
tion function is an extremely good Gaussian.

One of the most interesting surfaces we have encountered
are those made on a special type of lathe by a single point
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diamond tool. Recently we determined the statistics on one
which had a visual roughness value of only 22.5 A rms.

Slide 12 shows that the autocovariance function for this sur-
face has only a long period oscillation.  We probably are not
resolving the individual grooves made by the diamond, but only
multiples thereof. The height and slope distribution func-
tions on. Slide 13 are reasonably good Gaussians even though
there must be obvious periedicity in the surface.

As a final set of statistics, we see in Slide 14 a _
tracing of a holographic grating with a nominally sinusoidal
groove shape formed in a photographic emulsion. This sample
was kindly furnished to us by John Stover of Dow Chemical
Company, Rocky Flats, Colorado. The autoceovariance function
is for only one scan and clearly shows the periodicity of the
surface.. The height distribution function on Slide 15 is
clearly not Gaussian, and I did not even attempt to put a -
Gaussian curve through the data.

Our plans for the future include increasing the sensi-
tivity of the scanning camera so we can obtain scans from many
more portions of the surface. Most of the data shown here are
averages of 8-10 separate scans. We also hope to automate
the scanning interferometer so that we can make equally spaced
scans adjacent to each other to obtain statistical data on -

a square one mm on a side.

In conclusion; I have described a type of interferometer
which can be used to obtain statistical information about the
topography.of optical surfaces. This instrument can distin-
guish height differences of only a few angstroms and has a
lateral resolution of about 2 microns. Using the statistics
of the surface, we hope to be able to predict the scattering
properties of the surface.
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