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Abstract

Light scattering from hair is normally simulated in computer graph-
ics using Kajiya and Kay’s classic phenomenological model. We
have made new measurements of scattering from individual hair
fibers that exhibit visually significant effects not predicted by Ka-
jiya and Kay’s model. Our measurements go beyond previous hair
measurements by examining out-of-plane scattering, and together
with this previous work they show a multiple specular highlight and
variation in scattering with rotation about the fiber axis. We explain
the sources of these effects using a model of a hair fiber as a trans-
parent elliptical cylinder with an absorbing interior and a surface
covered with tilted scales. Based on an analytical scattering func-
tion for a circular cylinder, we propose a practical shading model
for hair that qualitatively matches the scattering behavior shown in
the measurements. In a comparison between a photograph and ren-
dered images, we demonstrate the new model’s ability to match the
appearance of real hair.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Shading

Keywords: hair, fibers, optical scattering, rendering

1 Introduction

Realistically rendering hair is essential to portraying people and an-
imals, but achieving realism means confronting many challenges
inherent in the structure and behavior of hair. The geometry of
thousands to millions of strands must be determined; the scattering
of light from the fibers must be simulated; and the resulting thin
curves in the image must be sampled without introducing alias-
ing. Most of the research effort on hair has gone toward model-
ing and animating the geometry of a collection of fibers [Sourin
et al. 1996; Chen et al. 1999; Hadap and Magnenat-Thalmann
2000; Kim and Neumann 2000; Kim and Neumann 2002; Chang
et al. 2002; Magnenat-Thalmann et al. 2002], efficient antialias-
ing and curve-drawing algorithms for scanline rendering [Watan-
abe and Suenaga 1992; Kong and Nakajima 2000], and approxi-
mating shadows within the hair [Lokovic and Veach 2000; Kim and
Neumann 2001]. However, considerably less attention has been
put toward the scattering model that determines the appearance of
a particular assembly of fibers. Sometimes models for reflection
from grooved surfaces [Kajiya 1985; Poulin and Fournier 1990] are
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Figure 1: A schematic of our model for a hair fiber. The dashed
lines indicate the scattering angles for a cylinder without tilted sur-
face scales.

used to compute scattering from combed fibers, but most hair ren-
derings have used the classic phenomenological model of Kajiya
and Kay [1989].

Kajiya and Kay’s model was designed to capture the most ob-
vious feature of scattering from a fiber—namely the appearance of
a linear highlight in the image running perpendicular to the fiber
directions. It is based on the observation that the reflection of a par-
allel beam from the surface of a cylinder will be in a cone centered
on the hair axis. The model places a constant-intensity highlight
centered on that cone. All other scattering is accounted for by a dif-
fuse term that produces radiance proportional to the cosine of the
incident angle. Although it has served well for many years, this
model falls short in several respects. For one thing, it is not energy
conserving, which is important for physically based rendering.

But even when physical correctness is not needed, the Kajiya-
Kay model fails to predict some observed visual effects. Since it
models fibers as opaque cylinders, it does not account for transmis-
sion or internal reflection. Hair is a dielectric material, and blond,
brown, red, or other light colored hair is very translucent. Gold-
man has simulated translucency by adding a directional parameter
that controls the relative amount of forward transmission and back-
ward reflection [Goldman 1997]. Kim has extended this model by
proposing a two-term phase function [Kim 2002]. The first term
models surface reflection as a cardioid, based on a ray density argu-
ment; our R component is similar but accounts for the Fresnel factor
and handles oblique incidence. The second term models transmis-
sion as a forward scattering cosine lobe, supported by Monte Carlo
computations of normal-incidence scattering from a transparent cir-
cular cylinder. We extend Kim’s model by accounting for the Fres-
nel factor and volume absorption in an analytical model that also
includes internal reflection, modeling the separation of highlights
from different reflection modes, and approximating the effects of
eccentricity.



Two research groups working in the cosmetics industry have
measured the scattering properties of hair fibers in order to un-
derstand what makes hair look pleasing and healthy. Stamm et
al. [1977] measured relative scattering from a rack of individual
fibers as a function of illumination and viewing angles for direc-
tions coplanar with the fiber axis (that is, in the incidence plane).
They discovered two deviations from the expected behavior. First,
the primary specular peak occurs at an angle several degrees away
from the specular direction. They speculated that the angular shift
is caused by the tilt of the scales forming the cuticle of the hair fiber.
Second, there is a secondary lobe that occurs on the other side of
the specular direction. Bustard and Smith [1991] have observed
that the first peak preserves polarization, whereas the second peak
is depolarized. Both groups also observed that the secondary high-
light is not present in black hair. Bustard and Smith also report a
preliminary observation of azimuthal scattering in the plane normal
to the fiber in which they observed strong peaks, which they con-
jectured are internal reflection caustics. These experiments support
the hypothesis that the secondary peak is due to internal reflection
off the back side of the fiber.

We have made an experimental and theoretical study of the scat-
tering of light from individual fibers of human hair, and developed
a simple practical model for use in computer graphics. Specifically,

• In addition to the incidence-plane measurements of Stamm et
al. and Bustard and Smith, we measure scattering in the plane
normal to the fiber. We also report for the first time full 3D
hemispherical scattering measurements. Several new appear-
ance phenomena are visible in the 3D data. First, the primary
specular highlight continues all the way around the hair, while
the secondary highlight is confined to the side of the hair to-
ward the source. Second, a pair of large out-of-plane peaks,
or glints, are present, and as the incidence angle increases the
peaks move closer to the incidence plane, eventually merging
and disappearing.

• The scattering distribution, especially the secondary high-
light, depends on the angle of rotation of the hair fiber about
its axis. This is to be expected because hair fibers are not
generally circular in cross section [Robbins 1994].

• To explain our observations, we propose a simple model based
on the structure and composition of hair fibers (Figure 1). We
approximate the hair as a transparent circular cylinder with
a colored interior and a surface composed of rough, tilted
scales. Using geometric optics, we derive predictions for the
far-field scattered light distribution from such a cylinder. Our
theory predicts that three transport modes are significant: sur-
face reflection, transmission, and internal reflection.

• Based on the theory, we propose a shading model for human
hair. We illustrate its use by producing several example ren-
derings of brown hair. The shading model is simple and easily

Figure 2: An electron micrograph of a hair fiber that shows the
structure of the outer cuticle surface, which is composed of thin
overlapping scales [Robbins 1994]. In this image the fiber is ori-
ented with the root at the top and the tip at the bottom.
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Figure 3: Notation for scattering geometry.

incorporated into standard rendering algorithms. Finally, we
validate the model against experimental data and show there
is good qualitative agreement.

2 Fibers

We begin by presenting some background information on human
hair fibers. We also introduce the notation we use in this paper, and
define the light scattering function for fibers.

2.1 Hair fibers and fiber scattering

A fiber of human scalp hair is composed of two main parts: the cu-
ticle and the cortex. The cuticle is a thin protective outside sheath
that surrounds the inner cortex. The cuticle is of particular impor-
tance for light scattering, since it forms the interface between the
fiber and the air. It is composed of flat cells that overlap like roof
shingles (Figure 2) and make the fiber appear as a nested set of
cones. Because of their overlapped arrangement, the surfaces of
the scales deviate slightly but systematically from the overall nor-
mal of the fiber’s surface, tilting their surfaces toward the root end
of the fiber by approximately 3◦ [Bustard and Smith 1991; Robbins
1994].

The cortex forms the bulk of the fiber. At the center is a pig-
mented core, the medulla. The pigments in the cortex and medulla
determine the hair color. In this paper, we approximate the opti-
cal properties of the interior of the fiber with two quantities: an
index of refraction η of approximately 1.55 [Stamm et al. 1977]
and an absorption cross section σa, which is assumed to be uniform
throughout the fiber.

As we will see, the morphology of the hair fiber provides an ex-
planation for the main features of the scattering function. The fiber
is modeled as a dielectric cylinder covered with tilted scales and
with a pigmented interior (Figure 1). Reflection of a directional
beam from a cylinder produces several distinct components of re-
flected light, all directed into a cone of outgoing directions. Re-
flection from the surface produces a component that is spread fairly
uniformly around the cone. Transmission through the hair produces
a very bright component that is focused toward directions on the op-
posite side of the hair. Light that reflects off the inside of the hair
surface produces a back-scattering component. This component is
more complicated and, depending on the shape of the cylinder and
the angle of incidence, may spread the energy over the whole cone
or focus it into one or more caustics. Using T and R to stand for
transmission and reflection across a cylinder interface, we denote
these three modes of reflection as R, TT, and TRT.

As illustrated in Figure 1, the tilt of the cuticle scales shifts the
cones of the R and TRT components slightly off the ideal specular
cone. More importantly, they shift in opposite directions, causing
them to separate into two visually distinguishable highlights. The
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Figure 4: Measurements of scattering in the incidence plane: scattering as a function of scattering angle with illumination at 45◦ from the tip
and root ends. Black and blond hair are shown, along with a synthetic fiber from a wig.

R highlight, since it is surface reflection, is white, whereas the TRT
highlight, which is formed by light that passes through the interior
of the fiber, is colored.

2.2 Scattering

Before getting into more detail, let us establish the notation we will
use throughout the paper to describe the scattering geometry (Fig-
ure 3). The tangent to the hair is u, pointing in the direction from
the root toward the tip; the vectors v and w complete a right-handed
orthonormal basis, and if the cross section is elliptical v is the ma-
jor axis and w is the minor axis. We refer to the v–w plane as the
normal plane. The direction of illumination is ωi, and the direction
in which scattered light is being computed or measured is ωr; both
directions point away from the center. We express ωi and ωr in
spherical coordinates. The inclinations with respect to the normal
plane are denoted θi and θr (measured so that 0◦ is perpendicular to
the hair, 90◦ is u, and −90◦ is −u). The azimuths around the hair
are denoted φi and φr (measured so that v is 0◦ and w is +90◦).

We also use several derived angles. The difference angle (θr −
θi)/2 is denoted θ

d
. The relative azimuth φr −φi is denoted simply

φ . The averages θ
h

= (θi + θr)/2 and φ
h

= (φi + φr)/2 are called
half angles.

The bidirectional scattering function S for a fiber is different
from the bidirectional reflection distribution function fr for a sur-
face, although it shares the same physical units. For the incident
and reflected light we use curve irradiance Ē, or power per unit
length, and curve intensity L̄, or intensity per unit length, respec-
tively. These units are analogous to irradiance (power per unit area)
and radiance (intensity per unit area) on a surface.

S(ωi,ωr) =
dL̄r(ωr)

dĒi(ωi)
,

where L̄r is the curve intensity scattered from an infinitesimal length
of fiber, and Ēi is the curve irradiance on that portion of the fiber.
This irradiance is proportional to incoming radiance:

dĒi(ωi) = DLi(ωi)cosθi dωi,

where D is the diameter of the fiber (which depends on φi for an
elliptical fiber). Note that the area over which the irradiance is mea-
sured is Ddl where dl is an infinitesimal arc length along the fiber.

Given this definition, the scattering integral is written as

L̄r(ωr) = D

∫

S(ωi,ωr)Li(ωi)cosθi dωi (1)

Note that, unlike a surface where the integral extends over the up-
per hemisphere, this integral extends over the entire sphere. The
presence of D in this equation indicates that a thick fiber intercepts
more light, and therefore appears brighter from a distance, than a
thin fiber.

3 Scattering measurements

The experimental component of our study of hair was intended to
provide a qualitative and quantitative understanding of the phenom-
ena that need to be explained by a scattering model for hair. In this
paper, we briefly outline these measurements; a full description of
our experiments will be provided in a future paper.

In our experiments we illuminated individual hairs with a narrow
beam and measured the scattered light in various directions using a
setup based on a four-axis goniometer that positioned a light source
and a CCD camera at arbitrary directions from the sample. We
used a focused beam to illuminate only a small length of hair, on
the order of 1 to 2 cm, and this illuminated segment defined the
length of hair being measured. This served to reduce the effects of
any variations in properties along the length of the hair.

3.1 Incidence plane

Stamm et al.’s and Bustard and Smith’s measurements were in the
incidence plane, meaning that they observed only the 2D slice of the
scattering function for which the source and detector are coplanar
with the fiber. To verify these earlier results, we made the same
kind of measurements on samples of several different types of hair
and on a synthetic fiber from a wig (Figure 4).

For each sample, we set the angle of incidence to 45◦ and mea-
sured scattering for varying outgoing angles. We performed this
experiment twice, once with the illumination from the direction of
the root (with θi = −45◦), and again with the illumination from the
direction of the tip (with θi = 45◦). Each measurement was made in
three color bands across the visible wavelength range. Note that the
small gap near the incidence angle in each plot is due to the camera
occluding the light source.
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Figure 6: A measurement showing the evolution of glints with incidence angle on a more nearly circular hair. For each θ the source is fixed
while the camera sweeps along the specular cone. A qualitative match to our shading model is plotted with dashed curves.

The most prominent feature in the scattering function is the spec-
ular highlight that occurs approximately when θr = −θi. For the
synthetic hair the highlight occurs exactly at the specular direction,
but for the real hairs it occurs 6 to 10 degrees toward the root, re-
gardless from which direction the hair is illuminated. Additionally,
the blond hair, but not the black hair, has a color-dependent asym-
metry in the lobe, with a side lobe appearing closer to the specular
direction than the primary highlight. A background of diffuse re-
flection is present that is larger and more colored for the blond hair.
In other measurements of this type we always observed the sec-
ondary highlight (except in black hair), but its strength and width
varied considerably.

To study the effects of both θi and θr on the scattering function in
the incidence plane, we made a second measurement for one blond
fiber. This measurement was parameterized in terms of θ

h
and θ

d
.

Each sweep was made with the source and detector fixed, thereby
holding θ

d
fixed, and the hair rotating to vary θ

h
.

A selection of the results of this full incidence-plane measure-
ment are shown in Figure 5. In these plots, both the primary and
secondary highlight are visible, on either side of zero, which cor-
responds to the specular direction. This hair in this configuration
has a very strong secondary highlight that is actually stronger than
the primary highlight for most angles. As the scattering angle in-
creases, the secondary highlight fades out, while the primary high-
light maintains more constant amplitude. Both peaks maintain ap-
proximately constant width. At high angles the primary highlight
gives way to a sharp peak that emerges very close to the specular
direction. This appears to be the same phenomenon that Stamm
et al. observed and named the equal-angle peak.

3.2 Normal plane

To begin to understand the full 3D complexities of the scattering
function, in particular the secondary highlight, we made another
planar 2D measurement, but with the plane of the source and detec-
tor oriented approximately perpendicular to the fiber; that is, in the
normal plane. Within this plane, the azimuths φi and φr both var-
ied independently. To be more precise, the incident direction was
in the normal plane but the scattering direction was on the cone at
θr = 10◦. This is because the shift we have observed in the high-
lights due to the tilt of the cuticular scales would prevent us from
observing the secondary highlight if we measured exactly in the
normal plane. In this and the following measurements, we show

only the red wavelength band, because that is where the secondary
highlight is most prominent.

The results are plotted as solid lines in Figure 7. We have or-
ganized the data in terms of φi and the relative azimuth φ , so each
polar scattering diagram corresponds to a sweep of the camera with
the source fixed, and moving from diagram to diagram corresponds
to changing the light source angle (or equivalently, rotating the hair
around its axis). The wedges of missing data are caused by the
mechanical constraints of the goniometer.

This measurement shows that there are two bright out-of-plane
peaks. The strength and φ locations of the peaks vary from hair to
hair. We refer to this peak as a “glint” because of the visual effect
it produces.

Furthermore, the glints change considerably in brightness and
position as a function of φi, which shows that the hair is not rota-
tionally symmetric. However, two symmetries are evident in the
figure. One is a 180◦ rotational symmetry in φi (diametrically op-
posite plots are similar); the other is by negating both φi and φ
(vertical bilateral symmetry of the whole figure). Together these
symmetries suggest that the hair has a 180◦ rotational symmetry
and is bilaterally symmetric in cross section.

When the pattern of glints is symmetric about the plane of in-
cidence (φi = 0), it looks a lot like the caustic formation due to
refraction in a sphere or cylinder with circular cross section. More
generally, the evolution of the peaks as the fiber rotates appears sim-
ilar to the internal reflection from a transparent elliptical cylinder,
as we discuss in Section 6.1. A microscopic inspection of another
fiber from the same individual reveals it has an eccentricity of 0.7:1.

3.3 3D hemispherical measurements

3.3.1 Changes in glints with angle of incidence

It is instructive to examine the secondary highlight as a function of
φ while varying the incidence angle. This shows whether and how
this highlight evolves as the inclination of the hair to the light source
changes. To make this measurement, we arrange for the source and
camera to be at approximately equal incidence angles θ on opposite
sides of the normal plane, and we measure the φ dependence by
sweeping the camera along its cone while keeping the light source
fixed. The results are plotted as solid lines in Figure 6.

As in the previous measurement, the camera needs to be a bit
more toward the tip than the source in order to observe the maxi-
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Figure 7: A measurement of scattering in the normal plane from a
blond hair with substantial eccentricity. Illumination comes from
the right in all plots; the green ellipses indicate the hair orientation.
Bright glints appear whose location and strength depend on the ori-
entation of the hair. The green plots are the results of Monte Carlo
scattering simulation on the proposed fiber model.

mum glint intensity, so we maintain the condition that θi +θr = 10◦

as we vary θi.
The phenomenon shown by this measurement is that the azimuth

at which the glints occur changes as a function of incidence an-
gle, with the glints moving toward the incidence plane as the inci-
dence moves from normal to grazing. They appear to merge around
θ = 60◦. This behavior provides another clue to the structure: such
a merging transition is characteristic of the caustics formed by in-
ternal reflection in a cylinder [Mount et al. 1998]. The measured
eccentricity of this fiber is approximately 0.8:1.

3.3.2 Hemispherical scattering

These measurements extended the 1D incidence plane measure-
ments by varying φr as well as θr, so that the scattering direction
varied over a full hemisphere. For a fixed direction of incidence,
this is a complete measurement of the scattering function (or half
of it, which suffices given bilateral symmetry—a reasonable if in-
exact assumption when we are not allowing φi to vary).

The results are shown in Figure 8. In this plot, several curves
for fixed values of φ are plotted together against θr. A primary
highlight appears at θr = 40◦, and a broad secondary highlight ap-
pears around 50◦–80◦. Moving from curve to curve, the primary
highlight maintains a fairly constant amplitude and shift from the
specular cone (marked by a blue line in the plot). The secondary
highlight becomes stronger, peaks around φ = 30◦, and then dies
out. The forward-scattering half of the scattering function, shown
with a larger scale on the lower axes, is dominated by a strong
forward-scattered component that is not shifted appreciably from
the specular cone.

3.4 Summary

To summarize, our experiments measuring the scattering of light
from hair fibers revealed the following phenomena. Here, we cate-
gorize the phenomena in terms of the scattering modes of a dielec-
tric cylinder (Section 2).
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• R: Shift of the primary specular peak toward the root. This
deviation is hypothesized to be due to the tilt in the scales on
the hair fiber.

• TT: A strong forward scattering component from light colored
hair. This causes blond, brown, gray, and white hair to look
very bright when lit from behind.

• TRT:

– A colored secondary peak shifted toward the tip from
the white primary specular peak. In a head of hair,
this leads to the secondary highlight that is visible just
above the primary, sometimes appearing more as a col-
ored fringe on the primary than a separate feature.

– The secondary highlight varies as a function of φ . It
generally contains two peaks, or glints. The locations
of the peaks depend on the angle of incidence, and they
converge to the incidence plane as θ increases. Further-
more, for hair that is not circular in cross section, the
strength and position of the glints depend strongly on
the angle of rotation of the hair around its axis. This
gives the hair fiber a distinctive sparkling appearance.

– Most of the energy in the secondary highlight is con-
tained between the two glints.

4 Theory of scattering from fibers

In this section we present background theory applicable to scatter-
ing from smooth cylinders. We show that because of the symme-
try of a cylinder, the 4D scattering function can be factored into
a product of two 2D terms. One term, called M, captures the θ
dependence, and the other, called N, captures the φ dependence.
We also derive N for the case of a circular cylinder. These two
parts form the basis for the complete, practical model developed in
the next section, in which we introduce expressions for M, an ap-
proximation to extend N to elliptical cylinders, and procedures for
efficiently approximating N.

4.1 Scattering from cylinders

For fibers formed by translating a fixed cross section along a single
axis we can separate the 4D scattering function to a product of 2D



terms. We make use of properties that have been used in previous
work on scattering from fibers [Marcuse 1974; Adler et al. 1998;
Mount et al. 1998]:

• A ray that enters a dielectric cylinder at a particular inclina-
tion to the axis will always exit at the same inclination, re-
gardless of the sequence of refractions and reflections it un-
dergoes.

This means that a bundle of parallel incident rays coming from
the direction ωi will produce a collection of scattered rays
whose directions lie on the cone centered on the fiber axis and
containing −ωi (Appendix A). The directions of the refracted
rays inside the hair also lie on a cone. This effectively reduces
the scattering function from 4D to 3D, because scattering only
occurs when θr = −θi. Of course, this equality holds only
approximately if the surface is rough, and it depends on the
assumption that there is no volumetric scattering inside the
cylinder.

• The dependence of the scattered distribution on φr can be an-
alyzed by examining only the projection into a plane perpen-
dicular to the hair.

It’s easy to see that the R component can be computed just
from the projection—the incident and reflected vectors are ar-
ranged symmetrically across the surface normal in the projec-
tion just as they are in 3D, so a mirror reflection from the 3D
cylinder remains a mirror reflection in the projection.

The same holds for refracted rays, as a consequence of Bra-
vais’s law (derived in Appendix B), which states that if the
incident and transmitted vectors at a dielectric interface are
projected into a plane containing the surface normal, the pro-
jected vectors still obey Snell’s law, but with the index of re-
fraction η replaced by η ′(η ,θ) > η . Note that η ′ depends
only on the inclination θ of the incident ray out of the projec-
tion plane, and it is independent of the angles in the projec-
tion plane. Thus, since we know that all rays originating from
a particular incident direction maintain the same inclination
to the normal plane, a 2D analysis that works in the normal
plane for arbitrary refractive index suffices to describe the 3D
scattering function.

These two facts allow us to write the scattering function for a
smooth cylinder of any cross section as:

S(φi,θi;φr,θr) = δ (θr +θi)N(η ′(θ);φi,φr)/cos2 θ

The first factor says that scattering only occurs in the specular cone;
the second factor N represents the azimuthal scattering function;
and cos2 θ accounts for the projected solid angle of the specular
cone. We write simply θ to emphasize that θi = θr. Since θ influ-

ences N only indirectly through η ′, we can derive N independently
using a 2D analysis. In the next section, we will generalize this
expression to

S(φi,θi;φr,θr) = M(θi,θr)N(η ′(θ
d
);φi,φr)/cos2 θ

d
; (2)

that is, we will allow for a more complicated dependence on θ . We
will refer to M as the longitudinal scattering function.

4.2 Scattering from a circular cross section

In this section we derive N assuming a circular cross section. With
circular symmetry, N depends only on φ , the difference between φi
and φr, so the 2D azimuthal scattering function is further reduced to
1D, and in this context we will write N with a single angular argu-
ment. Scattering from a dielectric circle is well studied, having been
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Figure 9: Geometry for scattering from a circular cross section.

first analyzed by Descartes to explain the formation of the rainbow
in a rain shower (for a full discussion, see, e.g., Humphreys [1964]).
Note that the effective refractive index η ′ is a parameter to the en-
tire discussion that follows, so for clarity it is left as an implicit
parameter when it is not being discussed.

We can determine the far-field intensity by tracing rays as they
refract through a circle. Consider a ray incident on a unit circle
at an offset −1 < h < 1 from its center (see Figure 9). The angle
sinγi = h is the angle of incidence, and η ′ sinγt = h is the angle of
the refracted ray. By following a ray entering a circle as it refracts
and reflects, we can calculate the exit angle φ(h).

From Figure 9 it can be seen that the incident ray deviates by
γt − γi as it enters the circle, by π + 2γt at each internal reflection,
and by γt − γi again as it exits, for a total of

φ(p,h) = 2pγt −2γi + pπ (3)

where p is the number of internal path segments.1 This expres-
sion encompasses all three scattering modes we are interested in,
for different values of p: surface reflection R (p = 0), refractive
transmission TT (p = 1), and internal reflection TRT (p = 2). For
the rest of this analysis, we will ignore p > 2 terms.

The above ray tracing calculation parameterizes paths by h.
However, for scattering calculations we often need to find all the
paths that contribute to scattering in a given direction φ . The h val-
ues for these paths are found by solving for the roots of the function
φ(p,h)− φ = 0. We denote these roots by the function h(p,r,φ),
where different values of r denote different roots. In the p = 0 and
p = 1 cases, there is a single root, and thus a single path. However,
for the p = 2 case, there may be one or three roots and hence one
or three paths.

Since the function φ is smooth, the transition from a single exit
ray to three exit rays represents a fold in φ(2,h) and this fold occurs

when
dφ
dh = 0. Descartes first showed that this fold occurs when:

h2 = (4− (η ′)2)/3. (4)

This expression is symmetric, and predicts that two symmetric ex-
trema exist. [Humphreys 1964]

Now that we have the expression (3) to relate φ and h, we can
compute the intensity of the scattered light by using the principle of
energy conservation. When curve irradiance Ē illuminates a fiber,
uniform irradiance E(h) = Ē/2 falls on the cross section across its

1Note that pπ accounts for p−1 internal reflections plus the reversal in

direction from ωi, which points outward.



width.2 Setting aside attenuation for the moment, power from a
small interval dh in the incident beam is scattered into an angular
interval dφ in the exitant intensity distribution (Figure 9).

L̄(φ(h))dφ = E(h)dh = (Ē/2)dh (5)

or

L̄(φ(h)) =

∣

∣

∣

∣

2
dφ

dh

∣

∣

∣

∣

−1

Ē (6)

This equation implies that intensity goes to infinity at the fold in the
function φ . This intensity singularity is called a caustic.

In the case of a circular cylinder, the pair of caustics cause the
glints. Since in the cylinder the Bravais index η ′ increases with θ ,
the two caustics will move closer to the plane as the incident light
becomes more oblique to the hair. When η ′ reaches 2, the caustic
ceases to form. This caustic merge transition can be seen in the
measurement plotted in Figure 6.

4.3 Attenuation by absorption and reflection

In this section we add terms for volume absorption in the fiber inte-
rior and Fresnel reflection at the interfaces.

For absorption we need to know the path length inside the fiber.
Applying the law of cosines to the triangles in Figure 9 gives the
length of each internal path segment as 2 + 2cos(2γt) times the
hair’s radius. Let σa be the volume absorption per unit length,
with the unit length defined to be the radius of the hair. Then
each of the p segments inside the hair contributes a factor of
T (σa,h) = exp(−2σa(1+ cos(2γt))) to the absorption.

Now we can introduce an attenuation factor in front of the inten-
sity contributed by a path

L̄(φ) = A(p,h)

∣

∣

∣

∣

2
dφ

dh

∣

∣

∣

∣

−1

Ē (7)

where

A(0,h) = F(η ,γi)

A(p,h) =
(

1−F(η ,γi)
)2

F(1/η ,γt)
p−1T (σa,h)p.

Just as Bravais’s law lets the normal-incidence geometry factor
work for oblique incidence, we can generalize A to oblique inci-
dence simply by changing the parameters. Appendix B shows that
the correct Fresnel factors may be computed using the usual Fres-
nel formulas and two virtual indices of refraction, η ′(θ) and η ′′(θ).
Similarly, because all the internal path segments have the same in-
clination θt to the axis, they lengthen by a factor of 1/cosθt , so
substituting σ ′

a(θ) = σa/cosθt for σa completes the generalization
to 3D:

A(0,h) = F(η ′,η ′′,γi)

A(p,h) =
(

1−F(η ′,η ′′,γi)
)2

F

(

1

η ′
,

1

η ′′
,γt

)p−1

T (σ ′
a,h)p

The complete normal-plane scattering function is thus

N(φ) = ∑
p

Np(p,φ)

Np(p,φ) = ∑
r

A(p,h(p,r,φ))

∣

∣

∣

∣

2
dφ

dh
(p,h(p,r,φ))

∣

∣

∣

∣

−1

(8)

where the sum is over all the paths of different types (p) including
those with multiple roots (r).

2For the unit radius circle Ē is spread out across the fiber width of 2. The

fiber diameter does not affect S.

4.4 Summary

The theory developed in this section predicts that the light from a
directional beam will be scattered into a perfect cone and that the
distribution around the cone is a sum of three distinct scattering
modes. This leads to the following form for our new scattering
model:

S(φi,θi;φr,θr) =

MR(θ
h
)NR(η ′(η ,θ

d
);φ)/cos2 θ

d
+

MT T (θ
h
)NT T (η ′(η ,θ

d
);φ)/cos2 θ

d
+

MT RT (θ
h
)NT RT (η ′(η∗(φ

h
),θ

d
);φ)/cos2 θ

d
.

(9)

This equation derives from Equation 2 but includes generalizations
that will allow us to introduce several useful approximations in the
next section. The three terms MR, MT T , and MT RT are three sepa-
rate longitudinal scattering functions. They allow the effects of the
cuticle scales, which are different for the three modes, to be simu-
lated. The three terms NR, NT T , and NT RT are the three modes of
the azimuthal scattering function. The first two of these,

NR(φ) = Np(0,φ)

NT T (φ) = Np(1,φ),

are defined directly from Equation 8, but the computation of NT RT
will be discussed in more detail in Section 5.2.2. The function η∗

lets the effective index of refraction for NT RT depend on φ
h
, which

allows the approximation for elliptical cross sections presented in
Section 5.2.3.

Note that only the angles θ
d
, φ , θ

h
, and φ

h
appear on the right

hand side of Equation 9. Writing the Ms and Ns in terms of sums
and differences in this way emphasizes the natural symmetry of S
and will make it easy to see that the model is reciprocal.

5 A practical shading model for human hair

In this section we extend the results of the previous section into a
complete, practical model suitable for integration into a renderer.
To do this we introduce empirical functions for the longitudinal
scattering functions (MR, etc.), which the theory of smooth cylin-
ders does not predict. We also describe our approach to computing
NT RT in the presence of surface roughness and an approximation to
h(p,r,φ) that is used to compute NR, NT T , and NT RT . Finally, we
introduce convenient parameters for controlling the model.

It is important to recognize that the purpose of the model given
in this section is to capture the phenomena that are important in
rendering. The form of the model and the basic energy distribution
come from the theory presented in the previous section, but there
are many details for which a simple analysis is not available, and
we fill these in empirically.

5.1 The longitudinal scattering function M

The analysis of a smooth cylinder predicts that the reflected light
will stay exactly in the specular cone. Our hair model includes
two features that cause deviations from this behavior. First, the
interfaces are rough. As rays propagate through the cylinder, the
roughness will cause their directions to deviate randomly from the
directions predicted by the model. The overall effect is to blur the
scattered distribution, with the different scattering modes blurred to
different degrees. Second, the cuticle scales cause a tilt of the sur-
face normals relative to the ideal cylinder, which causes the scat-
tered lobes not to be centered on the specular cone.

Figure 1 illustrates how we can expect the positions of the lobes
to shift: the R mode is displaced by 2α toward the root; the TRT



Parameter Purpose Typical values

Fiber properties
η index of refraction 1.55
σa absorption coefficient (R, G, B) 0.2 to ∞
a eccentricity 0.85 to 1

Surface properties
αR longitudinal shift: R lobe −10◦ to −5◦

αT T longitudinal shift: TT lobe −αR/2
αT RT longitudinal shift: TRT lobe −3αR/2

βR longitudinal width (stdev.): R lobe 5◦ to 10◦

βT T longitudinal width (stdev.): TT lobe βR/2
βT RT longitudinal width (stdev.): TRT lobe 2βR

Glints
kG glint scale factor 0.5 to 5
wc azimuthal width of caustic 10◦ to 25◦

∆η ′ fade range for caustic merge 0.2 to 0.4
∆hM caustic intensity limit 0.5

Table 1: All the parameters of the shading model.

mode is displaced more than that far toward the tip; and the TT
mode is displaced toward the tip.3 We approximate the effects of
the scales by shifting the mean of M differently for each lobe.

MR(θ
h
) = g(βR;θ

h
−αR)

MT T (θ
h
) = g(βT T ;θ

h
−αT T )

MT RT (θ
h
) = g(βT RT ;θ

h
−αT RT )

where g(β ,x) is a unit-integral, zero-mean lobe function with width
β . In our implementation we used a normalized Gaussian function
with standard deviation β .

5.2 The azimuthal scattering function N

In this section we introduce three approximations to the azimuthal
scattering function. The first is an efficient method for solving for
paths, the second is a phenomenological model for the secondary
highlights, and the third is a simple model for glints.

5.2.1 Solving for paths

In order to find a path through a circle, we must solve Equation 3 for
the value or values of h(p,r,φ) that result in the scattering angle φ .
Because the formula for φ involves Snell’s Law and hence arcsines,
it is computationally expensive to solve for h exactly.

To simplify the angular dependence, we approximate Snell’s law
with the cubic polynomial that matches the value and derivative of
the exact expression at ±90◦:

γt =
3c

π
γi −

4c

π3
γ3

i

where c = sin−1(1/η ′) (in this expression angles γ are measured in
radians). The maximum approximation error is less than 0.75◦ for
η > 1.5.

With this approximation, φ is a cubic in γi:

φ̂(p,γi) =

(

6pc

π
−2

)

γi −
8pc

π3
γ3

i + pπ. (10)

The roots of this equation yield γi from which h is easily found. For
the R and TT cases there will always be exactly one root, whereas
the TRT case may have one or three roots.

3For the TT and TRT components the shifts depend on the incidence

angle, and for all three components the shift depends on φ , but we ignore

these effects.
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Figure 10: A plot of the shading model, under the same geometric
conditions used in Figure 4. The parameters have been adjusted to
match the behavior of the blond hair (top center plot in that figure).

5.2.2 Approximation for TRT

Our theory, which is based on smooth surfaces, predicts that the
caustics in the TRT component produce singularities in S with infi-
nite intensity. Since this is unrealistic, particularly in the presence
of surface roughness, we remove the caustic from NT RT and re-
place it with a smooth lobe centered at the location of the caustic.
The width of this lobe simulates the blurring of the caustic due to
roughness.

The angle φc at which the caustic appears can be computed from
Descartes’s formula (Equation 4) when it is defined, but for inci-
dence angles past the caustic merge it is undefined. To maintain
continuity we continue to insert the caustic at φc = 0 and fade it
out smoothly over a short range of incidence angles past the merge.
It is simplest to precisely describe this component by giving the
procedure used to compute it:

function NT RT (θ ,φ ;wc,kG,∆η ′,∆hM)
if (η ′(θ) < 2)

Compute hc, φc using η ′(θ) in (4)

∆h = min(∆hM ,2
√

2wc/|
d2φ
dh2 (hc)|)

t = 1
else

φc = 0
∆h = ∆hM
t = smoothstep(2,2+∆η ′,η ′(θ))

L = Np(2,φ)
L = L · (1− tg(φ −φc,wc)/g(0,wc))
L = L · (1− tg(φ +φc,wc)/g(0,wc))
L = L+ tkGA(2,θ ,φ)∆h(g(φ −φc,wc)+g(φ +φc,wc))
return L

In this procedure we roughly approximate the power that is re-
moved from the intensity distribution by using d2φ/dh2 to estimate
the size ∆h of the interval in h that maps within wc of φc. The
limit ∆hM is necessary because d2φ/dh2 goes to zero at the caustic
merge. The function smoothstep(a,b,x) is 1 for x < a, 0 for x > b,
and smooth in between.

The user-adjustable parameters to this function are wc, the width
of the blur for the caustics, kG, a factor to adjust the strength of the

glints, ∆η ′, the range of η ′ over which to fade out the caustic after
the merge, and ∆hM , a limit on the caustic power.

5.2.3 Approximation for eccentricity

When the fiber’s cross section is elliptical rather than circular, a
simple analytical solution for N is not available. However, the ap-
pearance of the TRT component is significantly affected by even
mild eccentricity: the angle φc at which the caustics appear changes
by ±100% over the range from a = 0.85 to a = 1/0.85. Because
eccentricities in this range are very common, it is important to ap-
proximate the effect of eccentricity on the TRT component. We do
this by using the function η∗ in Equation 9.



Changing refractive index has effects that are qualitatively sim-
ilar to changing eccentricity. One case for which it is simple to
analyze this relationship in the TRT component is paraxial paths
that are symmetric across the major axis. For these paths φi = −φr

and the reflection occurs on the major axis. If γ ′t is the angle of
incidence at the internal reflection it can be shown that

dφr

dγ ′t
= 2a2(η −1)−η .

We can use this first-order approximation to roughly match the be-
havior of the circular model to the elliptical one by using the index
of refraction η∗ = 2a2(η −1)−η +2 in the circular model.

This gives us an approximation for how the TRT component of
the scattering function changes with mild eccentricity when φ

h
is

aligned with one of the principal axes. To incorporate this approxi-
mation into the practical model, we simply interpolate sinusoidally
to define η∗ for all intermediate values of φ

h
:

η∗
1 = 2(η −1)a2 −η +2

η∗
2 = 2(η −1)a−2 −η +2

η∗(φ
h
) =

1

2

(

(η∗
1 +η∗

2 )+ cos(2φ
h
)(η∗

1 −η∗
2 )

)

As shown in Equation 9, we simulate eccentricity simply by
passing the refractive index η∗ to the code that computes NT RT
using the formulas derived from the circular case.

5.3 Summary

We have now accounted for all the terms that appear in Equation 9.
The three longitudinal scattering functions MR, MT T , and MT RT
are Gaussians. The azimuthal scattering functions NR and NT T are
evaluated directly from Equation 8, using Equation 10 to compute
h. The azimuthal scattering function NT RT is first computed using
Equations 8 and 10 with the refractive index η∗, summing over the
possibly multiple values of h, then modified by the procedure in
Section 5.2.2 to smooth out the caustics.

Depending on the type of renderer, it may be helpful in practi-
cal use to include a small amount of diffuse reflection. Although
our model does not include a diffuse component, one can easily be
added by introducing a constant term MD into Equation 9.

All the model’s parameters are collected for reference in Table 1.

6 Results

6.1 Validation

In this section we provide evidence that our assumptions about the
structure of hair are valid and that the shading model can qualita-
tively reproduce the behaviors we have seen in the measurements.

Validating the hair structure model against measurements. The
normal-plane measurement in Figure 7, which best illustrates the
glints, behaves entirely consistently with the model of a hair as an
elliptical cylinder. To show this, we have used a Monte Carlo pro-
cedure to compute the scattering due to the TRT mode in a rough
elliptical cylinder with eccentricity matching the measured value
for this individual. The figure shows the results of this numerical
experiment plotted with the results of the physical experiment. The
match in both the angular and the intensity variation in the peaks
is striking, providing clear evidence both for the explanation of the
glints as internal reflection caustics and for the model of the hair’s
cross section as an ellipse. The real data of course includes some
contributions from the other scattering modes, which is noticeable
in forward scattering, where the TRT mode does not contribute.

Figure 11: A photograph [Gray 1997] showing brown hair with a
prominent secondary highlight caused by a small light source near
the camera. Glints help give the hair its distinctive natural texture.

Validating the shading model against measurements. In order to
demonstrate the ability of our shading model to qualitatively match
the behavior of real hair, we have set the parameters to fit two of
the measurements in Section 3. In Figure 10 we show a plot of the
model adjusted to behave like the blond hair that was measured in
the incidence plane (Figure 4, top center). Note that both the small
side lobe and the broader lobe toward grazing are predicted.

The measurement in Figure 6 shows a caustic merge as incli-
nation changes. The shading model is plotted as a dashed line
along with the data, with a set of parameters that describes this
more mildly eccentric hair. The behavior of two glints merging and
disappearing matches qualitatively.

6.2 Renderings

We have implemented the shading model described in the previ-
ous section and used it to simulate light reflection from proce-
durally generated assemblies of hair fibers. We have used the
commercial “Sasquatch” rendering software (Worley Laboratories,
http://www.worley.com) to model the hair, and each model con-
sisted of 50,000–100,000 spline curves, corresponding to the aver-
age number of hairs on a human head. The shading parameters were
constant per fiber, but in some cases (noted below) we used a noise
function on the scalp to assign a random absorption to each fiber.
The azimuthal orientation of the elliptical fibers was random from
fiber to fiber but smooth along each fiber. All renderings have η =
1.55, and ∆hM = 0.5. The parameters αT T and αT RT are defined
from αR by the ratios recommended in Table 1.

We used ray tracing to render the images, accounting for occlu-
sion and shadowing but not multiple scattering between the hairs.
We represented the hairs as flat ribbons that always face the ray
direction, with a width equal to the hair diameter. This is more
efficient than using cylinders, and since our scattering function ab-
stracts away all interactions below the level of strands it is appro-
priate.

In the following results, computation was dominated by ray in-
tersection so that even though our model is substantially more ex-
pensive to compute than Kajiya’s very simple model, the increase
in rendering time was modest. For instance, switching to the new
model increased the rendering time for Figure 12 from 6 minutes to
8 minutes on a two-processor 1GHz Pentium III system.

The first set of renderings is inspired by the photograph shown
in Figure 11. Because the hair is combed into a fairly flat surface,



Figure 12: A comparison of Kajiya and Kay’s model (left) under a single point source, our proposed model (center) with the same lighting,
and the hair from the photograph in Figure 11 (removed from context to simplify the comparison). The Kajiya model’s diffuse term results in
a flat appearance, while the secondary highlight in our model correctly captures the colored shading of the real hair.

the secondary highlight is quite prominent; there is very little dif-
fuse scattering, as evidenced by the dark appearance at the top and
bottom of the hair.

We constructed an idealized geometric model to roughly match
the overall shape of the hair, without attempting to reproduce the
placement of the fibers exactly. In Figure 12 we show a rendering
of this model using settings appropriate for mildly elliptical brown
hair. The result of rendering the same model in the same lighting
using Kajiya’s model is shown for comparison. The diffuse compo-
nent required to produce an overall brown color does not adequately
predict the variation in shading that occurs in the real hair, where
the brown color comes from the secondary highlight. The same
procedural color variation is present in both images; the additional
texture from the proposed model is due to eccentricity. The param-
eters for this images are αR = 3◦, βR = 14◦, βT T = 8◦, βT RT = 22◦,
σa = (0.432,0.612,0.98) – (0.36,0.72,0.94), kG = 0.4, wc = 1.5◦,
and a = 0.9.

To illustrate the components of the model and the effect of ec-
centricity, Figure 14 shows the two highlights separately and a com-
parison between circular and elliptical hair with all other parameters
held constant. The parameters for these images are α = 3◦, βR = 8◦,
βT T = 6◦, βT RT = 15◦, σa = (0.44,0.64,0.9), kG = 0.4, wc = 1.5◦,
and a = 1 and 0.9.

To further demonstrate the capabilities of the model we include
additional results for varying light direction in Figure 15 and for
complex illumination (using the method of Agarwal et al. [2003])
in Figure 13.

7 Conclusions

In this paper we have looked at light scattering from human hair
in reality, in theory, and in rendering practice. Our measurements
show that the scattering behavior of individual hair fibers differs
significantly from what has previously been assumed in shading
models; the theory of scattering from dielectric cylinders explains
the sources of these differences; and we present a shading model
that captures the relevant visual effects, including those due to ec-
centricity, in a practical, adjustable model for use in rendering.

The most important implication of this work is that realistic ren-
dering of hair needs to account for the multiple modes of scatter-
ing that occur in cylinders. The standard assumption that the color

comes primarily from diffuse scattering is not supported by the ev-
idence in the case of fibers, and our images show that this assump-
tion limits the quality of results from current hair shading models.

The shading model we have introduced could be made more ac-
curate in future work. Two avenues for improvement are eccentric-
ity and surface roughness. It would be useful to handle more ex-
treme deviations from circularity, in order to allow us to accurately
model more types of hair. Also, the current model approximates the
effects of eccentricity on the ray density factor but not the Fresnel
factor, which limits the quantitative accuracy of the energy distri-
bution. Our model accounts for the effects of surface roughness
and the scale angle in the simplest way that is consistent with the
appearance phenomena. The true effects of these surface features
are complicated and dependent on the scattering geometry. A more
exact model of these effects could lead to a scattering model that is
more accurate for grazing angles.

Our analysis applies to many kinds of transparent fibers, so it has
implications for rendering animal hair, synthetic hair or fur, and all
kinds of cloth.

Figure 13: A hair model (62K fibers) illuminated by a complex
environment map.



(a) (b) (c) (d) (e)

Figure 14: (a–c) The components of our model for circular hair (a = 1): (a) the R component (primary highlight) alone; (b) the TRT
component (secondary highlight) alone; (c) the full model. (d) The full model for a = 0.9, showing texture due to glints; (e) an enlargement
of (d).

Figure 15: A hair model under different illumination angles. As the relative strengths of the primary and secondary highlights change, they
alter the color, brightness, and sheen of the hair.
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A Loci of reflections

In this appendix, the geometry of reflection and refraction from a
cylindrical fiber is analyzed. The set of normal vectors to a cylin-
drical fiber lie in a plane perpendicular to the axis of the fiber; this
plane is called the normal plane. The geometry is most easily visu-
alized using a unit sphere; each point on the unit sphere represents
a different direction. On this sphere, the axis of the fiber is at the
north pole and the set of normal vectors is contained in the equator
(see Figure 16a).

To analyze reflection for a given incident direction vi, consider
a particular surface normal n and the corresponding reflection vec-
tor vr. The law of reflection states that vi, n, and vr are coplanar
and n · vi = n · vr. By finding similar triangles, the reflection rule
also forces the distances of vi and vr from the equator to be equal.
This equidistance condition must hold for any normal vector. Thus,
the set of reflection vectors formed for a given incident direction
must lie on a horizontal circle at constant height that is at the same
distance from the equator as vi. This is a formal proof of the well-
known result that, in 3D, the set of reflections from a cylinder form
a cone.

Figure 16b is analogous to the previous figure, but shows the
refracted directions instead. The rule for refraction (Snell’s law)
is similar to reflection. First, vi, n, and vt are coplanar. Second,
Snell’s Law says that η sinθt = sinθi, and using similar triangles,
this law implies that the perpendicular distances to the equator, hi
and ht , also have the ratio η . This means the transmitted vectors all
lie on a circle that is a factor of η closer to the equator than vi.

By the same argument, the rays that refract again on the way out
of the cylinder will obey the equidistance condition. Furthermore,
internal reflections are no different than external reflections. The
conclusion is that all rays that exit a cylindrical fiber must lie in the
same cone as the reflected rays.

B The Bravais index

A cylindrical fiber is formed by sweeping a cross section along an
axis. Bravais has shown that the optics of a 3D cylindrical fiber may
be reduced to the 2D analysis of the optics of its cross section. The
incident direction is first projected into the cross-section plane and
then reflected and refracted in 2D. However, to model the correct
physics in 2D, the index of refraction must be changed as a function
of the angle of incidence. Bravais’s law is often used to analyze
refraction through crystals (as in ice haloes [Tricker 1970]).

Figure 16c shows the geometry of the refraction across a hori-
zontal surface. The direction vi is refracted in the direction vt . To
reduce this to a 2D problem, the vectors vi and vt are projected onto
the vertical plane containing the normal. The projected vectors are
labeled v′i and v′t . The goal is to find an effective index of refrac-
tion, η ′, such that if v′i is refracted at the boundary it will yield v′t .
First note that Snell’s Law states that sinθi = η sinθt . That is, the
length of the projection of vi onto the horizontal plane is η times
the length of the projection of vt . Since vi and vt lie in a plane,
the two triangles shown in the horizontal plane are similar. The
length of each edge of the left (incident-side) triangle is η times
the length of the corresponding edge in the right (transmitted-side)
triangle. Second, an equivalent Snell’s Law is obeyed in the verti-
cal normal plane. Here, sinθ ′

i = η ′ sinθ ′
t . But sinθ ′

i = sinθi cosγ ,
where γ is the angle between the incident vector and its projection
on the normal plane. Similarly, sinθ ′

t = sinθt cosδ , where δ is the
angle between the transmitted direction and its projection on the
normal plane. Substituting, yields sinθi cosγ = η ′ sinθt cosδ , and

substituting Snell’s Law into this equation yields η cosγ = η ′ cosδ ,
Equivalently,

η ′(γ) =

√

η2 − sin2 γ

/

cosγ.

The implication of this is that for an incident ray that makes an
angle γ with the projection plane, we can compute the projection of
the refracted direction from the projection of the incident direction
using the usual Snell’s law but substituting the effective index of
refraction η ′.

The Fresnel attenuation at the interface may be computed in a
similar way. From Fresnel’s formulas, it is straightforward to verify
that the factor for oblique incidence may be computed from the
projected angles by using η ′ for the perpendicular component of
the reflectance and a second index,

η ′′(γ) = η2 cosγ
/

√

η2 − sin2 γ

for the parallel component. We will use the notation F(η ′,η ′′,γ)
for this slightly generalized Fresnel function.


