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A theoretical and numerical study is made of the scattering of light and other electromagnetic waves from
rough surfaces separating vacuum from a dielectric. The extinction theorem, both above and below the sur-
face, is used to obtain the boundary values of the field and its normal derivative. Then we calculate the angu-
lar distribution of the ensemble average of intensity of the reflected and transmitted fields. The scattering
equations are solved numerically by generating one-dimensional surface profiles through a Monte Carlo
method. The effect of roughness ¢ and correlation distance T on the aforementioned angular distribution, as
well as on the reflectance, is analyzed. Enhanced backscattering and new transmission effects are observed,
also depending on the permittivity. The ratio o/T is large in all cases studied, and thus no analytical approxi-
mation, such as the Kirchhoff approximation (KA) and small perturbation methods, could a priori be expected
to hold. We find, however, that the range of validity of the KA can be much broader than that previously found

in perfect conductors.

1. INTRODUCTION

The scattering of light and other electromagnetic waves
from rough surfaces is a subject of broad interest. Since
the prediction of polariton localization,"* the appearance
of experimental results with rough surfaces of controlled
statistics,>* and the report of new numerical methods of
calculating scattering equations,>® there has been re-
newed activity in both experimental and theoretical re-
search.®?® In general, the phenomena studied in these
papers, such as enhanced backscattering, blaze, quasi-
Lambertian scattering, and forward scattering, are due to
multiple scattering in rather high corrugations. The nu-
merical procedures enable us to obtain new results that
are not accounted for by the analytical approximations
formerly used, namely, the Kirchhoff approximation®-2®
(KA) and the small perturbation method.?*

Scattering equations, based on the extinction theorem?®
(ET), are solved numerically. This procedure was ini-
tially applied to perfect conductors® and later extended to
real metals and dielectrics.”® On the other hand, recent
new experiments with metal and dielectric surfaces have
yielded interesting results concerning the angular distri-
bution of diffusely reflected light,*"° and it is important to
test the theory with those experiments as well as to pre-
dict new effects.

In the present paper we include a detailed study of scat-
tering from both shallow and deep interfaces separating
vacuum from a lossless dielectric medium {R[e(w)] > O,
Sle(w)] = 0, R and I denoting real and imaginary parts,
respectively, and e(w) being the dielectric permittivity}.
For the angular distribution of mean reflected and trans-
mitted intensities for s and p polarization, a numerical
method based on the ET is developed (we choose the con-
vention s and p for TE and TM waves, respectively). This
method is similar to that of Refs. 7 and 8, the difference
pertaining to the incident field, which here is assumed
to be a plane wave of wavelength A instead of a Gauss-
ian beam. Moreover, new results for the reflected and
transmitted fields are obtained here. In addition, the re-
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flectance (total normalized reflected energy) and the
transmittance (total normalized transmitted energy) are
calculated and show the influence of roughness on these
parameters. The unitarity condition, which should hold
when the reflectance and the transmittance are added, is
used as a criterion of numerical consistency of the method.

We have also worked with the KA.2-% With the use of
this simpler method, the physical nature of the phenom-
ena involved in both reflection and transmission is ana-
lyzed in some cases. Concerning light transmission, the
recent theoretical predictions, supported by experimental
measures (both results are shown in Ref. 19), are submit-
ted here to deeper research. We confirm the conjecture
of Ref. 19, according to which the range of validity of the
KA is much broader for dielectrics than was previously
found for perfect conductors.®

The one-dimensional random surfaces, which are gener-
ated by the Monte Carlo method®®% as outlined in Subsec-
tion 2.D below, possess a known Gaussian power spectrum
characterized by the rms height o and the correlation
length T of the random height. The angular distribution
of the mean scattered intensity is calculated from the av-
erage over several surface samples of length L. Several
angles of incidence 8, and surface parameters oand T are
considered. From those distributions, both the reflec-
tance and the transmittance are derived, and, conse-
quently, so is the unitarity condition. Apart from the one
dimensionality of the surfaces, from which we cannot pre-
dict cross-polarized scattering (i.e., sp or ps), there are two
other limitations in our results: first, the finite num-
ber of sampling points and the consequent finite length of
the illuminated surface L; second, the limited number
of samples over which we perform the ensemble average of
the angular distribution of scattered intensities.

This paper is organized as follows: In order to describe
the method clearly, we present the scattering equations in
Section 2; then the KA method is addressed for a dielec-
tric interface. The numerical expressions for those equa-
tions are written at the end of Section 2 in a simple
formalism. The numerical solutions obtained with the
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Fig. 1. Scattering geometry.

ET at two different regimes of T, namely, T > A and
T < A, are addressed in Section 3. Section 3 also con-
tains the predictions of the KA. In Section 4 a general
discussion of the results is given, leading to several con-
clusions, which are stated in Section 5.

2. THEORY

A. Scattering Equations

The physical system considered is shown in Fig. 1. It con-
sists of a rough interface z = D(x) that depends only on
the x coordinate and separates a semi-infinite vacuum
V{z > D(x)] from a semi-infinite dielectric medium V[z <
D(x)] characterized by a linear, spatially uniform and iso-
tropic, frequency-dependent dielectric constant e(w).

A linearly polarized monochromatic plane electromag-
netic wave is incident from vacuum upon the surface at an
angle 0, with the z axis. The components of the incident,
reflected, and transmitted wave vectors are, respectively,

K, = k,(sin 6,,0, —cos 6,), (1a)
K = £,(sin 6,0,cos 0), (1b)
K, = [e(w)]"*k,(sin 6,,0, —cos 6,), (1c)

and their moduli hold:

»N

[KJ? = [K|* = ko* = =5 = @m/A)}, (@)

K |* = e(w)ks?, 3

A being the wavelength of the incident plane wave. Since
the surface variation occurs in the x coordinate only, there
is no depolarization for either s or p incident waves;
ie., we can restrict the analysis in these cases to that
of a scalar problem. Thus the electric field for s polariza-
tion (TE waves) and the magnetic field for p polariza-
tion (TM waves) have just one nonzero component: they
component.

For s polarization, the incident electric vector is writ-
ten as

E9r) = JE?O exp(iK, - r). @

Analogously, for p polarization, the incident magnetic vec-
tor is expressed as

HOr) = jH? exp(iK, - r), (5)

where r = (x, 2), J is the unit vector along OY; and E® and
H® are complex constant amplitudes. A time-dependence
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factor exp(—iwt) is suppressed everywhere, as is the y de-
pendence of the vectors r, K,, K, and K,.

The scattered fields above the surface (reflected) and
below the surface {transmitted, only if f[e(w)] > O} are
derived by our solving the corresponding Helmholtz
equation. In what follows we study each polarization
separately.

1. s Polarization
In order to find the electric field, we must solve the follow-
ing pair of Helmholtz equations:

z > D(x), x € V),
(6a)

z < D(x), (x € V).
(6b)

VZE@9(r) + k2E(r) = 0,

VIE®(r) + e(w)k E®(r) = 0,

The superscripts (out) and (in) mean inside vacuum and
dielectrie, respectively, and E®(r) and E™(r) denote the
complex amplitudes of the electric vectors, which have
only a y Cartesian component.

The continuity conditions

[E(in) _ E(out)] X
[H(in) _ H(out)] X ﬁ

>
Il

0,
0,

and the use of Maxwell’s equations lead to (cf. Ref. 34 or
Sec. 1.1 of Ref. 35)

EC) |- = E™(0) |2=piie)» (7a)
E(out) aE(in)
G
on 2=D)(x) on 2=D(Nx)

where D™ and D denote the surface profile when ap-
proached from above (vacuum) and below (dielectric), re-
spectively, and where the normal derivative d/on is

dfon = (A - V), )]
7 being the local outward normal vector

i = (1/y){~d[D(x)}/dx, 1}. ©)

v is defined as (1 + {d[D(x)]/dx}?"2.

From the Helmholtz equations [Egs. (6)] and those cor-
responding to their respective Green functions G,(r,r’)
and G(r,r’), we have
G,(x, TV E)(x) — EC9(r"WV,2Gy(r, 1)

= A7w8(|r — YNEC ("), (10a)
G(r,¥)V/E™ () — EW)V,.2G(r,r)
= 47d(jr — r)ED(") . (10b)
In the two-dimensional geometry associated with the one-
dimensional surface under consideration, the Green func-
tions G, and G are given by the zeroth-order Hankel
function of the first kind:
G,(r,x') = miHP(k,Jr — ), (11)
Gr,r) = miHP{[e(@)]kolr — r']}. (12)

Now we integrate Eqs. (10) over the two semi-infinite vol-
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umes V and V according to the following cases:

(a) Vacuum, »' € A7 By virtue of Green’s theorem,
the integral of Eq. (10a) may be written as

= | Gt W Be) - BV Gt ) = B
reV, (13a)
= [ ar - 6. ) - B G = 0,
T JoV
reV, (13b)

where 97 means the limiting surface of the volume V,
which can be divided into two parts: the rough surface
z = D(x) and a hemisphere 2 of infinite radius in the
upper half-space. As a consequence, the above integral is
decomposed into the contributions

f de'= | dr +j as©, (14)
v 5@ 2=D(x)

the random surface element dS'~ being
dS©) = —dS™) = (—~A)AS = —fiyda’. (15)

Taking into account that the electric vector E®¥(r) in the
vacuum may be written as the sum of an incident and a
scattered (reflected) field, E¥(r) and E”(r), respectively,
we express its amplitude by

EC%(r) = EO(r) + EC(x), (16)
and, recalling the radiation condition for the scattered
field, we find that the integral over = is

[G.VE® —
3(=)

ECYG,] = 4wE®, a7

Note that, in the case of an incident plane wave, infinity
can be reached without our leaving the vicinity of the sur-
face; thus the Sommerfeld radiation condition cannot be
expressed as usual. Then, we shall say that the scattered
field satisfies the radiation condition, meaning that it is
outgoing in 2 > Dpay {Dmax = max[D(x)]}; namely, its an-
gular spectrum representation in z > D, contains only
plane-wave components propagating into z > 0. This dif-
ficulty with this kind of geometry has been discussed in
detail, for instance, in Ref. 36. A configuration in which
the usual radiation condition can be directly applied, how-
ever, is obtained by the localization of the surface through
illumination by an incident beam instead of an (infinitely
extended) plane wave.

On introducing Egs. (14), (15), and (17) into Egs. (13),
we obtain

i i ” out) IaG (l'l')
EOr) + j_ [E‘ ) —=—=—~

) E (out)(rv)

= Golr,) — ]7’ = E*r),

reV, (18a)
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E9(r) + %,- le [ ECutyy )aG o(T, 1)

- Go(x,x')

) E(out)(rr)] “o

reV, (18b)

wherer’' = [x',2' = D(x')].

(b) Dielectric, r' € V: In contrast to what occurs in
the upper half-space, no incident wave exists in the second
medium, Therefore, when applying Green’s theorem to
the dielectric volume, we see that the integral over the
lower hemisphere 2", equivalent to Eq. (17), vanishes by
our using the radiation condition for the scattered (trans-
mitted) field E, namely,

j [GVE™ — E®vG] = 0. 19)
s

With the aid of Eq. (19) and proceeding in a similar way as
we did with Eqs. (18), we obtain another two equations,
which now involve the field transmitted into the dielec-
tric E;

1 (- N ,aG(r,r’) AE(r)
- [ x| B ey 2D =0,

re 17, (20a)

=R [E‘“"(ﬂ) )

- G(l‘, )

(in)/ 44!
oE (r )] E(m)( r)
an’'

reV. (20b)

The four equations [Egs. (18) and (20)] enable us to
obtain an exact solution for the scattering of an electro-
magnetic wave from a rough one-dimensional surface.
Equation (18b) expresses how the incident field is extin-
guished inside the dielectric by sources generated over the
surface on interaction with the medium. Egquations (18a)
and (20b) describe how these source terms create both re-
flected and transmitted fields, respectively.

The aim that we pursue in this paper is to obtain the
angular distribution of the field E® = E“ — E® and
E® = E®™ in the far zone (jr|/A >> 1). First, we define
two unknown surface source functions:

E(x) = E®[x, D(x)]

= E®[x, D(x)], (21)
3 aE(out)(r)
Flw) = ‘Y[ an ]z DM)(z)
_ | B 22)
on z=D(')(x)’

where the boundary values [Egs. (7)] have been accounted
for. By introducing Egs. (21) and (22) into Egs. (18a) and
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(20a), we have

G,
0z'

G,
- D'(x')%x—,} - G,,F<x')}

= E™(r), (29)

E%r) + 217—7_ I_Z dx’{E(x')[

Y G G
S de'{E(x') [gz— - D'(x')g-;} - GF(x’)}
=0. (24)

Of course, in Egs, (23) and (24) r is evaluated in the vac-
uum half-space (V). .

By making r tend to a surface point z = D(x) + 8,
we have

g 1 ° ’ ! _q(i — rows B_GG
E%[x, D(x)] + o I_w dx {E(x )[az' D'(x") ax']
- GoF(x')} = E(x), (25a)

1 (= G G
- de'[E(x')[a— - D’(x’)g;] - GF(x’)} — o,

0z’
(25b)

where G, and G must be used according to expressions (11)
and (12): Much care for the singularities of the Hankel
functions H{® and H has to be taken when the numerical
computation of Egs. (25) is done. Whereas the singularity
of H{" for r = r' is integrable, that of H{" is not. These
singularities are extracted following App. A of Ref. 6.

Once E and F are calculated from the system of coupled
integral equations [Egs. (25)] with the singularities at
r = r' extracted, we can obtain E™ and E® by introducing
E and F into Eqgs. (18a) and (20b). Since we are inter-
ested in the far-zone intensity, we take the asymptotic ex-
pressions for the Hankel functions® as klr. . — r'| -
in a fixed direction. Namely, we make the expansion

lr>,< - r'l =y <« — |r>,< : rll»

r» and r. representing the moduli of the position vectors in
the far vacuum and dielectric zone, respectively. Accord-
ingly, the scattered field above the surface (reflected) and
below the surface (transmitted) may be written in the form

expli(k,r> — 7/4)]

Er,0) = = 5oty ®
x f " dx{hcos § — D'(x')sin G1E()
- ~ iF(x")}exp(~iK ' '), (26a)
B0 g, = SBEVehore = /4]

227V ek,r )
X j . dx'{Vek,[cos 6, + D'(x')sin 6,]E(x")
+ iF(x"exp(—iK, - r'), (26b)

6 and 0, being the angles of observation above the sur-
face and below the surface, respectively (see Fig. 1). Note
that so far no restriction has been imposed on the dielec-
tric constant. For Eq. (26b) to be valid, the transmitted
field should be propagating; i.e., fi(¢) > 0. In any other
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case, the transmitted field would be evanescent, and then
Eq. (26b) would be zero. On the other hand, Eq. (26a)
remains valid whatever the value of €(w) is. Besides, no
assumption is made about the surface apart from its one
dimensionality; concerning this point, Egs. (25) and (26)
are completely general. From now on, we will develop a
formalism specific for random surfaces, which can be ex-
tended to deterministic surfaces by suppressing the statis-
tical averages.

In practice, a finite length L of the surface is illumi-
nated; therefore the x integral in Egs. (25) and (26) is ex-
tended to the L interval only. Let us denote by I, the total
power flow, or integrated intensity, of the incident wave:

I, « [EY)L cos 0,. 27

Then the mean scattered intensities (reflected and trans-
mitted, respectively), normalized to the incident power
flow, will be

A/LYIO) = (r>/L)(|E7(r>,0)%, (28a)
/L)Y 0:) = Ve(r</L){(|E9r<,6,), (28h)

with (-} denoting the average over the ensemble of realiza-
tions of D(x). The Ve factor that appears on the right-
hand side of Eq. (28b) is due to the dependence of the
Poynting vector on the electric field:

(4m/0) S| = (hu)[E]? = (/e [H2. (29)

Finally, by introducing expressions (26) and (27) into
Egs. (28), we obtain the normalized mean scattered inten-
sities in the far zone for s polarization. The mean inco-
herent scattered intensities are easily calculated from

(VL) AILO) = (r> [LYKE (>, 0)1%) — KE(r>, 0],
(30a)

L) AIP0) = Ve(r< /LKIEr<, 00" — KE¥(r<, 0:)|.
(30b)

On integrating the mean scattering intensities [Eqgs. (28)]
over every scattering angle, we derive an expression both
for the total normalized reflected intensity (reflectance R)

/2 .
R= Il f (I"6)do 31

o Y -u/2

and for the total normalized transmitted intensity (trans-
mittance T')

1 /2
T=1

o Y —7/2

{I9,))de, . (32)

In the absence of absorption inside the dielectric me-
dium [R(e) > 0, J(e) = 0], the unitarity condition must be
satisfied:

R+T=1. (33)

2. p Polarization
In the case of p polarization, the Helmholtz equations for
the complex amplitude of the magnetic vector, which now
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has a y component only, are

z> D(x), x € V),
(34a)

z < D), > eV),
(34b)

VZH(uut)(r:) + kozH(out)(r) —_ 0’
VZH®(r') + e(w)k,2H™(r) = 0,

the superscripts (out) and (in) having the same meaning as
in Subsection 2.A.1. Also, the amplitude of the magnetic
field and its derivative satisfy the following boundary con-
ditions across the surface:

HCYr) | ;apirie) = H™X) |20 (359)
H(uut) 1 H(in)
H(x) - L [9H(r) . (35b)
an 2=D+)(x) e(w) on 2=D{)(x)

Operating as in to the case of s polarization, we finally
arrive at the four equations that form the basis for our
obtaining the solution of the scattering problem:

dJ. A. Sanchez-Gil and M. Nieto-Vesperinas

and HY extracted as mentioned in Subsection 2.A.1]:

H%[x, D(x)] + i I - dx’

2

1 (® G G
~a f_wdx'{H(x') [27 - D’(x’)%] - e(w)GL(x’)} =0
(41h)

') ] GoL(x')} = H(x), (41a)

Owing to the dependence of the Poynting vector on the
magnetic field [Eq. (29)], the mean scattered intensities
are now

L)Y O) = (r> /LY(H (>, 0)%),
/L) I, 6. = AU/ Ve) (r</L) (Hr<,0,)]%),

(42a)
(42Db)

which we straightforwardly calculate by taking into ac-
count the far-zone expressions for the complex amplitudes

y = H™(r),

~

y = Hr), reV, (36a)
reV, (36b)
reV, (37
revV. (37)

(out)/ ety }
H(t)(r) 4+ I dx’ [H(out)( l) aG (l’,l‘ ) Go(l‘, r;) aHan,(r )
(Out)/ 40’y ]
HOw + o= [ o [H i) 0 EE) G,y S
@ ' (in)¢ e’ N
__1_ [H‘""( )aG(rr) G )aHa =)
r (in) (40’ T
an
The source functions H and L are now defined as
H(x) = H*[x, D(x)]
= H™[x, D(x)], (38)
oH ©t(r)
Lix)=1vy P
_ Y H"@)
- e(w) on (39)

From Egs. (36a), (37b), (88), and (39) the far fields are

HOr0) = expzti;ﬁ:;:r:)lg/@]
X r dx'{k,[cos 8 — D'(x')sin 0]H(x")
B — iL(x")}exp(~iK - r'), (40a)
HO .0, = expli(Vekor< — m/4)]

2(27Vek,r )2
X f " dx{Vekdcos 6, + D'(x)sin 6, H(x")
+ ieL(x")}exp(~iK, ' r'), (40b)

with H and L being the solutions of the following coupled
integral equations [of course, with the singularities of H{’

of the magnetic fields [Egs. (40)]. The reflectance and
the transmittance are obtained in the same manner as in
Eqgs. (31) and (32). Hence the unitarity condition [Eq. (33)]
remains valid under the restriction mentioned above,
namely, a lossless dielectric medium.

B. Kirchhoff Approximation

For the KA, also known as the physical-optics and the
tangent-plane methods, it is assumed that the surface can
be replaced at each point by its tangent plane.”*® This
means that the field on the surface can be considered the
addition of the incident field and the reflected field, with
the use of the Fresnel coefficients. Thus, within the
scope of this approach, the field and its derivative on the
surface (from the vacuum side) are written as follows
(cf. p. 20 of Ref. 21):

for s polarization,
E®x, D(x)] = [1 + Ry(x)]E¥[x, D(x)],

oF (out)(r)
on

(43a)
] = iK, - A[l - R,(x)]Elx, Dx)], (43b)
z=D)(x)

for p polarization,

H(out)[x, D(x)] =[1 + R,(x)]H (i)[x, D(x)],

oH ©u(r)
an 2=D+)(x) h

(44a)

iK, - A1 — Ry(x)JH"[z, D(x)], (44b)
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e(w)

Fig. 2. Illustration of the local angle of incidence 9(x) at the
tangent plane.

#i being the local outward normal deviated from the 2 di-
rection an angle @ = arctan [D’(x)] and R,(x), R,(x) being
the local Fresnel coefficients®®

cos 9(x) — Ve cos 3(x)
cos 9(x) + Ve cos %(x)

Ve cos ¥(x) — cos (%)
Ve cos 9(x) + cos F(x)

R(x) = (45a)

Ry(x) =

(45b)

#(x) is the angle between K, and 7 (see Fig. 2), namely,
Hx) = 6, — a = 0, — arctan D'(x), . (46)
and 3;(x) denotes the local refracted angle

sin 9(x) = Sin\f_(x)- (47)
€

Therefore the far-zone fields are straightforwardly ob-
tained from Egs. (26) and (40) with the substitution for
the source terms E and F (H and L) [Egs. (21), (22), (38),
and (39)] of their expressions given by the KA, i.e., with
Egs. (43) and (44), namely, of

E®[x, D(x)] = [1 + Ry(x)]E®
X exp{ik,[x sin 6, — D(x)cos 8,1}, (48)

Vol. 8, No. 8/August 1991/J. Opt. Soc. Am. A 1275

of the incident light. However, we shall see in Subsec-
tion 8.B that, as a result of the lower reflectivity of a
dielectric interface, the range of validity of this approxi-
mation is broader for dielectric media than that accepted
for perfect conductors.

C. Numerical Implementation

To date, the most accurate way to solve the scattering
equations is to treat them numerically. Thus, by means
of a quadrature scheme, the integration is converted into a
summation, once the infinite limits of surface integration
are replaced by the finite length (—L/2, L/2). Proceeding
according to the numerical method described in Refs. 5-8,
we sample each surface profile with N points and then
convert the systems of integral equations [Egs. (25) and
(41)] into two systems of linear equations as follows:

for s polarization,

A9 +1 BO|[E E®
e R A
for p polarization,
A9 +1 B |[H HO
[A—I e(w)B] [L]‘z[ 0 ] 53

The vectors EY, H® E,F,H, and L have components
E® H® E,, F,, H,, and L,, respectively, which are the
functions E¥(x), H9(x), E(x), F(x), H(x), and L(x) evalu-
ated at each sampling point x, of the surface, viz.,

EY = E9%x,), HY = H%x,), (54a)
E, = E(xn)’ F, = F(xn)’ (54b)
H, = H(xn)9 L, = L(xn)’ (54c)

where x, = -L/2 + (n — 1/2)Ax (Ax = L/Nyn =1, ...,
N). The matrices A and B have elements that are

iVek,Ax D'(x,) (%n — %) = [D(xn) — D(x,)]
2 {(&m — %u)? + [D(xn) — D(x,)}

Ax
Sy = D"(x),

B - {(iAx/z)Hg"(\/Eko{(xm — %) + [D(xn) — D(x )},

(iAx/2)HP(V ekoyAx/26),

F¥4x, D(x)] = iyK, - A1 — Ry(x)]E®
X explik,[x sin 6, — D(x)cos 8,1}, (49)
H™z, D(x)] = [1 + Ry(x)H"
x expfik,[x sin 6, — D(x)cos 6,1}, (50)
L¥A[x, D(x)] = iyK, - A[l — R,(x)]H®
X explik,[x sin 8, — D(x)cos 0,]}. (51)
From these far fields, calculated within the KA, Egs. (28)
and (42) yield the corresponding mean scattered (re-
flected and transmitted) intensities for s and p polariza-
tion, respectively.

In conductors, the KA is constrained to surfaces whose
radii of curvature are much larger than the wavelength A

H?)(\/Eka{(xm - xn)2 + [D(xm) - D(xn)]z}l/z)’ m#n
, (55a)
m=n
MR (55b)
m =
1 is the unit matrix whose elements are
0 m#n
Spn = 3. .
{1, m=n (56)

The elements A, and BY, of A® and B® are also defined
from expressions (55) but with the use of the vacuum
dielectric constant (¢ = 1) instead of e. Observe that the
aforementioned singularities at vanishing arguments of
the Hankel functions, which occur in the main diagonal
of the matrix, have been rigorously integrated. Although
the singularity of H{" is not integrable in principle, it ac-
tually becomes so if we consider the factor that multiplies
it. By replacing the integration by a summation in
Eqgs. (26) and (40), we obtain, for s polarization [Egs. (28)],
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1 1
AT, -
1, {76y 8wk, L cos 6,
N
X < Ax Y {k,[cos § — D'(x,)sin 8]E, — iF,}
n=1
2
X exp{—ik,[x, sin 8 + D(x,)cos 6]} >, (57a)
1 1
20N = =
I, €60 8wk, L cos 6,

s

N
Ax 3 {Vek,[cos 8, + D'(x,)sin 6,]E, + iF,}
n=1

2
x exp{~iVek,[x, sin 6, — D(x,)cos 6,]} >, (57b)
and, for p polarization [Egs. (42)],
1
Z{T®) -
I &0 8wk, L cos 6,
N
X < Ax Y {k,[cos 8 — D'(x,)sin 0]1H, — iL,}
n=1

2
X exp{—ik,[x, sin 8 + D(x,)cos 0]} >, (58a)

E—l

8wk, L cos 0,

%(I,s”(o,» =

d

N
Ax X {Vek,[cos 6, + D'(x,)sin 6,]H, + ieL,}
n=1
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And finally, by introducing E, and F,, and H, and L, [solu-
tions of Egs. (52) and (53)] into Egs. (57) and (58), we find
the mean scattered (reflected and transmitted) intensi-
ties for s and p polarization.

The above equations for the angular distribution of the
mean scattered intensity give the KA solution if we change
the exact boundary values E and F (H and L) to those ob-
tained from Egs. (48)-(51), whose discretized values are
now written in the following form:

EX* = [1 + R,(x,)lexp{ik,[x, sin 8, — D(x,)cos 6,1},
(59)
FnKA = _iko[Dl(xn)Sin 6, + cos 00] [1 - Rs(xn)]
x exp{ik,[x, sin 8, — D(x,)cos 6,1}, (60)
HX =11 + R,(x,)lexp{ik.[x, sin 8, — D(x,)cos 8,1},
(61)
LA = —ik,[D'(x,)sin 8, + cos 6,][1 — R,(x,)]

x exp{ik.[x, sin 8, — D(x,)cos 6,1}, (62)
Notice that, since the final results are rigorously normal-

ized, the complex amplitudes E® and H® are omitted in
all the numerical expressions.

D. Random Rough Surface Model

2 The surface profile function z = D(x) is assumed to be a
x exp{~iVek,[x, sin 6, — D(x,)cos 6,1} >, (58b) statistically homogeneous and isotropic random process
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described by the following statistical properties:

(1) A mean deviation from z = 0; that is,
(D(x)) = 0. (63)
(2) Normal statistics with rms deviation o given by
o = (D)D) (64)

(8) A Gaussian correlation function ¢(r) whose width
defines a correlation length T as

c(r) = (Lo*)(Dx)D(x + 7)) = exp[—(r*/T?)].  (65)

The surface profiles are generated by the Monte Carlo
method used in Ref. 33 and further developed in Refs. 5-8.
This procedure transforms a sequence of random num-
bers, uniformly distributed between (0,1) and directly
generated by the computer into a sequence (typically of
10° numbers) with normal statistics, zero mean, and unity
variance. The appropriate surface-profile sequence with
Gaussian correlation function is obtained after the former
sequence is correlated with a Gaussian function.

For each sample of length L of the surface profile, the
scattered intensities are calculated by considering plane
waves incident at angles 6,, —6, (where 6, takes on a few
values, typically 0°,10° 20° 30° 40° 50°60° and 70°).
The angular distribution of intensity calculated for —6,
can be regarded as the mirror image of that resulting from

a plane wave incident at 6, upon the surface. Hence, in
this way, we double the effective number of samples over
which the average is made. For normal incidence, this
procedure is equivalent to that of the symmetrization of
the resulting mean distribution. Nevertheless, since the
asymmetry proves to be almost insignificant, this sym-
metrization does not significantly alter the accuracy of the
average. Calculations were carried out on a CDC Cyber
180/855. For the sake of both speed and memory, 220
and 250 sampling points have been chosen for each sample
of length L for the ET method and the KA, respectively.
The number of effective samples (2N;) over which the av-
erage is made varies between 200 and 400, depending on
the roughness regime studied. Typical values assigned to
the length L of each sample are between 20\ and 404, de-
pending on T.

3. Numerical Results

A. Results from the Extinction Theorem

In Section 2 we explained how to solve the ET equations
numerically [see Egs. (52)-(58)] when an s- or p-polarized
plane wave is incident upon a randomly rough dielectric
surface. The mean scattered (reflected and transmitted)
intensity so obtained is plotted for different values of the
surface statistical parameters (o and T'); the mean inco-
herently scattered intensity is calculated too [Egs. (30)].
Curves displaying the reflectance [Eq. (31)] versus the
angle of incidence are also given. The unitarity condition
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[Eq. (33)] is satisfied within an error smaller than 2%,
except for very large angles of incidence (generally, 6,
greater than 70° or 50° for very high € and ¢). Two main
cases are studied concerning the relationship between the
correlation length T and the wavelength of the light A.

1. Correlation Length Larger Than the Wavelength (T > A)

In order to verify the adequacy of our solution, we perform
calculations with g; T, and e(w) equal to those used in the
experiments in Ref. 9 (T = 4.69A,0 = 1.86A,¢e = 1.991).
In Fig. 3 the mean reflected intensity, for both s and p
polarization, versus the observation angle 8 above the
surface is plotted for three different angles of incidence.
The shape of the experimental curves (see Fig. 3 of Ref. 9)
is fairly well reproduced (apart from a normalization fac-
tor) in Fig. 3, although there are some quantitative dis-
crepancies in the shoulders of these curves that are
probably due to the finite record L and the differences in
estimation of oand T in theory and experiment. The au-
thors of Refs. 8 and 38 have also obtained similar results,
supporting our observations above that there is no appre-
ciable difference between the assumption of an incident
plane wave and that of a Gaussian beam. As seen in
Fig. 3, there is a clear difference between the angular dis-
tribution of scattered intensity under s and p polariza-
tions; whereas the former is more concentrated toward

J. A. Sdnchez-Gil and M. Nieto-Vesperinas

the specular direction, the latter varies less markedly
with the angle of incidence and it is skewed toward the
backscattering direction.

In this regime of correlation length, another value of T
has been analyzed (T = 3.16A). The rms deviation o
takes on two different values (¢ = 0.5A and o = 1.91), and
the dielectric permittivity is raised artificially from 2.04
to 7.5% Figure 4 shows the mean reflected intensity at
incidence 6, = 0° 10° from two dielectric interfaces (e =
2.04 and e = 7.5) with the same roughness (¢ = 1.9A and
T = 3.16A). A peak in the retroreflection direction ap-
pears for the greatest value of ¢, being larger for s polar-
ization. No backscattering peak is obtained for ¢ = 2.04
even though the roughness is exactly the same. This is in
agreement with the results displayed in Refs. 7 and 8, in
which an incident Gaussian beam stands for the incident
field. As we discuss in greater detail in Section 4, the
appearance of the backscattering peak for ¢ = 7.5 is due
to the existence of multiple scattering caused by the
higher reflectivity of this surface.

On the other hand, the mean transmitted intensity
below the surface versus the angle of observation 8, reveals .
a new effect of light transmission that has been satisfac-
torily confirmed by recent measurements'®; this effect is
seen in Fig. 5 for € = 2.04 (¢ = 1.9A and T = 3.16A):
The mean transmitted intensity is concentrated and ex-
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hibits a peak at an observation angle 6,° greater than the
angle given by Snell’s law of refraction over the mean
plane z = 0 (dotted vertical line). 6,° increases with 6,,
and it can be equal to or even larger than the straight-
through angle 6, (the little mark at the upper right of
Fig. 5). While the distribution is narrow for e = 2.04,
it becomes wider for € = 7.5. This point is further ana-
lyzed in Section 4.

If we decrease the rms deviation (o = 0.51), the coher-
ent part of the distribution of transmitted light produces
a large peak at the specular angle of refraction, namely,
that given by the aforementioned Snell law, and the re-
maining diffuse component narrowly stretches around
this direction (see Fig. 6). The distribution of reflected
light (Fig. 7), which has no appreciable coherent contribu-
tion, resembles a Gaussian function with its maximum
orientated toward the specular angle. The shape of this
distribution reminds us of the analytical solution of the
KA for perfect conductors®; in fact, as is discussed in Sec-
tion 4, the KA is valid in this case.

It is interesting to study the influence of roughness
when light incides at the Brewster angle (0, = arctan\/E)
over the mean plane z = 0. In Fig. 8 the mean reflected
intensities for 6, = arctanV2.04 = 55° and T' = 3.16A are
represented for both o = 0.5 and o = 1.9A. The distri-
bution of reflected light for p polarization, o being 0.5A,
although significantly much smaller than that for s polar-
ization, proves to be nonnegligible. Therefore, owing to
the roughness, no total transmission takes place at this
angle under p polarization, but remarkable differences

between s and p polarizations still arise. Notice that no
evidence of the Brewster angle is found for larger o [the
numerical calculation of Fig. 8(b), however, fails to yield
accurate results for 8, larger than 50°]. The reflectance
versus the angle of incidence is shown in Fig. 9 for o = 0
(plane surface), o = 0.5\, and o = 1.9 (T = 3.16A and
e = 2.04). The zero in the reflectance obtained under p
polarization for a plane surface at the Brewster angle
becomes a nonzero minimum when o is increased to
o = 0.5, which finally disappears for large roughness
(o = 1.9A). Also note the increase in the reflectance for s
polarization as the roughness grows at lower angles of in-
cidence and the opposite effect at larger values of 6, mani-

_fested by the crossover of the curves. As seen in Fig. 9,

for p polarization this crossover of reflectances makes
the variation with o and 6, more complicated. If the
plane surface were infinite, there should be no distinction
between s and p polarization in the reflectance under nor-
mal incidence (see the Fresnel coefficients, Ref. 35).
Since we use our method also to obtain the reflectance
from a plane surface, the finite length of the surface pro-
files produces an edge effect that makes both reflectances
at normal incidence noncoincident. However, this differ-
ence is within the range of the numerical error.

2. Subwavelength Correlation Length (T < A)

Here the surface parameters o = T = 0.2A (¢ = 2.04) have
been investigated. In spite of the great ratio ¢/T, the
unitarity condition displays a negligible error (less than
2%), and transmission takes place predominantly at the
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specular angle (Snell’s law). If we subtract this strong co-
herent part, which is equal for both polarizations, from
the total transmitted intensity, a diffuse part is obtained
(Fig. 10) that is broader for s than for p polarization. Un-
like the transmitted field, the reflected wave shows quali-
tative differences between both polarizations. Figure 11
illustrates this point. The mean incoherently reflected
intensities resemble those calculated for perfect conduc-
tors (cf. Fig. 4 of Ref. 6); namely, it exhibits a smooth
skewness toward the backscattering direction for p po-
larization but not for s polarization. The specular peak
grows with increasing angle of incidence. As is evident
from the reflectance (Fig. 12), the Brewster angle (9, =
55°), which does exist for a plane, does not define for this
roughness an angle of incidence with lack of reflected
light for p polarization. Of course, if o were gradually
lowered, the reflectance for p polarization at incidence
0, = 55° would decrease from its actual value to zero for

o = 0; note the curves for a plane surface, i.e., the Fresnel
coefficients in Fig. 12.

B. Results from the Kirchhoff Approximation

The KA gives an analytical solution to the scattering
problem for perfectly conducting surfaces. When a finite
dielectric constant is considered, owing to the Fresnel
coefficient’s dependence on the surface coordinates, nu-
merical computation is needed. We have outlined this KA
numerical solution in Section 2, given by introducing
Egs. (59)-(62) into Egs. (57) and (58). Expressions for the
reflectance [Eq. (31)] and the transmittance [Eq. (32)] are
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also obtained. From both equations, the unitarity condi-
tion [Eq. (33)] is also calculated so we can check the accu-
racy of this approach.

It is well known that, since the KA considers specular
reflection at the local tangent plane, it takes into account
only single scattering. Furthermore, for this approxima-
tion one assumes that each scattering event occurs in a
precise manner, with the use of the Fresnel coefficients.
This idea can be understood in mathematical terms by
looking at the equations obtained in Section 2: The KA
constitutes a first-order solution to the exact equations
[Egs. (18a) and (20b) or Egs. (36a) and (37b)]. In addition,
the fields and their derivatives at each point of the surface
are worked out from the corresponding Fresnel coeffi-
cients [see Egs. (43) and (44)]. By virtue of the aforemen-
tioned reasons, one would expect that, as in a conductor,
the surface should have a radius of curvature large com-
pared with the wavelength for the plane-tangent approach
involved in the KA to be reliable. However, if ¢ is small,
single scattering may be also observed with more indepen-
dence of T and oo This effect occurs because little radia-
tion is reflected back after the first hit so as to permit
a second scattering event. We shall see this effect in
what follows.

For a comparison with the ET solutions (Figs. 6 and 7),
we have chosen o = 0.50, T' = 3.16A, and € = 2.04. Fig-
ures 13 and 14 show the mean incoherently transmitted
intensity and the mean reflected intensity, respectively.
The agreement, as expected, is excellent, the error being
less than 2% for angles of incidence below 60° (at incidence
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of 60° or greater, the unitarity condition of the KA result
fails abruptly, indicating the inaccuracy of this solution).
The effect in transmission reported in Ref. 19 for large
roughness (o = 1.86A, T = 4.69), and e = 1.991), accord-
ing to which the angular distribution of transmitted light
is concentrated at angles closer to the forward direction
than what is predicted by Snell’s law in a plane interface,
is reproduced by means of the KA, as shown in Fig. 15.
On the other hand, Fig. 16 includes the mean reflected
intensity, which can be directly compared with the ET
plot (Fig. 3) and the experimental measures®; the approxi-
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mation drastically fails to be valid above 40° incidence and
at angles of observation larger than 50°.

For T < A, as for conductors, the value of o requires
o << T for the KA to work. For instance, for o =T =
0.2A and € = 2.04, the KA completely fails for reflected
waves. Concerning transmission, only the case of p po-
larization approaches the correct result for 6, < 20°.

4. DISCUSSION

We have seen that the phenomenon, theoretically pre-
dicted and experimentally observed,’ of light transmis-
sion through rough dielectric surfaces around the forward
direction, is also obtained by means of the KA (Fig. 15).
This effect does not appear for surfaces with small corre-
lation lengths (see Fig. 10). It can, however, be inter-
preted within the geometrical-optics approach, even
though this is only an approximate way of explaining the
scattering from surfaces whose roughness is greater than
the wavelength. According to this picture, although light
incides at a certain angle 6, with respect to the z direc-
tion, the local angle of incidence [${x) in Fig. 2] is smaller
than the global angle 6, for most of the illuminated sur-
face points, ¥(x) thus being even zero or negative. The
local Fresnel coefficients and Snell’s law thus give a re-
fraction at each sampling point much closer to the forward
direction than in the plane interface case. The relatively
small dielectric constant ensures that light is not re-
flected back after the first hit with the interface and thus
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is not multiply scattered, since the contribution of the
waves reflected from single scattering that could be scat-
tered again is negligible (see the Fresnel coefficients in
Fig. 9). Adding all these particular rays, we obtain a nar-
row distribution centered at an angle of transmission
larger than the one predicted by Snell’s law for a plane
surface z = 0. This phenomenon, which is due to single
scattering and high slope, is possible only in surfaces with
high transmissivity (low €¢) and T > A. Large rms devia-
tion o is also required for this effect to be appreciable; for
instance, oo = 0.5A (see Fig. 6) is not large enough.
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By artificially raising e, we increase the reflectivity;
hence double-scattering events take place, and this pro-
duces a broadening of the distribution of transmitted
light, which no longer peaks in a precise direction (see
Fig. 5 for € = 7.5). This higher reflectivity at larger
€ also explains the backscattering peak observed within
this regime of o and T for perfect conductors,>*?° real
metals,>*""° and dielectrics® with high e. The diagram-
matic approach of Refs. 3,4, and 20 describes how the
backscattering phenomenon can be understood in terms of
double or multiple scattering. The results presented
above (Fig. 4) show a backscattering peak for a dielectric
constant large enough to enhance doubly scattered re-
flected energy. As a matter of fact, since the reflectance
is considerably smaller for p waves than for s waves, the
peak is lower for p polarization. Therefore we can infer
that the broadening of the distribution of transmitted light
is intimately related to the enhancement in the retro-
reflection direction of the distribution of reflected light.
Both effects depend on double- or multiple-scattering pro-
cesses. Of course, we are referring to surfaces with large
correlation length and large roughness but o < 7. For
real metals and perfect conductors, the much larger reflec-
tance gives rise to a much higher peak of backscattering,
which is almost equal for both polarizations.

Keeping the geometrical-optics picture in mind, we may
easily understand the disappearance of the Brewster ef-
fect: Surface roughness implies that the local angle of
incidence takes on a range of values about the overall angle
of incidence under consideration. As a consequence, even
though light is incident at the Brewster angle with respect
to the average plane, e.g., 6, = 55° in Fig. 9, light is actu-
ally reflected at many points of the surface according to
the corresponding local angle of incidence. This effect
becomes more apparent as o increases (see Fig. 8). The
reflectance curves (Fig. 9) support this explanation. We
can qualitatively account for the behavior of the reflec-
tance at each 8, by averaging the Fresnel coefficients over
a certain interval of angles around 6,; the rougher the sur-
face, the wider the interval. This also explains why for
lower angles of incidence the reflectance for o = 1.9A is
greater than that for o = 0.5A.

If the correlation length is smaller than the wavelength,
several valleys and hills may be included within one wave-
length. Therefore scattering cannot be explained as a
local interaction between rays and plane pieces of surface.
Perturbation techniques®® have been widely applied for
this regime. Although the mathematical series thus ob-
tained converges only when o << T, the physical interpre-
tation involved in these methods is useful. The surface
roughness produces a decrease of the specular peak and a
consequent increase of the diffuse component in both re-
flection and transmission. These effects increase with o
and decrease with 0, (see Figs. 10 and 11). The qualita-
tive behavior of the mean reflected intensity (Fig. 11) does
not differ too much from that for perfect conductors,’ ex-
cept for the p-polarized specular peak not observed for
metallic surfaces.

Finally, we comment on the range of validity of the KA.
It has been clearly demonstrated that the criterion shown
in Ref. 6, established for perfect conductors, is too restric-
tive for transmission in dielectric surfaces. The resull
with o = 1.86A, T = 4.69, and 6, = 40° (o/T cos 0, =
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0.5) from Fig. 15 is similar to the ET solution of Fig. 5,
although e is slightly different in these figures (we have
plotted only a few of our computer results; when e is the
same as in Fig. 15, the coincidence with the KA is total).
Hence the criterion depends on the dielectric constant
too. The relevant point is the relative importance of the
multiple-scattering contribution. Thus, if € ensures that
the largest part of the incident energy is transmitted
through the surface after a single scattering event, mul-
tiple scattering will hardly contribute to the mean in-
tensities, even though the surface is very rough (o < T').
It should be remarked, however, that, for reflection,
although the criterion of Ref. 6 is still restrictive for di-
electrics, the KA yields worse results than those for trans-
mission at larger angles of incidence and observation, as
depicted in Fig. 16.

5. CONCLUSIONS

From the results obtained in this paper, some important
conclusions can be drawn concerning the scattering of
light and other electromagnetic waves from rough random
dielectric surfaces:

(1) The anomalous refraction encountered for T' > A
and large o is due to single scattering. For this reason,
the KA yields a good account of this effect.

(2) The broadening of the distribution of transmitted
light for T > A when e is increased (the reflectance then
growing with e) is due to double- and higher-order scatter-
ing events. The backscattering peak appearing in the
mean reflected intensity is also produced by multiple scat-
tering. The larger reflectance of the s-polarized waves
implies a stronger enhancement in the retroreflection di-
rection for this polarization. Therefore this enhanced
backscattering appears in the same surfaces in which the
broadening of the transmitted light distribution occurs.

(3) The Brewster effect disappears as o is gradually
increased. The reason is the net contribution from points
on the surface at which light is locally incident at angles
different from this overall Brewster angle. Curves show-
ing the reflectance (Fig. 9) versus the angle of incidence
demonstrate this point. The same argument explains
why the reflectance increases with o

(4) The range of validity of the KA is broader for di-
electrics than for perfect conductors. Also, this adequacy
of the KA for dielectrics is much wider for transmission
than for reflection. Since the dielectric transmits practi-
cally all the incident energy in the first scattering events,
the contribution from multiple scattering is almost negli-
gible even for relatively high roughness parameters.
However, like that in perfect conductors, the KA fails
atT < Aunlesso < T.

(5) Surfaces with small T produce a diffusely trans-
mitted component that increases with o values; the specu-
lar peak decreases.

The numerical method used here, based on the ET, thus
is revealed as a useful tool to solve the scattering from
rough random dielectric surfaces.

Finally, we note the recent paper® by Saillard and
Maystre, which addresses some aspects dealt with here on
the reflectivity, including results similar to those of Fig. 3.
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