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Coherent scattering of light by a single quantum emitter is a fundamental process at the heart of many

proposed quantum technologies. Unlike atomic systems, solid-state emitters couple to their host lattice by

phonons. Using a quantum dot in an optical nanocavity, we resolve these interactions in both time and

frequency domains, going beyond the atomic picture to develop a comprehensive model of light scattering

from solid-state emitters. We find that even in the presence of a low-Q cavity with high Purcell

enhancement, phonon coupling leads to a sideband that is completely insensitive to excitation conditions

and to a nonmonotonic relationship between laser detuning and coherent fraction, both of which are major

deviations from atomlike behavior.

DOI: 10.1103/PhysRevLett.123.167403

The scattering of light by quantum emitters is the

foundation of quantum optics. First observed in atoms

[1,2] and studied extensively in self-assembled quantum

dots (QDs) [3–6], coherent scattering attracts interest as the

scattered light retains the coherence of the laser rather than

the emitter. As such, the photon coherence may exceed the

conventional radiative limit while still exhibiting anti-

bunching on the timescale of the emitter lifetime [3–6].

These properties underpin key quantum technologies such

as generating tuneable single photons [7–9], realizing

single photon nonlinearities [10–14], and constructing

entangled states between photons [15,16] or spins [17,18].

Coherent scattering occurs in the weak excitation regime

where photon absorption and emission become a single

coherent event. For a two-level “atomic picture" with only

radiative decay and pure dephasing, the coherent fraction

(FCS) of the total emission is [19]

FCS ¼
T2

2T1

1

1þ S
; ð1Þ

where S ¼ ðΩ2T1T2Þ=ð1þ Δ
2

LXT
2

2
Þ is a generalized satu-

ration parameter, Ω is the Rabi frequency, ΔLX ¼ ωL − ωX

is the laser (ωL) and emitter (ωX) detuning, and T1 and T2

are the emitter lifetime and coherence time, respectively.

This expression predicts that the fraction of coherently

scattered light reaches unity when driving well below

saturation (S ≪ 1) with transform-limited emitter coher-

ence (T2 ¼ 2T1).

Solid-state emitters (SSEs), particularly self-assembled

QDs, are attractive owing to their high brightness and ease of

integration with nanophotonic structures. Unlike atoms,

SSEs can experience significant dephasing from fluctuating

charges [20,21] and coupling to vibrational modes of the

host material [22,23]. Despite this, InGaAs QD single

photon sources have demonstrated essentially transform-

limited photons emitted into the zero phonon line (ZPL)

[24–26] achieved through sample optimization, exploiting

photonic structures, and by using resonant π-pulse excita-

tion at cryogenic temperatures. These results show that ZPL

broadening can be effectively suppressed, but coupling to

vibrational modes also leads to a broad phonon sideband

(PSB) in the emission spectrum [23,27–32]. This is attrib-

uted to a rapid change in lattice configuration of the host

material during exciton recombination and photon emission,

leading to the simultaneous emission or absorption of

longitudinal acoustic (LA) phonons. Therefore, to obtain

perfectly indistinguishable photons, the PSB must be

filtered out, naturally limiting the device efficiency, even

when using an optical cavity to Purcell enhance emission

into the ZPL [31,33].
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These studies highlight the importance of phonon

coupling in the incoherent resonance fluorescence regime,

where there is a definite change of charge configuration in

the QD. It is perhaps natural to presume that phonon

coupling is eliminated in the coherent scattering regime,

since there is vanishing exciton population and therefore no

change in charge configuration. This would imply that, in

accordance with prior work [3–5], one may adopt the

atomlike picture of Eq. (1), where the coherent fraction

tends towards unity for excitation far below saturation and

transform-limited coherence. However, recent theoretical

work predicts the presence of PSBs even at vanishingly

weak resonant driving [30].

Here, we experimentally verify that PSBs persist in the

coherent scattering regime and demonstrate additionally

that phonon processes also cause large deviations from

atomlike physics when driving off resonance. By extending

the theory presented in Ref. [30] to include an optical

cavity, we fully model our solid-state nanocavity system,

providing an intuitive picture that attributes the PSB to

phonon dressing of the optical dipole moment. This leads to

a finite probability that the vibrational environment changes

state during a scattering event, implying that all optical

spectral features will have an associated PSB. While a QD

is studied here, the physics and methods apply to a diverse

range of SSEs, including diamond vacancy centers [34,35],

carbon nanotubes [36], and defects in hexagonal boron

nitride [37,38].

We study a neutral exciton (jXi) in a self-assembled

InGaAs QD that is weakly coupled (ℏg ¼ 135 μeV) to a

photonic crystal cavity (linewidth ℏκ ¼ 2.51 meV). A

previous study of this device [26] established T2 ¼ 2T1

under weak resonant excitation and a Purcell factor

FP ¼ 43 when the QD transition was centred on the cavity

mode. Here, the transition is detuned 0.4 meV to higher

energy, reducing FP to ∼37 corresponding to T1 ¼ 25 ps

[26]. As well as Purcell enhancement, the cavity also

acts as a weak spectral filter; this combination reduces the

PSB component of the emission [31,33]. Figure 1(a)

illustrates the experiment: The sample is held at T ¼
4.2 K and excited by a tuneable laser that is rejected by

cross-polarized detection (typical signal to background

>100∶1). The coherence of the scattered light is studied

either in the time domain by measuring fringe contrast vðτÞ
with a Mach-Zehnder interferometer or in the frequency

domain using a spectrometer or a Fabry-Perot interferom-

eter (FPI) (details in the Supplemental Material [39]).

We begin with a high resolution time-domain measure-

ment, exciting resonantly below saturation (S ¼ 0.25)

where coherent scattering is expected to dominate. The

measured fringe contrast vðτÞ is proportional to the envelope

of the first-order correlation function gð1ÞðτÞ [39]. The result
in Fig. 1(b) departs significantly from the monoexponential

radiative decay predicted by atomic theory (dashed line);

a rapid decay of coherence occurs in the first few pico-

seconds, comparable to phonon dynamics observed in

pulsed four-wave mixing measurements of InGaAs QDs

in the incoherent regime [40–42], suggesting that the rapid

loss of coherence we observe originates from electron-

phonon interactions.

To describe this behavior, we account for the microscopic

nature of the QD-phonon coupling [43] by applying the

polaron transformation to the full system-environment

Hamiltonian. This dresses the excitonic states of the system

with phonon modes, allowing derivation of a QD master

equation (ME) that is nonperturbative in the electron-phonon

(b)(a)

FIG. 1. (a) Schematic of the experiment: BS, beam splitter; CCD, charge-coupled device (camera); FPI, Fabry-Perot interferometer;

LP, linear polarizer; SM, single mode fiber; SPAD, single photon avalanche diode; Δϕ, phase shift; τ path length difference.

(b) Measurement of the first-order correlation function [gð1ÞðτÞ] at S ¼ 0.25 with ΔLX ¼ 0. The emission contains a phonon sideband

(F PSB), incoherent resonance fluorescence (F inc), and coherently scattered (FCS) fractions. Experimental measurements of fringe

contrast (red circles) agree well with a calculation using the polaron master equation (solid red line) where the phonon coupling strength

α and cutoff frequency νc are the only free parameters. A pure dephasing model (dashed red line) decays monoexponentially and cannot

capture phonon dynamics. Inset: An experimental spectrum (blue triangles) measured simultaneously is also well reproduced by the

polaron model (blue line) with the same parameters. The calculated spectrum is convolved with the spectrometer instrument response in

order to reproduce the observed ZPL width.
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coupling strength [30,39,44–46]. In the polaron frame,

the first-order correlation function is g
ð1Þ
polðτÞ ¼ GðτÞg

ð1Þ
optðτÞ

[30], where g
ð1Þ
optðτÞ is the purely optical contribution found

using the polaron frame ME, while GðτÞ ¼ B2 exp½φðτÞ�
is the phonon environment correlation function accounting

for non-Markovian phonon relaxation. The response

of the phonon environment to the exciton dynamics

is contained within the phonon propagator φðτÞ ¼

α
R
∞
0

νe−ν
2=ν2c ½cosðντÞ cothðν=2kBTÞ − i sinðντÞ�dν and the

Franck-Condon factor B ¼ exp½−φð0Þ=2�. We refer the

reader to the Supplemental Material [39] for a detailed

discussion of these terms. The QD-phonon coupling is

thus specified by the thermal energy kBT, the deforma-

tion potential coupling strength α, and the cutoff frequency

νc [27,43,47]. The cavity leads both to Purcell-enhanced ZPL

decay (included within the ME) and spectral filtering of the

emission [31]. To go beyond the theory presented inRef. [30],

we must formally incorporate cavity filtering into the steady-

state correlation function. This is done by solving the

Heisenberg equations ofmotion for the cavity field operators,

taking careful account of the time ordering of the appropriate

operators [39]. This leads to the detected correlation function

g
ð1Þ
D ðτÞ ¼

Z
∞

−∞

h̃ðt − τÞg
ð1Þ
polðtÞdt; ð2Þ

where h̃ðtÞ ¼ expð−iΔXCt − κjtj=2Þ is the cavity filter func-
tion, and ΔXC is the exciton-cavity detuning [39].

By fitting the phonon part of Eq. (2) to the first few

picoseconds of the measurement, we extract α ¼ 0.045 ps2

and νc ¼ 1.3 ps−1, comparable to previous InGaAs QD

values [48]. Fixing all other parameters to independently

measured values, we accurately reproduce the full exper-

imental dynamics [solid line in Fig. 1(b)]. After phonon

relaxation, radiative decay associated with incoherent

resonance fluorescence occurs between τ ¼ 20 and

200 ps. Finally, at τ ≫ 200 ps, vðτÞ plateaus, correspond-
ing to the coherent fraction of the emission which inherits

the laser coherence. From the vðτÞ amplitudes, we extract

F PSB ¼ 0.06, F inc ¼ 0.14, and FCS ¼ 0.80 for the PSB,

incoherent, and coherent fractions of the total emission (F ),

respectively. A finite F PSB at weak driving indicates that

Eq. (1) does not fully describe the measurements.

To verify these parameters, we move to the frequency

domain, where the intensity as a function of emission

frequency (ω) is calculated by Fourier transforming g
ð1Þ
D ðτÞ

and may be written as SðωÞ ¼ HðωÞ½SoptðωÞ þ SSBðωÞ�,

where HðωÞ ¼ ðκ=2Þ=½ðω − ΔXCÞ
2 þ ðκ=2Þ2� is the fre-

quency-domain cavity filter function [31,49,50]. The spec-

trum contains both a purely optical part,

SoptðωÞ ¼ B2

Z
∞

−∞

goptðτÞe
iωτdτ; ð3Þ

with coherent and incoherent contributions, and a second

incoherent component,

SSBðωÞ ¼

Z
∞

−∞

½GðτÞ − B2�goptðτÞe
iωτdτ; ð4Þ

which gives rise to the PSB [30,31]. The ZPL contribution

is thus reduced by the square of the constant Franck-

Condon factor B2, with the missing fraction emitted

through the PSB.

Figure 1(b) (inset) illustrates that the parameters

extracted from the time-domain dynamics lead to excellent

agreement between the experimental (blue triangles) and

theoretical (solid line) spectra, with a broad PSB observed

in accordance with the short timescale of the phonon

processes. These combined time- and frequency-domain

measurements provide critical insight into the nature of

electron-phonon interactions in driven QDs: Even well

below saturation, where the excited-state population is

small and coherent scattering dominates, a PSB is present,

comprising ∼6% of the emission.

We now measure the resonance fluorescence spectrum as

a function of the saturation by varyingΩ. Figure 2(a) shows

a spectrum taken well above saturation (S ¼ 10) exhibiting

a ZPL (yellow fit) and a PSB [SSBðωÞ, red fit]. High

resolution spectroscopy of the ZPL with the FPI results in

the inset of Fig. 2(a), which exhibits a broad linewidth

(2=T2 ≈ 25 μeV, transform limited) contribution from

incoherent resonance fluorescence (blue fit) and a narrow

feature from coherent scattering (green fit). As in the time

domain, the total spectrum thus comprises three compo-

nents whose fraction of the total emission can be evaluated

from their areas (details in Ref. [39]).

Figure 2(b) shows the evolution of the components of the

resonant (ΔLX ¼ 0) scattering spectrum as a function of S.

The polaron model agrees well with the experiment and

produces a curve for FCS (green dashed line) that is

proportional to ð1þ SÞ−1 like Eq. (1). However, as

previously predicted [30], FCS does not reach unity for

vanishing S, a surprising result that may be explained by

observing that the PSB fraction F PSB (red diamonds) is

independent of Ω. This contrasts with excitation-induced

dephasing (EID), another process captured in our model

that arises from LA phonon mediated transitions between

the dressed states of the optically excited emitter [48,51].

For EID, the rate is proportional to ðΩ2 þ Δ
2

LXÞ and thus is

negligible for resonant driving below saturation.

The results of Fig. 2(b) can be understood by considering

the possible scattering channels illustrated in Figs. 2(c) and

2(d). The optical transition j0i → jXi (solid black levels) is
dressed with vibronic bands corresponding to emission or

absorption of a LA phonon (gray shading). In the simplest

case [Fig. 2(c)], a laser photon coherently (Rayleigh)

scatters directly from the exciton transition. However,

the phonon dressing of the optical transition results in
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nonzero overlaps between vibronic states in the ground-

and excited-state manifolds, such that a scattering event can

end in a different vibrational state within the ground-state

manifold [Fig. 2(d)]. This corresponds to inelastic Stokes

(anti-Stokes) scattering of a lower- (higher-) energy photon

accompanied by the emission (absorption) of a LA phonon,

leading to the emergence of a PSB. At low temperatures,

phonon absorption is suppressed, resulting in the character-

istically asymmetric PSB. From Eqs. (3) and (4), the

branching ratio between phonon-mediated inelastic and

elastic scattering is determined solely by the constant B2.

Outside the Mollow triplet regime, the coherent (S ≪ 1)

and incoherent (S ≳ 1) resonant scattering spectra of a SSE

thus differ only in the width of the ZPL. As such, while

coherent scattering is often cited as a route to highly

coherent single photons, it cannot negate the PSB.

To gain further insight, we consider the effect of

detuning the laser from the emitter. Figure 3(a) shows

spectra taken at constant Ω with laser detuning ℏΔLX ¼
�0.27 meV. The coherent peaks at ℏΔLX are separated

from the ZPL and dominate the spectrum. For positive

detuning (blue), it is noticeable that the high-energy edge of

the sideband is shifted by ∼ℏΔLX. Considering Eq. (4), we

see the time-domain product implies a convolution in

frequency between the purely optical spectrum and the

frequency-space phonon correlation function. As such, all

optical features in Sopt have an associated PSB; the coherent

peak (and associated PSB) shifts with ΔLX, but the total
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FIG. 3. Phonon influences in detuned (ΔLX ≠ 0) coherent scattering. (a) Semilog spectra (normalized by integrated intensity) for

ΔLX ¼ �0.27 meV (blue/red) at constant ℏΩ ¼ 5.7 μeV. Inset: Theoretical spectrum. (b)FCS vsΔLX at constant ℏΩ ¼ 25.6 μeV: gray

circles, experimental FCS extracted as in Fig. 1(b); red lines, polaron master equation; green lines, atomic model, both models include

additional pure dephasing and spectral wandering [39] and have upper and lower bounds from uncertainty in Ω. (c) For ΔLX > 0,

emission of a LA phonon can populate jXi, allowing incoherent relaxation. (d) For ΔLX < 0, populating jXi requires LA phonon

absorption which is weak at T ¼ 4.2 K.
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PSB fraction is still a constant B2. Theoretically [Fig. 3(a)

inset], we also expect the low-energy edge of the PSB to

shift for negative detuning (red spectrum); experimentally,

this is obscured by weak incoherent backgrounds owing to

low count rates at large ΔLX.

Further deviations from atomic behavior can be seen

when driving off resonance. Compared to the experiment,

both the atomic and polaron theories significantly over-

estimate the coherent fraction off resonance. We tentatively

suggest that this is due to the reduced scattering cross

section of the QD when driving off resonance, allowing

detuned laser light to instead be absorbed by the doped bulk

material [52], leading to charge noise. To capture the

associated detuning-dependent dephasing γðΔLXÞ in both

the atomic and polaron models, we assume a Lorentzian

profile with width fixed to the QD natural linewidth

(1=T1 ¼ 25 μeV) [39], mimicking the absorption profile

of the QD. We find the amplitude of γðΔLXÞ to be γmax ¼
21 μeV by fitting the data, with γð0Þ ¼ 0 reflecting the

transform-limited coherence observed for resonant driving

in Fig. 2. Spectral wandering is then accounted for by

convolving with a Gaussian noise function [39].

In Fig. 3(b), bounds (from uncertainty in Ω) of the

atomic (green) and polaron (red) models are plotted.

Experimentally (gray circles), FCS is evaluated as in

Fig. 1(b). In contrast to the atomic theory, where Eq. (1)

predicts FCS only ever increases with jΔLXj, the measured

data only increase close to resonant driving where EID

[48,51] is small. For 0.1 meV < jΔLXj < 0.4 meV, EID

becomes significant and the coherent fraction decreases

with a noticeable asymmetry, as predicted by the polaron

model. This asymmetry originates from the phonon dress-

ing of the optical transition; when ΔLX > 0 [Fig. 3(c)], jXi
can be populated through the emission of a LA phonon

[53–55] (purple arrow), increasing incoherent scattering

(orange arrow). For ΔLX < 0 [Fig. 3(d)], populating jXi is
inhibited at T ¼ 4.2 K as it requires phonon absorption

[56,57]; for ΔLX < −0.5 meV, this becomes sufficiently

weak thatFCS begins to increase again towards the limiting

atomic case. This deviation from the atomic model has

implications for schemes involving detuned coherent scat-

tering, such as generating single [8,9] or entangled [15,16]

photons.

We have shown that a fixed fraction of light scattered

from a solid-state emitter is always lost through a phonon

sideband, irrespective of excitation conditions such as Rabi

frequency or detuning. Furthermore, the detuning depend-

ence of the coherent fraction is strongly modified by the

presence of phonon coupling, contradicting the atomic

prediction that the coherent fraction will increase mono-

tonically with detuning. These results can be understood by

considering phonon dressing of the optical transition of the

QD and illustrate the importance of employing an appro-

priate model of phonon coupling rather than assuming

atomlike physics when driving weakly or off resonance.

For example, treating phonons in a pure-dephasing

approximation [e.g., Eq. (1)] suggests they may be sup-

pressed simply by increasing the Purcell factor. This is

directly contradicted by the clear separation of phonon and

radiative timescales in Fig. 1(b), with the phonon sideband

persisting despite a large Purcell enhancement. Although a

high-Q cavity would increase the fraction of light coher-

ently scattered from the emitter, this cannot be done

arbitrarily due to the emergence of additional phonon-

induced dephasing [31]. The methods developed here can

be used to optimize quantum information protocols such as

spin-photon entanglement schemes for realistic solid-state

emitters.
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