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Light scattering in strongly scattering media;
Multiple scattering and weak localization

Martin B. van der Mark, Meint P. van Albada, and Ad Lagendijk

Natuurkundig Laboratorium der Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The N

(Received 27 April 1987)

Recently the interest in interference effects in multiple (elastic) scattering of waves has undergone
an important revival due to the discovered connection with Anderson localization. In this paper we
discuss a rigorous scalar wave theory as a model to represent the enhanced backscattering (weak lo-
calization) of light for finite slabs. In addition, we discuss a general theory based on a diffusion ap-
proximation, and the resulting angular-dependent enhanced backscattering intensity will be present-
ed in closed form for finite slabs and for general albedo. New transmission and reflection experi-
ments for strongly scattering media are presented. Two types of liquid suspensions have been used
as study object: polystyrene spheres in water and suspensions of TiO, particles in 2-methylpentane-
2,4-diol. From these experiments scattering mean free paths and transport mean free paths have
been obtained. Relative values for the transport mean free paths could also independently be in-
ferred from the observation of the angular dependence of enhanced (interference) backscattering.
The observed shapes and widths of the enhanced backscattering cones are in very good agreement
with the calculated values. A less satisfying feature is that the theory predicts a backscattering in-
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tensity of twice the background intensity, while the experimental value is some 15-20 % lower.

I. INTRODUCTION

Recently the connection between multiple elastic
scattering and the possibility of localization of waves, on
the one hand, and Anderson localization of electrons, on
the other hand, has attracted a great deal of attention.'
The experimental observation of weak localization of
light'®~ 15 has brought these discussions on a more realis-
tic level. Essentially weak localization of light is the
phenomenon of enhanced backscattering from a random
medium due to interference effects which occur over dis-
tances much larger than the mean free path.'>'®!7 The
connection with universal conductance theories'®!® of
electrons has been pointed out.!%!420

Much insight in the field of multiple light scattering
has already been gathered, but some results may have es-
caped the attention of workers in the field of weak locali-
zation of waves, because most results have been commun-
icated in either astrophysical literature or in more techni-
cal journals. Characteristics of multiple light scattering
like attenuation, depolarization, anisotropy, etc., are of
essential importance in understanding the radiation field
in an atmosphere.! Even effects as enhanced back-
scattering have been known in the astrophysical com-
munity (Gegenschein or opposition effect),’*?* although
different explanations, not involving interference, have
been put forward. Excellent books on (multiple) light
scattering have been published.?*~ 2}

From the theoretical side a theory is needed which de-
scribes the occurrence of weak localization of light in a
finite slab. Two basic simplifications are usually made:
(i) supposition of isotropic scalar scattering and (ii) as-
sumption that the scattering can be described with a
diffusion equation. We have relaxed one of these approx-
imations by not resorting to the diffusion approximation.
The theory we developed is essentially a rigorous
simplification of the work of Tsang ad Ishimaru.!'®
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Through this simplification we can handle slab widths up
to 32 mean free paths with albedo equal to one without
numerical problems. Our theory is an isotropic scalar
scattering theory, which means that it can only be used
for the experimental results in which incident and detect-
ed polarization are parallel. Recently Stephen and Cwil-
lich have treated the phenomenon of weak localization of
vector waves in the Rayleigh limit; however, they relied
on the diffusion approximation.?’ Akkermans et al. have
introduced a diffusion approximation for a semi-infinite
slab and conservative scattering (albedo of 1).!7 We will
present an extension of the diffusion approach here to in-
clude finite slabs and nonconservative scattering in closed
form. This theory will be compared with the rigorous
theory. This is important in view of the fact that the ob-
servation of the breakdown of diffusion theory for thick
slabs (Anderson localization) will very likely involve the
study of finite size effects of the sample.

In all the recent reflections on localization of waves key
parameters are the scattering mean free path A, (defined
as the reciprocal of the turbidity) and transport mean free
path A,,.. In this paper we report on systematic studies of
these parameters. Our random media are suspensions of
dielectric particles in a liquid. Two types of suspensions
have been studied in detail: polystyrene spheres in water
and rutile particles in 2-methylpentane-2,4-diol. Our ex-
periments consist of detection of elastically scattered ra-
diation both at and in the neighborhood of the forward
and the backward directions. In the backward direction
one observes an enhancement due to constructive in-
terference, a phenomenon which is now known as weak
localization of light. Parameters which have been varied
in this study are for the polystyrene suspensions concen-
tration, particle size, and thickness of the cell, and for the
TiO, suspensions concentration and thickness of the cell.
By using a special “difference technique” we have been
able to observe low-order and high-order scattering pro-
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cesses independently.'® !’

This paper is organized as follows. In Sec. II we will
review some scattering formalism, and treat our scalar
isotropic theory. In Sec. III we will introduce a diffusion
approach to these scattering equations, and compare this
approach with the exact theory. In Sec. IV we will
present our experimental data and interprete them as
much as possible with the newly developed theory.

1I. MULTIPLE-SCATTERING THEORY
OF FINITE SLABS

A. Introduction

Systematic perturbation theory in terms of diagram-
matic expansions is a fruitful way of describing wave
propagation in random media. A very useful review has
been published by Frisch.’® One immediately distin-
guishes two cases as far as the character of the inhomo-
geneities is concerned. In continuous media it is not pos-
sible to pick out separate scattering particles whereas in
media consisting of discrete scatterers individual scatter-
ing centers can be distinguished. The first case is more
difficult as one needs all higher (static) spatial correlation
functions to characterize the medium. In the continuous
medium one usually relies on some simplifying assump-
tion as (Gaussian) decoupling of higher-order processes.
When dealing with single scattering units it is sometimes
possible to find the scattering matrix S of the individual
particles. Strictly speaking this is only possible when the
particle is spherical (Mie scattering). (For a collection of
papers dealing with single-particle scattering of arbitrary
shape, see Ref. 31).

The system we will study is a collection of identical
random scatterers in a slab. The direction perpendicular
to the slab is the z direction and the slab is confined
within [0,d], so d is the thickness of the slab.

B. Amplitude Green’s functions

In the one-particle case it is useful to separate the fluc-
tuating part of the dielectric constant from the (empty)
medium part as

nir)=n?[1+u(n)], (1
in which case the wave equation can be written as
AW(r)+k3W(r)= —p()ki¥(r), (2)

where k, is the magnitude of the wave vector associated
with the empty (that is without scatterers) medium,
ko=2m/A. The empty-space Green’s function for the
amplitude is defined as the solution of

Ag(ry, 1) +k3g(r,r,)=8(r,—r,), (3a)
which is given by
expliky [r;—r15])

_ - « 3
g(r,,ry) pry—— (3b)

Defining an incoming wave W, (r;) as the solution of the
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FIG. 1. Born series for the scattering operator.

wave equation without the presence of the scatterer, Eq.
(2) can be transformed into

W)=V (r)— [ glr,r)ulr)kdW(r)dr, . @

This equation can be solved formally by introducing the
scattering operator S(r,,r,):

\I‘( rl ): Wim(r, )
+ [ g(r, 1S (0, 1)W, (r3)drydry (5)
Clearly the first-order solution is

S(rl,r2)=—/.t(r])k(z)S(rl—rz) . (6)

Iteration of Eq. (4) results in an explicit sum of scattering
events (we will not bother with the convergence of these
series here). Each term in the series represents a higher-
order scattering contribution (still for one particle). In
Fig. 1 we have depicted this series for S in diagrams,
where the conventions for drawing of diagrams of Fig. 2
have been used. To facilitate the treatment of many
scatterers the particle has been labeled a. Defining the
Fourier transform of S(r,,r,) with respect to wave vec-
tors k;, and k,, (incoming and outgoing wave vectors) re-
sults in the quantity S(k.,,k;,), with k;, on shell:
ki, =k,; in general, the Fourier transform of a quantity
A(ry,1,) has as prefactor (27) 2 unless explicitly defined
differently. The scattering amplitude f(k_,.,k;,) is intro-
duced as

f(koul’kin)= -zvzs(kout’kin) ’ 7

which by integrating over all scattering angles can be re-
lated to the scattering cross section

Usc(kin): f If(kout,kin)] Q. (8)

The optical theorem can be used to relate the cross sec-
tion to the imaginary part of the S matrix for forward
scattering.*°

To discuss the many-particle problem we have to modi-
fy Eq. (1) into

nin)=n?[14+ Sur—r1,) |, 9
a
g empty-space Green’s function
G full Green’'s function
2
O -Mk o one-particle Born operator

single~particle scattering operator
connection to identical particle

FIG. 2. Drawing convention for elements of diagrams.
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where the summation is over the scattering centers. The
full Green’s function for the amplitude is defined as the
solution of

AG(ry, 1)+ k3n*(r))G(r,1,)=8(r,—1,) . (10)

In many cases of Green’s-function theory of random
media statistical homogeneity is obtained by averaging
over all the possible positions of the particles with, if
necessary, taking into account particle-particle correla-
tions. This gives rise to averaged Green’s functions,
which are defined by

(G(k, k) =G (k)dk,—k,) , (11a)
or in real space
(G(r,1)) =G (r,—1,) . (11b)

As averaged amplitude Green’s functions depend only on
one wave vector (or on one space coordinate) no con-
fusion should arise with nonaveraged Green’s functions.
The difference between an empty-space Green’s function
and an averaged Green’s function is that the former re-
lates to the homogeneous medium without the presence
of scattering units whereas in the latter a situation is de-
scribed in which a configurational average has been per-
formed with respect to the positions of all scattering par-
ticles. Only when matrix notation is used, explicit angu-
lar brackets will be employed to avoid confusion between
averaged and nonaveraged quantities.

A useful equation can be obtained from Eq. (10) by in-
troduction of the mass operator 2(r) defined by

G(r))=g(r))+ [ glr;—ry)S(r,—13)G(r;)dr,dr; .
(12)

In order to allow for some formal manipulations and to
get a more concise notation Eq. (12) can be put in matrix
notation,

G=g+g3G , (13)
which can be formally solved as
G=(g '=-3)!. (14)

In wave-vector space this inversion can be carried out im-
mediately as

G(k)=g(k)+g(k)Z(k)G (k) , (15a)
which results in
Gk)=[gk) '—2(k)] " '=[k3—k*—2(k)]"'. (15b)

From (15b) it is clear that the average Green’s function
deviates from the empty-space Green’s function by an
effective wave vector K=K’'+iK'", the magnitude of
which is given by K*=kJ}—3(k). The real part of K
(K') describes a renormalized index of refraction and the
imaginary part of K (K"') is connected with the (scatter-
ing) mean free path (inverse of the turbidity).

In Fig. 3 a diagrammatic expansion is given for the
mass operator in case of absence of particle correlations.

3577

__________

2= X 4+ XX+ kX

FIG. 3. Lowest-order contributions to the self-energy.

Successive scattering events cannot relate to the same
particle, since they are already contained in the scattering
operator S(k;,k,). In the low-density approximation one
finds [retaining only the first term of the expansion
presented in Fig. (3)]

S(k)=(2m)nS(k,k), k=Kk, (16)

in which n, is the density of scatterers. There are two
reasons why this approximation will severely break down
at high densities: (i) correlations of the scattering events
(dependent scattering), and (ii) correlations of the scatter-
ing particles. The second effect is well known and correc-
tions can be found for it (for instance, by using ap-
proaches originating from gas-kinetic theory such as the
Percus-Yevick approach).’> The complication of depen-
dent scattering is very important with respect to the lo-
calization issue. Some attention has been paid to scatter-
ing effects of correlated particles.*>*

C. Intensity Green’s functions

We now have to deal with Green’s functions related to
the intensity rather than to the amplitude. These func-
tions are defined as the following tensor product:

H=GXG*, (17a)
i.e., the tensor product of the amplitude Green’s function

and its complex conjugate, in components

H(r,,ry,13,1,)=G(r,1,)G*(ry14) . {17b)

Diagrammatic perturbation theory can easily be set up
for this intensity Green’s function as well.’> We just dou-
ble the diagrams and connect identical scattering centers
by dashed lines (see Fig. 2). We will define the complete
(reducible) vertex R as equal to the sum of all connected
intensity diagrams H without the incoming and outgoing
Green’s function. The following matrix equation for
(H ) holds:

(H)=(G)x{(G*)
+{G)X(G* IR M(GIX{(G*)). (18)

In Fig. 4 we have depicted some lower-order contribu-
tions to {R ). The equivalent of the mass operator for

X
+ + + +
X

——— o o—

X e X s
+ + +

FIG. 4. Lowest-order contributions to the total vertex R.
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this type of (intensity) Green’s function is the irreducible
vertex ( U ) defined for the averaged functions by

(HY=(G))X(G*)+({G)xX(G*YNU)H),

and (U ) is generated by all double-connected diagrams.
The relation between (R ) and (U ) is given by

(R)=(UY+(G)Yx{(G*)){UXR) .

In Fig. 5 some lower-order contributions to (U) are
displayed. The incoherent contribution to these diagrams
is given by retaining for { U ) only the lowest-order term
(1) which results in the summation of all ladder dia-
grams. This sum of all ladder diagrams (without ingoing
and outgoing lines) will be called (L) (see Fig. 6). It
turns out that the most important interference contribu-
tion arises from the interference from time-reversed paths
(most-crossed diagrams). The sum of all most-crossed di-
agrams (without ingoing and outgoing lines) will be called
(C) (see Fig. 7). For strong localization theory these
most crossed diagrams have to be summed in the irreduc-
ible vertex (U), (U)=(1)+{C) (see Fig. 5).** How-
ever, in the weak regime, which is under study here, the
most crossed diagrams can be summed in the Green’s
function itself, (R )=(L)+(C).%® Localization as
found in the diagrammatic theory comes about by finding
a self-consistent equation which yields a vanishing of the
diffusion coefficient in the strongly scattering re-
gime.>7%3% Basically all these theories are based on ideas
developed by Gotze to describe localization of elec-
trons.’® Since in these theories one is only interested in
transport coefficients, statistical homogeneity can be as-
sumed. This amounts to a considerable simplification as
use can be made of (statistical) translational symmetry.
Let us first discuss the incoherent contribution to the
intensity Green’s functions. To this end we have to sum
the ladder contribution. The integral equation for (L ) is

(LYY= +{IX{GIYxX(G*)){L) . (21)

Next we introduce the assumption of point scatterers.
That is to say

Sa(r,,r2)= ———417f8(l‘1—-1'a)5(l'2

(19)

20

(22)

...ra) R

where a is a particle index. If we plug assumption (22)
into the series expansion for (L ) (see Fig. 6) we see that
in each term the incoming space coordinates as well as
the outgoing space coordinates have to be equal. So we
will try the Ansatz of Tsang and Ishimaru'®

<L(r],r2;r3,r4)) :n0(47T)2f28(f2‘—f1)8(r3_r1)8(!‘4“‘1’1)

+F(r,r))0(r; —r13)8(ry,~14) , (23)

C
Hi
A0 DmmmmmX
T
x
X—-_—<_>|<
>
em D

FIG. 5. Lowest-order contributions to the irreducible vertex
U.
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FIG. 6. Summation of ladder terms.

where the first-order term has explicitly been separated
out. Insertion of this Ansatz into Eq. (21) yields an in-
tegral equation for F=F(r|,r,) which in matrix form is
given by

F=n3(4nf (G ) +ny4mf)*(G)*F . 24)

This equation allows for an interpretation of F. Ap-
parently F is the Green’s function for the incoherent in-
tensity or incoherent energy density. F(r,,r,) describes
the energy density at r, due to a point source at r,. If a
different source is being used (like a damped plane wave)
the incoherent energy density can be obtained by in-
tegrating the Green’s function F over this new source.

In the same way as we did for the ladder diagrams one
can solve the summation of most crossed diagrams.®’
The best way is to disentangle the crossed diagrams. To
this end we have put arrows on the diagrams for (C) to
indicate the sense. Let us now look at a typical diagram
and rotate the lower part 180°. It now looks very much
like a ladder diagram. So if we would include the (nonde-
generate) first-order scattering, the summation of crossed
diagrams is exactly equal to the ladder sum (for point
scatterers) if we permute the appropriate coordinates. So
the sum of all most-crossed diagrams is also determined
by F:

(Clr,1y13,1,)) =F(r,,r;)8(r,—1;)8(r;—1,) . (25)

Apparently this tremendous simplification was missed in
Ref. 16 (see also Ref. 5). A major part of our task has
been fulfilled now. We have found an integral equation,
the solution of which can be used to obtain the in-
coherent and time-reversed interference contributions, as
described by the ladder- and most-crossed diagrams, to
the intensity.

The F propagator obeys Eq. (24) which in components
is given by

F(r,ry)=nd(4m) | f |*A(r;—1;)

+no|f1? [ Aty —t)F(r,rydr’ (26a)
with
A(r,1y)=A(r,—r,)=(4m)2(G )?
exp(—k|r;—r,|)
_owloxin=nl) (26b)

ifl—fziz

where k =2K" =Ay is the extinction rate or turbidity,

e e
Sum
L A
e

A e o
SR A - J—

+

e Yo Y

FIG. 7. Summation of most-crossed diagrams.
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with Ayp the mean free path. Notice that all the spatial ~ F(r;,z,,z;)=(ka)*A( |1, |, |z, —z,|)
integrations for F and related functions are integrations «a , v
within the slab and not over full space. Using the transla- +an f f Al —ri |, |z;—=2"])
tional invariance in the (x,y) plane we define the two- , )
dimensional Fourier transform to be X F(r},z',zy)dr\dz" , (28a)
Flr),5,)=F(r,,2,,2,) which gives after Fourier transformation
F(q,,2y,2,)=(ka)* A(q,, |z, —2, |)
=)~ [ F(quz,,z,) explit-q)dq, , (27 }
+ mKa f Alqy, 1z—2'])
where rl:(xlz——xz,y, =2 ). (Fonsequenﬂy we have,.with X F(q,,z',2,)dz" , (28b)
a=4mngy | f|“/x the (dimensionless) albedo, and with d
the thickness of the slab and
J
exp[ —«(r?+z%1%] )
A(q,z)= f A(r,z)exp(—ir;-q }dr, = f f 2_: 5 exp(—ir g, cos@)r dr dp
ri+z
exp[ —x(r? +z%)1/2]
=27 | r,Jolriq;) dr
f 1olriq; "i 122 1
172
=2 [ = cxpl gl ey eWira) (280)
(12 +ah)!

where J(x) is the Bessel function of zeroth order and ar-
gument x (see Ref. 38), and in which 7=«z, and
q.

= W[(smé) cos@, + sinf; cosg, )*

[0

1f

+(sin@, sing; + siné, sing,)*]'?,  (28d)

where the polar angles refer to the incoming ﬁi and to

the  scattered  direction K;. Notice  that
W(r,a=0)=E(r), the exponential integral. For
reasons of convention we define

Nir,rpa)= —Flq,z,,25), (29)

4k

and the (dimensionless) optical thickness & =«d so

2
F(T],TZ;G)Z%W( !TI_TZ { ;a)

a b Py .. '
+5 fo Wt —7|;a0)T(F, ra)dr

(30)

Equation (30) has the form of the Milne equation. It is a
Fredholm integral equation of the second kind with
singular kernel.** Notice the extremely useful property
that I'(r,,75;) is only coupled to elements of I' with the
same value of 7,. So apart from the connection through
the initial source term the 7, dependence of T is decou-

I

pled from the 7, dependence.

To allow for easy formal manipulations it is very useful
to introduce the following matrix multiplication. For
matrices F and § it is defined as

- fo":7<r>9<r)dr 31)

Notice that if the matrices depend on two 7 coordinates

the multiplication only involves the first coordinate.
With

Mr,rpya)=iW(|1—7|;a), (32)
Equation (30) can be written in matrix form
'=S+aMT , (33)

where the initial source, S =a*M, represents two-particle
scattering. Taking as initial source S =a (7, —7,) would
include single scattering in I'. Notice that both of these
terms are unbound for 7,-—7,. The formal solution of
Eq. (33)is

F=(1—aM)"'s , (34)

so the solution of the total scattering problem can be ob-
tained by inverting the matrix (1 —aM). It may also be
developed into a power series, in which case the solution
takes the form

F=S+aMS +a’M?*S +a’M3S+ -, (35)

in which each term is found by multiplying the preceding
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one with the matrix aM. The physical significance of the
power series is that each term corresponds to a separate
order of scattering.

Equation (30) is in such a form that direct numerical
determination of I" becomes feasible. The numerical pro-
cedure will be dealed with in Sec. I1E and in Appendixes
A-C.

D. Scattering intensity

We have to emphasize that to describe a real scattering
experiment one cannot assume that the system exhibits
statistical translational symmetry. The practical solution
to this complication is to perform the calculation in the
real-space domain and limit the integration over space in
such a way that only the integration over the finite sam-
ple is performed. Properly speaking this is only feasible
!

(I(ry)) = (W(r)¥*(r)))
=<‘Pinc(r1)><‘l’i";,c(r1)>

van der MARK, van ALBADA, AND LAGENDUK 37

when one assumes a S matrix which is so extremely sim-
ple that the integrations in real space can actually be per-
formed, viz., point scatterers.

To describe a scattering experiment we have to consid-
er an inhomogeneous medium since in such an experi-
ment separation of source, target, and detector are re-
quired. To arrive at the result for the scattered intensity
we consider the Green’s function for the intensity
(W xW¥*), which using Eq. (12) is given by

(WXW*) =W, ) x (¥
FHUGYX(G*I R MW, ) x(¥r)) .
(36)

For the intensity we need I(r)=W(r)¥*(r) which can be
found by writing Eq. (36) in its components

+ f (G(r;—y{G*(r;—13) ) (R (15, 15;14,15) )W, (1)) (W (x5)Vdr,dridrdrs . (37)

The mean-field amplitude and Green’s function depend
on the propagation constant in the medium which for
point scatterers can be calculated to be

K=K'+iK", (38a)
2mn
K=ko+ o (38b)
ko
The mean-field amplitude function is
(W,..(r))=expliK;-1)) , (39a)

where K, is a vector with magnitude K and direction of
the incoming wave in the medium. For almost normal
incidence K; can be approximated by

K, =%k, sinf; cosp; +¥k, sinf; sinp; —2K,, , (39b)
iK"
K, =kycosh; — cosO, (39¢)
The mean Green'’s function is given by
expliK | r;—1,5])
(Glry—r1y)) = — —2 il , (40a)

4 |1 —1,|

when r, and r, are inside the slab, and

a 1 1

-——+_._
Mi Hs

My

Hi +,u5

Ys(ll'ﬂ/"'l): 1— exp -b

|

1 b b
Vz(us,u,-)=;; fo fo [(r,7a=0)exp

s

1 b b
y°(ys’“i)=u—i fo fo I(r,,7;a) cos

T T
|
,J' N

k()
o Wi =) —Ty)

|
'korl

(G(r,1))) ~— exp( —iK;1,) , (40b)

e
4mr,
when r, is in the slab, and when r, is far outside the slab,
and where the outgoing wave vector K is given approxi-
mately by

K, =%k, sin@, cosg, + ¥k sinf, sinp, — 2K, , (40c)
iK"
= — . 40
K., =k;cosb cosh, (40d)

The scattering intensity is best described with the help
of the so-called bistatic scattering coefficient.?® The par-
titioning of the total bistatic scattering coefficient into the
coefficients for single scattering, ladder, and cyclical in-
tensities, is given by

47r?

y{psp;) y

I(r)

Il

i

=Y (ot )+ 7 () )+ v (g, pt) 5 (4la)

where A is the area of the target, and u, ; = cosf, ;. Cal-
culating {(R)=(L)+(C), in which (L) is given by
(23) and (C) given by (25), and employing also Egs.
(39a), (40b), and definition (29) in Eq. (37) gives

(41b)

dT]dT2 y (41c)
1|1 1

€Xp -"E’ "TS+;;— (Tl+T2) dTlde, (41d)
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in agreement with Ref. 16.

We have indicated that the Green’s function I' can be
used to calculate the energy density in the slab [see re-
mark following Eq. (24)]. In the present case the incom-
ing (reduced) intensity I,; is given by

I,(1, k)= exp(—7/p,)8(k—K,) , (42)

where ﬁi is the incoming direction. The energy density
or the so-called source function J(7) which is extensively
studied in the literature,’%?" is given by

Jir)= fobr(r,r’;a=0)exp( ' fpd T (43)

and using the (complicated) integral equation for I' as
given by Eq. (30) one derives a much simpler equation for
the incoherent energy density

02 b ‘ ’ ’
Jir="- fo E,(|7—7"|)expl—7 /u;)dr

a b ’ ’ ’
+5 [ B e = I (44)

which is the Schwarzschild-Milne equation with the
source term describing second-order scattering. The in-
coherent contribution to the bistatic coefficient can also
be expressed in terms of the energy density,

1 b
Vildsob)= fo J(r)exp(—7/p,)dT . 45)

So if one is only interested in the ladder contribution to
the scattering, the determination of the Green’s function
I'(7{,7,) is not necessary as the determination of energy
density J(r) is sufficient. This is a substantial
simplification. The (numerical) determination of the solu-

tion of the Schwarzschild-Milne equation is straightfor-
ward, 16:26,27,40

E. Numerical results of I" and the line shape

The general outline is quite straightforward. We have
to solve the integral equation (30) numerically and then
use the result to calculate the bistatic scattering
coefficient y(u,,u;). To do this, we have to calculate the
kernel W(r,a) first. This problem is discussed in Appen-
dix A.

To calculate the scattering problem, it is also impor-
tant to notice the following symmetry properties of I':

r(Tl,Tz):F(Tz,Tl):F(b‘—'rl,b—Tz) . (46)

I" may be written as a sum of the contributions of the
separate orders of scattering. So the total solution is
given by

N
F= lim 3 T,, 47
2

L ——

in which I',(7|,7,;a) represents the contribution for the
nth order of scattering. We can use the iterative formula

rn+1(TI,T2;(1)

a b , , ,
=3 fo W(|r =7 [;a)l, (7, r;a)dr ,  (48a)
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FIG. 8. Line shape of the enhanced backscattering of the
second up to the eighth order of scattering and their sum for
slab thickness b =0.6, Ay /A=53.5, and albedo a = 1.

or

r, . =aMT, , (48b)
to calculate the successive orders of scattering, starting
with

2
S=a2M=%—W(|Tl——Tzi;a)EI‘2. (49)

The details of this calculation are presented in Appendix
B.

The convergence of our iterative procedure to the total
solution T is, except for numerical problems that might
occur due to build up of inaccuracy for very high orders
of scattering, determined by the albedo a and the optical
thickness of the slab b. The thicker the slab and the
closer the albedo to 1, the slower the convergence. So al-
bedo close to one is the most difficult and albedo substan-
tially less than one becomes almost trivial. For a semi-
infinite slab, the iteration converges as a"n ~*/2. In prac-
tice this means that it is possible to calculate the whole
solution for b = o« and a <0.9 within 1% accuracy in less
than 20 iterations. For the albedo ¢ =1 only slabs with
b <2 can be treated with about the same accuracy. In
Fig. 8 the order by order line shape is given for a typical
case.

Of course we are also interested in thick slabs (b >2)
with the albedo close or equal to 1. The solution to this
problem is obtained by solving Eq. (30) by diagonaliza-
tion (see Appendix C). With the diagonalization pro-
cedure we can handle slabs up to 32 optical depths with
albedo equal to 1. In Sec. IV we will compare the results
from the theory with various experiments. If more so-
phisticated discretization procedures would be invoked
we probably could extend this limit substantially. Yet,
the backscattering intensity from the b=32 slab is al-
ready 95% of the backscattering of the semi-infinite slab.
So the only problem left, are very thick slabs
(32<b <) in case a =1. However, thick slabs and
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dominance of high-order scattering processes are precise-
ly the conditions for which a diffusion approximation
should hold.

III. DIFFUSION APPROXIMATION
FOR FINITE SLABS

First we consider a scattering medium of infinite size
and take advantage of the translational invariance in all
directions. The three-dimensional Fourier transform is

F(r,r))=Fy(r—r,)
EFo(r)
5(217)“3fF0(q)exp(ir~q)dq. (50)

With Eq. (26) we find
Folq)=2m’ak A(qQ)F(q)+a’* A(q) , (51)

so that

_,v_ﬂ__..__EL__— explir-qldq,

Fo(r)=a*2m)™?
1+27%aKk A(qQ)

(52)
A(q) can be calculated as
)= f A(r)expl —ir-q)dr
= fffexp(—Kr)exp(—irqcos@)sinGd(pder

47r/q)f lexp(—xr)sin(qr)afr

=(41/q )arctan(q /k) , (53)

substituting this result in (52) and performing the angular
integration gives
2a2K fec (g /x)arctan(q /k)
g /k)~—(a)arctan(q /k)

X sin(gr)dg . (54)

The solutions for all definite integrals used in this section
can be found in Refs. 38 and 41.

For the diffusive regime we have ¢ <<x and we can ap-
proximate arctan (g /k) by

X

arctan(x)~ l+‘ —

x| <l. (55)

Notice that this approximation provides a useful cutoff
for ¢ > k. So with &2 =3k*(1—a) we find

2% e 3¢ .
Folr)= d
olr) o fo PEN sin(gridg
2,3
_3ak exp( —k,r), (56)

So the
) in the diffusion approximation for an

which can only be justified for albedo a close to 1.
solution of (26
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infinite space is given by

F(ry,1r))=Fy(r,—r,)
=Fy(r,z)
_.[}_311_2';:' expl—K, [1;—1;| ) . (57
Define
Folqpz)= f Folr,,z)expl—ir -q,)dr, . (58a)
This gives
Fo(ql,z)=217frl.]0(rlql)
<0 ; +;;2 g, )
so that
Fo(qy,z)=6ma (k2 +q%)7 172
X exp[ —z(k} +¢1)712]. (58¢)

Up to now we have considered the statistical homo-
geneous (infinite) system. One has to include boundary
conditions to handle the finite slab problem. From the
literature?®272%%? we know that the boundary conditions
are F(x;—x,,y,—y,,—2¢)=0 and F(x,—-x,,y,—y,,
d +z3)=0, which corresponds to a trapping plane in
—z, and d +zy, respectively. It appears that
23 ~0.7104A 4 for a =1. A diffusion equation with trap-
ping planes can be handled in a straightforward way.*
The solution of (26) for a finite slab in the diffusion ap-
proximation is

F(r],rz 2 FQ[XI—x2,y1—'y2,zl'—22+2n(d +220)]

n=—o

—Folxy—x3,y,~y12,+2;

+2n(d +2z5)+224] . (59)

The summation in this equation results from the multiple
reflection of F in both mirror planes. It is obvious that
the thicker the slab, the lower the number of contributing
terms. For a semi-infinite slab, only the term for n =0
remains. From definition (29) and Egs. (58¢) and (59) it
follows:

(7,79 )
2 o
=§2‘17 > [exp(—c|7y—7,+2nB|)
nH=—0

—exp(—c | 7y+7,+2nrB 427 )]
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with ergy density or source function J(r). From Egs. (43),
(61), and (62) it follows that for a semi-infinite slab
— 21172 )
e=[31—a)+a’]7", (60b) (b = o ) the result is given by
To=KZg , (60c)
. 3(1 Z’Uq'
B=b+27,. (60d) JOC(T):-I—»WZ“Z—[ZQJr exp(—c7)—p; expl—7/u;)],
—pie
Let us define !
(63a)
r'e,o;a)=Tir,r;a), (61a) ‘
with
8571’—7‘7 s (61b) _
. Qi =[1+p;c— (1 Fpu,c)expl—2¢7y)]/4c . (63b)
O=T;+T; . (61c)

After some algebra it turns out that the summation can
actually be performed and we get the Green’s function I’
in closed form

3a’
"(8,03a) = ——2———{cosh[c(B — | §
Ir'é,o;a) 3¢ sinh(cB) fcosh[c( 181)]

—cosh[c(b —0)]} . (62)

This result can be used to calculate the incoherent en-
J

The bistatic coefficient arising from the incoherent
scattering in the diffusion approximation for the semi-
infinite slab is calculated to be

2

3a 2
ylymz‘ﬁ—z'[ZQ_},/(1-‘|—MXC)—,U.,-/(,U—,'+H«S)] . (64)
—Hi

For a finite slab the results are considerably more compli-
cated:

3a’y,
J(T}=I——~H{P+ exp(—c7)—P_ exp[e(r+27y)]—p; exp(—7/u,)} , (65)
—Hic
and
3a’u, | 4 11 P, 1
Y= exp|—b|—+— || -1+ l—exp|—b|c+—
—pde? | mita, B B 1+, s
+ P exp(2c7y) lexp |b c—L —1 ] (66)
1 —HsC 0 Hs I
f
Of course when discussing weak localization of light, one 11 1
is more interested in the interference contributions than v=ES 67b)
in the incoherent part. However, it is very important to Hi Hs

consider the incoherent part as well. The reason is that
Egs. (64) and (66) are a consequence of the diffusion ap-
proximation which can be checked against rigorous
answers. The Milne equation (44) can be solved exactly
for all slab thicknesses by numerical methods. The exact
results should be compared with the results obtained in
Eqgs. (64) and (66). This constitutes a stringent test on the
validity of the diffusion theory. It turns out that the re-
sults are very good indeed, as will be shown later.

Let us now consider the interference contribution to
the scattering in the diffusion approximation. We define

ko

"K-(M —Hs)

u

1l

{67a)

Using Eq. (41d), definition (61a), and the diffusion result
Eq. (62) the bistatic scattering coefficient for the interfer-
ence (most-crossed diagrams) terms can easily be shown
to be

1 b [2—0
(o)== (8,05 5
Vg, pty) o fo f5 (8,0;a)cos(ud)

Xexp(—vo)dodbd .

(68a)

After tedious algebra we find
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3a’exp( —uvb) 1 |
o — (v —c)cosh(2
Vel i) 2u,cv sinh(cB) (U——c)2+u2[U (v —c)cosh(2¢ 7))
+m[”_(” +c)cosh(2c7y)] |cos(ub)
. - sinh(2c 1) sin(ub)
Wtertut  —crtul :
+“(‘v’:cl)2—+uz§(v—c)cosh[(v —c)b —2c7]—(v)cosh[(v —c)b ]}
b (0 +elcoshl (v +c)b+275]—(v)coshl (v +¢)b ] (68b)
(v4c)+u

Note that for pure backscattering, p;, =u,, y; =7, in all
cases. For b — oo expression (68b) reduces to

3a’fc +v[1— exp(—2c7y)]}

(69)
2u,cv[(v +¢)+u?]

yc‘,oc

For an albedo of 1 this agrees with the result of Ref. 17.
In Figs. 9-13 we present the bistatic scattering coefficient
¥ and the width of the backscattering cone as a function
of the optical thickness b and the mean free path Ay
For a number of cases the results are compared with the
exact values calculated with the rigorous theory from
Sec. II.

There are no reasons to expect the diffusion approxi-
mation to be correct for low values of the albedo . How-
ever, if we compare the behavior of this theory with the
exact theory (see Fig. 9 for comparison of the intensities
for precisely backscattering), we conclude that the agree-
ment between the two theories is quite good, even for

5

Ve

4}

st asaul

AT e sanl

Ao 3 1aiil

0
10 ! 1 10 102 103

thickness of slab D

FIG. 9. Absolute values of y;. at exactly backscattering
[Vl =p, )=y (s =p;, ;)] with g, =1, as a function of the
optical thickness b. Dashed curves represent the result from the
exact theory as derived in Sec. 11, solid lines give the result from
the diffusion approximation. Different curves correspond to
different albedos.

r

small albedos.

In Fig. 10 we compare the line shapes of the exact
theory and the diffusion approximation for two different
optical thicknesses, with the albedo ¢ =1. We see that
although their shapes are comparable, the diffusion ap-
proximation shows a small underestimation for all angles
with respect to the exact theory. Later (Fig. 14 and Table
I) we will see that this is caused by a small underestima-
tion of the lowest orders of scattering. This also explains
why the line shapes for thin slabs (which consequently
contain a lot of low-order scattering) suffer more from
this underestimation than those for thick slabs.

In Fig. 11 we present the (full width at half maximum)
linewidth W as a function of the mean free path. From
this we conclude that W(Ayr/A) is a constant for a fixed
albedo and slab thickness b = o, at least for (Ayp/A)> 1.
After a detailed study, we have found this to be true for
any other value of b as well, as long as the latter condi-
tion is fulfilled. This conclusion is used in Fig. 12 to plot
the value W(Ayr/A) against the optical thickness b. The
discrepancy between the exact theory and the diffusion

’)/3‘5' . 1
C

3.0
2.5
2.0
1.5
1.0
0.5

0.0

Z12 -8 -4 0 4 8 12
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FIG. 10. Comparison of the absolute line shapes v .(u,,u;
=1) as found from the exact theory (dashed lines) and the
diffusion approximation (solid lines) for slab thickness b =32
and b =1, Ayp/A=53.5, and albedo a = 1.
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FIG. 11. Full width at half maximum W of the backscatter-
ing cone, in the diffusion approximation for a semi-infinite slab
(b= ). Curves are given for five different albedos as a func-
tion of Ayp/A. Also for a =1 the exact (extrapolated for
b —> ) result (dashed line) is given.
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approximation for small b is to be expected.

From the point of view of an experimentalist, it is in-
structive to calculate so-called “difference slabs” (see Ref.
15). Here, the backscattering intensities from two slabs
with optical thicknesses b, and b, are subtracted. In this
way, the scattering contributions coming from the front
layer (1 <b,) can be eliminated, and only the contribu-
tions of the light that have been in the back end of the
slab (b, <7 <b,) remain. To be more precise, the back-
scattering of such a difference slab contains exactly all
those lightpaths that have their deepest point at an optical
depth 74, with b, <74 <b;. Since the number of light-
paths that have their deepest point at an optical depth 7,
does not change with the optical thickness b of the sam-

1.0

0.8

0.6

W /A (rad)
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a=1.0

tod A A dAdd

sosatasal peti sl

0.0 il
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FIG. 12. The value W(Ayg/A) is plotted against the optical
thickness b. The solid lines give the results from the diffusion
approximation for five different values of the albedo. The
dashed curve gives the result for the exact theory witha =1.
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FIG. 13. The value (A/Ayp)/Al(7,), associated with a

difference slab of infinitesimal thickness at an optical depth 7,
is plotted against 7, for five different values of the albedo a.
Notice that for a =1 the curve is a straight line which goes
through the abscissa at 7,~ —0.5. Experimental results are
given in Fig. 21.

ple (at least if b > 7;), this also holds if that difference
slab is situated in the middle of a thicker slab with optical
thickness b > b,.

The width of the backscattering cone associated with
the lightpaths that have their deepest point in the
difference slab b, to b,, or b; <7; <b,, is defined as
Wy .(by)—v.(b,}], which we can use to define the
width A of the backscatter cone associated with a
difference slab of infinitesimal thickness at the optical
depth 7,:

Alrg)= lim Wy (by)=y.(b)], by <b, . (70)
179

In Fig. 13 this is used to plot the value (A/Aygp)/A(T,)
against 7, for some values of the albedo a. The figure
shows that A(r;) is inversely proportional to the optical
depth 7, in case @ =1.

It is of interest to analyze the angular dependence of
the enhanced backscattering in the neighborhood of the
exact backscattering direction. Analysis of y,  near
backscattering angle for the albedo close or equal to 1

gives
172 l

+0(63), Tn

2

k
Yeu=23a?|14+219— 219+ 1)? |3(1—a)+ p“—ef

which for a =1 gives

k
1+270—27°|9S|(¢0+1)2 +06), (72

3
yaw"’?

which clearly shows that the solution is nonanalytic for
a =1. So we see, that the top of the backscatter cone is a
hyperbola for a < 1 and a triangle for a =1.
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FIG. 14. The nth-order scattering contribution to the total
amount of scattering ¥ in case b =, a =1, and u; =y, =1 for
both the exact theory (dotted lines) and the diffusion approxi-
mation (solid lines). The convergence of the high-order scatter-
ing to the n~*/? asymptote is clear. It is also seen that the
lower-order scattering is underestimated by the diffusion ap-
proach. The cumulative curve 3, v, is also given. See also
Table 1.

It would be extremely useful if one could decompose
the results of the diffusion theory in a summation of
terms in which each term describes the next order of
scattering. In such a way the theory could even be tested
much better against exact theories. To this end we have
to express the diffusion result for the bistatic coefficients
in a Taylor series of the albedo. Expansion of (69) in the
albedo gives the separate contribution y, for each order
of scattering for the case b = «. This can be done by cal-
culating the nth derivative of y . _ and substituting a =0:

Yew= 2 ¥na", (73a)
n=0
A"
e ) (73b)
Y2 nlda" |4-0

The solution is implicitly given by a set of iterative equa-
tions

3 2 8 m
Yn2=gn mz:o [c(c+D]m+!
exp(—2cTty)
=P B, |, (73¢)
1+4c¢
Ap=3 ack agp=1 (73d)
k=0
2m
B, =3 Buc* Byp=1 (73e)
k=0
amkz(k —-m)am,lyk +(k—l—2m)am~,,kﬁ, N (730
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TABLE I. The nth-order scattering contribution to the total
amount of scattering y in case b=, a =1, and u; =y, =1 for
both the exact theory and the diffusion approximation. It is
seen that the lower-order scattering is underestimated by the
diffusion approach. The cumulative curves ¥, v, are also
given. See also Fig. 14.

n Y",dlf yn,exa E Vn,d:f 2 yn,exa
”n n
1 0.5000 0.5000 0.5000 0.5000
2 0.3071 0.3465 0.8071 0.8465
3 0.2356 0.2611 1.0426 1.1076
4 0.1903 0.2066 1.2330 1.3142
5 0.1582 0.1692 1.3912 1.4834
6 0.1343 0.1421 1.5254 1.6254
7 0.1159 0.1214 1.6413 1.7469
8 0.1013 0.1055 1.7426 1.8524
9 0.0896 0.0928 1.8323 1.9452
10 0.0801 0.0825 1.9124 2.0277
o 0.0000 0.0000 4.1313 4.2277
Bk =k —m)By, _\  +(k —=2=2m —=27)B,, _ ;
—27 Bm——l,k —2> (73g)
c c
6,,,,1_—_(71—1"‘—;’71)5,1__1,,”*56”_1’"1‘1, 811~_—_5
(73h)
with  a, =B _2=Bm _1=Bmam +1=Bm2m -2=0,0

=8, ,41=0 and ¢ =3""2. The results of this expansion
are shown in Fig. 14 and Table I. It is seen that only for
the very lowest orders of scattering there is some
discrepancy between the values for y. _ as calculated
from the exact theory and the diffusion approximation.
This was to be expected since a wave is only propagating
diffusively after it has scattered several times. From Fig.
14 it is also seen that the contribution of each order of
scattering is proportional to n ~?/? for higher-order
scattering.

IV. EXPERIMENTAL RESULTS

Detailed data have been collected on (i) the scattering
and transport mean free paths A, and A, (the charac-
teristic lengths associated with the attenuation of the
coherent beam and of energy transport) as a function of
sample composition, and (ii) the shape and width of the
cones of enhanced backscattering as a function of the
transport mean free path and the slab thickness d
(=bA,).

A. Scattering and transport mean free path

For suspensions of different concentrations of 0.215
pm, 0.482 um, and 1.019 um polystyrene spheres, and of
2.02 pm polyvinyltoluene spheres (Dow Chemical) we
calculated A, and A,, from Mie theory.?* For suspensions
of surface-treated TiO, (rutile) particles in 2-methylpen-
tane-2,4-diol (samples were kindly supplied by Sikkens
and by Sigma Coatings) we determined the scattering and
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FIG. 15. Scheme of the experimental setup for the observa- 0.01 o1 1

tion of transmitted intensity as a function of slab thickness.
CH, chopper; L1, lens; L2+ F, cell consisting of a weak lens
and an optical flat mounted on a translation stage; PH1 and
PH2, pinholes.

transport mean free paths from transmission experi-
ments. Figure 15 shows the setup used for the determina-
tion of the transmitted intensity I, as a function of slab
thickness: a laser beam was passed through a weak posi-
tive lens L1 so as to obtain a long focus with its waist
near the pinhole PH1. The cell consisted of another
weak positive lens L2 and an optical flat F. Pinhole PH2
was chosen just big enough to make sure that no clipping
occurred upon scanning the cell (filled with solvent only)
through the beam over its full range. In Fig. 16 a typical
curve for transmission versus slab thickness is presented.
Three distinct parts can be distinguished: part (a) shows
the exponential decay of the transmitted coherent intensi-
ty that results from light scattering out of the beam.
From its slope, the scattering mean free path A, is found.
Near point A the diffuse intensity starts to outweigh the
coherent intensity, and part (2) shows the 1/d decay of
the diffuse intensity. In this range a plot of (V)"
(V,u being the amplified detector signal) versus d gives a
straight line with a slope of (C,,)~!, with C an as yet un-
known constant of dimensions Volt per length. Near
point B the absorption of the sample starts to play a role,

exp(~d/VAi A2
i B /\
(3)

A,

log1g [T Carb. units)]

I

d Carb. units)

FIG. 16. Typical plot of log(transmission) vs slab thickness.
(1), exponential decay of coherent intensity. (2), 1/d decay of
diffuse intensity (diffusion). (3), exponential decay of diffuse in-
tensity (absorption).

Vol. fraction of TiDE

FIG. 17. Scattering mean free path (lower plot) and (upper
plot) transport mean free path times a constant (see text) as a
function of the volume fraction of @~ 220-nm TiO, particles.

and in part (3) the decay is once more exponential. From
its slope we obtain (A, A;,)~!/2, where A, is the inelastic
mean free path.

In Fig. 17 the experimental values for A, (in pm) and
CA,, (in mV) are plotted versus the volume fraction V of
TiO,. For low volume fractions (¥ <0.1) both Ay and
A, are inversely proportional to V. At higher concentra-
tions saturation occurs (possibly earlier for A, than for
A), showing that we are entering the dependent scatter-
ing regime. From the upper curve we found A, as a func-
tion of ¥ in the following way: in the dilute regime, A, is
known to be equal to A /(1—{cosf)), with {cosf) the
average cosine of the scattering angle. The average size
of the TiO, particles is 220 nm.** Assuming spherical
shape, Mie theory yields a value of 0.476 for {cos@) and
hence A, should be ~1.87A,.. From this result and from
the vertical distance between the two plots, the values of
the constant C was calculated to be 14.3x10° Vm~.
Using this value, we can now find A, from the upper
curve (i.e., from the diffusive 1/d decay) also for concen-
trated samples where the proportionality between A, and
A,, might no longer hold. (Taking into account that the
size distribution of the crystals is wide and that their
shape is not spherical, the above procedure cannot be ex-
pected to give more than a reasonable estimate of A).

B. Enhanced backscattering

Enhanced backscattering was recorded using a setup of
the type drawn schematically in Fig. 18. A linearly po-
larized laser beam was expanded and then reflected from
a beam splitter onto the sample cell. The intensity back-
scattered through the beamsplitter was recorded as a
function of the scattering angle, using a pinhole-detector
assembly mounted on a stepper-motor driven translation
stage and positioned with the pinhole in the focal plane of
the lens L. The cell was tilted off-axis so as to keep its
window reflections well away from the detector. In scans
of high-viscosity samples the cell was spun around its axis
to average out the strong intensity fluctuations that result
from interference.'>' The transmission characteristics
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FIG. 18. Experimental setup for the observation of back-
scattering enhancement. P1, P2, polarizers; CH, chopper; BE,
beam expander; BS, beam splitter; L, lens; PH, pinhole; TS,
translation stage.

of the beam splitter depend on the angle of observation
and (depending on the extent of the scanning range) mea-
sured intensities may need to be corrected for this effect.
“Response curves” were obtained illuminating the sample
from the backside, i.e., using it as just a diffuse light
source. The polystyrene-sphere samples were studied
over a total scan width of <50 mrad. Within this narrow
range no corrections for response variations were needed.
Dilute TiO, samples were studied using a scan width up
to 175 mrad. For the more concentrated TiO, samples
the setup was slightly modified: in terms of Fig. 18, the
detector was now moved in a plane perpendicular to the
plane of the drawing (making the scan symmetrical with
respect to the transmission characteristics of the beam
splitter) and along a circular path around the cell. The
lens L, which in the narrow-angle scans was at a fixed po-
sition, now moved with the detector assembly. The total
scan width was 600 mrad. All TiO, curves were correct-
ed for the angular dependence of the response.

For a given sample, the recorded enhancement factor
Iiop /Tyackgrouna depends on the relative orientation of the
polarizers P1 and P2. The width of the cone depends on
A, and for very small particle samples also on the spatial
orientation of the scanning plane with respect to the
direction of incident polarization: low-order scattering
contributions are then abnormally broad when the cone is
scanned in the plane of incident polarization.'””> The
present (isotropic) theory is expected to hold for the
parallel light component (P1}|P2) and will be compared
to experimental results obtained from scans perpendicu-
lar to the direction of incident polarization.

The theory takes into account self-avoiding light paths
(ladder diagrams) and interference between such paths
and their time-reversed counterparts (most-crossed dia-
grams). This leads to a predicted enhancement factor of
2.° In the experiment lower values are found. Reported
enhancement factors are 1.6,22 1.65,10 1.70,!! 1.75,'"* and
2.1245 These values suggest that a considerable contribu-
tion to the background intensity is due to lightpaths that
either have no time-reversed counterpart (e.g., single
scattering), or give rise to interference terms that are not
angle dependent (we come back to this point at a later
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FIG. 19. Enhanced backscattering of the parallel light com-
ponent from a 2300-um slab of a 1.05-vol % sample of &~220
nm particles of TiO, in 2-methylpentane-2,4-diol at A,,.=514.5
nm. Solid line: experimental curve. Dotted line: curve, calcu-
lated from diffusion theory, using A,,=9.68 um. For practical
reasons, the theoretical curve convolved with the instrumental
resolution of 0.5 mrad, is not shown. The left-hand vertical axis
corresponds to the experimental curve, while the right-hand
axis corresponds to the theoretical decomposition in contribu-
tions from the ladder terms y,, the interference terms ¥, and
the angle-independent terms v ;.

stage).

Now even if the isotropic theory would not describe
the relative intensities of background and cone fully
correct, it might still correctly describe the shape and the
width of the cone, provided that the latter is indeed main-
ly due to most-crossed-diagram type of interference. In
Fig. 19, the backscattering pattern as recorded using a
thick slab (b ~240) of 1.05vol % and diameter ¢ ~0.22
pm rutile particles in 2-methylpentane-2,4-diol as a sam-
ple, is plotted together with the intensity profile as calcu-
lated for this sample from diffusion theory (this slab
thickness is outside the region that can be handled nu-
merically with the exact theory), using the value for A,
that was obtained from transmission experiments. The
theoretical curve was fitted to the experimental data in
the following way: the calculated intensity profile was
convolved with the instrumental resolution. (The advan-
tage of convolving the calculated curve instead of decon-
volving the experimental one is that no assumptions re-
garding the shape of the latter are needed.) The tops of
the resulting theoretical and experimental curves were
then superimposed and the vertical scale of the calculated
curve was adapted so as to make the outermost parts of
its wings coincide with those of the experimental cone.
The shape and width of the calculated cone is found to fit
perfectly to the experimental data. At the same time we
see that the observed intensity profile has an offset with
respect to the calculated one that amounts to approxi-
mately 30% of the total background. This seems to be
far too much to be explained in terms of single scattering
by an ideal sample, so another angle-independent scatter-
ing contribution must play a part. In Fig. 19, we denoted
the bistatic scattering coefficient of all angle-independent
(ai) terms (including single scattering) by 7,;. If the sam-
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ple thickness is reduced to a few microns only, an essen-
tially flat (no cone) backscattering pattern remains, of
which the intensity is still ~10% of that of the back-
ground signal from a thick slab. This remaining intensity
is thought to result from two contributions: (i) (near-)
forward scattering in combination with reflection from
the rear window (because of the inclined position of the
cell, its windows cannot reflect the incident beam directly
into the detector. Scattered light, however, may reach
the detector after reflection from the rear window and
from the reflected incident beam light may also be scat-
tered into the detector) and (ii) scattering from particles
that adhere to the windows (if the solid component of the
sample tends to adhere to the glass of the cell windows, a
single scattering contribution would result from an ideal
sample). In order to minimize the first effect, a black rear
window was used with an index of refraction close to that
of the sample. If the sample is sufficiently thick, only the
second effect remains.

As explained in Sec. III, we used a difference technique
to probe the width and the enhancement factor of the
contribution to the backscatter cone as a function of the
depth in the sample: subtracting the backscattering pat-
terns of slabs of thickness d, and d, (d,>d,), the
scattering contributions coming from the front layer of
the sample (z <d;) cancel out, and what remains is the
contribution of light that has “seen” the deeper part of
the slab (d, <z <d,). In this way the single scattering
contribution (which has no angle-dependent interference
term) can be eliminated. It is also possible to exclude the
contribution of the very long lightpaths that give rise to
the narrow top of the cone by choosing d, relatively
small.

Figure (20a) shows difference cones that were obtained
with this technique, using the sample that gave the full
one of Fig. 19. In order to present several curves in the
same figure without loosing clarity, a normalization pro-
cedure was performed that is more conveniently outlined
if we first discuss the corresponding calculated cones.
The latter are plotted in Fig. 20b and were obtained in
the following way: the intensity profiles were calculated
from diffusion theory using experimentally obtained A,
values, and convolved with the instrumental resolution.
The resulting (convoluted) curves were normalized, each
with respect to its own background level. We return now
to the experimental curves: the vertical scales of the
cones in Fig. 20a were adapted so as to match their
heights (intensities) to those of their calculated counter-
parts. The experimental and calculated widths and rela-
tive intensities and the experimental enhancement factors
for series of difference cones that were recorded using
samples with different volume fractions of TiO, are listed
in Table II. (The values listed for the 1.05 vol % sample
correspond to the cones of Fig. 20.)

Comparing the shapes, widths, and relative intensities
of the calculated and experimental cones, we find a good
general agreement. Comparing the enhancement factors
(Table II), we see that in general the experimental values
are lower than the predicted value of 2. The cones of the
1.05 vol % sample may serve as an example (for illustra-
tive purposes the——less reliable—front slabs are also
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FIG. 20. (a) Normalized (see text) difference cones recorded
for the parallel light component using the sample of Fig. 19.
Difference slabs: curve 1, 0-13 um; curve 2, 13-25 um; curve
3, 2550 um; curve 4, 50-100 pum; curve 5, 1001000 um. (b)
Normalized backscattering curves, calculated from diffusion
theory for the difference slabs of (a), using A, =9.68 um.

given): in the very front layer the enhancement factor is
lowest, and this is thought to be a result of the single
scattering contribution. In the next layer, which is the
first difference slab, a relatively high value is found. To
obtain the difference cone associated with this slab, a pat-
tern containing a relatively big contribution via the rear
window (see before) is subtracted from one in which this
contribution is attenuated by passing through a thicker
slab. As a consequence the background of the resulting
difference cone is too low, and the corresponding
enhancement factor is too high. For deeper difference
slabs, the enhancement factor seems to become constant.
We have reported earlier on difference cones that were
recorded using polystyrene spheres in water.!” In that
study we found an enhancement factor near 2 for a
difference slab of two slabs with optical thickness b, =0.6
and b,=1.8. On the basis of our present results we be-
lieve that the effect of the rear window may have played a
part there and that the real factor is probably lower.

It remains to be explained why the experimental
enhancement factors found are smaller than 2. Single
scattering contributions cannot be expected to be of im-
portance in the backscattering patterns from deep slabs.
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TABLE II. Experimental values for width, relative intensity, and enhancement factor, and values calculated for width and relative
intensities from diffusion theory for difference slabs as a function of A,; and optical depth. Relative intensities were normalized with
respect to the total intensities of the difference slabs given for each sample.

Concentration Optical Enhancement
Ay depth Alry) Relative intensity factor
(vol %) (pm) (14) Expt. Cale. Expt. Calc. (Expt.)
0.36 28.2 0.35-0.9 7.8 7.5 0.09 0.13 2.0
0.9-1.6 4.6 5.0 0.26 0.19 1.83
1.6-4.6 2.4 2.6 0.45 0.46 1.69
4.6-8.9 1.1 1.2 0.21 0.22 1.60
1.05 9.68 0.0-1.3 21. 20. 0.24 0.22 1.38
1.3-2.6 10.3 10.4 0.21 0.21 1.87
2.6-5.2 5.4 5.9 0.21 0.23 1.71
5.2-10.3 31 31 0.17 0.17 1.69
10.3-103.0 1.2 1.1 0.16 0.17 1.65
2.50 4.06 2.0-6.1 17.0 15.0 0.54 0.57 1.71
6.1-9.8 8.0 7.0 0.17 0.17 1.63
9.8-49.1 3.9 3.0 0.28 0.27 1.61
9.81 1.04 5.8-12.5 29.0 25.0 0.53 0.56 1.67
12.5-24.0 15.0 13.0 0.21 0.27 1.54
24.0-48.0 7.9 6.8 0.26 0.16 1.65

Lightpaths that return to their starting point {loops)
would contribute angle-independent interference terms
and therefore also apparently reduce the enhancement
factor. However, we would expect the relative contribu-
tion of loops to decrease with increasing order of scatter-
ing.

From Fig. 20 and Table II it is obvious that the deeper
a difference slab is situated in the sample, the narrower
its contribution to the cone. The width of such a contri-
bution is inversely proportional to the average distance
between both ends of the lightpaths associated with the
difference slab. Those lightpaths have in common that
their deepest point is situated in that difference slab.
Since the light performs a random walk, the average dis-
tance between the ends of a lightpath will be proportional
to the greatest depth of that lightpath, which explains
why the deeper a difference slab is situated in the sample,

A/ M)/ B(T) (rad™)
- = N NN W
> ® N O O & @K

O~ "=2 4 6 & 10 12 14
optical depth T4

FIG. 21. (A/A,)/A(7,;) vs T; for difference slabs in samples
of different volume fractions of TiO, particles in 2-
methylpentane-2, 4-diol. ©, 0.36 vol %; (J, 1.05 vol %; A, 2.50
vol %; €, 9.81 vol %. Solid line: (A/A,)/A(F;)=2.2(F,+0.5).
See also Fig. 13.

the narrower its contribution to the cone indeed.

Classes of lightpaths that traveled to the same optical
depth 7, in media with different Ayp are expected to
yield contributions to their respective cones of which the
width relate as Ay In Fig. 21 we have plotted values of
(A/Ayg)/A(T;) as found for series of difference cones
from four different concentrations of TiO, suspensions
versus 7, (where 7, is the average value of the optical
thicknesses b, and b, of the subtracted slabs). The rela-
tionship between the two quantities was also evaluated
from diffusion theory (cf. Fig. 13) and for albedo a =1

5 f 3
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FIG. 22. Full width W of the cone of enhanced backscatter-
ing vs A, /A for very thick slabs. ¢, 0.22-.um TiO, in 2-
methylpentane-2,4-diol; O, 1.091-um polystyrene spheres in wa-
ter; O, 0.482-um polystyrene spheres in water; A, 0.214-um po-
lystyrene spheres in water (|| scan); V, 0.214-um polystyrene
spheres in water (1 scan); +, 2.02-um polyvinyltoluene spheres
in water. Solid line: W=(0.7/2m)(A,/A), the extrapolated re-
sult from the exact theory for b= .
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the result may be fitted as (A/Ayp)/A(T,;)=2.2(T,
+0.5). This relationship is shown in Fig. 21 as a con-
tinuous line. Good agreement with experiment is once
more found. From Fig. 21 we conclude that the width
A(7T,) of the contribution to the cone by a difference slab
at depth d is proportional to (d 4+ Ayr/2)~" or, essential-
ly independent of Ay once d >>Ayg.

In Fig. 22 experimental width W for complete cones of
enhanced backscattering as measured for the light com-
ponent polarized parallel to the incident beam are plotted
versus Ay /Agpegium- OUr exact isotropic theory predicts
that the two quantities should relate as

w~2Tam, .
27

This relationship is represented in Fig. 22 by a solid line.
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APPENDIX A

To calculate the kernel W(r,a), it appears convenient
to make a linear interpolation table W (I,J) of W(r,a).
Because W(r,a) diverges for —0 as —In(7), we need
more interpolation points for small 7, proportional to
1/7, the derivative of — In(7). This is achieved by map-
ping 7 on I? instead of I, starting at a value To=10"5,
Similarly, @ was mapped on J? in order to get a smooth
picture of the backscattering cone. Integration was done
with an adaptive Gaussian quadrature.** In order to
avoid problems for higher values of ¢ due to the dispro-
portion of the length of the interval At and its contribu-
tion to the integral, the integration interval [1, ) was
mapped on [0, 1) by use of the conform map

r=L1tE (A1)
1-¢
S0
we find
ab N pt b
rn,<a)=s,,,(a)+—ﬁm2=0 fo WHF(n —m—x)|;a
which gives
ab 1 b
F,,,(a)=S,,,(a)+—iFF0,(a) fo xW }—1\7(" —14x)

ab N3 1
-+ N mzzl F,,,,(a) fO X

W[I%(n —m —14Xx)

- exp[_T(t2+a2)l/2
(2 +ah)?

_ 1expl —m(&,a)/(1=§)]

=2 fo (1—Em(E,a) g, (A2

]dt

wira= [

and

&) =[a?(1—E2+(1+£)*]V2 . (A3)

APPENDIX B

To calculate the different orders of scattering with Eqs.
(48) and (49) it is important to separate the integration in-
terval in two parts chosen so that the singularity of the
kernel is in the boundary. The kernel occurs twice for
third-order scattering, and this means we have to split
the interval [0,b] in three parts, namely [0,7,), (7{,75),
and (7,,b] for 7, > 7, because here we have to avoid both
singularities. Due to this complication I'; rather than I,
should be used as the starting term for iteration.

APPENDIX C

The integral equation we have to solve is a Fredholm
equation with a singular kernel W(r,a).’® In order to
calculate the solution of (30) numerically, we have to
discretize the continuous variable r. Divide the interval
[0,b] in N parts so 7, =bn /N and (33) becomes

I'ir,,7;a)=S(r,,7;a)
a N -1 [
+Em2=0 ftm W(|r,—1|;a)
XTlr,r;a)dr . (Cl)

Linear interpolation of I' between 7, and r, ., with
T=T, +1 gives

Mz, +t,7a)

D7y, cpma)+ (7 =T — T (1, 75)

1

Tm+1""Tm
(C2)
So with Egs. (C1), (C2), and x =tN /b, and the definitions
Cir,,7a)=T,(a), (C3a)
S(r,,m;a)=8,(a), (C3b)
[xT, 1 () +(1—x)T,, (a)]dx , (C4)
ab ! b .
dx + ZNFM((Z) fo xW ‘N(n +1—N —x) [;a |dx
| b i

a |+ W }F(rz —m +1——x)i;a dx . (C5)
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This can be written as
I (a)=S(a)+C,, (), (a),
so that
T,(a)=[8,,—Cn,(a)]7'S, () . (C6)

To find the solution we have to calculate the inverse of the (N +1)(N + 1) matrix [§,, —C,,,(@)]. A larger N results in
a more accurate solution, but CPU time increases with about N3. On a VAX 11/750 slabs up to b =32 could be han-
dled this way. I'; or a higher-order scattering solution should be used as a starting term to avoid the unboundness of
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