
Light tail asymptotics in multidimensional reflecting

processes for queueing networks

Masakiyo Miyazawa
Tokyo University of Science

Accepted March 21, 2010 (v 2.06)

Abstract

We are concerned with the stationary distributions of reflecting processes on

multidimensional nonnegative orthants and other related processes, provided they

exist. Such stationary distributions arise in performance evaluation for various

queueing systems and their networks. However, it is very hard to obtain them

analytically, so our interest is directed to analytically tractable characteristics. For

this, we consider tail asymptotics of the stationary distributions.

The purpose of this paper is twofolds. We first overview the current approaches

to attack the problem from a unified viewpoint. We then take up two approaches,

Markov additive and analytic function approaches, which are recently developed by

the author and his colleagues. We discuss their possible extensions. We mainly con-

sider the tail asymptotics for two-dimensional reflecting processes, but also discuss

how we can approach the case of more than two dimensions.

1 Introduction

Many queueing problems are related to networks, and in the present days have been
studied using stochastic networks, which are stochastic models for describing stochastic
flows on a graph with finitely many nodes. These models have been used to design
and control network systems. We are often interested in performance measures observed
over a long time period. For this, we first describe the model by a stochastic process,
then consider its stationary distribution for computing performance measures of interest.
Our primary interest is to see how those system performances depend on its modeling
primitives, provided its stationary distribution exists.

However, except for special cases, computing the stationary distribution of a stochas-
tic network is very difficult even for very simple models because their state spaces are
multidimensional. For example, the Jackson network is an exceptional model, which has
a product form stationary distribution. It is known that this nice analytical solution is
destroyed by small structural changes such as server collaboration or batch arrivals. To
overcome this difficulty, we consider the following two objects to be required.

(1a) A reasonably wide class of models which incorporate some structural changes;
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(1b) Analytically tractable characteristics which are still useful to assess performance
of models.

For (1a), we consider a discrete time reflecting process on the multidimensional non-
negative integer orthant, where the integer orthant means that all entries of its coordinate
are nonnegative integers. This coordinate represents a state of a network. Here we al-
low flexible state transitions as long as possible while keeping analytical simplicity. To
this end, we partition the orthant into two disjoint regions, called the interior and the
boundary, where each state in the interior has a positive coordinate. We further partition
the boundary into disjoint faces that are determined by the entries of the coordinate that
vanish, and assume that state transitions within the interior and those within each face
are homogeneous. That is, their increments at each transition instant do not depend on
the current state as long as the process stays in the interior or in the same face. This
process is referred to as a reflecting random walk on a nonnegative orthant. We will give
its precise definition in Section 3. This model is used as a basic model, and we will discuss
its extensions which allow multiple interiors and more complicated boundary.

As a related model of this reflecting random walk, we also discuss a semi-martingale
reflecting Brownian motion, SRBM for short, which is a continuous time process with
a continuous state space. This process is obtained as a limit of a sequence of reflecting
random walks under suitable scaling in time and state space. In queueing terminology,
it is obtained under the so-called heavy traffic condition (e.g., see Harrison and Williams
[41]). The advantage of this model is its analytical simplicity. We need less primitive data
to describe an SRBM, and its stationary equation is simpler than that of the reflecting
random walk. Both classes of multidimensional processes have been studied for many
years not only in the queueing theory but also in operations research and probability
theory (see Harrison [39]).

Nevertheless, their theoretical studies are still at a primitive stage. For example, even
the stability has not yet been fully answered for the more than three-dimensional reflect-
ing random walks and SRBM. The tail asymptotics of the stationary distributions are
only available for the two-dimensional processes except for special cases. Furthermore,
Gamarnik [33, 34] argued for undecidability, that is, non-existence of a universal algo-
rithm, for computing the stationary distribution of a multidimensional reflecting process,
verifying its stability, as well as obtaining the tail decay rate (see Sipser [92] for details of
undecidability). This does not exclude the possibility that the problems are solvable for
some classes of models, but suggests that appropriate models should be chosen.

For (1b), we focus on tail asymptotic behaviors of the stationary distribution. As the
undecidability discussed above suggests, this is still a hard problem, but greatly simplifies
analysis compared with other characteristics. Furthermore, they are still important since
they can be used to evaluate the probabilities of rare events which are generally preferred
to be avoided. Thus, we consider the tail asymptotics of the stationary distribution of a
multidimensional reflecting random walk. The aim of this paper is to give an overview of
the methods to get these asymptotics and to discuss how they can be used in applications.
Thus, this paper is basically a review paper, but includes some new suggestions as well.
Namely, a new class of reflecting random walks is proposed in Section 3.3, while some
new results are derived in Section 6. We also present a few conjectures.
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In queueing theory, tail asymptotics have been studied for many years. The literature
goes back at least to the early 1960s (e.g., see Feller [24]). Their main interest was in
the exact or rough asymptotics by exponential (or geometric) functions for the station-
ary distributions of the workload (or queue length) in the M/G/1 and GI/G/1 queues,
provided their stability was assumed (see Kingman [49]). Here, the tail distribution of a
random variable X is said to have an exact exponential asymptotic if, for some constant
α, b > 0,

lim
x→∞

eαx
P(X > x) = b, (1.1)

while it is said to have a rough exponential asymptotics if

lim
x→∞

1

x
log P(X > x) = −α. (1.2)

Obviously, (1.1) implies (1.2). This α is called a decay rate. Those asymptotic results
have been obtained using either the theory of analytic functions or the renewal theorem.

There were two streams for extending those results on a single queue with a single
server. One direction is to cover more general arrival processes (see Glynn and Whitt
[35]), and the other direction is to have many server queues (see, e.g., Takahashi [93],
Neuts and Takahashi [77], Sadowsky [85] and Sadowsky and Szpankowski [86]). For them,
there are three notable approaches. One is the large deviations technique (see Bertsimas,
Paschalidis and Tsitsiklis [5], Chang [11], Dupuis and Ellis [18] and Shwartz and Weiss
[91]). Another is the matrix-analytic method due to Neuts [75], which may be considered
as an application of a Markov additive process and Wiener–Hopf factorization (e.g., see
Arjas and Speed [3] and Miyazawa and Zwart [74]).

The studies in those lines generally allow neither simultaneous arrival at different
queues nor dynamical changes in arrival and service mechanisms. However, there are
some exceptions for them. They are two queues in parallel with Poisson arrivals and
exponentially distributed service times. One variation is for arriving customers to join the
shortest queue (see, e.g., Kingman [50]). Another is to allow simultaneous arrivals at two
queues (see Flatto and Hahn [26]). These models can be also viewed as two-dimensional
reflecting random walks, and analytic functions are used to get certain representations
of their stationary distributions, which yield the exact geometric asymptotics. This may
be considered as the third approach extending the classical analytic method. In this
direction, we must acknowledge great contributions of the Russian school (Borovkov and
Mogul’skii [7, 8, 9], Fayolle, Iasnogorodski and Malyshev [22] and Ignatyuk, Malyshev
and Scherbako [45]).

All these three approaches, namely large deviations, Markov additive and analytic
functions, have been further developed. We review them and discuss their possible exten-
sions. For this, we start to reconsider the definitions (1.1) and (1.2) of the tail asymptotics
in a more general context as well as for multidimensional distributions in Section 2. We
then introduce the reflecting random walk and related models in Section 3. We discuss
various approaches to get the tail asymptotics in Section 4. In those discussions, a par-
ticular interest is placed on what is difficult in studying the tail asymptotic problems.

Among those approaches, we detail the Markov additive approach in Section 5 and
the analytic function approach using the convergence domain in Sections 6 and 7. We
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now have good answers for the two-dimensional reflecting processes. They are presented
in Section 7. Those results are applied to some of modified Jackson networks and parallel
queues with join the shortest queue in Section 8. We conclude this paper with various
remarks for future study in Section 9. As you will see, there are so many problems to be
open for further study, and some of them are going to be solved.

2 Tail asymptotics of distributions

In this section, we consider how we can define tail asymptotics. Our main interest is
in multidimensional distributions, but we first consider one-dimensional distributions for
simplicity.

Let X be a nonnegative random variable. We are interested in the tail probability
P(X ≥ x) for large x when the exact expression of P(X ≥ x) is not available. We may
think about approximating this tail distribution by a analytically tractable function. That
is, a function h such that

lim
x→∞

P(X ≥ x)

h(x)
= 1. (2.1)

It may be questioned how this approximation by h is useful. For example, if the tail
diminishes very quickly in the sense that it almost vanishes above a certain value of x
or if it is very heavy, that is, it decreases very slowly, then it may not be meaningful to
find such an approximating function. On the other hand, if the tail is between these two
extremes, then the approximating function h of (2.1) may be useful in applications. To
make these statements specific, we give the following definitions. Let ϕ(θ) be the moment
generating function of X, that is,

ϕ(θ) = E(eθX), θ ∈ R,

as long as it exists.

Definition 2.1 The tail distribution P(X ≥ x) is said to be

(2a) Small if ϕ(θ) < ∞ for all θ > 0,

(2b) Light if ϕ(θ) < ∞ for some θ > 0, but ϕ(θ) = ∞ for some other θ > 0,

(2c) Heavy if ϕ(θ) = ∞ for all θ > 0,

In this definition, X is real-valued, but the reflecting process is integer vector-valued
as we discussed in Section 1 (see also Section 3). There is a good reason for this. If
the state space of the reflecting random walk is one-dimensional, then we certainly do
not need to consider a real-valued random variable. However, if it has the more than
one dimension, the tail area to be considered may have various shapes. For example, a
rectangle, a half-space separated by a hyperplane and a convex cone may be interesting.
In these cases, the boundary of the tail area may not be well expressed by integers. The
tail probability P(c1X1 + c2X2 > x) with positive numbers c1 and c2 is such an example.
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As we have discussed, a light tail is ideal for studying the tail asymptotics. However,
we do not know the tail type for the stationary distribution at the beginning. So far,
the first step should be to consider which type of the tail distribution occurs under what
conditions. We will consider this for d = 2, that is, the two-dimensional reflecting random
walk in Section 6. In what follows, we heuristically consider how naturally a light tail
arises in a queueing model with a single waiting line. This model is not a queueing
network, but it may be also considered as one node in the queueing network.

Consider a single queue, and suppose that a smaller queue is more likely to increase
than a larger queue. This may be intuitively expected. Let X be the size of such a queue
in the steady state, then our supposition can be expressed as

P(X ≥ m + n|X ≥ m) ≤ P(X ≥ n), m, n ≥ 1. (2.2)

Let f(n) = P(X ≥ n), then (2.2) is equivalent to

f(m + n) ≤ f(m)f(n), m, n ≥ 1. (2.3)

Inequality (2.3) is termed submultiplicativity. Assume that f(n) > 0 for all n ≥ 1.
Then, taking logarithm of both sides, we have

log f(m + n) ≤ log f(m) + log f(n), m, n ≥ 1.

This is called subadditivity. Then, it is well known that

lim
n→∞

log f(n) = inf
n≥1

1

n
log f(n) < 0; (2.4)

see, e.g., Lemma A.4 of Seneta [89] and Theorem 7.6.1 of Hille and Phillips [43]. Let

α = − inf
n≥1

1

n
log f(n).

Obviously α > 0. If α = ∞, then the tail is small, while it is light if α < ∞. This α is
referred to as a decay rate of {f(n); n ≥ 1}. Thus, under the assumption (2.2), the tail
distribution is either light or small. This means that a heavy tail is impossible under this
assumption.

In general, let X be a nonnegative real-valued random variable, and we define the
decay rate α as

lim
x→∞

1

x
log P(X > x) = −α, (2.5)

as long as it exists. In this case, P(X > x) is said to have rough asymptotic decay behavior
with rate α. Note that this α is nonnegative, and may take the values 0 or ∞, which
characterizes heavy and small tails.

As we have discussed, 0 < α < ∞ is preferable for making use of this asymptotics in
applications. As we have already seen for the queue length distribution, we may expect
this. It turns out that this is indeed the case in many stochastic network models. So
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far, we target the light tail asymptotics. It is also notable that the decay rate α can be
characterized by the fact that, for any ǫ > 0,

E(e(α−ǫ)X) < ∞, E(e(α+ǫ)X) = ∞.

This suggests that the moment generating function ϕ(θ) = E(eθX) is useful for finding
not only the tail type but also the decay rate.

We next consider a refinement of (2.5) in the form of exact asymptotics (2.1). However,
we use a slightly weaker form to broaden its applicability.

Definition 2.2 If there exists a constant b > 0 and positive-valued function h on R+

such that

lim
x→∞

1

h(x)
P(X > x) = b, (2.6)

then P(X > x) is said to have exact asymptotic function h. In this case, we also write
P(X > x) ∼ bh(x) or

P(X > x) = bh(x) + o(h(x)), x → ∞.

Note that we generally do not care about constant b in this definition. Of course, in
application, this constant may be important, but theoretically it unduly restricts ana-
lytical study, so here we content ourselves with less fine asymptotics. In view of (2.5),
h(x)eαx would be a subexponential function, that is, the function which changes more
slowly than an exponential function. It turns out that the following function

h(x) = xκe−αx, x > 0, (2.7)

for finite α > 0 and κ ∈ R, occurs for the stationary distribution of the reflecting random
walk. In particular, if κ = 0, then P(X > x) is said to have an exact exponential
asymptotics with decay rate α. If X is integer-valued, then P(X ≥ n) is said to have
an exact geometric asymptotics with decay rate α. Note that this is equivalent to saying
that P(X = n) has an exact geometric asymptotics with decay rate α.

One may wonder how to get the power κ and the decay rate α from the modeling
primitives and how they change according to those primitives. These are not easy ques-
tions to answer when no analytic expression is available for the stationary distribution.
Nevertheless, we can answer to them for the case of d = 2 to some extent, and we may
expect to use the same idea for higher dimensions.

Until now, we have only considered one-dimensional distribution which captures a sin-
gle queue. If such a queue belongs to a queueing network, we generally need to consider
multiple queues at once. Thus, we may need to study the tail asymptotics of a multidi-
mensional distribution. For such a distribution, we have to make the definition of a tail
set clear. To consider this, let X ≡ (X1, . . . , Xd) be a d-dimensional random nonnegative
vector for a positive integer d. Then, for a Borel measurable subset B of the d-dimensional
Euclidean space R

d
+ and a direction vector c ∈ R

d, that is, a vector c satisfying ‖c‖ = 1
and c ≥ 0, we consider the tail asymptotics for

P(X ∈ xc + B), x > 0, (2.8)
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where u + B = {u + y; y ∈ B} for u ∈ R
d. In this case, c is called a direction vector,

and xc + B is called a tail set.

In view of the tail distribution, we may require that

t(xc + y) ∈ xc + B, ∀y ∈ B, ∀t > 0,

that is, that c + B be a cone. Then, (2.8) is equivalent to

P(X ∈ x(c + B)), x > 0. (2.9)

This probability is generally used to consider the tail asymptotics. Since c + B ⊂ R
d
+,

we may also use B itself instead of c + B. This tail set is studied in the theory of large
deviations.

Definition 2.3 If there exists a lower semi-continuous function I(u) on R
d
+ such that,

for any measurable B ⊂ R
2
+,

lim sup
x→∞

1

x
log P(X ∈ xB) ≤ − inf

v∈B
I(v), (2.10)

lim inf
x→∞

1

x
log P(X ∈ xB) ≥ − inf

v∈Bo
I(v) (2.11)

where B and Bo are the closure and the interior of B, then I(v) is called a rate function.
This rate function is said to satisfy a large deviations principle for the distribution of X.

We can again consider refinements of the rough asymptotics considered in this defini-
tion. That is, we may consider an asymptotic function for the tail probability P(X ∈ xB)
for each fixed B. For example, if, for i ∈ J ≡ {1, 2, . . . , d}, we take B = {x ∈ R

d
+; xi > 1},

then

P(X ∈ xB) = P(Xi > x).

This is the marginal distribution of the ith component.

We may also consider the tail set:

B = {u ∈ R
d
+; f(u) > 1} (2.12)

by using a measurable function f from R
d
+ to R+. This is particularly useful for considering

tail types as in Definition 2.1. For this, we use

f(u) =
n
∑

i=1

ciui ≡
〈

c, u
〉

,

for a directional vector c ≥ 0. In this case, (2.12) is the upper half-space over the hyper
plane which is orthogonal to the vector c. This set is analytically convenient because we
can use the moment generating function as in Definition 2.1.

We define the joint moment generating function ϕ of a d-dimensional random vector
X as

ϕ(θ) = E

(

e

〈

θ,X
〉

)

, θ ∈ R
d.

We now classify the tail distribution of X as in Definition 2.1.
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Definition 2.4 The distribution of a random vector X is said to have a small, light or
heavy tail in direction c ≥ 0 if

〈

c, X
〉

has a small, light or heavy tail, respectively, in
the sense of Definition 2.1. In particular, if the distribution of X has a light tail in all
directions c ≥ 0, then X is said to have a light tail.

In view of this definition as well as the rough tail asymptotics, we may realize that
it is important to consider the set of θ for which ϕ(θ) is finite. For this, we define the
convergence domain D as

D = the interior of {θ ∈ R
d; ϕ(θ) < ∞}. (2.13)

Obviously, this domain plays a crucial role in finding the tail asymptotics. Furthermore,
it can be used to characterize light tails. We note this as a lemma.

Lemma 2.1 The domain D is a convex subset of R
d. (a) If there is some θ(0) ∈ D such

that θ(0) > 0, then the tail distribution P(
〈

c,X
〉

> u) (u ≥ 0) has a light tail or a small
tail for each directional vector c ≥ 0. (b) If the assumption in (a) is satisfied and if D is
bounded above by some hyperplane which is orthogonal to some vector c > 0, then the
tail distribution has a light tail.

Proof. Since the exponential function is convex, we have, for λ ∈ (0, 1) and θ,η ∈ R
d,

ϕ(λθ + (1 − λ)η) = E(eλ
〈

θ,X
〉

+(1−λ)
〈

η,X
〉

)

≤ E(λe

〈

θ,X
〉

+ (1 − λ)e

〈

η,X
〉

)

= λE(e

〈

θ,X
〉

) + (1 − λ)E(e

〈

η,X
〉

)

= λϕ(θ) + (1 − λ)ϕ(η).

Thus, ϕ is a convex function, and therefore D is a convex set. Since θ(0) > 0, we can find
u0 > 0 such that θ(0) > u0c > 0. Then,

euu0P
(〈

c,X
〉

> u
)

≤ E

(

eu0

〈

c,X
〉

1(
〈

u0c,X
〉

> uu0

)

≤ E

(

e

〈

θ(0),X
〉

)

< ∞.

This implies that P
(〈

c, X
〉

> u
)

decays at most exponentially fast. Thus, we have proved
(a). If

〈

v, X
〉

has a small tail distribution for some directional vector v ≥ 0, then ϕ(uv)
must be finite for all u ≥ 0. This contradicts the bounded assumption in (b).

From this lemma, we can also see that, for any convex set B ⊂ R
+ which does not

contain a neighborhood of the origin, the tail distribution P(X ∈ uB) (u ≥ 0) has a light
or small tail under the condition of (a).

3 Reflecting processes on orthants

In this section, we introduce a unified model for a reflecting random walk. For this, we
first discuss the Jackson network as a motivating example.
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3.1 Motivating example: Jackson network

Consider a continuous time queueing network with d nodes, numbered as 1, 2, . . . , d. In
Section 2, we have used the notation:

J = {1, 2, . . . , d},

which is the set of nodes here. We assume that exogenous customers arrive at node i
subject to a Poisson process with rate λi, and customers in node i have independent
service times with an exponential distribution with mean 1/µi, and are served in first-in-
first-out manner by a single server, which is independent of everything else. A customer
who completes service at node i goes to node j with probability rij or leaves the network
with probability ri0, where

d
∑

j=0

rij = 1, i ∈ J.

We assume that all the movements are independent. Thus,

λi, µi, rij i = 1, 2, . . . , d, j = 0, 1, 2, . . . , d

are modeling primitives. This model is referred to as a Jackson network.

This network model is usually described by a continuous time Markov chain. For this,
let Li(t) be the number of customers in node i at time t. The d-dimensional vector-valued
process L(t) ≡ (L1(t), . . . , Ld(t)) is a continuous Markov chain, whose state space is the
d-dimensional nonnegative integer orthant S ≡ Z

d
+, where Z+ is the set of all nonnegative

integers. It is not hard to see that its transition rate matrix Q ≡ {q(n,n′); n, n′ ∈ S} is
given by, for n 6= n′,

q(n, n′) =















λi n′ = n + ei, i 6= 0,
µirij n′ = n − ei + ej, ni > 0, i, j 6= 0,
µiri0 n′ = n − ei, ni > 0, i 6= 0,
0 otherwise,

(3.1)

where inequality of vectors stands for entry-wise inequalities, and

q(n,n) = −
∑

n′ 6=n

q(n,n′). (3.2)

For notational convenience, we let r00 = 0 and

µ0 =
d
∑

k=1

λk, r0i = λi/µ0, i = 1, 2, . . . , d.

Then, (d + 1) × (d + 1) matrix R = {rij} is stochastic, and called a routing matrix. We
can assume without loss of generality that R is irreducible.

If L(t) has the distribution which does not depend on t, it is called a stationary
distribution. Denote this distribution by π if it exists. It is well known that this π is
obtained as a nonnegative summable solution of the stationary equation:

πQ = 0,
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and it is the product of the marginal distributions on nodes. To describe this distribution,
let ai be the solution of the following traffic equations:

ai = λi +
d
∑

j=1

ajrji, i ∈ J.

Under the assumption that the routing matrix R is irreducible, the solution a1, a2, . . . , ad

exists uniquely. This ai represents the total arrival rate at node i. Let ρi = ai/µi, and
assume the stability condition:

ρi < 1, i ∈ J. (3.3)

Then, the stationary distribution π is given by

π(n) =
d
∏

i=1

(1 − ρi)ρ
ni

i , n ∈ S. (3.4)

This distribution is said to have a product form. The details for this result can be found
in standard textbooks (see, e.g., [12, 13, 90]).

Thus, for the Jackson network, we have a nice analytic expression for the stationary
distribution, which accounts for its popularity in applications. However, this nice analytic
result breaks down if there is even a small change of the modeling assumptions. For
example, if we modify them in such a way that an idle server at node 1 helps a server
at node 2 as long as node 1 is empty, which just increases µi when some other nodes are
empty, the the product form solution is destroyed. Furthermore, there is no prospect of
finding any analytic expression for the stationary distribution. We meet similar situations
when customers simultaneously arrive at different nodes. We may want to see how the
system performance is changed in those cases because such changes may naturally arise
in applications.

This is exactly what we have discussed in Section 1. As a flexible model to handle these
situations, we have proposed the reflecting random walk. We now formally introduce it.

3.2 Reflecting random walk on an orthant

We use some of standard notations for sets of numbers. Let R and R+ be the sets of all
real nonnegative numbers, respectively. Similarly, let Z be the set of all integers. Let d
be a positive integer. Then, S ≡ Z

d
+ is referred to as a nonnegative orthant of Z

d. The
reflecting random walk is defined on this orthant. That is, it has state space S.

To describe a reflection mechanism, we partitioned this S into disjoint subsets. Let
J = {1, 2, . . . , d}. For each subset A ⊂ J , we define SA as

SA = {x ∈ S; xi ≥ 1, i ∈ A, xj = 0, j ∈ J \ A}.

If A 6= J , then SA is called a boundary face. SJ represents the inside of S, and we also
denote this inside by S+. That is,

S+ ≡ SJ = {x ≡ (x1, . . . , xd) ∈ S; xi > 0, i = 1, 2, . . . , d}.
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The collection of all boundary faces is simply called the boundary, and denoted by ∂S.
That is,

∂S = ∪A⊂J,A6=JSA.

We now define the reflecting random walk. For each A ⊂ J , let {XA
ℓ ; ℓ = 1, 2, . . .}

be a sequence of independent identically distributed random variables which are also
independent of everything else. XA

ℓ represents a jump at time ℓ when the random walk
is in SA. We denote its distribution by {pA

x; x ∈ R
d}, that is,

pA
x = P

(

XA
ℓ = x

)

, x ∈ Z
d,

We omit the superscript A of XA
ℓ and pA

x for A = J when it is convenient. Thus, Xℓ and
px may be used instead of them. We assume the following condition:

(3a) pA
x = 0 unless xi ≥ −1 for all i ∈ A and xj ≥ 0 for all j ∈ J \ A.

This condition means that each jump in the side or face is skip-free downward.

Let Z0 be a random vector taking values in S, and inductively define a discrete time
process {Zℓ; ℓ = 0, 1, . . .} by

Zℓ+1 = Zℓ +
∑

A⊂J

XA
ℓ+11(Zℓ ∈ SA), ℓ = 0, 1, . . . . (3.5)

By the assumption (3a), Zℓ remains in S for all ℓ ≥ 0. We refer to this process as
a reflecting random walk on a nonnegative orthant with downward skip-free transitions,
or simply as a reflecting random walk. We may interpret Zℓ as a state of a discrete
time queueing network with d nodes, numbered as 1, 2, . . . , d, where the ith entry of the
state is the number of customers in node i at time ℓ. Since, each entry Zℓ,i behaves like
the M/G/1 queue at departure instants, this reflecting process is also referred to as a
multidimensional M/G/1-type queue.

Clearly, {Zℓ} is a discrete time Markov chain with state space S. Define its transition
probability p(n, n′) as

p(n,n′) = P(Zℓ+1 = n′|Zℓ = n), n, n′ ∈ S,

where the right side of this equation does not depend on ℓ ≥ 0 by the modeling assumption.
Let P be the infinite-dimensional matrix whose (n,n′)th entry is p(n,n′). This P is a
transition matrix, which is obviously stochastic.

We are interested in the stationary distribution of the reflecting random walk {Zℓ}.
That is, we seek a distribution π on S such that

P(Zℓ = n) = π(n), n ∈ S, ℓ = 0, 1, . . . . (3.6)

Let Z be a random vector subject to the distribution π, then it follows from (3.5) that

Z ≃ Z +
∑

A⊂J

XA1(Z ∈ SA), ℓ = 0, 1, . . . , (3.7)

11



where “≃” stands for the equality in distribution. We can view the π as the row vector
π whose nth entry is π(n). Then, (3.7) is equivalent to π = πP , and called a stationary
equation. If P is irreducible, then it uniquely determines π as long as π exists. We assume
this irreducibility throughout the paper. Algebraically our goal is to find the asymptotic
behavior of the solution of this stationary equation. However, this will not be an easy
task since π has an infinite-dimensional vector.

Even the existence of the stationary distribution is a big issue for the reflecting random
walk. We will discuss it for d = 2. The problem is still open for d ≥ 4. However,
in its applications to queueing networks, we often easily find the stability condition by
comparing the total arrival rate and the total service rate at each node.

We show how the reflecting random walk can accommodate the Jackson network and
its modification for server collaboration by examples below.

Example 3.1 (Reflecting random walk for Jackson network) Let us show how the
Jackson network is described by the reflecting random walk in discrete time. We first note
that if we change time from t to bt for a constant b > 0, that is, time scale is changed by
b, then λi and µi are also increased b times of them, so

∑d
i=1(λi + µi) does so. However,

this does not change the stationary distribution π. Hence, for studying the stationary
distribution, we can assume without loss of generality that

d
∑

i=1

(λi + µi) = 1.

By doing so, we closely look at the transition rate matrix Q of (3.2), and define pA
n for

each A ⊂ J as

pA
n =

∑

i∈A∪{0}

d
∑

j=0

1(n = ej − ei)µirij + 1(n = 0)
∑

i∈J\A

µi,

where e0 = 0. Note that the second summation on the right hand side is a dummy
transition for {pA

n} to be a probability distribution. Thus, we have defined the reflecting
random walk.

For n ∈ SA,

p(n,n + ej) = pA
ej

= µ0r0j = λj, j = 1, . . . , d;

p(n,n) = pA
0

=
∑

i∈J\A

µi,

and if i ∈ A then

p(n, n + ej − ei) = pA
ej−ei

= µirij, j = 0, 1, . . . , d.

Hence, for n ∈ SA,

p(n,n′) = 1(n 6= n′)q(n,n′) + 1(n = n′)
∑

i∈J

µi1(ni = 0).

12



Thus, πQ = 0 is equivalent πP = π, and this reflecting random walk indeed has the same
distribution as the Jackson network.

This reflecting random walk can be also used to describe some modifications of the
Jackson network. For example, let us change pA

n for nonempty A 6= J as

pA
n =

∑

i∈A∪{0}

d
∑

j=0

1(n = ej − ei)(µi + δA
i 1(i 6= 0))rij + 1(n = 0)

(

∑

i∈J\A

µi −
∑

i∈A

δA
i

)

,

where δA
i for i ∈ A is a nonnegative number, and it is assumed that

∑

i∈J\A

µi ≥
∑

i∈A

δA
i .

for pA
n to be well defined. Then, this modification describes server collaboration when

they are idle. Clearly, δA
i is an additional service rate for node i from idle servers. In this

way, the reflecting random walk can be used to model the effect of server collaboration.
Similarly, we can consider batch arrivals.

Example 3.2 (Multiple QBD process) If the reflecting random walk {Zℓ} is skip-
free for all directions, that is, all entries of XA

ℓ take values 0, 1 or −1, then it is called a
reflecting skip-free random walk. In queueing applications, it is also-called a multidimen-
sional quasi-birth-and-death process, or multiple QBD process for short. This is because
each entry of Zℓ behaves like the birth-and-death process. This multiple QBD has sim-
pler transitions, but still flexible for applications. For example, it can accommodate the
Jackson network and some of its modifications. However, its tail asymptotics have not
been well studied except for d = 2.

The multiple QBD process for d = 2 is called a double QBD process whose transition
diagram is given below.

p
(2)
01

p
(2)
0(−1)

p
(2)
00

p
(1)
(−1)0 p

(1)
00 p

(1)
10

Z1

Z2

p
(2)
11

p
(2)
10

p
(2)
1(−1)

p
(1)
11

p
(1)
01p

(1)
(−1)1

p
(0)
11

S+S2

S1S0

Figure 1: Transition diagram for the double QBD process

Even for this simple network model, some of tail asymptotics are still unknown. We
will discuss them in Section 7.

We will consider the tail asymptotic problem on the reflecting random walk in Sec-
tion 6, and give some answers in Section 7.
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3.3 Generalized reflecting random walk

We have considered the reflecting random walk on the orthant, but, for some applications,
it may be convenient to have a more general state space and to allow some of boundary
faces to be penetrable, that is, the boundary faces may be placed inside of the state space.
We meet such a model when arriving customers join the shortest queue among parallel
queues. For this model, the interior of the state space is partitioned, and each partitioned
area has its own random walk.

It is straightforward to generalize the reflecting random walk on an orthant in this
direction. We just replace the partitions {SA} according to all subsets of J by those
according to an arbitrarily given index set. Denote this index set by J , and let S be a
subset of Z

d. This S is used for a state space, which may not be an orthant. Similar
to the reflecting random walk on an orthant, we partition S into disjoint subsets Sj for

j ∈ J . Thus, SA is replaced by Sj. Similarly, we replace XA
ℓ by X

(j)
ℓ , and denote its

distribution by {p(j)
x ; x ∈ S(j)}. Thus, we define a discrete time process {Zℓ; ℓ = 0, 1, . . .}

by

Zℓ+1 = Zℓ +
∑

j∈J

X
(j)
ℓ+11(Zℓ ∈ Sj), ℓ = 0, 1, . . . , (3.8)

where we assume that distributions {p(j)} for j ∈ J are defined so that Zℓ+1 ∈ S. We
refer to this process as a generalized reflecting random walk, which is clearly a Markov
chain. For the subset Sj, it is less meaningful to distinguish boundary and interior. Thus,
we will not use them unless they are really needed. We give an example for this random
walk below.

Example 3.3 (Two-sided double QBD) We consider a two-dimensional generalized
reflecting random walk with two insides and four boundary faces, which is a special case
of a two-sided QBD process introduced in Li, Miyazawa and Zhao [56]. Let S ≡ Z × Z+

and let J = {−, +, 0, 1+, 1−, 2}. We define Sj as

S+ = {(n1, n2) ∈ S; n1, n2 ≥ 1}, S− = {(n1, n2) ∈ S; n1 ≤ −1, n2 ≥ 0}, S0 = {0},
S1+ = {(n, 0) ∈ S; n ≥ 1}, S1− = {(n, 0) ∈ S; n ≤ −1}, S2 = {0, n) ∈ S; n ≥ 1}.

In this model, S+ and S− may be considered as interiors, and S2 is a penetrable boundary
face.

Assume that all the increments are skip-free. Then, the transition diagram of the
Markov chain {Zℓ} is given above. We refer to this model as a two-sided double QBD
(quasi-birth-and-death) process. The tail asymptotics of this process is studied in Miyazawa
[69]. We discuss them in Section 7.3.

3.4 Technical assumptions and stationary equations

We will consider the tail asymptotics of the stationary distribution of the d-dimensional
reflecting random walk. We are interested in the case where it has a light tail. For this,
we need some extra conditions on the modeling primitives. In this subsection, we first
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Figure 2: Transition diagram for the two-sided DQBD process.

give them in terms of the moment generating functions of distributions for the modeling
primitives. We then derive the stationary equations in terms of generating functions.

For A ⊂ J and θ ∈ R
d, define the moment generating function of XA as

γA(θ) = E

(

e

〈

θ,XA
〉

)

, θ ∈ R
d,

as long as it exists. Recall that XA is an independent copy of XA
ℓ . For the stationary

distribution of the reflecting random walk to have a light tail, it is reasonable to assume
that each increment at each transition instant has a light tailed distribution, that is,

(3b) For each A ⊂ J , γA(θ) is finite for some θ > 0.

In addition to this condition, we assume the following regularity condition:

(3b’) For each A ⊂ J and each u > 0, {θ ∈ R
d; γA(θ) ≤ u} is a closed set.

This condition is slightly stronger than what we really need, but proofs can be amended
with minor technical arguments. So, we take an easy way.

We use one more assumption on the distributions of the increments also for making
arguments simpler:

(3c) The random walk Y ℓ ≡
∑ℓ

i=1 XJ
i is aperiodic and irreducible.

This irreducibility condition is equivalent to that the addition group generated by n such
that P(X = n) > 0 is identical with Z

d. In certain applications, this is not satisfied,
but we can again amend the arguments for such cases. By this assumption, the reflecting
random walk {Zℓ} is aperiodic and irreducible as a Markov chain. Hence, the stationary
distribution is unique if

(3d) There exists a stationary distribution for the reflecting random walk {Zℓ}.

We recall that the stationary distribution is denoted by π. Assuming the condition
(3d), let Z be a random vector subject to the stationary distribution π. We define a
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family of moment generating functions concerning Z as

ϕA(θ) = E

(

e

〈

θ,Z
〉

1(Z ∈ SA)

)

, θ ∈ R
d, A ⊂ J.

Let ϕ(θ) be the moment generating function of π, then we have

ϕ(θ) =
∑

A⊂J

ϕA(θ). (3.9)

We take the moment generating functions of (3.7). Then, we get

ϕ(θ) =
∑

A⊂J

γA(θ)ϕA(θ). (3.10)

Hence, we have

∑

A⊂J

(1 − γA(θ))ϕA(θ) = 0. (3.11)

as long as all ϕA(θ) are finite. We will use the pair of (3.9) and (3.11) so as to uniquely
determine the stationary distribution π.

For the generalized reflecting random walk, we can similarly define ϕj and γj for j ∈ J ,
and get the stationary equations. However, they may not be so useful because there is
neither interior nor boundary. As we will see in Section 6, it is crucial to distinguish them
for deriving the convergence domain of ϕ. Thus, we are probably better if we introduce
interiors and boundary faces by adding extra random elements if necessary.

For example, let us consider the two-sided QBD process. In this case, we introduce

Z1− = −Z11(Z ∈ S− ∪ S1−), Z1+ = Z11(Z ∈ S+ ∪ S1+),

and consider (Z1−, Z1+, Z2) instead of Z ≡ (Z1, Z2). Similarly, the increments on S0 and
S2 are partitioned as

X
(0)
1− = −X

(0)
1 1(X

(0)
1 = −1), X

(0)
1+ = X

(0)
1 1(X

(0)
1 = 1),

X
(2)
1− = −X

(2)
1 1(X

(2)
1 = −1), X

(2)
1+ = X

(2)
1 1(X

(2)
1 = 1).

Thus, (X
(j)
1+ , X

(j)
1− , X

(j)
2 ) replaces X ≡ (X

(j)
1 , X

(j)
2 ) for j = 0, 1, 1−, 1+, 2.

We appropriately define moment generating functions using three variables θ1−, θ1+

and θ2. For example,

ϕ−(θ1, θ2) = E
(

eθ1Z1−+θ2Z21(Z ∈ S−)
)

,

ϕ1−(θ1) = E
(

eθ1Z1−1(Z ∈ S1−)
)

, ϕ2(θ2) = E
(

eθ2Z21(Z ∈ S2)
)

,

γ−(θ1, θ2) = E

(

eθ1X
(−)
1− +θ2X

(−)
2

)

, γ1−(θ1, θ2) = E

(

eθ1X
(1−)
1− +θ2X

(1−)
2

)

,

γ2(θ1−, θ1+, θ2) = E

(

eθ1−X
(2)
1−+θ1+X

(2)
1++θ2X

(2)
2

)

.

We then have the stationary equations similar to (3.9) and (3.11).
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3.5 Semi-martingale reflecting Brownian motion (SRBM)

A reflecting Brownian motion on an orthant is a continuous time and space version of
the multiple QBD. Let X(t) be a d-dimensional Brownian motion. We express it as
X(t) = tµ + B(t), where µ is the mean drift vector, and B(t) is the null drift Brownian
motion with d × d covariance matrix Σ ≡ {σij}. We assume

(3-i) Σ is positive definite, that is, non-singular.

Let R be a d × d matrix. Then, we define the reflecting Brownian motion Z(t) as a
solution of the following equation:

Z(t) = X(t) + RY (t), t ≥ 0, (3.12)

where Y (t) is a regulator, that is, a minimal continuous and nondecreasing process such
that Y (0) = 0 and its ith entry Yi(t) is increased only when Zi(t) = 0 for each i = 1, 2.
This Z(t) is referred to as a semi-martingale reflecting Brownian motion, SRBM for short
(e.g., see Section 7.5 of Chen and Yao [13]).

Under the non-singularity assumption (3-i), it is known that this solution exists at
least in distribution if and only if the following condition is satisfied (see Reiman and
Williams [84] and Taylor and Williams [95]).

(3-ii) R is a complete-S matrix, that is, for each of its principal-submatrices, there
is a nonnegative column vector which is transformed to a positive vector by this
submatrix.

If R is an M-matrix, that is, there is a nonnegative matrix G and a positive diagonal
matrix D such that R = (I −G)D and (I −G)−1 exists, then the solution Z(t) of (3.12)
can be expressed as a functional of X(t), that is, (3.12) has a strong solution. This
functional is called a reflection mapping. Denote it by Ψt, then we have

Z(t) = Ψt({X(u); u ∈ [0, t]}).

For the existence of the stationary distribution of the SRBM, it is known to be neces-
sary that

(3-iii) R has an inverse R−1, and R−1µ < 0.

If R is an M-matrix, then this condition is both necessary and sufficient.

For d = 2, the stationary distribution exists if and only if (3-iii) holds and R is a P
matrix, that is, all principal submatrices of R have a positive determinant. Namely, the
latter condition is written as

(3-iv) rii > 0 for i = 1, 2 and r11r22 − r12r21 > 0.

See Bramson, Dai and Harrison [10] and Harrison and Hasenbein [40] for recent develop-
ments.
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We now assume that the stationary distribution exists, and denote it by π. We use Itô’s
integral formula for deriving the stationary equation. Denote, for a twice continuously
differentiable function f of d variables, ∇f = (f ′

1, . . . , f
′
d)

t and

Lf(x) =
1

2

d
∑

i=1

d
∑

j=1

σij
∂2f

∂xi∂xj

(x),

where σij is (i, j)th entry of the covariance matrix Σ, and xt stands for the transpose of
vector x. Then, Itô’s integral formula reads

f(Z(u)) − f(Z(0)) =

∫ 1

0

〈

∇f(Z(u)), µdu + dB(u)
〉

+

∫ 1

0

〈

∇f(Z(u)), RdY (t)
〉

+

∫ 1

0

Lf(Z(u)) du, (3.13)

where
〈

x, y
〉

is the inner product of vectors x, y ∈ R
d.

Assume that Z(t) is a stationary process with the initial distribution π. Define func-
tions γ(θ) and γ[j](θ) as

γ(θ) = −
〈

θ,µ
〉

− 1

2

〈

θ, Σθ
〉

, γ[j](θ) =
d
∑

i=1

θirij, j = 1, 2, . . . , d,

and denote the moment generating function of π by ϕ(θ). Here, γ[j](θ) corresponds to
γJ\{j}(θ) of the reflecting random walk in Sect. 3.4. Let ϕ[j](θ[j]) denote the moment
generating functions of Z(t) with respect to the Palm measure generated by the nonde-
creasing process Yj(t), where θ[j] is the vector θ whose jth entry is replaced by 0, that
is,

ϕ[j](θ[j]) = Eπ

(
∫ 1

0

e

〈

θ[j],Z(u)
〉

dYj(u)

)

.

From (3.12), it is not hard to see that Eπ(Y (1)) = −R−1µ is a finite and positive vector
by (3-iii). Thus, ϕ[j](θ[j]) is well defined at least for θ[j] ≤ 0.

Let f(x) = exp(
〈

θ,x
〉

) in (3.13), and taking the expectation with respect to the initial
distribution π, we have the stationary equation:

γ(θ)ϕ(θ) =
d
∑

j=1

γ[j](θ)ϕ[j](θ[j]), (3.14)

as long as ϕ(θ), ϕ[j](θ[j]) are finite for all j, which holds at least for θ ≤ 0. This stationary
equation corresponds to (3.11) for the reflecting random walk, which is obtained from the
stationary equation (3.6).

We can see how (3.14) is simple compared with (3.11). This is another great advantage
of an SRBM in applications. This suggests that we may also use an SRBM as a pilot
model for the reflecting random walk in studying the stationary distribution and its tail
asymptotics.
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4 How to attack the problem

We now have all materials in our hands. The problem is how to derive the tail asymptotics.
The difficulty of this problem comes from the fact that the reflecting boundary is not a
bounded set. This means that the tail asymptotics can be influenced by the boundary
even if the tail set is far away from the origin. Hence, we have to incorporate the influence
into the tail asymptotics. For d ≥ 2, there is more than one boundary face, so the influence
from different faces also has to be simultaneously considered. Here we summarize four
approaches which have been used to study those issues. Two of them, Markov additive
and analytic function approaches in Sections 4.3 and 4.4, will be detailed in Sections 5, 6
and 7.

4.1 Brute force approach

If the stationary distribution is obtained in a closed form, then we may directly work
with it to get its tail asymptotics. For example, a closed form expression is available
for the stationary distribution of an SRBM for a two node tandem queue, and the tail
asymptotics is obtained from it in Lieshout and Mandjes [59]. However, these cases
are rather exceptional, and we cannot expect that this approach is generally applicable
because analytical expressions of the stationary distributions are hardly ever obtained.

Because of this difficulty as well as its own interest, there have been numerous efforts
to find analytically tractable solutions by modifying the modeling assumptions. Typically,
the queueing networks are modified in such a way that they satisfy local balance, which
produces product form solutions similarly to Jackson networks (e.g., see [12, 90]). Those
modifications generally require unrealistic assumptions. However, in some cases, they
can be used for stochastically bounding the stationary distributions (e.g., see Kella and
Miyazawa [47] and Miyazawa and Taylor [72]). Thus, they may be useful to get rough
asymptotics if lower bounds are available. However, even if they are found, it is hardly
expected for them to be tight, that is, for the lower bounds to be identical with the upper
bounds (see, e.g., [51]).

We refer to these two methods as a brute force approach. We should not exclude
every approach for attacking the tail asymptotic problem, but we have to say that this
approach is very limited in use.

4.2 Large deviations approach

A standard approach for the tail asymptotics is the theory of large deviations. This
approach aims at finding a rate function that satisfies a large deviations principle for
the stationary distribution (see Definition 2.3). In Majewski [61], it is obtained in two
steps. First, we find tail asymptotics for a sequence of boundary free processes, which
are usually input processes. Such a sequence is typically obtained through fluid scaling.
This part is called a sample path large deviations. We consider this for the SRBM {Z(t)}
discussed in Section 3.5. Let {B(t); t ≥ 0} be the Brownian motion for this SRBM, which
can be written as

√
ΣW (t) using the standard Brownian motion {W (t); t ≥ 0} and
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covariance matrix Σ. For each T > 0, let Cd[0, T ] be the set of all continuous functions
from [0, T ] to R

d. Then, the sample path large deviation principle for the fluid scaled
process { 1

n
W (nt); t ∈ [0, T ]} for the supremum is obtained for a closed set A ⊂ Cd[0, T ]

as

lim sup
n→∞

1

n
log P ({W (nt); t ∈ [0, T ]} ∈ nA) ≤ − inf

ω∈A∩Hd

1

2

∫ T

0

‖ω̇(t)‖dt, (4.1)

where Hd is the set of all functions from [0,∞) to R
d which are absolutely continuous and

have locally square integrable derivative. Taking the expression X(t) = tµ +
√

ΣW (t)
into account, we define the function IT as

IT (f) =
1

2

∫ T

0

〈

ḟ(t) − µ, Σ−1(ḟ(t) − µ)
〉

dt. (4.2)

Then, (4.1) implies

lim sup
n→∞

1

n
log P ({X(nt); t ∈ [0, T ]} ∈ nA) ≤ − inf

f∈A∩Hd
IT (f). (4.3)

Thus, we can see that IT is the rate function for the fluid scaling { 1
n
X(nt); t ∈ [0, T ]}.

In the second step, we assume that R is an M-matrix, which guarantees that the
reflecting process Z(t) has a strong solution, that is, it is obtained from X(t) by the
reflection mapping Ψt. We apply the contraction principle of large deviations for Ψt.
This yields

lim sup
n→∞

1

n
log P ({Z(nt); t ∈ [0, T ]} ∈ nA) ≤ − inf

f∈Hd,{Ψt(f);t∈[0,T ]}∈A
IT (f). (4.4)

Then, letting A = {f ∈ C[0, T ]; 1
t
f(t) ∈ B, t ∈ (0, T ]} for a measurable closed set B ⊂ R

d
+

and after some manipulations, we can prove that

lim sup
n→∞

1

n
log P (Z(0) ∈ nB) ≤ − inf

T>0,x∈B
inf

f∈Hd,ΨT (f)=x
IT (f). (4.5)

Thus, the rate function for (2.10) is given by

I(x) = inf
T>0

inf
f∈Hd,ΨT (f)=x

1

2

∫ T

0

〈

ḟ(t) − µ, Σ−1(ḟ(t) − µ)
〉

dt. (4.6)

It remains further work to get I(x) in terms of the modeling primitives. This requires
solving the variational problem in (4.6). For d = 2, this variational problem has been
analytically solved in Avram, Dai and Hasenbein [4] under the assumption that R is an
M-matrix (see also [40]). Weaker conditions for this can be found in [19].

The basic idea of [4] is to reduce the function space for finding the optimal solution to
a class of line graphs with two segments at most. Thus, the variational problem becomes
an optimization problem with finite-dimensional variables. For d = 3, some studies in this
line were made by El Kaharroubi, Yaacoubi, Tahar and Bichard [20], but the decay rate
has not been obtained yet. An alternative expression of I(x) was obtained by Dupuis and
Ramanan [19], but it has not yet produced any explicit solution except for special cases.
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This large deviations approach works also for the reflecting random walk as long as a
reflecting mapping exists. However, these requirements are generally not satisfied because
the reflections are not deterministic for the reflecting random walk, in general. Even if the
reflecting mapping exists, it is very difficult to analytically solve the variational problem
(e.g., see [63]).

4.3 Markov additive approach

Because of the limited availability of the sample path large deviations, another approaches
have been explored. Among them, the Markov additive approach is the most popular
for the reflecting random walk. A key ingredient of this approach is to extract a one-
dimensional additive process removing one of the boundary faces. This enables us to
apply limiting theorems, including large deviations.

This additive process itself is not Markov, so we add a background process for it to be
Markov. This background process is generated by all components of the reflecting random
walk except for the one corresponding to the additive process. Thus, it is a discrete time
Markov chain, and the additive process with this background process is called a Markov
additive process, which is formally defined in Section 5.2.

This Markov additive process is used to compute the mean sojourn time, that is, the
mean visiting number, at each state before it returns to the level 0, which corresponds to
the removed boundary face. The set of these conditional mean sojourn times is referred
to as an occupation measure. The stationary distribution is obtained from:

(4a) The occupation measure of the Markov additive process,

(4b) The stationary measure on the removed boundary face.

Thus, we need to see tail asymptotics of these two quantities.

For d = 1, the Markov additive process is reduced to a renewal process. In this case,
for (4a), we can apply the renewal theorem with help of the Wiener–Hopf factorization
for a random walk while (4b) is trivial since the boundary is a single point. For d ≥ 2,
(4a) may be answered by either applying Markov renewal theorem or by computing the
convergence parameter of the matrix moment generating function of the Markov additive
transition kernel. The problem (4b) is much harder even for d = 2, and therefore strong
conditions have often been used for suppressing this influence. There are many papers
along this line (see, e.g., [29, 30, 32, 38, 42, 56]). The most general results in this line
may be found in Miyazawa and Zhao [73], which are given in Theorem 5.2.

However, for d = 2, the problem for the tail asymptotics of (4b) has been solved
by two different ways. The first is to combine two Markov additive processes along two
different axes. This will be detailed in Section 5.6. The second is to find them through
the convergence domain of the moment generating function of the stationary distribution,
which will be discussed in Section 6 (see also Section 4.4.2).

The Markov additive approach appears under different formulations in the literature.
We first summarize them, then discuss their features. The technical details of this ap-
proach will be discussed in Section 5.
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4.3.1 Matrix analytic method

The matrix-analytic method originated in Neuts [75, 76] and has been applied to the
tail asymptotic problems, particularly for single queues. A basic idea is to use vectors
and matrices as if they are numbers. It was motivated by the possibility to avoid using
transforms such as generating functions so as to numerically compute characteristics of
interest directly. It was greatly succeeded for a quasi-birth-and-death process, QBD
process for short, which is a Markov modulated birth-and-death process.

From its original motivation, this method has been mainly used when the background
Markov chain has finitely many states. However, it is also well known that it can be
used for countably many background states, although it generally looses the nice feature
for numerical computations. Then, matrix manipulations as operators become more im-
portant (e.g., see Katou, Makimoto and Takahashi[46], Miyazawa [67] and Takahashi,
Fijimoto and Makimoto [94]). In this respect, this approach can be considered as the
Markov additive approach. Relations between those two approaches are also discussed in
Miyazawa [65].

4.3.2 Borovkov–Mogul’skii approach

Borovkov and Mogul’skii have studied the tail asymptotic problem for many years [6, 7,
8, 9], and solved it for a two-dimensional reflecting random walk with a thick boundary
and real vector-valued jumps, where a thick boundary means that the boundary has some
bounded depth (Borovkov and Mogul’skii [9]). They combined various techniques for
deriving exact asymptotics on a multidimensional renewal function, in which there are
many excellent ideas for studying the tail asymptotics of the reflecting random walk.
However, their results are not very explicit, and therefore they are not easy to use in
applications. The essence of their approach is very close to the Markov additive approach.
See the end of Section 5.6 for some remarks on this issue.

4.3.3 Foley–McDonald approach

Foley and McDonald have studied the tail asymptotic problem in a series of papers [28, 29,
30]. They mainly considered a skip-free reflecting random walk on the two-dimensional
integer orthant, that is, a double QBD in our terminology. Their approach can also be
considered as the Markov additive approach. However, there is one thing to be noted.
As we will see, the Markov additive approach is generally useful to find exact geometric
(or exponential) asymptotics, but not easy for finding other types of exact asymptotics.
In [30], the authors challenged the latter problem using the ratio limit theorems for a
Markov chain and the complex inversion of an analytic function around a branch point.
This is rather connected to an analytic approach which will be discussed in Section 4.4.

4.3.4 Advantages and disadvantages of Markov additive approach

The Markov additive approach is very flexible for implementing extra information about
the background states. For example, supplementary information on the arrival process

22



and service times is easily incorporated. It also provides exact tail asymptotics for each
fixed background state. There are also many studies on its own asymptotics (e.g., see
Collamore [15], Ney and Nummelin [78, 79]). In this sense, the Markov additive approach
has excellent features. However, it has two crucial limitations in application for the tail
asymptotic problem.

One is the assumption that the additive component is one-dimensional. This enables
us to apply the Wiener–Hopf factorization and Markov renewal theorem. For this, we can
put necessary information into the background state space, but it may be complicated
to compute eigenvalues and eigenvectors, particularly, for the reflecting random walk for
d ≥ 3. To prevent this difficulty, we may directly consider a multidimensional additive
process. This formulation is studied in Miyazawa and Zwart [74]. One needs to generalize
the Wiener–Hopf factorization. However, this approach has not yet been fully available
to get the tail asymptotics.

The other is the strong conditions for the Markov renewal theorem to be applicable.
For the double QBD process, there is a way to overcome this difficulty as shown in
Section 5.6. However, it seems to be not applicable to higher dimensional reflecting
processes. Thus, we may need another approach here. The analytic approach which will
be discussed below seems to be a good candidate for this.

4.4 Analytic function approach

We may consider a multidimensional moment generating (or generating) function for the
stationary distribution for the tail asymptotics problem. In Section 2, we have used them
for categorizing the tail types. Here, we go one step further. The idea is to use complex
variable functions and to apply the theory of analytic functions, where a complex-valued
and complex variable function f(z) is said to be analytic at z = z0 if it is well defined on
some neighborhood of z0 on the complex plane C and it has a unique derivative at z0 in
all directions. The following fact is elementary, but it is the basis for this approach.

Lemma 4.1 Let f(θ) be the moment generating function of a measure on R+ with real
variable θ, and let θ0 = sup{θ ∈ R; f(θ) < ∞}. Then, the complex variable function f(z)
is singular at z = θ0, and analytic on {z ∈ C;ℜz < θ0}.

The corresponding theorem for a generating function is called Pringsheim’s theorem,
which is given bellow.

Lemma 4.2 (Pringsheim’s theorem) Let f(θ) be the generating function of a mea-
sure on Z+, and let θ0 = sup{θ ≥ 0; f(θ) < ∞}. Then, the complex variable function
f(z) is singular at z = θ0, and analytic on {z ∈ C; |z| < θ0}.

This lemma is less obvious and needs a proof (see, e.g., Theorem 17.13 in Volume 1 of
Markushevich [64]). Because of these lemmas, we can expect that the leftmost singular
point would be the decay rate. A significant feature of an analytic function is that it
is uniquely determined by a set which has an accumulation point. For example, if two
complex variable functions f(z) and g(z) agree on some open interval (a, b) of real numbers

23



and if f(z) is analytic on an open set G such that (a, b) ⊂ G, then g is uniquely extended
on G in such a way that

g(z) = f(z), z ∈ G.

This is a classic result, but turns out to be very powerful for finding the domain of the
moment generating function of the stationary distribution.

Another useful technique is the inversion formulas for a complex variable moment
generating function at a leftmost singular point (see Doetsch [17]). They provide exact tail
asymptotics. In the literature, two types of inversion formulas have been used according
to the nature of the singularity, pole or branch point. The exact asymptotic function h(x)
has the form,

h(x) = xκe−αx.

If the singularity is caused by a pole, then κ is a nonnegative integer. On the other
hand, if it is caused by a branch point, then κ is a rational number but not an integer.
Their details can be found in Appendix C of Dai and Miyazawa [16]. For generating
functions, similar results have been studied by researchers of combinatorics (see Flajolet
and Sedqewick [25]), which are used in Li and Zhao [57, 58].

A problem with the analytic function approach is the difficulty in finding an analytic
expression for the moment generating function of the stationary distribution, particularly
for d ≥ 2. This function is obtained as a solution of the stationary equations (3.9)
and (3.10) (or (3.11)). Thus, we need to solve a functional equation for multivariable
functions. This is generally a hard problem. Of course, there are some exceptional cases.
For example, the moment generating functions can be analytically obtained for tandem
and priority queues. In this case, the analytic function approach is well applied (see, e.g.,
[57, 60]). However, we cannot expect such nice solutions in general. Here, we need ideas
to overcome this difficulty.

4.4.1 A method using Riemann surface

For d = 2, there have been some efforts to get a certain analytic expression for the gen-
erating function of the stationary distribution. Their essence is to reduce the problem to
finding expressions for measures on the boundary faces, then getting the stationary dis-
tribution from those measures in terms of generating functions. In Fayolle, Iasnogorodski
and Malyshev [22], either a Riemann surface generated by the null points of the generating
function of the increments of the reflecting random walk in the interior or the solution for
the boundary value problem is used for this derivation. The idea has already appeared in
Kingman [50] and has been used in Flatto and McKean [27], Flatto and Hahn [26] and
Fayolle and Iasnogorodski [21].

The current version of this approach is only applicable to the two-dimensional skip-
free reflecting random walk, that is, the double QBD process. It has been used to derive
rough asymptotics for this skip-free random walk in Ignatyuk, Malyshev and Scherbako
[45]. This method can also be used to get exact asymptotics, but it has been limited
to relatively simple models such as tandem or parallel queues (e.g., see [27]). Its recent
studies can be found in Guillemin and Leeuwaarden [37] and Li and Zhao [58], where the
approach is called a kernel method.
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4.4.2 A method using the convergence domain

There is yet another analytic approach which is recently developed by Miyazawa and
Rolski [71] and Dai and Miyazawa [16]. This approach uses not a generating function but
a moment generating function. This is mainly because a moment generating function is
convex and has nice analytic properties as a function of complex variable. Nevertheless,
some basic ideas are very similar to the methods of Riemann surface and boundary value
problem. Namely, this method is also based on the stationary equation, and the measures
on the boundary faces play a key role.

A unique feature of this approach is to start with identifying the convergence domain of
the moment generating function. The convexity and analytic properties of this function
are particularly useful. For example, the domain has a nice geometric interpretation.
Furthermore, the approach is potentially useful for d ≥ 3. Once the domain is obtained,
we can find singular points of the moment generating function on the boundary of the
domain, then get tail asymptotics applying the analytic inversion formulas around the
singular points. We will detail this approach in Sections 6 and 7.

5 Markov additive approach: technical details

We discuss technical ideas of the Markov additive approach discussed in some recent
papers [53, 56, 68, 73, 74]. We start with a useful identity for a general Markov chain,
which will be used not only for a Markov additive process but also for the reflecting
random walk.

5.1 Pitman identity

As we have discussed in Section 4.3, the Markov additive approach uses two measures
in (4a) and (4b). In this section, we derive a basic formula to produce the stationary
distribution from them. Let Sb be a countable set, and let S = Z × Sb. Let {Zℓ} be a
S-valued Markov chain with transition kernel Q, and let {Fℓ} be its natural filtration.
Let τ be a stopping time, that is, τ is a nonnegative integer-valued random variable such
that {τ ≤ ℓ} ∈ Fℓ for all ℓ ≥ 0. Define S ×S matrices Gτ (s) and Hτ (s) as, for m,n ∈ S,

[Ĝτ (s)]m,n = Em(sτ1(Zτ = n)1(τ < ∞)),

[Ĥτ (s)]m,n = Em

(

τ−1
∑

ℓ=0

sℓ1(Zℓ = n)
)

,

where Em stands for the conditional expectation given Z0 = m.

We consider the identity:

∞
∑

ℓ=0

sℓ1(Zℓ = n)1(τ > ℓ) + sτ1(Zτ = n)

= 1(Z0 = n) +
∞
∑

ℓ=0

sℓ+11(Zℓ+1 = n)1(τ > ℓ), n ∈ S. (5.1)
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Since τ is a stopping time, we have

Em(1(Zℓ+1 = n)1(τ > ℓ)) = Em(1(τ > ℓ)E(1(Zℓ+1) = n|Zℓ))

= Em

(

∑

n′∈S

1(τ > ℓ, Zℓ = n′)Qn′,n

)

.

Hence, taking the conditional expectation of (5.1) yields

Ĥτ (s) + Ĝτ (s) = I + sĤτ (s)Q, 0 ≤ s < 1,

where I is the identity matrix. Rearranging terms in this equation, we have the so-called
Pitman identity.

Lemma 5.1 (Pitman [82])

Ĥτ (s)(I − sQ) = I − Ĝτ (s), 0 ≤ s < 1. (5.2)

We rewrite this identity as

Ĝτ (s) = I + Ĥτ (s)(I − sQ), 0 ≤ s < 1.

Then, it can be considered as a discrete time version of Dynkin’s formula for a continuous
time Markov process (e.g., see Ethier and Kurtz [31]).

5.2 Wiener–Hopf factorization

We now formally define a Markov additive process, and derive a useful identity on the
ladder instants of the additive component applying Lemma 5.1. This identity is called
RG decomposition or Wiener–Hopf factorization.

Let (Xℓ, Yℓ) be an S-valued process satisfying the following condition:

P(Xℓ+1 − Xℓ = n, Yℓ+1 = j|Xk−1, Yk−1, k ≤ ℓ, Yℓ = i)

= P(Xℓ+1 − Xℓ = n, Yℓ+1 = j|Yℓ = i),

for n ∈ Z and i, j ∈ Sb. Denote the right-hand side by [A(n)]ij. Obviously, {Yℓ} is a
Markov chain with transition probability matrix

∑+∞
n=−∞ A(n). This {(Xℓ, Yℓ)} is said to

be a discrete-time Markov additive process (MAP) with transition kernel A(·). {Xℓ} is
called an additive process while {Yℓ} is called a background process. The values of Xℓ

and Yℓ are referred to as level and background state, respectively. Define the stochastic
kernel Q as

Q(m,i),(n,j) = [A(n − m)]ij.

Then, it is easy to see that {(Xℓ, Yℓ)} is a Markov chain with transition kernel Q. Thus,
we can apply Lemma 5.1 to this Markov additive process, and (5.2) is available.

26



Let τ−0
y = inf{n ≥ 1; Xℓ − X0 ≤ y}. That is, τ−0

y is the hitting time at or below level
y from above. Define Z+ × Sb matrices G−0

∗ (s, θ) and H+
∗ (s, θ) by

[G−0
∗ (s, θ)]ij = Ei(s

τ−0
0 e

θ(X
τ
−0
0

−X0)
1(Yτ−0

0
= j)),

[H∗(s, θ)]ij = Ei

(

τ−0
0 −1
∑

ℓ=0

sℓeθ(Xℓ−X0)1(Yℓ = j)
)

.

Then, from (5.2) with τ = τ−0
0 , we have

H∗(s, θ)(I − sA∗(θ)) = I − G−0
∗ (s, θ), (5.3)

where

[A∗(θ)]ij = E(eθ(X1−X0)1(Y1 = j)|Y0 = i).

Define

[R+
∗ (s, θ)]ij = Ei

(

∞
∑

ℓ=1

sℓeθ(Xℓ−X0)1(Yℓ = j)1(X0 < Xℓ ≤ min(X1, . . . , Xℓ−1))
)

.

Then, it can be proved from a sample path decomposition that

H∗(s, θ) = (I − R+
∗ (s, θ))−1. (5.4)

Hence, (5.3) implies

(I − sA∗(θ)) = (I − R+
∗ (s, θ))(I − G−0

∗ (s, θ)). (5.5)

This is called an RG decomposition (see, e.g., Grassmann and Heyman [36] and Zhao, Li
and Braun [97]).

We convert (5.5) into another form, using a time reversed process of the Markov
additive process under a suitable measure. For this, we need some further notions. Since
A ≡ A∗(1) is stochastic, it has a subinvariant vector π, that is, πA ≤ π. Then, we can
define a substochastic matrix Ã by

Ã = ∆−1
π At∆−1

π ,

where ∆π is the diagonal matrix whose diagonal entries are the entries of π, and At

denotes the transpose of A. Let {(X̃ℓ, Ỹℓ)} be the MAP generated by Ã. Define

[G̃+
∗ (s, θ)]ij = Ei

(

sτ̃+
0 e

θ(X̃
τ̃
+
0
−X̃0)

1(Ỹτ̃+
0

= j)
)

,

where τ̃+
y = inf{n ≥ 1; X̃ℓ − X̃0 > 0}. Then, it can be shown that

(G̃+
∗ (s, θ))t = R+

∗ (s, θ). (5.6)

Hence, we have
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Theorem 5.1 (Wiener–Hopf factorization [3, 74])

I − sA∗(θ) = (I − G̃+
∗ (s, θ)t)(I − G−0

∗ (s, θ)), θ ∈ R, |s| ≤ 1, (5.7)

as long as both sides exist and are finite.

This identity is known as the Wiener–Hopf factorization. In its applications, we need
to carefully examine for which θ and s it is valid. This is thoroughly considered in
Miyazawa and Zwart [74].

For s = 1, we simply denote G−0
∗ (s, θ), R+

∗ (s, θ) and H+
∗ (s, θ) by G−0

∗ (θ), R∗(θ) and
H∗(θ). Then, (5.5) for s = 1 can be written as

(I − A∗(θ)) = (I − R+
∗ (θ))(I − G−0

∗ (θ)). (5.8)

This factorization formula plays a crucial role in the Markov additive approach because
it relates the transformed occupation measure H∗(θ) to the transformed Markov additive
kernel A∗(θ).

We have worked on the matrix moment generating functions, but it may be convenient
to use probability or expectation matrices such as A(n). For this, we introduce the
following notation:

[G−0(n)]ij = Pi(Xτ−0
0

− X0 = n, Yτ−0
0

= j),

[H(n)]ij = Ei

(

τ−0
0 −1
∑

ℓ=0

1(Xℓ − X0 = n, Yℓ = j)
)

,

[R+(n)]ij = Ei

(

∞
∑

ℓ=1

1(Xℓ − X0 = n, Yℓ = j, X0 < Xℓ ≤ min(X1, . . . , Xℓ−1))
)

,

[G̃+(n)]ij = Pi(X̃τ+
0
− X̃0 = n, Ỹτ+

0
= j).

Then, (5.6) and (5.8) can be written as

[G̃+(n)]t = R+(n), n ≥ 1, (5.9)

I − A(n) = (I − R+) ∗ (I − G−0)(n), n ∈ Z, (5.10)

where A∗B(n) represents the convolution of two sequences of matrices {A(n)} and {B(n)}
of the same sizes, that is,

A ∗ B(n) =
+∞
∑

k=−∞

A(k)B(n − k),

where B(k) = 0 if it is not defined for k.

5.3 Reflecting Markov additive process

We next consider the description of the reflecting random walk using the Markov additive
process. For this, we apply the Pitman identity (Lemma 5.1) and the Wiener–Hopf
factorization (Theorem 5.1).
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Let {Zℓ} be the d-dimensional reflecting random walk that we introduced in Section
3.2. We choose Zℓ1 for the additive process. That is, let

X̂ℓ = Zℓ1, Ŷℓ = (Zℓ2, Zℓ3, . . . , Zℓd).

Here we do not use Xℓ and Yℓ since (X̂ℓ, Ŷℓ) is not a Markov additive process. Since
{(X̂ℓ, Ŷℓ)} is identical with Zℓ, it is a Markov chain. Let Q̂ ≡ {Q̂(m,i),(n,j)} be its transition

matrix. Then, we can see that Q̂(m,i),(n,j) only depends on n − m for m,n ≥ 1. So, we
define the Sb × Sb matrix A(n) for n = −1, 0, 1, . . . as

[A(n − m)]i,j = Q̂(m,i),(n,j), m, n ≥ 1, n − m ≥ −1, i, j ∈ Sb.

Let {(Xℓ, Yℓ)} be the Markov additive process generated by the additive kernel {A(n)}.
Similarly, we define B(n) for n ∈ Z as

[B(n)]i,j =







Q̂(0,i),(n,j), n ≥ 0,

Q̂(1,i),(0,j), n = −1,
0, n ≤ −2.

Thus, the reflecting random walk can be expressed by the Markov additive process and
the boundary transitions {B(n)}.

We have constructed Q̂ from the reflecting random walk. However, in this subsection,
our arguments below do not depend on the random walk structure except for a few
places. If we do not assume any special structure for the background state transitions
in Q̂, the Markov chain with transition kernel Q̂ is referred to as a reflecting Markov
additive process. In particular, it is called a quasi-birth-and-death process, QBD process
for short, if the additive process is skip-free, that is, its increments are at most unit in
absolute value.

We apply Pitman’s identity (Lemma 5.1) to the reflecting MAP {(X̂ℓ, Ŷℓ)} with stop-
ping time τ for each m ≥ 1 defined by

τ = inf{ℓ ≥ 1; X̂ℓ ≤ m − 1}.

Then the following corollary is immediate from (5.2).

Corollary 5.1 If Ĝτ (1) has the stationary measure πτ , that is,

πτ (m, i) = [πτ Ĝτ (1)](m, i), m ≤ n − 1, i ∈ Sb, (5.11)

and if π on Z
d
+ which is defined as

π(m, i) = [πτĤτ (1)](m, i), m ≥ n − 1, i ∈ Sb, (5.12)

is a measure, then π is the stationary measure of Q̂.

We now assume that the reflecting random walk has the stationary distribution π. We
decompose π as a sequence of vectors {πn}:

πn(i) = π(n, i), n ≥ 0, i ∈ Sb.
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To compute πτ , we introduce the transition matrix R0+(n) defined as

[R0+(n)]ij =
∞
∑

ℓ=1

P(X̂ℓ = n, Ŷℓ = j, 0 < X̂ℓ ≤ min(X̂1, X̂2, . . . , X̂ℓ−1)|X̂0 = 0, Ŷ0 = i).

Using this definition and the fact that the transitions are homogeneous above or at level
n ≥ 1, we can write (5.12) with m = n as

πn = π0R
0+(n) +

n−1
∑

k=1

πkR
+(n − k), n ≥ 1. (5.13)

Taking the transpose of this equation and using (5.9), we have

πt

n = R0+(n)tπt

0 +
n−1
∑

k=1

G̃+(n − k)πt

k, n ≥ 1. (5.14)

This is a Markov renewal equation with transition kernel {G̃+(n)}.

5.4 Exact geometric asymptotics

We are now ready to consider the tail asymptotics of the stationary distribution of the
reflecting Markov additive process.

From (5.4) and (5.13), it follows that

πn = [π0R
0+ ∗ H](n), n = 0, 1, . . . . (5.15)

This is a vector-and-matrix expression for the stationary distribution. In particular, if
the additive process is skip-free, that is, the reflecting Markov additive process is a QBD
process, then (5.15) can be written as

πn = π0R
0+(R+)n−1, n = 0, 1, . . . . (5.16)

This expression is well known as a matrix geometric form. If the background state space of
the QBD process is finite, then matrix computations are feasible. This QBD process was
firstly systematically studied by Neuts [75]. Here we do not assume that the background
state space is finite, but many of the arguments are parallel to the finite case except for
eigenvalues and eigenvectors. They are very hard to compute if the background state
space is not finite, and we need further structure like a random walk.

In this and the next sections, we assume

(5a) The transition matrix Q of the MAP is irreducible and its additive process is
1-arithmetic (see Miyazawa and Zhao [73] for this definition).

In the view of (5.15), this is a natural condition for exact asymptotics to exist.

We further express (5.15) by a vector moment generating function. Let

π∗(θ) =
∞
∑

n=0

eθnπn.
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Then, from (5.4) and (5.15), we have

π∗(θ) = π0R
0+
∗ (θ)H∗(θ) = π0R

0+
∗ (θ)(I − R+

∗ (θ))−1. (5.17)

From these formulas, we may see two scenarios for the asymptotics of the stationary
distribution πn.

(5-i) The asymptotics are only determined by H. That is, the asymptotics of H
dominates that of π0R

0+
∗ .

(5-ii) The asymptotics are influenced by both H and π0R
0+
∗ . In other words, π0R

0+
∗

controls H.

We first consider the case (5-i), and give sufficient conditions to have exact geometric
asymptotics.

Assume A∗(θ) has the left and right positive invariant vectors x and y such that
xy < ∞. Define a Markov additive kernel by

Ã(θ)(n) = ∆−1
x (eθnA(n))t∆x.

Similarly, we define

R̃(θ)−0(n) = ∆−1
x (eθnG−0(n)t)∆x,

G̃(θ)+(n) = ∆−1
x (eθnR+(n))t∆x,

G̃(θ)0+(n) = ∆−1
x (eθnR0+(n))t∆x.

These matrices are said to be twisted by θ.

We twist the RG decomposition (5.10), then we have

I − Ã(θ)(n) = [(I − R̃(θ)−0) ∗ (I − G̃(θ)+)](n). (5.18)

It can be shown that G̃
(θ)+
∗ (1) is stochastic (positive recurrent) if and only if Ã(θ) ≡ Ã

(θ)
∗ (1)

is stochastic (positive recurrent). For the stationary distribution π = (π0,π1, . . .), let

π̃(θ)
n = ∆−1

x (eθnπt

n).

Then, from (5.13), we have

π̃(θ)
n = G̃(θ)0+(n)π̃0 +

n−1
∑

k=1

G̃(θ)+(k)π̃
(θ)
n−k. (5.19)

Thus, we again have a Markov renewal equation. Define transition matrices for the
background states by

G̃(θ)+ =
∞
∑

n=1

G̃(θ)+(n), G̃(θ)0+ =
∞
∑

n=1

G̃(θ)0+(n).

Let ξ(θ) be the left invariant positive vector of G̃(θ)+ if it exists. Assume that Ã(θ) is
positive recurrent and

ξ(θ)G̃(θ)0+π̃0 < ∞,
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and denote this θ by α. Let r(α) = ∆−1
x (ξ(θ))t, then this condition is written as

ξ(α)G̃(α)0+π̃0 = π0R
0+
∗ (α)r(α).

Then, applying the Markov renewal theorem (see, e.g., Alsmeyer [2] and Cinlar [14]) to
(5.19) yields

lim
n→∞

eαnπn =
1

β
(π0R

0+
∗ (α)r(α))x, (5.20)

where β(α) = ξ(α)(
∑∞

n=1 nG̃(α)+(n))1. Note that r(α) ≡ ∆−1
x (ξ(α))t is the right invariant

vector of R+(α). Thus, we get the following theorem.

Theorem 5.2 (Theorem 4.1 of Miyazawa and Zhao [73]) Assume that the reflect-
ing Markov additive process has a stationary distribution and (5a) is satisfied. If there is
an α > 0 satisfying the following three conditions:

(5b) A∗(α) has positive left and right invariant vectors x and y,

(5c) A∗(α) is positive, that is,
〈

x,y
〉

< ∞ for the vectors x and y of (5b),

(5d) π0R
0+
∗ (α)r(α) < ∞,

then πn(i) has the exact geometric asymptotic (5.20) for each fixed i ∈ Sb as n → ∞.

This theorem does not need the background process to be a reflecting random walk.
However, the three conditions are restrictive and may be hard to check. For the two-
dimensional reflecting random walk, (5b) and (5c) can be checked, but there is some diffi-
culty in verifying (5d) because it requires the stationary probabilities π0 on the boundary,
which are unknown. Thus, its availability is limited, but there are many cases where it
is still applicable (e.g., see [29, 32, 56, 94]). We remark that Theorem 5.2 does not cover
even all the cases of (5-i) (see, e.g., Foley and McDonald [30]).

We next consider the case (5-ii). In this case, we have to know the tail asymptotics
in different directions at once. This is generally a hard problem, and results are only
known for the two-dimensional reflecting random walk. A key idea is to simultaneously
consider two Markov additive processes in different directions, which are obtained from
the reflecting random walk as discussed in Section 5.3, and derive certain fixed point
equations. Their solutions give sufficient information on π0. This approach is used in
Borovkov and Mogul’skii [9] and Miyazawa [68].

There is another way to verify (5d) for the two-dimensional reflecting random walk.
The idea is to use the convergence domain of the moment generating function ϕ2(θ) of
{π0(n); n = 0, 1, . . .}. Because [y]i = eηi for i = 0, 1, . . . is known, we have

π0R
0+
∗ (α)r(α) = π0R

0+
∗ (α)(I − G0−

∗ (θ))y

≤ π0R
0+
∗ (α)y

≤
∑

i,j

π0(i)[B
+
∗ (α)]ije

η2j

=
∞
∑

i=0

π0(i)e
η1j

∞
∑

j=0

[B+
∗ (α)]0,j−ie

η2(j−i)

= ϕ2(η1) × constant.
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Hence, if ϕ2(η1) is finite, then (5d) is satisfied. The finiteness of ϕ2(η1) would be obtained
from the convergence domain of the moment generating function of the stationary distri-
bution. Thus, the problem is reduced to finding the convergence domain, which will be
discussed in Section 6.

5.5 Lower bound for the decay rate

It may be questioned whether any further tail asymptotics can be obtained in the frame-
work of the Markov additive process. There are some ways to get different type of exact
asymptotics using ratio limit theorems of Markov chain (see, e.g., Foley and McDonald
[30]). However, they are still limited in use. Here we consider the problem from a different
viewpoint.

We reconsider the expression (5.15) through the occupation measure H(ℓ). Since
(5.15) implies that

log πn(i) ≥ log[π0R
0+(1)]j + log Hji(n − 1), i, j ∈ Sb,

we can get a lower bound for the tail decay rate of the stationary distribution if the decay
rate of H(n) is available. Indeed, it is shown in Theorem 4.1 of Kobayashi, Miyazawa and
Zhao [53] that

lim
n→∞

1

n
log[H(n)]ij = −dH , i, j ∈ Sb,

where

dH = sup{θ ≥ 0; H∗(θ) < ∞}.

Thus, we have

lim inf
n→∞

1

n
log πn(i) ≥ −dH , i ∈ Sb. (5.21)

It remains to get dH from the modeling primitives. The following idea is standard
for this (see, e.g., Ignatiouk-Robert [44]). For a square matrix A, define its convergence
parameter cp(A) as

cp(A) = sup

{

s ≥ 0;
∞
∑

ℓ=0

sℓAℓ < ∞
}

.

Since H∗(θ) = (I − R+
∗ (θ))−1, dH should be obtained from θ such that cp(R

+
∗ (θ)) = 1.

This is equivalent to cp(A∗(θ)) = 1 from the RG factorization (5.8). Since A∗(θ) is an
infinite-dimensional matrix, there are multiple θ satisfying cp(A∗(θ)) = 1. Let

θ(c) = sup{θ ≥ 0; cp(A∗(θ)) = 1}.

Then, Theorem 4.1 of [53] shows that dH = θ(c). In computing this θ(c), we usually
investigate a subinvariant vector x, which is a positive vector such that

xA∗(θ) ≤ x
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It is known that the existence of this subinvariant vector is equivalent to cp(A∗(θ)) = 1
(see Nummelin [80] and Seneta [89]). This fact is compatible with the condition (5b) in
Theorem 5.2.

Hence, (5.21) is written as

lim inf
n→∞

1

n
log πn(i) ≥ −θ(c), i ∈ Sb. (5.22)

Thus, we have a lower bound θ(c) for the decay rate. In the view of the two scenarios (5-i)
and (5-ii), we can expect that the exact decay rate θ(c) is tight for (5-i), but not for (5-ii).
However, the lower bound is still useful to find the decay rate in the other direction.

5.6 The decay rate for a QBD process

As we have discussed, it is hard to get the tail asymptotics for the reflecting Markov
additive process without extra conditions (5c) and (5d). Even for the decay rate in
coordinate directions, we cannot get a complete answer. However, if the additive process
is skip-free, that is, the precess is QBD, then there is a way to overcome this difficulty.
For this, we use the matrix geometric expression (5.16), which is rewritten as

πn = π1(R
+)n−1, n = 1, 2, . . . . (5.23)

The idea is that if π1 is asymptotically identical to the left eigenvector of R+ then
the eigenvalue for this eigenvector can determine the decay rate because of the matrix
geometric form (5.23). The following fact is a key for this, which is obtained in Li,
Miyazawa and Zhao [56].

Lemma 5.2 (Theorem 2.1 of [56]) For the discrete-time QBD process with background
state space Sb = Z+, if there exist a positive left invariant vector x = (xk) of A∗(α) for
some α > 0 and some finite c ≥ 0 such that

lim
k→∞

1

xk

π1(k) = c, (5.24)

then, for any nonnegative column vector h satisfying
〈

x,h
〉

< ∞,

lim
n→∞

eαn
〈

πn,h
〉

= c eα
〈

x,h
〉

. (5.25)

In particular, if 0 < c < ∞, then
〈

πn, h
〉

decays geometrically with rate α as n goes to
infinity.

Note that this result does not require the positivity assumption (5c) on A∗(α). In-
stead of this assumption, we need to find an appropriate α so that (5.24) holds, and the
background state space must be totally ordered. In some special models, this works well
as reported in [1, 48, 56, 96]. However, the conditions may not be easily verified since we
generally do not know the tail asymptotic of {π1(k)}. However, if the background process
is also a QBD, this difficulty can be overcome. This is exactly what has been done for
the double QBD process in Miyazawa [69].

34



In what follows, we briefly introduce ideas presented in [69]. Consider the double QBD
process, and generate the Markov additive process as we have done in Section 5.3. Then,
the decay rates are derived in the following steps:

1. (Theorem 3.1 of [69]) Find a region for A∗(θ) to have the left and right positive
invariant vectors. Compute these invariant vectors for each θ in the obtained region.
Perform the same procedure for the other direction.

2. (Proposition 3.1, Corollary 3.1 of [69]) Find upper bounds for the decay rates in
both directions using an extended version of Lemma 5.2.

3. (Theorem 4.1 of [69]) Derive an optimization problem to determine the decay rates
using the upper bounds in Step 2.

4. (Corollary 4.1 of [69]) Solve this optimization problem and get the decay rates in
both directions at once.

Here we cite results for Steps 3 and 4 from [69], which will be compared with another
derivations in Sections 6 and 7. Let

Γ = {θ ∈ R
2; γ{1,2}(θ) < 1}, Γk = {θ ∈ R

2; γ{k}(θ) < 1}, k = 1, 2.

Theorem 5.3 (Theorem 4.1 of Miyazawa [69]) For the double QBD process satis-
fying conditions (3c) and (3d), define αi for i = 1, 2 as

α1 = sup{θ1; η1 ≤ θ1, θ2 ≤ η2, (θ1, θ2) ∈ Γ ∩ Γ1, (η1, η2) ∈ Γ ∩ Γ2}, (5.26)

α2 = sup{η2; η1 ≤ θ1, θ2 ≤ η2, (θ1, θ2) ∈ Γ ∩ Γ1, (η1, η2) ∈ Γ ∩ Γ2}. (5.27)

Then, α1 and α2 are the decay rates of πn(i) as n → ∞ for each fixed i ≥ 0.

Corollary 5.2 (Corollary 4.1 of Miyazawa [69]) For k = 1, 2, let

θ(k,c) = argθ∈R2 sup{θ1 ≥ 0; θ ∈ Γ ∩ Γk},

then the solution of (5.26) and (5.27) is obtained as

α1 =

{

θ
(1,c)
1 , θ

(1,c)
2 < θ

(2,c)
2 ,

ξ1(θ
(2,c)
2 ), θ

(1,c)
2 ≥ θ

(2,c)
2 ,

α2 =

{

θ
(2,c)
2 , θ

(2,c)
1 < θ

(2,c)
1 ,

ξ2(θ
(1,c)
1 ), θ

(2,c)
1 ≥ θ

(2,c)
1 ,

(5.28)

where ξk(θ3−k) = sup{θk; γ(θ1, θ2) = 1} for k = 1, 2.

We will see that these α1 and α2 exactly correspond to τ1 and τ2 of (6.13) in Lemma 6.8
for a more general reflecting random walk. This means that the optimization problems
(5.26) and (5.27) in Step 3 can be reduced to the fixed point problem with equation
(6.12). This fixed point equation has also been used to combine the asymptotics of two
Markov additive processes in the coordinate directions in Borovkov and Mougl’skii [9].
However, they neither explicitly obtained the fixed point equation nor solved it. This is
the drawback of their general modeling assumptions (see [69] for more discussions on this
issue).
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6 Domain for the analytic function approach

In this and next sections, we discuss the analytic function approach using the convergence
domain for the reflecting random walk {Zℓ} defined in Section 3.2. We will obtain the tail
asymptotics only for d = 2, but we start with a general d ≥ 2 to see how our framework
works. For this, we assume (3b), (3b’), (3c), and (3d). That is, the stationary distribution
of the reflecting random walk uniquely exists, and the distributions of all increments at
each time have light tails.

In this section, we consider the domain D of the moment generating function of the
stationary distribution, then the tail asymptotics will be considered in Section 7.

6.1 Stationary inequalities

We first observe two key facts. We like to use the stationary equation (3.11) for finding
the convergence domain of the moment generating function ϕ(θ), but it is valid only when
ϕ(θ) is finite. This is something like a circular argument. Here we need a clue to expand
the region of those θ ∈ R

d for which ϕ(θ) is known to be finite. The next lemma gives us
this clue. We recall that J = {1, 2, . . . , d}, and denote the set of all subsets of J by 2J .

Lemma 6.1 For the reflecting random walk {Zℓ} defined in Section 3.2, assume the
conditions (3b), (3b’), (3c), and (3d). For C ⊂ 2J , if the following two conditions hold:

γA(θ) < 1 for all A ∈ C, (6.1)

ϕA(θ) < ∞ for all A ∈ 2J \ C, (6.2)

then

0 ≤
∑

A∈C

(1 − γA(θ))ϕA(θ) ≤
∑

A∈2J\C

(γA(θ) − 1)ϕA(θ) < ∞, (6.3)

and therefore ϕA(θ) < ∞ for all A ∈ C, and ϕ(θ) < ∞.

Proof. We apply truncation arguments for the stationary equation (3.7). For each
n = 1, 2, . . ., let

fn(x) = min(x, n), x ∈ R.

It is not hard to see that, for any x ≥ 0 and y ∈ R,

fn(x + y) ≤ fn(x) +

{

y, x ≤ n,
0, x > n.

(6.4)

Hence, we have, using the independence of Z and XA,

E(efn(
〈

θ,(Z+XA
〉

)1(Z ∈ SA)) ≤ E(efn(
〈

θ,Z
〉

)1(Z ∈ SA,
〈

θ, Z
〉

≤ n))E(efn(
〈

θ,XA
〉

))

+E(efn(
〈

θ,Z
〉

)1(Z ∈ SA,
〈

θ,Z
〉

> n)).
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On the other hand, it follows from (3.7) that

efn(
〈

θ,Z
〉

) ≃
∑

A⊂J

efn(
〈

θ,Z
〉

+
〈

θ,XA
〉

)1(Z ∈ SA).

Taking the expectation of this distributional equation and applying the above inequality,
we have

E(efn(
〈

θ,Z
〉

)) =
∑

A⊂J

E(efn(
〈

θ,Z
〉

+
〈

θ,XA
〉

)1(Z ∈ SA))

≤
∑

A⊂J

E(efn(
〈

θ,Z
〉

)1(Z ∈ SA,
〈

θ, Z
〉

≤ n))E(efn(
〈

θ,XA
〉

))

+
∑

A⊂J

E(efn(
〈

θ,Z
〉

)1(Z ∈ SA,
〈

θ,Z
〉

> n)). (6.5)

Substituting

E(efn(
〈

θ,Z
〉

)) =
∑

A⊂J

E(efn(
〈

θ,Z
〉

)1(Z ∈ SA))

into (6.5) and rearranging terms, we have

∑

A∈C

(1 − E(efn(
〈

θ,XA
〉

)))E(efn(
〈

θ,Z
〉

)1(Z ∈ SA,
〈

θ, Z
〉

≤ n))

≤
∑

A∈2J−C

(E(efn(
〈

θ,XA
〉

)) − 1)E(efn(
〈

θ,Z
〉

)1(Z ∈ SA,
〈

θ,Z
〉

≤ n)).

Let n go to infinity in this inequality, then conditions (6.1)–(6.2) and the monotone
convergence theorem yield (6.3) since fn(x) is nondecreasing in x.

We next consider bounding the domain D. For this, let

Γmax = {θ ∈ R
d; θ ≤ ∃θ′, γJ(θ′) < 1}.

The following lemma shows that D is upper bounded by Γmax. Its proof for d = 2 can be
found in Kobayashi and Miyazawa [51] (see Lemma 3.3 there), and a less complete proof
for a general d is found in Borovkov [6]. Since the proof in [51] can be easily adapted for
a general d, we omit a proof of the following lemma.

Lemma 6.2 For the reflecting random walk {Zℓ} defined in Section 3.2, assume the
conditions (3b), (3b’), (3c), and (3d). For any direction vector c > 0 and a nonempty
open set B ⊂ R

d
+,

lim inf
n→∞

1

n
log P(Z ∈ nc + B) ≥ − sup{

〈

θ, c
〉

; γJ(θ) ≤ 1}, (6.6)

and therefore D ⊂ Γmax.
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Note that Γmax is bounded from above, that is, there is a θ′ ∈ R
d such that θ ≤ θ′ for

all θ ∈ Γmax because of (3b’). Also note that, if E(XJ
i ) = 0 for all i ∈ J , then

{θ ∈ R
d; γJ(θ) ≤ 1} = {0},

by the convexity of function γJ(θ) and γJ(0) = 1. Hence, the right hand side of (6.6)
equals 0, and we immediately have the following facts from Lemma 6.2.

Lemma 6.3 For the reflecting random walk satisfying the same assumptions as Lemma 6.2,
(a) the stationary distribution cannot have a small tail in any direction (see Definition 2.4
for the small tail; (b) If E(XJ

i ) = 0 for all i ∈ J , then the stationary distribution has a
heavy tails in all directions.

6.2 A program for identifying the convergence domain

Recall that the domain D is defined as

D = the interior of {θ ∈ R
d; ϕ(θ) < ∞}.

We consider an iterative algorithm to find this domain. For this, we use Lemma 6.1, and
need some notations. Let 2J be the set of all subsets of J ≡ {1, 2, . . . , d} including the
empty set. For each A ∈ 2J , we let

ΓA = {θ ∈ R
d; γA(θ) < 1}.

For convenience, we often write γJ(θ) and ΓJ as γ(θ) and Γ, respectively. Note that Γ
is a bounded convex set by (3c). However, we cannot use ϕ(θ) for ϕJ(θ) since they are
different. We define θA as the d-dimensional vector whose ith entry is θi for i ∈ A and
vanishes for i ∈ J \ A for θ ≡ (θ1, θ2, . . . , θd). Note that ϕA(θ) = ϕA(θA).

Let C be an arbitrary collection of subsets of J . That is, C is a subset of 2J . We allow
C to be the empty set. Let G be an arbitrary subset of R

d. For these C and G, we define

DC(G) = {θ ∈ ∩A∈CΓA; ∀B ∈ 2J \ C, ∃η ∈ G,θB < ηB},

which is an open set, where ∩B∈∅ΓB = R
d. By this definition and Lemma 6.1, if G ⊂ D,

then DC(G) ⊂ D. We also note that

D∅(G) = {θ ∈ R
d;∀B ∈ 2J ,∃η ∈ G, θB < ηB}

= ∪η∈G{θ ∈ R
d; θ < η}.

Denote the convex hull of a subset A of R
d by conv(A). Then, G ⊂ D implies that

G ⊂ conv(∪C⊂2JDC(G)) ⊂ D.

This suggests iteratively using a mapping from G to conv(∪C⊂2JDC(G)).

We let G0 = {θ ∈ R
d; θ < 0}, and inductively define, for n = 0, 1, . . .,

Gn+1 = conv(∪C⊂2JDC(Gn)). (6.7)
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Clearly, G0 ⊂ D and Gn increases in n. Hence,

G∞ ≡ lim
n→∞

Gn

exists, and G∞ ⊂ D. It is easy to see that G∞ is an open set and a solution of the following
fixed set equation:

G = conv(∪C⊂2JDC(G)). (6.8)

We summarize the above arguments in as a theorem.

Theorem 6.1 For the reflecting random walk {Zℓ} defined in Section 3.2, assume the
conditions (3b), (3b’), (3c) and (3d), then we have

(6-i) D is the solution of (6.8).

(6-ii) G∞ is the minimal solution of (6.8) such that θ ∈ G∞ for all θ < 0.

(6-iii) G∞ and D are convex open sets.

(6-iv) G∞ ⊂ D ⊂ Γmax.

Hence, the stationary distribution has light tails in all directions if 0 ∈ G∞.

Remark 6.1 (6-ii) and (6-iii) are valid without conditions (3c) and (3d) since nothing
are involved with the stationary distribution. We only need (3b) and (3b’) for them.

Based on this lemma, we propose either computing G∞ or to find the minimal solution
of the fixed set equation (6.8). In particular, we conjecture the following claim.

Conjecture 6.1 Under the assumptions of Theorem 6.1, G∞ = D.

In view of Remark 6.1, we also have another conjecture.

Conjecture 6.2 Under the assumptions of (3b) and (3b’), the stationary distribution
with a light tail exists if and only if 0 ∈ G∞.

Both conjectures hold true for d = 2 under certain skip-free conditions as we will see
in Sections 6.3 and 6.4. Furthermore, D is explicitly obtained using extreme points of
ΓA’ in this case. This suggests a similar characterization for d ≥ 3. These ideas are also
considered for the multidimensional SRBM in Miyazawa and Kobayashi [70]. However,
they remain as conjectures for d ≥ 3.

Once the domain D is identified, we can get the following upper bound for a similar
but slightly different tail set from that of (2.10). Let c ≥ 0 be a direction vector, and let
B be a bounded measurable subset of R

d
+. Then, we have

lim sup
n→∞

1

n
log P(Z ∈ nc + B) ≤ − sup{

〈

θ, c
〉

; θ ∈ D}. (6.9)

The proof of this upper bound for d = 2 is given for the two-dimensional SRBM in [16]
and the two-dimensional reflecting random walk in [51]. We note that their proofs can be
used for a general d ≥ 3.
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6.3 Light tail conditions for d = 2

In the previous section, we proposed a program to find the domain D for the d-dimensional
reflecting random walk. We will show that it indeed works for d = 2. For this, we assume
(3b), (3b’) and (3c), but do not assume (3d). Instead of it, we use stability conditions
given below, which turns out to be necessary and sufficient for the stationary distribution
to have a light tail.

For d = 2, the stability is completely characterized using the expectations of the in-
crements in Fayolle, Malyshev and Menshikov [23]. To describe these stability conditions,
we introduce some notation. Let, for i = 1, 2,

mi = E(X
{1,2}
i ), m

(1)
i = E(X

{1}
i ), m

(2)
i = E(X

{2}
i ).

Define the vectors

m = (m1,m2), m(1) = (m
(1)
1 ,m

(1)
2 ), m(2) = (m

(2)
1 ,m

(2)
2 ),

m
(1)
⊥ = (m

(1)
2 ,−m

(1)
1 ), m

(2)
⊥ = (−m

(2)
2 ,m

(2)
1 ).

Obviously, m
(k)
⊥ is orthogonal to m(k) for each k = 1, 2. Note that m is orthogonal

to the tangent of the convex curve γ(θ) ≡ γ{1,2}(θ) = 1 at the origin. Similarly, m(k)

is orthogonal to the tangent of the convex curve γ{k}(θ) = 1 at the origin. Note that

m
(1)
2 ≥ 0 and m

(2)
1 ≥ 0 because X

{1}
2 ≥ 0 and X

{2}
1 ≥ 0; see Figure 3.

γ{1,2}(θ) = 1

γ{1}(θ) = 1

γ{2}(θ) = 1

m
(1)
⊥

m
(2)
⊥

m

m
(1)

m
(2)

θ1

θ2

γ{1,2}(θ) = 1

γ{1}(θ) = 1

γ{2}(θ) = 1

m
(1)
⊥

m
(2)
⊥

m

m
(1)

m
(2)

θ1

θ2

Figure 3: Tangent hyperplanes and orthogonal vectors for (6a) and (6b)

In Fayolle, Malyshev and Menshikov [23], the stability conditions are separately stud-
ied for m = 0 and m 6= 0. When m = 0, the stationary distribution has a heavy tail
in all directions by Lemma 6.3. Thus, we assume m 6= 0 for light tail. Unfortunately,
Theorem 3.3.1 of [23] for this case is incorrect. That is, it misses one case. We correct it
as follows.

Lemma 6.4 (Corrected Theorem 3.3.1 of Fayolle, Malyshev and Menshikov [23])
If m 6= 0, then the two-dimensional reflecting random walk {Zℓ} has the stationary dis-
tribution if and only if one of the following three conditions holds:

(6a) m1 < 0,m2 < 0,
〈

m,m
(1)
⊥

〉

< 0, and
〈

m, m
(2)
⊥

〉

< 0;
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(6b) m1 ≥ 0, m2 < 0,
〈

m, m
(1)
⊥

〉

< 0, and m
(2)
2 < 0 for m

(2)
1 = 0;

(6c) m1 < 0,m2 ≥ 0,
〈

m,m
(2)
⊥

〉

< 0 and m
(1)
1 < 0 for m

(1)
2 = 0.

Remark 6.2 The last conditions in (6b) and (6c) are obviously required for the stability

since m
(2)
1 = 0 (m

(1)
2 = 0) implies that P (X

(2)
1 = 0) = 1 (P (X

(1)
2 = 0) = 1, respectively).

However, they are missing in Theorem 3.3.1 of [23].

The conditions in Lemma 6.4 have geometric interpretations. First,
〈

m,m
(1)
⊥

〉

< 0

means that m
(1)
⊥ is above the hyperplane which is orthogonal to m. This implies that

Γ ∩ Γ{1}(≡ ΓJ ∩ Γ{1}) contains a vector θ such that θ1 > 0. It also contains a vector θ

such that θ1 > 0 and θ2 ≤ 0 if m1 < 0.
〈

m,m
(2)
⊥

〉

< 0 has a similar interpretation (see
the left picture of Figure 3). On the other hand, if m1 ≥ 0 and m2 < 0, then Γ ∩ Γ{2}

always contains a vector θ such that
〈

θ,m(2)
〉

< 0 and θ2 > 0 (see the right picture of

Figure 3). Note that θ ∈ Γ ∩ Γ{k} implies
〈

θ,m
〉

< 0 and
〈

θ, m(k)
〉

< 0 for k = 1, 2.
These arguments conclude the following lemma, which is formally proved in [51].

Lemma 6.5 (Lemma 2.2 of [51]) Either one of the stability conditions of Lemma 6.4
holds if and only if γ(θ) = 1 and γk(θ) = 1 has a solution θ such that θk > 0 for each
k = 1, 2. Furthermore, at least for either one of k = 1, 2, there exists a θ ∈ Γ ∩ Γk such
that θk > 0 and θ3−k < 0.

We are now ready to determine the tail type of the stationary distribution.

Theorem 6.2 For the two-dimensional reflecting random walk {Zℓ} satisfying the con-
ditions (3b), (3b’) and (3c), the following conditions are equivalent:

(6d) The stationary distribution of this process exists and has a light tail.

(6e) Either one of the three conditions (6a), (6b) and (6c) holds.

Proof. We first prove that (6e) implies (6d). The existence of the stationary distri-
bution is immediate from Lemma 6.4. We need to show that ϕ(θ) < ∞ for some θ > 0.
For this, we apply operation (6.7). By Lemma 6.5, G0 is not empty, and we can find
θ ≡ (θ1, θ2) ∈ G1 such that either θ1 > 0, θ2 ≤ 0 or θ1 ≤ 0, θ2 > 0. We then repeat the
operation, and find a point θ > 0 in G2. This point must be in D by Theorem 6.1. This
proves the claim. We next prove the reverse direction. Since the stationary distribution
exists, by Lemma 6.4, we have (6e) if m 6= 0. If m = 0, then the stationary distribution
has a heavy tail by Lemma 6.2. This contradicts (6d). Thus, the converse is proved.

6.4 The convergence domain for d = 2

We now consider the convergence domain D of the moment generating function ϕ(θ). For
this, we introduce the following shorthand notation:

ϕ+ = ϕJ , ϕk = ϕ{k}, k = 0, 1, 2,

γ = γJ , γk = γ{k}, k = 0, 1, 2,

Γ = ΓJ , Γk = Γ{k}, k = 1, 2.
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We also use the following notation for the boundaries of Γ and Γk.

∂Γ = {θ ∈ R
2; γ(θ) = 1}, ∂Γk = {θ ∈ R

2; γk(θ) = 1}, k = 1, 2.

By Theorem 6.2 and Lemma 6.5, Γ contains a θ > 0 such that ϕ(θ) < ∞, and both of Γ1

and Γ2 are not empty. From the conditions (3b), (3b’) and (3c), Γ is a bounded convex
set, while Γ1 is convex and bounded from above but unbounded from below in the second
component since the second component of X{1} is nonnegative. Similarly, Γ2 is convex
and bounded from above but unbounded from below in the first component.

The decay rates will be determined through extreme points of the bounded convex
sets Γ ∩ Γk. For this, it will be convenient to use the following notations for k = 1, 2.

θ(k,max) = arg max
(θ1,θ2)

{θk; γ(θ1, θ2) = 1}, θ(k,min) = arg min
(θ1,θ2)

{θk; γ(θ1, θ2) = 1}, (6.10)

θ(k,c) = arg sup
(θ1,θ2)

{θk; θ ∈ Γ ∩ Γk}, θ(k,e) = arg sup
(θ1,θ2)

{θk; θ ∈ ∂Γ ∩ ∂Γk}. (6.11)

From the definitions, it is easy to see that, for k = 1, 2,

θ(k,c) =

{

θ(k,e), γk(θ
(k,max)) > 1,

θ(k,max), γk(θ
(k,max)) ≤ 1.

We will also use the following functions:

ξ1(θ2) = max{θ; γ(θ, θ2) = 1}, ξ2(θ1) = max{θ; γ(θ1, θ) = 1},
ξ

1
(θ2) = min{θ; γ(θ, θ2) = 1}, ξ

2
(θ1) = min{θ; γ(θ1, θ) = 1}.

The following lemmas are keys for our arguments, which are immediate from Lemma 6.1.

Lemma 6.6 If θ ∈ R
2 satisfies the condition that θ ∈ Γ and ϕk(θk) < ∞ for k = 1, 2,

then ϕ(θ) is finite.

Lemma 6.7 For each k = 1, 2, choose θ ∈ Γ ∩ Γk such that ϕ3−k(θ3−k) is finite, then
ϕ(θ) and ϕk(θk) are finite.

We can execute the program proposed in Section 6.2 by producing Gn inductively.
Instead of doing so, we here inductively produce a sequence of points which converges to
extreme points of the closure of G∞ following Kobayashi and Miyazawa [51]. Our aim is
to show how these points are related to Gn with the help of Lemmas 6.6 and 6.7.

Let Γ
(0)
k = {0} for k = 1, 2. Obviously, 0 is the extreme point of G0. Let Γ

(1)
k = {θ ∈

Γ ∩ Γk; θ3−k ≤ 0} for k = 1, 2. Obviously, ϕ3−k(θ3−k) is finite. Hence, by Lemma 6.7,

ϕ(θ) and ϕk(θk) are finite for θ ∈ Γ
(1)
k . Thus, ϕ(θ), ϕ1(θ1) and ϕ2(θ2) are finite for

θ ∈ Γ
(1)
1

∪

Γ
(1)
2 . We define θ

(1)
△ ≡ (θ

(1,1)
1 , θ

(2,1)
2 ) by

θ
(k,1)
k = sup{θk; (θ1, θ2) ∈ Γ

(1)
k }, k = 1, 2.
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Here we use subscript k in addition to superscript k because it will be used as the kth
entry of the two-dimensional vector θ(k,1), where θ

(k,1)
3−k = ξ

3−k
(θ

(k,1)
k ). It is easy to see that

at least one of θ
(1,1)
1 and θ

(2,1)
2 is positive by Lemma 6.5, and

θ(1,1),θ(2,1) are extreme points of G1,

where G1 is the closure of G1. We inductively define θ
(n)
△ = (θ

(1,n)
1 , θ

(2,n)
2 ) for n ≥ 1 by

θ
(k,n)
k = sup{θk; θ ∈ Γ ∩ Γk, θ3−k ≤ θ

(3−k,n−1)
3−k },

and let

θ(1,n) = (θ
(1,n)
1 , ξ

2
(θ

(1,n)
1 )), θ(2,n) = (ξ

1
(θ

(2,n)
2 ), θ

(1,n)
2 ).

It is easy to see that θ(1,n), θ(2,n) are extreme points of Gn.

Then, θ
(n)
△ is nondecreasing in n, and θ

(n)
△ ≤ θmax from our definition. Thus, the

sequence θ
(n)
△ converges to a finite vector. Denote this limit by τ ≡ (τ1, τ2). We can see

that

τk = sup{θk; θ ∈ Γ ∩ Γk, θ3−k ≤ τ3−k}, k = 1, 2. (6.12)

This can be considered as a fixed point equation. We illustrate these iterations in Figure 4.

∂Γ
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θ2

Γ1
Γ2

θ
(2,max)

θ
(1,max)

θ
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(2,e)

θ
(1)
△

θ
(0)
△

= 0

∂Γ

θ1

θ2

Γ1Γ2

θ
(2,max)

θ
(1,max)

θ
(1,c)

=θ
(1,e)

θ
(2,c)

=θ
(2,e)

θ
(1)
△

θ
(0)
△

= 0

θ
(2)
△

θ
(1,1)
1

θ
(2,1)
2

θ
(2,2)
2

θ
(1,2)
1

Figure 4: The first two steps of the iterations

To solve (6.12), the following classifications will be convenient:

(D1) θ
(2,c)
1 < θ

(1,c)
1 and θ

(1,c)
2 < θ

(2,c)
2 , (D2) θ(2,c) ≤ θ(1,c), (D3) θ(1,c) ≤ θ(2,c).

Note that it is impossible to have θ
(2,c)
1 > θ

(1,c)
1 and θ

(1,c)
2 > θ

(2,c)
2 . The following solution

is obtained for (6.12) in [51].

Lemma 6.8 (Lemma 3.1 of Kobayashi and Miyazawa [51]) The limit τ of the se-

quence θ
(n)
△ is given by

(τ1, τ2) =











(θ
(1,c)
1 , θ

(2,c)
2 ) if (D1) holds,

(ξ1(θ
(2,c)
2 ), θ

(2,c)
2 ) if (D2) holds,

(θ
(1,c)
1 , ξ2(θ

(1,c)
1 )) if (D3) holds.

(6.13)
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Figure 5: The domains D (green color on line) for (D1)

∂Γ

0
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Figure 6: The domains D (green color on line) for (D2) and (D3)

We have an answer to the domain D in the following theorem.

Theorem 6.3 (Theorem 3.1 of Kobayashi and Miyazawa [51]) Under the condi-
tions (3b), (3b’), (3c), and the stability condition given in Lemma 6.4, we have

D = {θ ∈ Γmax; θ < τ}, (6.14)

where we recall that

Γmax = {θ ∈ R
2; θ < ∃θ′, γ(θ′) < 1}.

This theorem is proved in [51]. Here we outline this proof. From the observation that
θ(1,n),θ(2,n) ∈ Gn and Theorem 6.1 and Lemma 6.8, it is not hard to see that

D0 ≡ {θ ∈ Γmax; θ < τ} ⊂ D. (6.15)

Thus, we need to show the opposite inclusion, that is, ϕ(θ) = ∞ for θ 6∈ D0. This is
verified by the following lemmas, all of which assume the conditions of Theorem 6.3.

Lemma 6.9 θ 6∈ Γmax implies that ϕ(θ) = ∞.

Lemma 6.10 For k = 1, 2, θk > θ
(k,c)
k implies that ϕk(θk) = ∞, and therefore ϕ(θ) = ∞.
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Lemma 6.11 For k = 1, 2, θk > τk implies that ϕk(θk) = ∞, and therefore ϕ(θ) = ∞.

All of these lemmas have been proved in Kobayashi and Miyazawa [51]. Here we
explain how they can be obtained. Lemma 6.9 is immediate from Lemma 6.2 (see also
Lemma 3.6 of [51]). Lemma 6.10 is Lemma 3.7 of [51], which requires the Markov additive

approach. Lemma 6.10 is also a special case of Lemma 6.11 because θ
(k,c)
k ≤ τk. How-

ever, we require Lemma 6.10 for proving Lemma 6.11. Lemma 6.11 requires the analytic
extension of a complex variable function. We outline its idea below.

Since τk ≤ θ
(k,c)
k , we only need to consider the case that τk < θ

(k,c)
k in view of Lemmas

6.10 and 6.11. Suppose that τ1 < θ
(1,c)
1 . This occurs only when (D2) holds. We claim that

ϕ1(θ1) = ∞ for θ1 > τ1. This proves Theorem 6.3.

From (3.11) and (6.15), we have, (z1, z2) ∈ C
2 such that (ℜz1,ℜz2) ∈ D0,

(1 − γ(z1, z2))ϕ+(z1, z2)

= (γ1(z1, z2) − 1)ϕ1(z1) + (γ2(z1, z2) − 1)ϕ2(z2) + (γ0(z1, z2) − 1)P0. (6.16)

To make the left side of this equation to vanish, we introduce an analytic extension ξ
2
(z)

of ξ
2
(θ) for real θ ∈ (θ

(2,min)
2 , θ

(2,max)
2 ) such that

γ(z, ξ
2
(z)) = 1.

By the implicit function theorem, ξ
2
(z) is analytic at least on some open set G including

the real interval (θ
(2,min)
2 , θ

(2,max)
2 ). Plugging (z1, z2) = (z, ξ

2
(z)) into (6.16), we have, for

z ∈ G satisfying ℜz ∈ (0, τ1),

(1 − γ1(z, ξ2
(z)))ϕ1(z) = (γ2(z, ξ2

(z)) − 1)ϕ2(ξ2
(z)) + (γ0(z, ξ2

(z)) − 1)P0. (6.17)

Note that ϕ2(ξ2
(z)) is analytic for ℜz < τ1 but singular at z = τ1 since ξ

2
(τ1) = τ2. Since

1 − γ1(z, ξ2
(z)) 6= 0 and γ2(z, ξ2

(z)) − 1 6= 0 for ℜz ∈ (0, θ
(2,c))
1 ), this singularity implies

that of ϕ1(z) at z = τ1. This proves the claim.

7 Deriving the tail asymptotics for d = 2

Once the domain D is obtained, we can use the stationary equations (3.11) and (3.14)
of moment generating functions on D. This enables us to find tail decay rates at the
boundary of D. We demonstrate this for the reflecting random walk for d = 2 and a
two-dimensional SRBM. Here we employ two methods.

First, we refine the Markov additive approach in Section 5 using the information of the
domain. This will be discussed in Section 7.1 for the two-dimensional reflecting random
walks with unbounded jumps. Second, we directly work on the stationary equation (3.14)
for the two-dimensional SRBM. This will be discussed in Section 7.2.

7.1 Two dimensional reflecting random walk

We continue to use the random vector Z in Section 6, which is subject to the stationary
distribution of the two-dimensional reflecting random walk. We consider two types of
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the tail sets, {Zk ≥ n, Z3−k = 0} and {〈c,Z〉 ≥ n} for a directional vector c ≥ 0. For
convenience, we will use unit vectors e1 ≡ (1, 0) and e2 ≡ (0, 1). All results in this
subsection is cited from Kobayashi and Miyazawa [51]. So, we omit their proofs except
for the following lemma, which suggests what decay rate we can expect.

Lemma 7.1 Under the assumptions of Theorem 6.3,

lim sup
n→∞

1

n
log P (Zk ≥ n, Z3−k = 0) ≤ −τk, k = 1, 2, (7.1)

and, for any directional vector c ≥ 0,

lim sup
n→∞

1

n
log P (〈c, Z〉 ≥ n) ≤ − sup{x ≥ 0; xc ∈ D}. (7.2)

Proof. (7.1) is immediate from Theorem 6.3. To see (7.2), we use Markov inequality:

exnP (〈c,Z〉 ≥ n) ≤ E(e〈xc,Z〉), x ≥ 0, n = 0, 1, . . . .

Taking logarithms of both sides, dividing by n ≥ 1 and letting n → ∞, we have (7.2).

By this lemma, the decay rates of P (Zk ≥ n, Z3−k = 0) and P (〈c,Z〉 ≥ n) are
expected to be respectively τk and

αc = sup{x ≥ 0; xc ∈ D}, for directional vector c ≥ 0.

For the double QBD process, we have used the procedure given in Section 5.6. Its
key ingredient is Lemma 5.2, but we cannot use this lemma because of unbounded jumps.
On the other hand, we have the domain D, which enables us to directly use the results
such as Theorem 7.2 in Section 5. This has been performed with help of Lemma 7.1 and
generalizing Lemma 5.2 by Kobayashi and Miyazawa [51].

Theorem 7.1 (Theorem 4.1 of [51]) Under the conditions of Theorem 6.3, we have,

lim
n→∞

1

n
log P (Zk ≥ n, Z3−k = 0) = −τk, k = 1, 2. (7.3)

Theorem 7.2 (Theorem 4.2 of [51]) Under the same conditions of Theorem 7.1, we
have, for any directional vector c ≥ 0,

lim
n→∞

1

n
log P (〈c, Z〉 ≥ n) = −αc, (7.4)

where we recall that αc = sup{x ≥ 0; xc ∈ D}. Furthermore, if γ(αcc) = 1 and if
γk(αcc) 6= 1 and αcck 6= τk for k = 1, 2, then we have the following exact asymptotics:

lim
n→∞

eαcnP (〈c, Z〉 ≥ n) = bc. (7.5)

Remark 7.1 Since αek
may be less than τk, the decay rate of P (Zk ≥ n) may be different

from that of P (Zk ≥ n, Z3−k = 0).

We note that the tail asymptotic of P(
〈

c, Z
〉

> x) is generally different from that of
P(Z > xc). The latter may be different from P(Z ∈ x(c+B) for a bounded set B ⊂ R

2
+.

Nevertheless, the tail asymptotics obtained in Theorem 7.2 have some similarity to the
asymptotics of P(Z ∈ xc + U1) for the two-dimensional reflecting skip-free random walk
obtained in Borovkov and Mogul’skii [9], where U1 is a unit square.
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7.2 Two dimensional SRBM

We consider the two-dimensional SRBM under the conditions (3-ii) and (3-iii) in Sec-
tion 3.5. These are necessary and sufficient conditions for the existence of the stationary
distribution. Then, we have the stationary equation (3.14) in terms of moment generating
functions. For d = 2, it is written as

γ(θ)ϕ(θ) = γ[1](θ)ϕ[1](θ2) + γ[2](θ)ϕ[2](θ1), θ ∈ D. (7.6)

We only use this equation for deriving the tail asymptotics. A key idea is to directly
connect ϕ[1] and ϕ[2]. For this, we take a path obtained from γ(θ1, θ2) = 0 on R

2. On this
path, γ[1](θ1) and γ[2](θ2) are directly related by (7.6), where θ2 is a function of θ1 and
vice versa.

Denote this function f2(θ1). Then, it can be shown that f2(z) with complex variable
z is analytic for ℜz ∈ D. Analytically extending this complex variable function, we can
find analytic behaviors of ϕ[1](z) and ϕ[2](z) , respectively, at the singular points whose
real parts are smallest. Then, the complex variable version of (7.6):

γ(z1, z2)ϕ(z1, z2) = γ[1](z1, z2)ϕ[1](z2) + γ[2](z1, z2)ϕ[2](z1), (ℜz1,ℜz) ∈ C
2, (7.7)

and analytic inversions yield the exact tail asymptotics of P(〈c, Z〉 > x) as x → ∞ for
each directional vector c ≥ 0.

This scenario has been recently completed by Dai and Miyazawa [16]. Here we briefly
introduce their results. The domain D has essentially the same form given by Theorem 6.3.
The regions Γ, Γ1 and Γ2 are defined as

Γ = {θ ∈ R
2; γ(θ) > 0}, Γk = {θ ∈ R

2; γ[k](θ) < 0}, k = 1, 2.

Vectors θ(k,max), θ(k,min), θ(k,c) and θ(k,e) are defined by (6.10) and (6.11), respectively.
The classifications (D1), (D2) and (D3) are also the same as those in Section 6.4. See
Theorem 2.1 of [16] for details, in which slightly different notation is used, but they exactly
correspond to those introduced in this paper.

Because of simplicity of the stationary equation (7.6), we can successfully apply com-
plex analysis and get sharper results. We denote a random vector subject to the stationary
distribution by Z. We also use the following notation. If τ 6∈ Γ, then

η(1) = (τ1, ξ2(τ1)), η(2) = (ξ1(τ2), τ2).

Otherwise, we let η(1) = η(2) = τ . Typical figures of the domain D are drawn in Figure 7.

The exact tail asymptotics are derived for the one-dimensional stationary distribution
in each direction in the following two theorems. In what follows, for a non-zero vector
u ∈ R

2
+, the line tu with t ≥ 0 is referred to as the ray u, and ray u ≡ (u1, u2) is said

to be below (on, above) ray v ≡ (v1, v2) if u1 = sv1 for some s > 0 implies u2 < sv2

(u2 = sv2, u2 > sv2, respectively).

Theorem 7.3 (Theorem 2.2 of Dai and Miyazawa [16]) Assume that conditions (3-
ii) and (3-iii) hold and that the SRBM data is in case (D1). Let c ∈ R

2
+ be a direction.
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Figure 7: The domains D (green color on line) for (D1) and (D2)

Then, P(
〈

c, Z
〉

> x) has the exact asymptotic bhc(x) with some constant b > 0 and hc(x)

being given below. (a) When the ray c is below ray η(1),

hc(x) =











e−αcx if η(1) 6= θ(1,max),

x−1/2e−αcx if η(1) = θ(1,max) = θ(1,e),

x−3/2e−αcx if η(1) = θ(1,max) 6= θ(1,e).

(7.8)

(b) When the ray c is above or on the ray η(1) and below the ray η(2),

hc(x) =











x−1/2e−αcx, if c is on line η(1) = θ(1,max) 6= θ(1,e),

xe−αcx, if c is on line η(1) 6= θ(1,max),

e−αcx, otherwise.

(7.9)

(c) When the ray c is above the ray η(2), the case is symmetric to (a) and a part of (b).

For cases (D2) and (D3), we only consider (D2) II because of their symmetry. In (D2),

τ2 = θ
(2,e)
2 , τ1 = ξ1(τ2), η(1) = η(2) = τ = (τ1, τ2), and the condition η(1) 6= θ(1,max) is

equivalent to the condition τ1 < θ
(1,max)
1 .

Theorem 7.4 (Theorem 2.3 of Dai and Miyazawa [16]) Assume that conditions (3-
ii) and (3-iii) hold and that the SRBM data is in case (D2). Let c ∈ R

2
+ be a direction.

Then, P(
〈

c, Z
〉

> x) has the exact asymptotic bhc(x) with some constant b > 0 and hc(x)
being given below.
(a) When the ray c is below the ray τ ,

hc(x) =











e−αcx, if τ 6= θ(1,e) and τ 6= θ(1,max) or if τ = θ(1,max) = θ(1,e),

xe−αcx, if τ = θ(1,e) 6= θ(1,max),

x−1/2e−αcx, if τ = θ(1,max) 6= θ(1,e).

(7.10)

(b) When the ray c is on the ray τ ,

hc(x) = xe−αcx. (7.11)

(c) When the ray c is above the ray τ ,

hc(x) = e−αcx. (7.12)
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The results in Theorems 7.3 and 7.4 exactly correspond to those in Theorem 7.2. As
we noted there, the tail asymptotic of P(

〈

c, Z
〉

> x) is generally different from that of
P(Z > xc) and P(Z ∈ x(c + B)) for a bounded open set B ⊂ R

2
+. We may discuss their

difference using the large deviations rate function obtained by Avram, Dai and Hasenbein
[4]. This will be done elsewhere.

7.3 Two-sided double QBD

This process is introduced in Example 3.3. It is determined by six distributions of the
increments, {p(j)

n } for j = 0, +,−, 1+, 1−, 2. As we have discussed in Example 3.3, we have
to work with the three-dimensional variable (θ1−, θ1+, θ2) for the generating functions.
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−
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(2−,max)

θ
(1+,e)

θ
(1−,e) τ

−
∈ (0, θ
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−

= θ
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(0)
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Figure 8: The domain D (green colored area) projected to θ1−–θ2 and θ1+–θ2 quadrants
for two-sided DQBD

Similar to the double QBD process, let

Γ1− = {θ ∈ R
2; γ−(θ) < 1, γ1−(θ) < 1}, Γ1+ = {θ ∈ R

2; γ+(θ) < 1, γ1+(θ) < 1},
Γ2 = {(θ1−, θ1+, θ2) ∈ R

3; γ−(θ1−, θ2) < 1, γ1+(θ1+, θ2) < 1, γ2(θ1−, θ1+, θ2) < 1}.

We then get the extreme points τ1−, τ1+ and τ2 of the domain in the coordinate directions
as the solution of the following fixed point equations:

τ1− = sup{θ1 ≥ 0; θ ∈ Γ1−, θ2 ≤ τ2}, (7.13)

τ1+ = sup{θ1 ≥ 0; θ ∈ Γ1+, θ2 ≤ τ2}, (7.14)

τ2 = sup{θ2 ≥ 0; (θ1−, θ1+, θ2) ∈ Γ2, θ1− ≤ τ1−, θ1+ ≤ τ1+}. (7.15)

To find this solution, we compute the following extreme points (see Figure 8):

θ(1−,c) = argθ sup{θ1 ≥ 0; (θ1, θ2) ∈ Γ− ∩ Γ1−},
θ(1+,c) = argθ sup{θ1 ≥ 0; (θ1, θ2) ∈ Γ+ ∩ Γ1+},
θ(2,c) = arg(θ1−,θ1+,θ2) sup{θ2 ≥ 0; (θ1−, θ1+, θ2) ∈ Γ2}.

Then, we have

τ1− =

{

θ
(1−,c)
1 , θ

(1−,c)
2 < θ

(2,c)
2 ,

θ
(2,c)
1 , θ

(1−,c)
2 ≥ θ

(2,c)
2 ,

τ1+ =

{

θ
(1+,c)
1 , θ

(1+,c)
2 < θ

(2,c)
2 ,

θ
(2,c)
1 , θ

(1+,c)
2 ≥ θ

(2,c)
2 ,

(7.16)
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τ2 =

{

θ
(2,c)
2 , θ

(2,c)
1− < θ

(1−,c)
1 , θ

(2,c)
1+ < θ

(1+,c)
1 ,

min(θ
(1−,c)
2 , θ

(1+,c)
2 ) θ

(2,c)
1− ≥ θ

(1−,c)
1 or θ

(2,c)
1+ ≥ θ

(1+,c)
1 .

(7.17)

These τ1−, τ1+ and τ2 are obtained as the decay rates of the three coordinate directions
in Miyazawa [68] (see Theorem 1.3 there), which uses the Markov additive approach.
Here we derive them by the analytic function approach using the program proposed in
Section 6.2. Similar to the SRBM case in Section 7.2, it should not be very difficult to
find the exact tail asymptotics in an arbitrary given direction. However, the proposed
program in Section 6.2 has not yet been verified except for the two-dimensional reflecting
process on the orthant. Hence, we need some more work for using the analytic function
approach.

8 Applications

In this section, we collect some examples to see how the decay rates obtained through the
domain D are useful in applications.

8.1 Modified Jackson networks

8.1.1 Jackson network

We have considered the Jackson network in Section 3.1. Here we consider the case for
d = 2. For this model, the moment generating functions γ and γk are given by

γ(θ) = λ1e
θ1 + λ2e

θ2 + µ1e
−θ1(r12e

θ2 + r10) + µ2e
−θ2(r21e

θ1 + r20), (8.1)

γ1(θ) = λ1e
θ1 + λ2e

θ2 + µ1e
−θ1(r12e

θ2 + r10) + µ2. (8.2)

Assume the stability condition (3.3). Then, the stationary distribution for d = 2 is given
by

π(n,m) = (1 − ρ1)(1 − ρ2)ρ
m
1 ρn

2 , m, n ∈ Z+.

Let τi = − log ρi for i = 1, 2. Then, the moment generating functions of the π, {π(0, n); n ∈
Z+} and {π(m, 0); m ∈ Z+} are computed as

ϕ+(θ) = ϕ(θ) =
(eτ1 − 1)(eτ2 − 1)

(eτ1 − eθ1)(eτ2 − eθ2)
,

ϕi(θi) =
eτi − 1

eτi − eθi
(1 − e−τ3−i), i = 1, 2.

Plugging these into the stationary equation, we derive

(1 − γ(θ)) + (1 − γ1(θ))(eτ2 − eθ2)e−τ2 + (1 − γ2(θ))(eτ1 − eθ1)e−τ1

= (γ0(θ) − 1)π(0, 0)(eτ1 − eθ1)(eτ2 − eθ2)e−τ1−τ2 .

Let θ = τ in this equation, then we immediately see that γ(τ ) = 1. Thus, τ ≡ (τ1, τ2)
must be on the boundary of Γ, that is, τ ∈ ∂Γ. This is illustrated in Figure 9.
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θ1 θ1

θ2θ2

γ2(θ) = 1

γ2(θ) = 1

γ(θ) = 1γ(θ) = 1

(τ1, τ2)

γ1(θ) = 1

γ1(θ) = 1

(τ1, τ2)

Figure 9: The location of τ for (D1) and (D2)

We next compute θ(1,e), which is the solution of the following equations:

γ(θ) = 1, γ1(θ) = 1, θ 6= 0.

From (8.1), (8.2) and eθ2 = r21e
θ1 + r20, we can find

θ(1,e) =

(

− log ρ1,− log
ρ1

r21 + (1 − r21)ρ1

)

.

Hence, γ(τ1, θ2) = 1 has two solutions:

θ2 = τ2(= − log ρ2) and − log
ρ1

r21 + (1 − r21)ρ1

.

Thus, if ρ2 ≥ ρ1

r21+(1−r21)ρ1
, which is equivalent to

ρ1

1 − ρ1

≤ r21ρ2

1 − ρ2

, (8.3)

then τ2 ≤ θ
(1,e)
2 , and therefore we have the case (D2). Otherwise, the case (D1) or (D3)

occurs, and we have θ(1,c) = θ(1,e) (see Figure 9). Similar results are obtained for θ(2,e).
That is, (D3) occurs if

ρ2

1 − ρ2

≤ r12ρ1

1 − ρ1

. (8.4)

Otherwise, (D1) or (D2) occurs.

We cannot have (8.3) and (8.4) simultaneously because they imply r12r21 ≥ 1, which
contradicts the stability condition. Thus, we have the following three classifications:

(J1) If neither (8.3) nor (8.4) holds, then we have the case (D1).

(J2) If (8.3) holds but (8.4) does not hold, then we have the case (D2).

(J3) If (8.3) does not hold but (8.4) holds, then we have the case (D3).
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8.1.2 Server collaboration

Similarly to Miyazawa [69], we next modify the Jackson network in such a way that servers
at nodes 1 and 2 help service at the other nodes when their own nodes are empty. We
describe this by increasing µk up to µ∗

k in γk(θ) for k = 1, 2. To make arguments simple,
we assume that

µ1 + µ∗
1 ≤ µ1 + µ2, µ2 + µ∗

2 ≤ µ1 + µ2.

This only changes γk(θ) for k = 1, 2. We denote this modified functions by γ∗
k(θ). From

(8.2) and the corresponding formulas for γ2(θ), we can see that the curve of γ∗
1(θ) = 1 is

located above that of γ1(θ) = 1. Similarly, the curve of γ∗
2(θ) = 1 is located at the right

side of that of γ2(θ) = 1. See Figure 10.

θ1 θ1

θ2θ2

γ2(θ) = 1

γ2(θ) = 1

γ(θ) = 1
γ(θ) = 1

(τ1, τ2)

γ1(θ) = 1

γ1(θ) = 1

(τ1, τ2)

γ
∗

2
(θ) = 1

γ
∗

1
(θ) = 1

γ
∗

1
(θ) = 1

γ
∗

2
(θ) = 1

τ
∗

1
τ
∗

1

τ
∗

2

τ
∗

2

Figure 10: The effect of server collaboration for (D1) and (D2)

From this figure, we can see how the decay rate τk of the queue length distribution at
node k is increased to τ ∗

k , which is the decay rate of the modified network. It is noted
that increasing the service rate at node 1 does not gain any improvement for the case
(D2) while that at node 2 improves service at both nodes. These improvements stop if
increased service rates are larger than the thresholds which correspond to the maximum
points θ(1,max) and θ(2,max). This is detailed in Miyazawa [69]. This problem is also
discussed by Foley and McDonald [30] and Khanchi [48].

8.1.3 Batch arrival Jackson network

We can also modify the two node Jackson network by exogenous batch arrivals. This
is considered in Kobayashi and Miyazawa [51]. Contrary to the server collaboration, its
effect is negative as one may expect. In this case, the closed curve of γ(θ) = 1 becomes
smaller and the curves of γ1(θ) = 1 and γ2(θ) = 1 are shifted downward and to the left,
respectively.

For this batch arrival model, Miyazawa and Taylor [72] derived a stochastic upper
bound of product form for the stationary distribution. Kobayashi and Miyazawa [51]
show that this bound is generally not tight, that is, the decay rates of the upper bound
in coordinate directions are generally smaller than the decay rates for the stationary
distribution.

52



In our formulation, we can also allow simultaneous batch arrivals at two nodes whose
sizes can have an arbitrary joint distribution. For example, the bath room problem of
Flatto and McKean [27] can be answered.

8.2 Join the shortest queue

It is very natural to join the shortest queue if there are parallel queues for identical
service. This service system is called a join the shortest queue. A typical assumption is
that customers arrive subject to the Poisson process and join the shortest queue with tie
breaking, and service times are i.i.d. with the exponential distribution. This queueing
model may look simple, but the stationary distribution of its joint queue length is very
hard to get even for two parallel queues. Thus, the tail asymptotics have been studied.
It has a long history from starting from Kingman [50] in 1961, but satisfactory answers
are only available for two parallel queues (e.g., see Foley and McDonald [28], Kurkova
and Suhov [55], Li, Miyazawa and Zhao [56], Sakuma and Miyazawa [88] and Takahashi,
Fujimoto and Makimoto [94]). The large deviations principle is derived for the stationary
distributions of joint queue lengths under very general assumption for general d ≥ 2 in
Puhalskii and Vladimirov [83]. However, the result is not easy to use for applications
because we have to solve the variational problem (see Section 4.2).

We consider such a general model but for d = 2. This model has two parallel queues,
numbered as queues 1 and 2. For each i = 1, 2, queue i serves customers in the first-come
first-served manner with i.i.d. service times subject to the exponential distribution with
rate µi. There are three exogenous Poisson arrival streams. The first and second streams
go to queues 1 and 2 with rates λ1 and λ2, respectively, while arriving customers in the
third stream with rate δ choose the shorter queue with tie breaking. The probability that
a customer with tie breaking chooses queue 1 does not change the tail decay rate, so we
simply assume it to be 1/2. This model is referred to as a generalized join shortest queue
(see Figure 11).

λ1

λ2

δ

µ1

µ2

Figure 11: Generalized join shortest queue

The tail asymptotic problem for this generalized join shortest queue was studied by
Foley and McDonald [28]. However, they mainly considered the case where the moment
generating function of the Markov additive kernel is positive (see condition (5c) in The-
orem 5.2). For some other cases, the exact geometric asymptotics were obtained in Li,
Miyazawa and Zhao [56]. However, those two papers have not yet completely solved the
tail asymptotic problem even for the rough asymptotics, that is, the decay rate problem.
For the latter problem, a complete solution was recently obtained in Miyazawa [68] by us-
ing the Markov additive approach and the optimization technique developed in Miyazawa

53



[69]. In this section, we revisit this result using the analytic function approach based on
the convergence domain.

Similar to the Jackson network, we can formulate this continuous time model as a
discrete time Markov chain. Following Miyazawa [68], we formulate it as a two-sided
double QBD. For this, we assume without loss of generality that

λ1 + λ2 + µ1 + µ2 + δ = 1.

Let L1ℓ and L2ℓ be the queue lengths including customers being served at time ℓ = 0, 1, . . .,
and let L1ℓ = L2ℓ −L1ℓ and Z2ℓ = min(L1ℓ, L2ℓ). It is not hard to see that Zℓ ≡ (Z1ℓ, Z2ℓ)
is the two-sided double QBD process introduced in Example 3.3. For example, it is a
skip-free random walk on each region S+ ≡ (Z+ ∪ \{0}) × (Z+ \ {0}) reflected at the
boundary S1+ ≡ (Z+ \ {0}) × {0} (see Fig. 12).

λ2 + δ λ1 + δ

λ2 + δ λ1 + δ

µ1 + µ2

λ2 +
δ

2

λ2 +
δ

2

λ1 +
δ

2

λ1 +
δ

2

λ1

λ1

λ2

λ2

µ2

µ1

µ1

µ1
µ1µ2 µ2

µ2

µ2
µ1

Z2 = min(L1, L2)

Z1 = L2 − L1

Figure 12: State transitions for the generalized shortest queue.

Then, the transition probabilities are give by

p
(−)
(−1)0 = λ1, p

(−)
(−1)(−1) = µ2, p

(−)
10 = µ1, p

(−)
11 = λ2 + δ,

p
(+)
10 = λ2, p

(+)
1(−1) = µ1, p

(+)
(−1)0 = µ2, p

(+)
(−1)1 = λ1 + δ,

p
(2)
10 = λ2 +

δ

2
, p

(2)
1(−1) = µ1, p

(2)
(−1)(−1) = µ2, p

(2)
(−1)0 = λ1 +

δ

2
,

p
(1−)
(−1)0 = λ1, p

(1−)
00 = µ2, p

(1+)
10 = µ1, p

(1−)
11 = λ2 + δ,

p
(1+)
10 = λ2, p

(1+)
00 = µ1, p

(1+)
(−1)0 = µ2, p

(1+)
(−1)1 = λ1 + δ,

p
(0)
10 = λ2 +

δ

2
, p

(0)
00 = µ1 + µ2, p

(0)
(−1)0 = λ1 +

δ

2

where all other transitions are null. To exclude obvious cases, we assume that δ, µ1, µ2

are all positive.

Denote traffic intensities by

ρ1 =
λ1

µ1

, ρ2 =
λ2

µ2

, ρ =
λ1 + λ2 + δ

µ1 + µ2

.

Then, it is known that this generalized join shortest queue is stable if and only if ρ1 <
1, ρ2 < 1 and ρ < 1 (e.g., see Foley and McDonald [28]). This stability condition is
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assumed throughout this section. We will also use the following notation, which was
introduced and shown to be very useful in computations in Li, Miyazawa and Zhao [56]:

β1 = µ1ρ
2 + λ2, β2 = µ2ρ

2 + λ1.

We need to compute θ
(1−,c)
1 , θ

(1+,c)
1 and θ

(2,c)
2 , which are defined as

θ
(1−,c)
1 = sup{θ1; γ−(θ) ≤ 1, γ1−(θ) ≤ 1},

θ
(1+,c)
1 = sup{θ1; γ+(θ) ≤ 1, γ1+(θ) ≤ 1},

θ
(2,c)
2 = sup{θ2; γ−(θ1−, θ2) ≤ 1, γ+(θ1+, θ2) ≤ 1, γ2(θ1−, θ1+, θ2) ≤ 1}.

They are obtained if we can solve the following three sets of equations:

γ−(θ) = 1, γ1−(θ) = 1, (8.5)

γ+(θ) = 1, γ1+(θ) = 1, (8.6)

γ−(θ1−, θ2) = 1, γ+(θ1+, θ2) = 1, γ2(θ1−, θ1+, θ2) = 1. (8.7)

For convenience, let z = eθ1 and ξ = eθ2 in (8.5). Then, we have

λ1z + µ2zξ
−1 + µ1z

−1 + (λ2 + δ)z−1ξ = 1, (8.8)

λ1z + µ2 + µ1z
−1 + (λ2 + δ)z−1ξ = 1. (8.9)

Solving these equations for z 6= 1, we have z = ξ = ρ−1
1 . For z = ρ−1

1 , (8.8) yields
ξ = ρ−1

1 , µ2

λ2+δ
ρ−1

1 . Note that ρ−1
1 < µ2

λ2+δ
ρ−1

1 if and only if µ2 > λ2 + δ. Hence, using

notation θ
(1−,max)
i :

θ
(1−,max)
1 = max{log z; (8.8) holds}, θ

(1−,max)
2 = max{log ξ; (8.8) holds},

we have

(

θ
(1−,c)
1 , θ

(1−,c)
2

)

=

{

(log ρ−1
1 , log ρ−1

1 ), µ2 > λ2 + δ,

(θ
(1−,max)
1 , θ

(1−,max)
2 ), µ2 ≤ λ2 + δ.

(8.10)

It is also noted that θ
(1−,max)
1 ≥ log ρ−1

1 , so we always have that θ
(1−,c)
1 ≥ log ρ−1

1 .

Remark 8.1 The θ
(1−,max)
i for i = 1, 2 are computed from their definitions as

θ
(1−,max)
1 = log

1

2λ1

(

1 − 2
√

µ2(λ2 + δ) + ζ
(−)
1

)

,

θ
(1−,max)
2 = log

1 − 4(λ1µ1 + (λ2 + δ)µ2) + ζ
(−)
2

8λ1(λ2 + δ)

where

ζ
(−)
1 =

√

1 + 4(µ2(λ2 + δ) −
√

µ2(λ2 + δ) − λ1µ1) ,

ζ
(−)
2 =

√

(1 − 4(λ1µ1 + (λ2 + δ)µ2))2 − 64(λ2 + δ)λ1µ1µ2 .

55



Similarly, letting z = eθ1 and ξ = eθ2 in (8.6),

λ2z + µ1zξ
−1 + µ2z

−1 + (λ1 + δ)z−1ξ = 1, (8.11)

λ2z + µ1 + µ2z
−1 + (λ1 + δ)z−1ξ = 1. (8.12)

Solving these equations for z 6= 1, we have z = ξ = ρ−1
2 . For z = ρ−1

2 , (8.11) yields
ξ = ρ−1

2 , µ1

λ1+δ
ρ−1

2 . Recalling that

θ
(1+,max)
1 = max{log z; (8.11) holds}, θ

(1+,max)
2 = max{log ξ; (8.11) holds},

we have that θ
(1+,c)
1 ≥ log ρ−1

2 and

(

θ
(1+,c)
1 , θ

(1+,c)
2

)

=

{

(log ρ−1
2 , log ρ−1

2 ), µ1 > λ1 + δ

(θ
(1+,max)
1 , θ

(1+,max)
2 ), µ1 ≤ λ1 + δ.

(8.13)

We also consider the solution of (8.7). In this case, let ξ = eθ2 , z1 = eθ1− and z2 = eθ1+ .
Then, (8.7) becomes

λ1z1 + µ2z1ξ
−1 + µ1z

−1
1 + (λ2 + δ)z−1

1 ξ = 1, (8.14)

λ2z2 + µ1z2ξ
−1 + µ2z

−1
2 + (λ1 + δ)z−1

2 ξ = 1, (8.15)
(

λ1 +
δ

2

)

z1 + µ2z1ξ
−1 + µ1z2ξ

−1 +

(

λ2 +
δ

2

)

z2 = 1. (8.16)

These equations have been solved in Li, Miyazawa and Zhao [56]. That is, if z 6= 1, then
ξ = ρ−2 and z1 = z2 = ρ−1. For ξ = ρ−2, the first equation has solutions z1 = ρ−1, β1+δ

β2
ρ−1,

and the second equation yields z2 = ρ−1, β2+δ
β1

ρ−1. In this case, θ
(2,c)
2 is obtained as the

maximum ξ that satisfies (8.14), (8.15) and
(

λ1 +
δ

2

)

z1 + µ2z1ξ
−1 + µ1z2ξ

−1 +

(

λ2 +
δ

2

)

z2 ≤ 1. (8.17)

Thus, we need to solve a convex optimization problem. We already know that (z1, z2, ξ) =
(1, 1, 1), (ρ−1, ρ−1, ρ−2) are the extreme points of the set of all the points (z1, z2, ξ) that
satisfy the constraints (8.17). To identify the latter point on the convex curves (8.14) and
(8.15), it is convenient to introduce the following classifications:

β2 + δ > β1, β1 + δ > β2, (8.18)

β2 + δ ≤ β1, β1 + δ > β2, (8.19)

β2 + δ > β1, β1 + δ ≤ β2, (8.20)

where we exclude the case that β2 + δ ≤ β1 and β1 + δ ≤ β2, which is impossible since
δ > 0. Note that (8.18) is equivalent to

|β1 − β2| < δ,

which is introduced under the nomenclature “a strongly pooled condition” in Foley and
McDonald [28].

We now find θ
(2,c)
2 by solving the convex optimization problem.
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Lemma 8.1 (Lemma 1.8 of Miyazawa [68]) If the strongly pooled condition (8.18)
holds, then

θ
(2,c)
2 = log ρ−2, θ

(2,c)
1− = θ

(2,c)
1+ = log ρ−1.

Otherwise, if (8.19) holds, then

(θ
(2,c)
2 , θ

(2,c)
1− , θ

(2,c)
1+ ) =

(

θ
(1−,max)
2 , log

eθ
(2,c)
2

2(λ1eθ
(2,c)
2 + µ2)

, arg max
(θ1,θ

(2,c)
2 )∈D

(+)
0

θ1

)

,

and, if (8.20) holds, then

(θ
(2,c)
2 , θ

(2,c)
1− , θ

(2,c)
1+ ) =

(

θ
(1+,max)
2 , arg max

(θ1,θ
(2,c)
2 )∈D

(−)
0

θ1, log
eθ

(2,c)
2

2(λ2eθ
(2,c)
2 + µ1)

)

.

We need another classification:

ρ1 < ρ, ρ2 < ρ, (8.21)

ρ1 ≥ ρ, ρ2 < ρ, (8.22)

ρ1 < ρ, ρ2 ≥ ρ, (8.23)

where we do not consider the case that ρ1 ≥ ρ and ρ2 ≥ ρ, which is impossible since δ > 0.
The condition (8.21) is referred to as a weakly pooled condition in Foley and McDonald
[28].

Under the conditions (8.18) and (8.21), the asymptotic decay of

P(min(L1, L2) = n, L1 − L2 = ℓ), n → ∞,

is shown to be exactly geometric with decay rate − log(ρ2) for each fixed ℓ in Foley and
McDonald [28] while some other cases are obtained in Li, Miyazawa and Zhao [56]. We
are ready to present a complete answer.

Theorem 8.1 (Theorem 1.5 of Miyazawa [68]) For the generalized join the shortest
queue with two queues, suppose that the stability conditions ρ < 1, ρ1 < 1 and ρ2 < 1 are

satisfied. Then, the geometric decay rate r2 ≡ e−θ
(2,c)
2 exists for the minimum of the two

queues in the sense of marginal distribution as well as jointly with each fixed difference
of the two queues, and one of the following three cases occurs.

(S1) If (8.18) holds, then either one of the following cases occurs:

(S1a) (8.21) implies r2 = ρ2.

(S1b) (8.22) implies r2 =
λ2 + δ

µ2

ρ1.

(S1c) (8.23) implies r2 =
λ1 + δ

µ1

ρ2.

(S2) If (8.19) holds, then either one of the following cases occurs:
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Figure 13: The decay rates for strongly pooled (8.18): case (S1a) for (8.21) and case (S1b)
for (8.22).
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Figure 14: The decay rates for not strongly pooled (8.19): case (S2a) for (8.21) and case
(S2b) for (8.22).

(S2a) (8.21) implies r2 =







e−θ
(1−,max)
2 , θ

(2,c)
1+ ≤ θ

(1+,c)
1 ,

λ1 + δ

µ1

ρ2, θ
(2,c)
1+ > θ

(1+,c)
1 .
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





































e−θ
(1−,max)
2 , θ

(2,c)
1− < log ρ−1

1 , θ
(2,c)
1+ < θ

(1+,c)
1 ,

λ2 + δ

µ2

ρ1, θ
(2,c)
1− ≥ log ρ−1

1 , θ
(1+,c)
1 < θ

(1+,c)
1 ,

λ1 + δ

µ1

ρ2, θ
(2,c)
1− < log ρ−1

1 , θ
(2,c)
1+ ≥ θ

(1+,c)
1 ,

min

(

λ2 + δ

µ2

ρ1,
λ1 + δ

µ1

ρ2

)

, θ
(2,c)
1− ≥ log ρ−1

1 , θ
(2,c)
1+ ≥ θ

(1+,c)
1 .

(S2c) (8.23) implies r2 =
λ1 + δ

µ1

ρ2.
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(S3) If (8.20) holds, then either one of the following cases occurs.

(S3a) (8.21) implies r2 =







e−θ
(1+,max)
2 , θ

(2,c)
1− ≤ θ

(1−,c)
1

λ2 + δ

µ2

ρ1, θ
(2,c)
1− > θ

(1−,c)
1 .

(S3b) (8.22) implies r2 =
λ2 + δ

µ2

ρ1.

(S3c) (8.23) implies

r2 =







































e−θ
(1+,max)
2 , θ

(2,c)
1− < θ

(1−,c)
1 , θ

(2,c)
1+ < log ρ−1

2
λ2 + δ

µ2

ρ1, θ
(2,c)
1− ≥ θ

(1−,c)
1 , θ

(2,c)
1+ < log ρ−1

2

λ1 + δ

µ1

ρ2, θ
(2,c)
1− < θ

(1−,c)
1 , θ

(2,c)
1+ ≥ log ρ−1

2

min

(

λ2 + δ

µ2

ρ1,
λ1 + δ

µ1

ρ2

)

, θ
(2,c)
1− ≥ θ

(1−,c)
1 , θ

(2,c)
1+ ≥ log ρ−1

2 .

Furthermore, the decay rates are exactly geometric for the cases (S1), (S2) unless θ
(2,c)
1− =

θ
(1−,max)
1 and (S3) unless θ

(2,c)
1+ = θ

(1+,max)
1 .

Note that the cases (S2) and (S3) are symmetric. See Figure 13 for (S1) and Figure 14
for (S2).

9 Concluding remarks

This paper focuses on the tail asymptotic problem for the stationary distribution of re-
flecting processes. We have mainly considered two-dimensional reflecting random walks
and two-dimensional SRBM, and had some discussions for higher-dimensional reflecting
processes. However, we have not discussed much about relaxing the modeling assumptions
and said nothing about limiting behaviors of a sequence of reflecting processes constrained
in bounded (or partially bounded) regions as the regions are expanded. The latter is im-
portant for applications because buffers cannot have infinite capacity in actual queueing
networks. In this section, we address these two issues.

We first list possible changes about the modeling assumptions.

(i) Relaxing technical assumptions such as the aperiodicity and irreducibility of the
random walk and the non-singularity of the covariance matrix of the Brownian
motion (see conditions (3c), (3d) and (3-i)).

(ii) Removing the skip-free assumption in all directions.

(iii) Allowing the reflecting random walk to be a real vector-valued.

(iv) Modulating the reflecting process by a background process.
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As for (i), some of them were discussed in Miyazawa [69]. Li and Zhao [57] studied
the priority queue with two types of customers, which is the case that the random walk
is not irreducible. We may need more systematic studies on this issue.

To implement (ii) and (iii), we need to appropriately define a reflection mechanism.
One such attempt was made by Borovkov and Mogul’skii [9]. They use a thick boundary,
but it considerably complicates analysis. Another way is to introduce a function to return
to the boundary when the boundary is overshot. This is something similar to the reflection
mapping of an SRBM. The third one is to change the transition probabilities from the
interior to the boundary. This has been considered for a reflecting Markov additive process
in Miyazawa and Zwart [74].

As for (iv), a reflecting Markov additive process is proposed in [74]. This class of mod-
els is important to more accurately describe queueing networks. Even a finite background
space is useful. There are some studied in this direction for d = 2 (see, e.g., [32, 46, 88])
for a so-called generalized Jackson network, which replaces the Poisson arrivals by the
renewal arrivals and allows service times to be generally distributed. No satisfactory an-
swer had been obtained, but Ozawa [81] very recently solved this problem in a certain
way using the framework presented in Section 5.6.

Of course, it is much more interesting to extend the tail asymptotic results of the
two-dimensional processes to higher-dimensional cases. We have already proposed one
program in Section 6.2. There are some related conjectures. Miyazawa [66] conjectured
the decay rates for the generalized Jackson network. Miyazawa and Kobayashi [70] make
a similar conjecture for an SRBM, which is in the same line as that conjectured in Sec-
tion 6.2. In a very recent work, Kobayashi, Sakuma and Miyazawa [52] solved the join
the shortest queue problem for an arbitrary number of parallel queues using a similar
technique presented in Section 6. This is a sign for the multidimensional problem for
d ≥ 3 to be solvable.

We finally consider a sequence of the reflecting random walks with bounded state
spaces whose limit is unbounded. In general, those processes with bounded state spaces
may be interesting for numerical computations, but are less interesting for theoretical
study because analytically tractable results cannot be expected. This leads us to consider
their limiting behavior.

There are two papers studying this issue. Kroese, Scheinhardt and Taylor [54] con-
sidered the effect of buffer truncation for the two-node Jackson tandem queue, and found
the condition that the buffer full probabilities converge to the decay rate of that of no
buffer truncation. They also found the limiting buffer full probability when this condition
is not satisfied. Those results are extended for the two-node Jackson network by Sakuma
and Miyazawa [87]. It would be nice to investigate this limiting behavior for the general
reflecting random walks on Z

d
+.
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[14] E. Çinlar (1975) Introduction to Stochastic Processes, Prentice-Hall, Englewood
Cliffs, New Jersey.

[15] J. Collamore (1996) Hitting probabilities and large deviations, Annals of Probability

24, 2065–2078.

[16] J.G. Dai and M. Miyazawa (2010) Reflecting Brownian motion in two dimensions:
Exact asymptotics for the stationary distribution. Working paper.

[17] G. Doetsch (1974) Introduction to the Theory and Application of the Laplace Trans-

formation, Springer, Berlin.

[18] P. Dupuis and R.S. Ellis (1997), A Weak Convergence Approach to the Theory of

Large Deviations, John Wiley & Sons, INC., New York.

[19] P. Dupuis and K. Ramanan (2002), A time-reversed representation for the tail prob-
abilities of stationary reflected Brownian motion, Stochastic Processes and Their

Applications 98, 253–287.

[20] A. El Kaharroubi, A. Yaacoubi, A.B. Tahar and K. Bichard (2010) Variational prob-
lem in the non-negative orthant of R

3: Reflective faces and boundary influence,
submitted for publication.

[21] G. Fayolle and R. Iasnogorodski (1979) Two coupled processors: The reduction to a
Riemann–Hilbert problem, Z. Wahrscheinlichkeitstheorie 47, 325–351.

[22] G. Fayolle, R. Iasnogorodski and V.A. Malyshev (1999) Random Walks in the

Quarter-Plane: Algebraic Methods, Boundary Value Problems and Applications,
Springer, New York.

[23] G. Fayolle, V.A. Malyshev and M.V. Menshikov (1995) Topics in the Constructive

Theory of Countable Markov Chains, Cambridge University Press, Cambridge.

[24] W.L. Feller (1971) An Introduction to Probability Theory and Its Applications, 2nd
edition, John Wiley & Sons, New York.

[25] P. Flajolet and R. Sedqewick (2009) Analytic Combinatorics, Cambridge University
Press, Cambridge, UK.

[26] L. Flatto and S Hahn (1984) Two parallel queues by arrivals with two demands I.
SIAM Journal on Applied Mathematics 44, 1041–1053.

[27] L. Flatto and H.P. McKean (1977) Two queues in parallel. Communications on Pure

and Applied Mathematics 30, 255–263.

62



[28] R.D. Foley and D.R. McDonald (2001) Join the shortest queue: stability and exact
asymptotics, Annals of Applied Probability 11(3), 569–607.

[29] R.D. Foley and D.R. McDonald (2005) Large deviations of a modified Jackson net-
work: Stability and rough asymptotics, The Annals of Applied Probability 15, 519–
541.

[30] R.D. Foley and D.R. McDonald (2005) Bridges and networks: exact asymptotics,
The Annals of Applied Probability 15, 542–586.

[31] S.N. Ethier and T.G. Kurtz (1986) Markov Processes: Characterization and Conver-

gence, Wiley, New York.

[32] K. Fujimoto, Y. Takahashi and N. Makimoto (1998) Asymptotic properties of sta-
tionary distributions in two stage tandem queueing systems. J. Opns. Res. Soc. Japan

41, 118–141.

[33] D. Gamarnik (2002) On deciding stability of constrained homogeneous random walks
and queueing systems, Mathematics of Operations Research 27, 272–293.

[34] D. Gamarnik (2007) Computing stationary probability distribution and large devi-
ations rates for constrained homogeneous random walks. The undecidability results,
Mathematics of Operations Research 32, 257–265

[35] P. Glynn and W. Whitt (1994) Logarithmic asymptotics for steady state tail proba-
bilities in a single-server queue. J. Appl. Prob. 31A, 131–156.

[36] W.K. Grassmann and D.P. Heyman (1990) Equilibrium distribution of blocked-
structured Markov chains with repeating rows, J. Appl. Prob. 27, 557–576.

[37] F. Guillemin and J.S.H. van Leeuwaarden (2011) Rare event asymptotics for a ran-
dom walk in the quarter plane, Queueing Systems 67, 1–32.

[38] L. Haque, L. Liu and Y.Q. Zhao (2005) Sufficient conditions for a geometric tail in a
QBD process with countably many levels and phases, Stochastic Models 21, 77–99.

[39] J.M. Harrison (2003) A broader view of Brownian networks, Annals of Applied Prob-

ability 13, 1119–1150.

[40] J.M. Harrison and J.J. Hasenbein (2009) Reflected Brownian motion in the quadrant:
tail behavior of the stationary distribution, Queueing Systems 61, 113–138

[41] J.M. Harrison and R.J. Williams (1987) Brownian models of open queueing networks
with homogeneous customer populations, Stochastics 22, 77–115.

[42] Q. He, H. Li and Y.Q. Zhao (2009) Light-tailed behavior in QBD process with count-
ably many phases, Stochastic Models 25, 50–75.

[43] E. Hille and R. S. Phillips (1957) Functional Analysis and semi-groups, American
Mathematical Society, Rhode Island.

[44] I. Ignatiouk-Robert (2001) Sample path large deviations and convergence parameters,
The Annals of Applied Probability 11, 1292–1329.

63



[45] I.A. Ignatyuk, V.A. Malyshev and V.V. Scherbakov (1994) Boundary effects in a
large deviation problems, Russian Mathematical Survey, 49, 41–99.

[46] K. Katou, N. Makimoto and Y. Takahashi (2008) Upper bound for the decay rate
of the joint queue-length distribution in a two-node Markovian queueing system,
Queueing Systems 58, 161–189.

[47] O. Kella and M. Miyazawa: Parallel fluid queues with constant inflows and simulta-
neous random reductions. J. Appl Prob., 38 (2001) 609–620.

[48] A. Khanchi (2010) Asymptotic hitting distribution for a reflected random walk in
the positive quadrant. To appear in Stochastic Models.

[49] J.F.C. Kingman (1970) Inequalities in the theory of queues. J. Roy. Stat. Soc. B 32,
883–909.

[50] J.F.C. Kingman (1961) Two similar queues in parallel, Annals of Mathematical Statis-

tics 32, 1314–1323.

[51] M. Kobayashi and M. Miyazawa (2010) The tail asymptotic behavior of
the stationary distribution of a double M/G/1 process and their ap-
plications to a batch arrival Jackson network, submitted for publication
(http://queue3.is.noda.sut.ac.jp/miyazawa/mm-paper).

[52] M. Kobayashi, Y. Sakuma and M. Miyazawa (2011) Join the shortest queue among
k parallel queues: tail asymptotics of its stationary distribution, the proceedings of
the Queueing Symposium; Stochastic models and their applications, 143–152, Kyoto,
Japan.

[53] M. Kobayashi, M. Miyazawa and Y.Q. Zhao (2010) Tail asymptotics of the occupation
measure for a Markov additive process with an M/G/1-type background process,
Stochastic Models 26. 463–486.

[54] Kroese D.P., Scheinhardt W.R.W. and Taylor P.G. (2003) Spectral properties of the
tandem Jackson network seen as a quasi-birth-and-death process, Annals of Applied

Probability 14, 2057–2089.

[55] L.A. Kurkova and Y.M. Suhov (2003) Malyshev’s theory and JS-queues. Asymptotics
of stationary probabilities. Annals of Applied Probability 13, 1313–1354.

[56] H. Li, M. Miyazawa and Y.Q. Zhao (2007) Geometric decay in a QBD process with
countable background states with applications to shortest queues, Stochastic Models

23, 413–438.

[57] H. Li and Y.Q. Zhao (2009) Exact tail asymptotics in a priority queue–
characterizations of the preemptive model, Queueing Systems 63, 355–381.

[58] H. Li and Y.Q. Zhao (2010) Tail asymptotics for a generalized two-demand queueing
models – A kernel method. Submitted.

[59] P. Lieshout and M. Mandjes (2007) Brownian tandem queues, Mathematical Methods

in Operations Research 66, 275–298.

64



[60] P. Lieshout and M. Mandjes (2008) Asymptotic analysis of Lévy-driven tandem
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