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Abstract: Anomalously light fermionic partners of the top quark often appear in explicit

constructions, such as the 5d holographic models, where the Higgs is a light composite

pseudo Nambu-Goldstone boson and its potential is generated radiatively by top quark

loops. We show that this is due to a structural correlation among the mass of the partners

and the one of the Higgs boson. Because of this correlation, the presence of light partners

could be essential to obtain a realistic Higgs mass.

We quantitatively confirm this generic prediction, which applies to a broad class of

composite Higgs models, by studying the simplest calculable framework with a composite

Higgs, the Discrete Composite Higgs Model. In this setup we show analytically that the

requirement of a light enough Higgs strongly constraints the fermionic spectrum and makes

the light partners appear.

The light top partners thus provide the most promising manifestation of the composite

Higgs scenario at the LHC. Conversely, the lack of observation of these states can put

strong restrictions on the parameter space of the model. A simple analysis of the 7-TeV

LHC searches presently available already gives some non-trivial constraint. The strongest

bound comes from the exclusion of the 5/3-charged partner. Even if no dedicated LHC

search exists for this particle, a bound of 611GeV is derived by adapting the CMS search

of bottom-like states in same-sign dileptons.
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1 Introduction

The hints of a light Higgs boson have never been so strong. On top of the indirect indica-

tions coming from the ElectroWeak Precision Tests (EWPT) of LEP we now have powerful

direct constraints from the LHC searches of ATLAS [1] and CMS [2]. As of today, a SM-

like Higgs boson is constrained in a very narrow interval around 120GeV.1 Moreover, a

promising excess has been found by both experiments at mH ≃ 125GeV, a reasonable

expectation is that this excess will be confirmed by the 2012 LHC data and the Higgs will

be finally discovered.

Very little can be said, on the contrary, about the nature of the Higgs. Minimality

suggests that it should be an elementary weakly coupled particle, described by the Higgs

1The heavy Higgs region, above ∼ 500GeV, is not covered by the direct searches and could become

available in the presence of new sizable contributions to the EWPT. However we will not consider this

possibility in the following.
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model up to very high energy scales. Naturalness requires instead that a more compli-

cated structure emerges around the TeV. A natural Higgs could still be elementary, if it

is embedded in a supersymmetric framework, or it could be a composite object, i.e. the

bound state of a new strong dynamics. In the latter case the Hierarchy Problem is solved

by the finite size of the Higgs, which screens the contributions to its mass from virtual

quanta of short wavelength. A particularly plausible possibility is that the Higgs is not

a generic bound state of the strong dynamics, but rather a (pseudo) Nambu-Goldstone

Boson (pNGB) associated to a spontaneously broken symmetry. This explains naturally

why it is much lighter than the other, unobserved, strong sector resonances.

The idea of a composite pNGB Higgs has been studied at length [3–35], and the fol-

lowing scenario has emerged. Apart from the Higgs, which is composite, all the other SM

particles originate as elementary fields, external to the strong sector. The communication

with the Higgs and the strong dynamics, and thus the generation of masses after Elec-

troWeak Symmetry Breaking (EWSB), occurs through linear couplings of the elementary

fields with suitable strong sector operators. At low energies, below the confinement scale,

the linear couplings become mixing terms among the elementary SM particles and some

heavy composite resonance. The physical states after diagonalization possess a composite

component, realizing the paradigm of “partial compositeness” [12, 36]. The simplest setup,

which is almost universally adopted in the literature, is based on the SO(5) → SO(4) sym-

metry breaking pattern. This delivers only one pNGB Higgs doublet and incorporates the

custodial symmetry to protect δρ from unacceptably large corrections. A possible model-

building ambiguity comes from the choice of the SO(5) representation of the fermionic

operators that mix with the SM fermions and in particular with the third family qL and

tR. In the “minimal” scenario, often denoted as “MCHM5” in the literature, these op-

erators are in the fundamental (5) representation. Other known possibilities are the 4

(MCHM4) and the 10 representations. Even if in the present paper we will adopt the

minimal scenario as a reference, our results have a more general valence and range of ap-

plicability. We will discuss in the Conclusions the effect of changing the representations

and of even more radical deformations.

Associated with the fermionic operators, massive colored fermionic resonances emerge

from the strong sector. These are the so-called “top partners” and provide a very promising

direct experimental manifestation of the composite Higgs scenario at the LHC [37–40].

Indeed it has been noticed by many authors, and in ref. [11] for the first time, that in

explicit concrete models these particles are anomalously light, much lighter than the other

strong sector’s resonances. Concretely, one finds that the partners can easily be below

1TeV, with an upper bound of around 1.5TeV, while the typical strong sector’s scale is

above 3TeV in order to satisfy the EWPT constraints. Moreover, ref. [11] observed a

certain correlation of the mass of the partners with the one of the Higgs boson.

The first goal of our paper will be to show that the lightness of the top partners has a

structural origin, rather than being a peculiarity of some explicit model. The point is that

in the composite Higgs scenario there is a tight relation among the top partners and the

generation of the Higgs potential. This leads to a parametric correlation among the mass of

the partners and the one of the Higgs boson. In order for the latter to be light as implied by
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the present data, we find that at least one of the top partners must be anomalously light.

In section 2 we will describe this mechanism in detail by adopting a general description

of the composite Higgs scenario with partial compositeness developed in ref.s [10, 12, 13].

Our results will thus have general validity and they will apply, in particular, to the 5d

holographic models of ref.s [10, 11].

For a quantitative confirmation of the effect we need to study a concrete realization

of the composite Higgs idea. The simplest possibility is to consider a “Discrete” Com-

posite Higgs Model (DCHM) like the one proposed by two of us in ref. [14]. The central

observation behind the formulation of the DCHM is that the potential of the composite

Higgs is saturated by the IR dynamics of the strong sector. Indeed in the UV, above the

mass of the resonances which corresponds to the confinement scale, the Higgs “dissolves”

in its fundamental constituents and the contributions to the potential get screened, as men-

tioned above. The same screening must take place in the low energy effective description

of the theory and therefore the dynamics of the resonances must be such to give a finite

and calculable (i.e., IR-saturated) Higgs potential. This is indeed what happens in the 5d

holographic models thanks to the collective effect of the entire Kaluza-Klein tower. In the

DCHM instead this is achieved by introducing a finite number of resonances and of extra

symmetries which realize a “collective breaking” [41, 42] protection of the Higgs potential.

Further elaborations based on this philosophy can be found in ref. [43]. Other models

similar to the DCHM have been proposed in the context of Little-Higgs theories [44–46].

In sections 3 and 4 we describe in detail the structure of the top partners in the DCHM,

and derive analytic explicit formulas that show quantitatively the correlation with the Higgs

mass. Section 3 is devoted to the study of the 3-site DCHM, which provides a genuinely

complete theory of composite Higgs. In this model, two layers of fermionic resonances are

introduced and the Higgs potential is completely finite. In section 4 we consider instead a

simpler but less complete model, the two-site DCHM. In this case one has a single layer of

resonances and quite a small number (3, after fixing the top mass) of parameter describing

the top partners. However the potential is not completely calculable, being affected by

a logarithmic divergence at one loop [14]. Nevertheless it turns out that the divergence

corresponds to a unique operator in the potential and therefore it can be canceled by

renormalizing only one parameter which we can chose to be the Higgs VEV v. Thus, the

Higgs mass is calculable also in the DCHM2, this model can therefore be considered as the

“simplest” composite Higgs model and it can be used to study the phenomenology of the

top partners in correlation with the Higgs mass.

The analytic results are further supported by scatter plots, in which we scan all the

available parameter space of the model. The results are quite remarkable: in the plane of

the masses of the top partners the points with light enough Higgs boson fall very sharply in

the region of light partners. Notice that the actual values of the partner’s mass is not fixed

by our argument, it still depends on the overall mass scale of the strong sector. However

this scale can only be raised at the price of fine-tuning the parameter ξ ≃ (v/fπ)
2 (as

defined in ref. [13]) to very small values. Reasonable values of ξ, below which the entire

scenario starts becoming unplausible, are ξ = 0.2 or ξ = 0.1. For ξ = 0.2 we find that

the partners are always below 1TeV while for ξ = 0.1 the absolute maximum is around
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1.5TeV. We therefore expect that the 14-TeV LHC will have enough sensitivity to explore

the parameter space of the model completely.

Non-trivial constraints can however already be obtained by the presently available

exclusions from the 7-TeV data, as we will discuss in section 5. The main effect comes from

the exclusion of the 5/3-charged partner decaying to tW+. No dedicated LHC search is

available for this particle, however we find that it is possible to apply the bound of 611GeV

coming from the CMS search of bottom-like heavy quarks in same-sign dileptons [47]. The

bounds on the other partners are considerably reduced by the branching fractions to the

individual decay channels assumed in the searches. We therefore expect that a significant

improvement of the bounds could be obtained within some explicit model by combining

the different channels. The 2-site DCHM is definitely the best candidate, one might easily

perform a complete scan of its 3 free parameters. We have already implemented the 2-site

DCHM (and also of the 3-site one) in MadGraph 5 [48] for the required simulations.

Finally, in section 6 we present our conclusion and an outlook of the possible impli-

cation of our results. In particular we discuss how our analysis could be adapted to more

general scenarios of composite Higgs and we suggest some directions for future work.

2 Light Higgs wants light partners

If the Higgs is a pNGB its potential, and in particular its mass mH , can only be gener-

ated through the breaking of the Goldstone symmetry. One unavoidable, sizable source

of Goldstone symmetry breaking is the top quark Yukawa coupling yt. Thus it is very

reasonable to expect a tight relation among the Higgs mass and the fermionic sector of

the theory which is responsible for the generation of yt. This is particularly true in the

canonical scenario of composite Higgs, summarized in the Introduction, where the only

sizable contribution to the Higgs potential comes from the top sector. In more general

cases there might be additional terms, coming for instance from extra sources of symmetry

breaking not associated with the SM fermions and gauge fields [49]. Barring fine-tuning,

the latter contributions can however at most enhance mH , the ones from the top therefore

provide a robust lower bound on the Higgs mass. If the Higgs has to be light, as it seems to

be preferred by the present data, the top sector contribution must therefore be kept small

enough by some mechanism. In the minimal scenario, as we will describe below, this is

achieved by making anomalously light (and thus more easily detectable) some of the exotic

states in the top sector.

In order to understand this mechanism we obviously need to specify in some detail

the structure of the theory which controls the generation of mH and yt. As anticipated

in the Introduction, the paradigm adopted in the minimal model is the one of partial

compositeness, in which the elementary left- and right-handed top fields are mixed with

heavy vector-like colored particles, the so-called top partners. After diagonalization the

physical top becomes an admixture of elementary and composite states and interacts with

the strong sector, and in particular with the Higgs, through its composite component. The

Yukawa coupling gets therefore generated and it is proportional to the sine of the mixing
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angles ϕL,R. The relevant Lagrangian, introduced in ref. [12], has the structure

Lmass = −
(
yLfπ tLTR + yRfπ tRT̃L + h.c.

)
−m∗

TTT −m∗

T̃
T̃ T̃ ,

LYuk = Y∗hT T̃ + h.c. , (2.1)

where h is the Higgs field (before EWSB, i.e. h = v + ρ) and we have employed the decay

constant fπ of the Goldstone boson Higgs for the normalization of the elementary-composite

mixings. After diagonalization, neglecting EWSB, the top Yukawa reads

yt = Y∗ sinϕL sinϕR , with





sinϕL =
yLfπ
mT

sinϕR =
yRfπ
m

T̃

, (2.2)

where m
T,T̃

=
√
(m∗

T,T̃
)2 + (yL,Rfπ)2 are the physical masses of the top partners.2

The essential point of making the partners light is that this allows to decrease the

elementary-composite mixings yL,R while keeping yt fixed to the experimental value. Let

us consider the case of comparable left- and right-handed mixings, yL ≃ yR ≡ y. This con-

dition, as explained in the following (see also [14]), is enforced in the minimal model by the

requirement of a realistic EWSB. We can also assume that m∗
T and m∗

T̃
, while potentially

small, are still larger than yLfπ and yRfπ, the critical value after which eq. (2.2) satu-

rates and there is no advantage in further decreasing the masses. Under these conditions

eq. (2.2) gives

y2 =
yt
Y∗

mTmT̃

f2π
, (2.3)

which shows how y2 decreases linearly with the mass of each partner.

The mixings ensure the communication among the strong sector, which is invariant

under the Goldstone symmetry, and the elementary sector which is not. Therefore they

break the symmetry and allow for the generation of the Higgs mass. It is thus intuitive

that a reduction of their value, as implied by eq. (2.3) for light top partners, will lead to

a decrease of mH . To be quantitative, let us anticipate the result of the following section

(see also [11] and [14]): mH can be estimated as

mH ≃
√

3

2

y2v

π
, (2.4)

where v ≃ 246GeV is the Higgs VEV. This gives, making use of eq. (2.3)

mH ≃ 4
√
3mt

mTmT̃

4πY∗f2π
. (2.5)

The above equation already shows the correlation among the Higgs and the top partner

mass. Of course we still need to justify eq. (2.4) and for this we need the more detailed

analysis of the following section.

2Actually, the physical masses receive extra tiny corrections due to EWSB.
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There is however one important aspect which is not captured by this general discussion.

We see from eqs. (2.3) and (2.5) that making both mT and m
T̃

small at the same time

produces a quadratic decrease of y2 and thus of mH . However this behavior is never found

in the explicit models we will investigate in the following sections, the effect is always

linear. The basic reason is that, due to the Goldstone nature of the Higgs, the coupling

Y∗ defined in eq. (2.1) depends itself on the partners mass. Indeed all the interactions of a

pNGB Higgs are controlled by the dimensional coupling fπ and no independent Yukawa-like

coupling Y∗ can emerge. By dimensional analysis on has Y∗ ≃ m∗

T,T̃
/fπ or more precisely,

as we will also verify below, Y∗ ≃ max(m∗
T ,m

∗

T̃
)/fπ. Thus if both masses become small one

power of m
T,T̃

in eqs. (2.3) and (2.5) is compensated by Y∗ and the effect remains linear.

2.1 General analysis

For a better understanding we need a slightly more careful description of our theory. In par-

ticular we must take into account the Goldstone boson nature of the Higgs which is instead

hidden in the approach of ref. [12] adopted in the previous discussion. Following ref.s [10, 13]

(see also [15]) we describe the Higgs as a pNGB associated with the SO(5) → SO(4) spon-

taneous breaking which takes place in the strong sector. We parametrize (see [14] for the

conventions) the Goldstone boson matrix as

U = e
i
√

2
fπ

ΠâT
â

, (2.6)

where T â are the broken generators and Πâ the 4 real Higgs components. The Goldstone

matrix transforms under g ∈ SO(5) as [50, 51]

U → g · U · ht (Π; g) , (2.7)

where h is a non-linear representation of SO(5) which however only lives in SO(4). With

our choice of the generators h is block-diagonal

h =

(
h4 0

0 1

)
, (2.8)

with h4 ∈ SO(4)

The SM fermions, and in particular the third family quarks qL = (tL bL) and tR, are

introduced as elementary fields and they are coupled linearly to the strong sector. In the

UV, where SO(5) is restored, we can imagine that the elementary-composite interactions

take the form

L = yL (qL)
α∆L

αI (OR)
I + yR

(
tR
)
∆R

I (OL)
I + h.c. , (2.9)

where the chiral fermionic operators OL,R transform in a linear representation of SO(5).3

In particular in the minimal model we take both OL and OR in the fundamental, 5. The

3We have defined the mixings yL,R as dimensionless couplings, for shortness we have reabsorbed in OL,R

the powers of the UV scale needed to restore the correct energy dimensions.
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tensors ∆L,R are uniquely fixed by the need of respecting the SM SU(2) × U(1)Y group

embedded in SO(5),4

∆L
αI =

1√
2

(
0 0 1 −i 0

1 i 0 0 0

)
,

∆R
I = −i (0 0 0 0 1) . (2.10)

Let us also define, for future use, the embedding in the 5 of qL and of tR

(
q5L
)I

=
(
∆L∗

)αI
(qL)α =

1√
2

(
bL −ibL tL itL 0

)
,

(
t5R
)I

=
(
∆R∗

)I
tR = i

(
0 0 0 0 tR

)
. (2.11)

The elementary-composite couplings obviously break the Goldstone symmetry SO(5).

However provided the breaking is small we can still obtain valuable information from the

SO(5) invariance by the method of spurions. The point is that the theory, including the

UV mixings in eq. (2.9), is perfectly invariant if we transform not just the strong sector

fields and operators but also the tensors ∆L and ∆R. This invariance survives in the

IR description, the effective operators must therefore respect SO(5) if we treat ∆L and

∆R as spurions which transform, formally, in the 5 of SO(5). To be precise there are

further symmetries one should take into account. These are the “elementary” U(2)0L and

U(1)0R, under which the strong sector is invariant and only the elementary fermions and

the spurions transform. Certain linear combinations of the elementary group generators

with the SO(5) (and U(1)X , see footnote 4) ones correspond to the SM group, these are of

course preserved by the mixings.

The Higgs potential. Let us first discuss the implications of the spurionic analysis on

the structure of the Higgs potential. We must classify the non-derivative invariant operators

involving the Higgs and the spurions. Notice that the invariance under U(2)0L × U(1)0R
requires that the spurions only appear in the following two combinations

ΓL
IJ =

(
∆L∗

)α
I

(
∆L
)
αJ

,

ΓR
IJ =

(
∆R∗

)

I

(
∆R
)
J
. (2.12)

The Higgs enters instead through the Goldstone matrix U . Notice that to build SO(5)

invariants we must contract the indices of ΓL,R with the first index of the matrix U , and

not with the second one. Indeed if we rewrite more explicitly equation (2.7) as

UIJ̄ → g I′
I UI′J̄ ′h J̄ ′

J̄ , (2.13)

we see that while the first index transforms with g like the spurion indices do, the second

one transforms differently, with h. Remember that h is block-diagonal (see eq. (2.8)), thus

4Actually, one extra U(1)X global factor is needed. In order to reproduce the correct SM hypercharges

one must indeed define Y = X + T 3
R and assign 2/3 U(1)X charge to both OL and OR.

– 7 –
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to respect the symmetry we just need to form SO(4) (rather than SO(5)) invariants with

the “barred” indices, in practice we can split them in fourplet and singlet components

as Ī = {i, 5}.
With these tools it is straightforward to classify all the possible invariants at a given

order in the spurions. At the quadratic order, up to irrelevant additive constants, only two

independent operators exist

vL(h) =
(
U t · ΓL · U

)
55

=
1

2
sin2 h/fπ ,

vR(h) =
(
U t · ΓR · U

)
55

= cos2 h/fπ = 1− sin2 h/fπ , (2.14)

where we plugged in the explicit value of the spurions in eq. (2.10) and of the Goldstone

matrix in eq. (2.6) taking the Higgs along its VEV 〈Πâ〉 = hδâ4. At this order then the

potential can only be formed by two operators, with unknown coefficients which would be-

come calculable only within an explicit model. We can nevertheless estimate their expected

size. Following [13, 52] we obtain

V (2)(h) =
NcM

4
∗

16π2g2∗

[
cLy

2
Lv

L(h) + cRy
2
Rv

R(h)
]

=
NcM

4
∗

16π2g2∗

[
1

2
cLy

2
L − cRy

2
R

]
sin2(h/fπ) + const. , (2.15)

where cL,R are order one parameters and {M∗, g∗} are the typical masses and couplings of

the strong sector, g∗ is defined as g∗ = M∗/fπ. Remember that what we are discussing is

the fermionic contribution to the potential, generated by colored fermion loops, this is the

origin of the Nc = 3 QCD color factor in eq. (2.15). Also, this implies that the scale M∗ is

the one of the fermionic resonances, which could be a priori different from the mass of the

vectors mρ.
5

The spurionic analysis has strongly constrained the Higgs potential at the quadratic

order. The two independent operators have indeed the same functional dependence on the

Higgs and the potential is entirely proportional to sin2(h/fπ). But then the potential at this

order cannot lead to a realistic EWSB, the minimum is either at h = 0 or at h = πfπ/2.

We would instead need to adjust the minimum in order to have ξ = sin2(v/fπ) < 1,

and to achieve this additional contributions are required. In the minimal scenario these

are provided by higher order terms in the spurion expansion. The classification of the

operators is straightforwardly extended to the quartic order, one finds a second allowed

functional dependence6

V (4)(h) =
NcM

4
∗

16π2g4∗

[
c
(4)
1 y4 sin2(h/fπ) + c

(4)
2 y4 sin2(h/fπ) cos

2(h/fπ)
]
, (2.16)

5The mass M∗ is the scale at which the potential is saturated and generically it is not associated to

the masses mT,T̃ of the anomalously light partner. Due to additional structures, and only in the case in

which both T and T̃ are anomalously light, one might obtain M∗ ∼ mT,T̃ in some explicit model because

the light degrees of freedom reconstruct the structure of a 2-site DCHM in which the quadratic divergence

is canceled.
6Actually, also a term proportional to cosh/fπ could appear. This is however forbidden by the parity

in SO(4), PLR, for this reason it is not present in the minimal models.
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where y4 collectively denotes the quartic terms y4L, y
4
R or y2Ly

2
R and c

(4)
1,2 are coefficients of

order unity. Notice that, differently from the quadratic one, the quartic potential does not

depend strongly on the fermionic scale M∗. Since M∗ = g∗fπ the prefactor of V (4) can

indeed be rewritten as f4π .

A priori, V (4) should give a negligible contribution to the potential because it is sup-

pressed with respect to V (2) by a factor (yL,R/g∗)
2, which is small in the minimal scenario.

To achieve realistic EWSB however we need to tune the coefficients of the sin2(h/fπ) and

sin2(h/fπ) cos
2(h/fπ) terms in such a way as to cancel the Higgs mass term obtaining

v/fπ < 1. In formulas, we have

V = α sin2(h/fπ) − β sin2(h/fπ) cos
2(h/fπ) , ⇒ sin2(v/fπ) =

β − α

2β
≪ 1 . (2.17)

But, to make α ≃ β, we need to cancel V (2), which only contributes to α and not to β,

and to make it comparable with V (4). This requires yL ≃ yR ≡ y or, more precisely

1

2
cLy

2
L = cRy

2
R

(
1 +O(y2/g2∗)

)
. (2.18)

On top of this preliminary cancellation the tuning of the Higgs VEV in eq. (2.17) must be

carried on. The total amount of fine-tuning is of order

(
y

g∗

)2

sin2(v/fπ) =

(
y

g∗

)2

ξ , (2.19)

and it is worse than the naive estimate by the factor (y/g∗)
2.7,8

The final outcome of this discussion is that achieving realistic EWSB requires that

the quadratic potential is artificially reduced and made comparable with V (4). Therefore

we can simply forget about V (2) in eq. (2.15) and use instead eq. (2.16) as an estimate of

the total Higgs potential. In particular we can estimate the physical Higgs mass, which is

given by

m2
H =

8β

f2π
sin2(v/fπ) cos

2(v/fπ) ≃ 2Ncy
4

16π2
f2π sin

2(2v/fπ) , (2.20)

where we used g∗ = M∗/fπ. Expanding for v/fπ ≪ 1 we recover the result anticipated in

eq. (2.4).

We would have reached very similar conclusions if we had considered fermionic opera-

tors in the 4 of SO(5) rather than in the 5. As shown in the original paper on the minimal

composite Higgs [10], also in that case the potential is the sum of two trigonometric func-

tions with coefficients α and β that scale respectively as α ∼ y2 and β ∼ y4. The condition

to obtain a realistic EWSB is again α ≃ β, i.e. eq. (2.18), therefore the Higgs mass-term

7The theory would then be more natural if y ∼ g∗. For small values of g∗, however, all the fermionic

resonaces become lighter and this could give rise to enhanced corrections to the electroweak parameters in

contrast with the EWPT. It could however be interesting to study this case explicitly in a concrete model.
8We remind the reader that the results of the presence section have general validity, in particular they

apply to the 5d holographic models studied at length in the literature. In that context the need of an

enhanced tuning in order to obtain realistic EWSB has been already pointed out [34, 35] by explicitly

computing the logarithmic derivative.
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scales like y4 as in eq. (2.20). Since the scaling is the same, all the conclusions drawn

in this section, in particular the main result in eq. (2.25), will hold in exactly the same

way. Moreover it is possible to show that the same structure of the potential emerges in

the case of the 10 of SO(5) so that our results will apply also to the latter case. Possible

ways to evade the light Higgs-light partner correlation of eq. (2.25) will be discussed in

the Conclusions.

The top mass. For a quantitative estimate of mH , which will show the correlation with

the top partners mass, we need an estimate of y. The mixings yL,R control the generation of

the top quark Yukawa, which of course must be fixed to the experimental value. The size of

y however is not uniquely fixed because yt also depends on the masses of the top partners

with which the elementary tL and tR fields mix. In particular, as explained previously

(see eq. (2.2)), the top Yukawa would get enhanced in the presence of anomalously light

partners. To compensate for this, while keeping yt fixed, one has to decrease y, thus

lowering the Higgs mass.

We can study this effect in detail by writing down the low energy effective Lagrangian

for the top partners. Since the operators OL,R are in the 5 of SO(5), which decomposes as

5 = 4⊕ 1 under SO(4), the top partners which appear in the low energy theory will be in

the fourplet and in the singlet.9 We describe these states as CCWZ fields, which transform

non-linearly under SO(5) [50, 51]. In particular the fourplet transforms as

Qi → (h4)
j

i Qj , (2.21)

with i = 1, . . . 4 and h4 as in eq. (2.8). The singlet T̃ is obviously invariant. For our

discussion we will not need to write down the complete Lagrangian, but only the mass

terms and mixings. We classify the operators with the spurion method previously outlined

and we find, at the leading order

L = −m∗
TQQ−m∗

T̃
T̃ T̃

−yLfπ
(
q̄
(5)
L

)I (
aLUIiQ

i
R + bLUI5T̃R

)
+ h.c.

−yRfπ
(
t̄
(5)
R

)I (
aRUIiQ

i
L + bRUI5T̃L

)
+ h.c. , (2.22)

where the embeddings q5L and t5R are defined in eq. (2.11).

The one in eq. (2.22) is the most general fermion mass Lagrangian allowed by the

SO(5) Goldstone symmetry, it is not difficult to see that it leads to a top mass

mt ≃
|b∗LbRm∗

T − a∗LaRm
∗

T̃
|

2
√
2|aL||bR|

sinϕL sinϕR sin (2v/fπ) , with





sinϕL =
|aL|yLfπ
mT

sinϕR =
|bR|yRfπ
m

T̃

,

(2.23)

9Of course many more states could exist, associated to other UV operators. The presence of the fourplet

and the singlet seems however unavoidable.
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where m2
T = (m∗

T )
2 + |aL|2y2Lf2π and m2

T̃
= (m∗

T̃
)2 + |bR|2y2Rf2π are the physical masses of

the partners before EWSB. Making contact with eq. (2.2) we find, as anticipated, that the

Yukawa is controlled by the masses: Y∗ ≃ |b∗LbRm∗
T − a∗LaRm

∗

T̃
|/fπ.

Barring fine-tuning and assuming m∗

T,T̃
≃ m

T,T̃
we can approximate

mt ≃
max(m∗

T ,m
∗

T̃
)

2
√
2

sinϕL sinϕR sin (2v/fπ) =
1

2
√
2

yLyRf
2
π

min(mT ,mT̃
)
sin (2v/fπ) . (2.24)

Light partners for a light Higgs. The equation above, combined with the formula (2.20)

for mH finally shows the correlation among the Higgs and the top partners mass:

mH ≃
√
Nc

π

min(mT ,mT̃
)

fπ
mt ≃ 130GeV

min(mT ,mT̃
)

1.4fπ
. (2.25)

For fπ ≃ 500GeV we see that satisfying the LHC bound onmH of around 130GeV requires

the presence of at least one state of mass below 700GeV.10 For fπ ≃ 750GeV, which already

corresponds to a significant level of fine-tuning, the partners can reach 1TeV. This estimate

suggests that the requirement of a realistic Higgs mass forces the theory to deliver relatively

light top partners, definitely within the reach of the 14TeV LHC and possibly close to the

present bounds from the run at 7TeV. We will support this claim in the following sections

where we will analyze the top partners spectrum within two explicit models.

The existence of an approximate linear correlation among mH and the mass of the

lightest top partner mlight = min(mT ,mT̃
) was already noticed in ref. [11] in the case

of holographic models, however the physical interpretation of the result was not properly

understood. To make contact with the argument presented in [11], we notice that from a

low-energy perspective the Higgs mass-term arises from a quadratically divergent loop of

elementary fermion fields, mixed with strength y = yL,R to the strong sector as in eq. (2.9).

One can estimate

m2
H ∼ Nc

16π2
ξ
y4

g2∗
Λ2 ,

where Λ denotes the cutoff scale of the loop integral. To account for the observed linear

relation among mH and mlight, ref. [11] claims that Λ ≃ mlight, i.e. that the propagation of

the lightest top partner in the loop is already sufficient to cancel the quadratic divergence.

If the pre-factor (y2/g∗)
2 can be estimated with the naive partial-compositeness relation

yt = y2/g∗, irregardless of the presence of the light partner, by assuming Λ ≃ mlight one

recovers eq. (2.25). However this argument is incorrect for two reasons. First of all the

presence of anomalously light partners modifies the naive relation among y and yt. This

is obvious because the elementary-composite mixing angle, and thus yt, must be enhanced

if the composite particle becomes light. One finds indeed yt = y2f/mlight as shown in

eq. (2.24). Moreover there is no reason why the cutoff scale Λ should be set by mlight.

Indeed there is no known mechanism through which a single multiplet of SO(4) (the four-

plet Q or the singlet T̃ ) could cancel the quadratic divergence of mH , and no hint that any

10Given that the Higgs is composite it has modified coupling and therefore we cannot apply directly the

SM exclusions. The upper bound of 130GeV takes into account the effects of compositeness as we will

discuss in section 3.3.
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such a mechanism should be at work in the composite Higgs framework. The cutoff scale

Λ is always given by the strong sector scale m∗, irregardless of the presence of accidentally

light partners with mass mlight ≪ m∗.
11 What lowers mH when the partners are light

is not a lower cutoff but, more simply, a smaller elementary/composite coupling. Indeed,

by inverting eq. (2.24), y2 = ytmlight/f . By setting Λ = m∗ = g∗fπ one obtains again

eq. (2.25). In conclusion, while the final formula is the same of ref. [11], the derivation of

the present section shows that it has a rather different physical origin.

Top mass in explicit models. Before concluding this section we notice that the La-

grangian (2.22) is significantly more general than the one we will actually encounter in

the specific models. First of all, the concrete models are more restrictive because they

enjoy one more symmetry which has not yet been taken into account in the discussion.

This is ordinary parity invariance of the strong sector, which we always assume for sim-

plicity in our explicit constructions. Parity acts as OL(~x) ↔ O(P )
R (−~x) on the operators in

eq. (2.9), and obviously it is broken by the interaction with the SM particles.12 However

it can be formally restored by the method of spurions, we have to assign transformations

q5L(~x) ↔ t5R
(P )

(−~x) to the embeddings, plus of course yL ↔ yR. One implication of the

parity symmetry is that the two coefficients of the quadratic potential (2.15) have to be

equal, cL = cR, and thus the relation among the yL and yR mixings (2.18) becomes sim-

ply yL ≃
√
2yR. For what concerns instead the partners Lagrangian (2.22) parity implies

aL = aR and bL = bR.

Moreover, the additional symmetry structures which underly the formulation of our

models require the relations aL = aR and bL = bR. The reason will become more clear in

the following section, the basic point is that in our construction the fourplet and singlet

form a fiveplet under an additional SO(5) group which is respected by the mixings.

To make contact with our models, let us then choose aL = aR = bL = bR = 1, the top

mass becomes

mt ≃
|m∗

T −m∗

T̃
|

2
√
2

sinϕL sinϕR sin (2v/fπ) , with





sinϕL =
yLfπ
mT

sinϕR =
yRfπ
m

T̃

, (2.26)

and it is proportional to the mass-difference m∗
T −m∗

T̃
. Indeed for aL = aR = bL = bR the

mixings are proportional to the five-plet Ψ defined as

ΨI = UIiQ
i + UI5T̃ = UIĪ

(
Q

T̃

)

Ī

, (2.27)

which is related to the original fields by the orthogonal matrix U . It becomes therefore

convenient to perform a field redefinition and to re-express the Lagrangian in terms of Ψ,

11In the extra-dimensional models m∗ is represented by the compactification length, in the deconstructed

ones it is provided by the fermonic masses at the internal sites. We have checked explicitly that Λ ≃ m∗ in

the deconstructed models presented in the following section.
12The superscript “(P )” denotes the ordinary action of parity on the Dirac spinors, for instance in the

Weyl basis ψ(P ) = γ0ψ
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Figure 1. Schematic structure of the three-site DCHM.

in this way the mixings become trivial and independent of the Higgs field and the only

operators which contain the Higgs boson and no derivatives originate from the rotation

of the mass terms. Therefore these operators are proportional to the mass difference

m∗
T −m∗

T̃
because for m∗

T = m∗

T̃
also the mass Lagrangian becomes SO(5) invariant and

the dependence on the Higgs drops. Explicitly, we have

−ΨU

(
m∗

T 0

0 m∗

T̃

)
U tΨ = −m∗

TTT −m∗

T̃
T̃ T̃ −

m∗
T −m∗

T̃

2
√
2

sin(2h/fπ)T T̃ + . . . (2.28)

from which eq. (2.26) is immediately rederived.

3 Light partners in the DCHM3

The first explicit model we will consider for our analysis is the 3-site Discrete Composite

Higgs Model (DCHM3) [14]. This model provides a simple but complete four-dimensional

realization of the composite Higgs paradigm. As we already mentioned in the Introduction,

an important, distinctive property of the DCHM3 model is the finiteness and calculability

of the Higgs potential. This feature, together with the simplicity of the DCHM approach,

will enable us to derive explicit formulas displaying the relation between the Higgs mass

and the spectrum of the top partners.

Another important aspect is the fact that the parametrization which we naturally

get in the Discrete Composite Higgs framework can be directly mapped onto the general

structure of partial compositeness. As we already showed in the previous section partial

compositeness plays a crucial role in understanding the relation between the properties of

the Higgs boson and the spectum of the fermionic resonances. We will confirm this in the

explicit analysis we will present in this section.

3.1 Structure of the model

The basic structure of the DCHM3 model consists of two replicas of the non-linear σ-model

SO(5)L × SO(5)R/SO(5)V . The symmetry structure can be directly connected to a three-

site pattern, as schematically shown in figure 1, where each σ-model, whose degrees of

freedom are denoted by U1,2, is represented by a link connecting two sites. In this way

we can relate each site to a corresponding subgroup of the global invariance of the model.

In order to accommodate the hypercharges of the fermionic sector, an extra U(1)X global
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factor must be introduced. For simplicity, we do not associate this Abelian factor to any

of the sites and let it act on all the fermions of the model.13

The elementary gauge fields, as well as the vector resonances coming from the com-

posite sector, are introduced by gauging suitable subgroups of the total global invariance

(SO(5))4 ×U(1)X . The elementary fields correspond to the gauging of an SU(2)L ×U(1)Y
subgroup of SO(5)1L × U(1)X , with the identification of the hypercharge Y = T 3

R + X.

Two levels of composite resonances are introduced by gauging at the middle and last

site. At the middle site we gauge the diagonal subgroup SO(5)D of the global invariance

SO(5)1R × SO(5)2L. At the last site we gauge only an SO(4) subgroup of the SO(5)2R global

invariance. The model encodes, through the explicit breaking induced by the gauging at

the last site, the spontaneous SO(5) → SO(4) global symmetry breaking pattern of the

strong sector.

A useful form of the Lagrangian, which is suitable for the computation of the spectrum

and of the Higgs potential, is obtained by adopting the “holographic” gauge.14 In this

gauge, the only dependence on the Goldstone degrees of freedom appears at the first site,

where the elementary fields live, while the Lagrangian of the composite sector assumes a

particularly simple form. As explained in [14], the holographic gauge can be reached by

gauge transformations at the middle and last site which set U2 equal to the identity and

remove the unphysical degrees of freedom from U1. After the transformation U1 becomes

the Goldstone matrix U in eq. (2.6).

The fermionic sector of the model contains the elementary fields corresponding to the

SM chiral fermions and two sets of composite resonances. For simplicity we will only focus

on the third quark generation and in particular on the fields related to the top quark, and we

will neglect the light generations, the right-handed bottom field bR and the corresponding

composite partners. This approximation is justified by the fact that the contribution of

the latter to the Higgs effective potential is parametrically suppressed by the small bottom

mass with respect to the one coming from the top tower.

In analogy with the gauge sector, the composite fermionic resonances are introduced at

the middle and the last site. At the middle site we add one multiplet ψ, which transforms

in the fundamental representation of the vector group SO(5)D and has U(1)X charge 2/3.

Another multiplet in the fundamental representation of SO(5)2R is introduced at the last

site ψ̃ ∈ 52/3. Given that, at the last site, the SO(5)2R invariance is broken, it is useful to

introduce also a notation for the decomposition of the ψ̃ multiplet in representations of the

unbroken SO(4) ≃ SU(2)L × SU(2)R subgroup. The fundamental representation of SO(5)

decomposes as 5 = (2,2)⊕ (1,1), thus

ψ̃ =

(
Q̃

T̃

)
, (3.1)

where Q̃ ∈ (2,2), while T̃ is a singlet. The Lagrangian for the composite states ψ and ψ̃

13For a more detailed discussion of this point see footnote 9 of ref. [14].
14This terminology is inspired from the extra-dimensional holographic technique [53].
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in the holographic gauge is given by

Lf
comp = i ψ /Dψ −mψψ

+ i ψ̃ /Dψ̃ − m̃QQ̃Q̃− m̃TT̃ T̃

−∆ψψ̃ + h.c. . (3.2)

In the above expression we included a breaking of the SO(5)2R group through the mass

terms for Q̃ and T̃ , which preserve only the SO(4) subgroup. Notice that the mixing on

the last line of eq. (3.2) comes from a term of the form ∆ψ U2 ψ̃ + h.c., which appears in

the original non-gauge-fixed Lagrangian.

The elementary fermions are introduced at the first site. They are given by the SM

chiral states qL and tR. The terms in the Lagrangian which involve the elementary fermions

are given by15

Lf
elem = i qL /DqL + i tR /DtR − yLfq

5

LUψR − yR ft
5

RUψL + h.c. , (3.3)

where we used the embeddings of the elementary states in the fundamental representation

of SO(5) given in eq. (2.11). Following the notation of [14], we write the elementary-

composite mixings in terms of the Goldstone decay constant f of the two fundamental

SO(5)L×SO(5)R non-linear σ-models. This quantity is related to the Higgs decay constant

by fπ = f/
√
2.

3.2 The Higgs potential

In this section we will analyze the structure of the Higgs potential deriving an approximate

expression for the Higgs mass in terms of the masses of the fermionic resonances.

The most relevant contribution to the Higgs potential comes from the fermionic states.

The corrections due to the gauge fields are typically small and we will neglect them alto-

gether in our analysis. The only states which are coupled to the Higgs in our set-up are

the top and the resonances of charge 2/3. The contribution of these states to the potential

has the form16

V (h) = −2Nc

8π2

∫
dp p3 log

(
1− C1(p

2) sin2(h/fπ) + C2(p
2) sin2(h/fπ) cos

2(h/fπ)

D(p2)

)
.

(3.4)

The denominator of the expression in the logarithm is given by

D(p2) = 2p2
∏

I=T,T̃ ,T2/3

(
p2 +m2

I−

)(
p2 +m2

I+

)
, (3.5)

where mI± denote the masses of the charge 2/3 resonances before EWSB. In particular T

and T2/3 denote the two states in the fourplet, namely T is the state which forms an SU(2)L

15In the Lagrangian Lf
elem we use a different normalization of the left mixing yL with respect to the choice

in the corresponding eq. (54) of ref. [14].
16The computation of the Higgs potential can be performed by using the standard textbook formulae

for the Coleman-Weinberg potential. Equivalently one can apply the holographic technique as explained in

ref. [53].
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doublet with the charge −1/3 field (B) and T2/3 is the state which appear in the doublet

with the exotic state of charge 5/3 (X5/3). The T̃ state denotes instead the singlet. The ±
sign refers to the two levels of composite resonances which are present in the model. Notice

that all these masses include the shift due to the mixings with the elementary states. The

initial factor p2 which appears in eq. (3.5) is due to the presence of the top which is massless

before EWSB. The coefficients appearing in eq. (3.5) in the numerator of the expression

inside the logarithm are given by




C1(p

2) =
(
y2L − 2y2R

)
f2F1(p

2)F2(p
2)− (m̃Q − m̃T )∆

2y2Ly
2
Rf

4
(
p2 +∆2 + m̃2

Q

)
F1(p

2)

C2(p
2) = −(m̃Q − m̃T )∆

2y2Ly
2
Rf

4F2(p
2)

,

(3.6)

where the functions F1,2 are defined as




F1(p

2) = p2
(
(m+ m̃T )(p

2 +∆2 −mm̃Q) + (m+ m̃Q)(p
2 +∆2 −mm̃T )

)

F2(p
2) = (m̃Q − m̃T )∆

2
(
p2 +m2

T2/3−

)(
p2 +m2

T2/3+

) . (3.7)

The potential can be approximated by expanding at leading order the logarithm in

eq. (3.4). Although this approximation is formally valid only for small values of h/fπ,
17 it

turns out that it is numerically very accurate in a wide range of the parameter space and,

in particular, it is valid for all the points we will consider in our numerical analysis.

After the expansion and the integration, the potential takes the general form already

considered in eq. (2.17)

V (h) ≃ α sin2(h/fπ)− β sin2(h/fπ) cos
2(h/fπ) . (3.8)

Using an expansion in the elementary mixings, the α term is dominated by the leading

O(y2) contributions, proportional to y2L − 2y2R. As discussed in section 2.1, in order to

obtain a realistic value for v/fπ the leading order contributions must be cancelled, such

that they can be tuned against the subleading terms. This leads to the condition in

eq. (2.18) with cL = cR = 1, namely

yL ≃
√
2yR . (3.9)

This relation is very well verified numerically for realistic points in the parameter space,

as shown in [14].18

For realistic configurations, due to the cancellation, the leading term of order y2L,R
becomes of O(y4L,R). This means that, if we are interested in an expansion of the potential

at quartic order in the elementary-composite mixings, we only need to take the linear term

17This is of course not true in the limit p2 → 0, in which the argument of the logarithm diverges. However

in this case the factor p3 in front of the logarithm compensate for the divergence and the approximate

integrand vanishes for p→ 0. The error introduced by this approximation is thus small.
18The condition in eq. (3.9) differs from the one reported in eq. (57) of [14] by a factor

√
2. This is due

to a different choice of the normalization of the yL mixing (see eq. (3.3) and footnote 15).
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in the expansion of the logarithm in eq. (3.4). The value of the coefficient β can be easily

found analytically

β =
Nc

8π2
(m̃Q − m̃T )

2∆4 y2L y
2
R f

4
∑

I=T−,T+,

T̃−,T̃+

log(mI/f)∏
J 6=I(m

2
I −m2

J)
. (3.10)

In the limit in which the second level of resonances is much heavier than the first one, we

can use an expansion in the ratio of the heavy and light states masses and get a simple

approximate formula for β:

β ≃ Nc

8π2
(m̃Q − m̃T )

2∆4 y2L y
2
R f

4
log
(
mT−/mT̃−

)
(
m2

T−
−m2

T̃−

)
m2

T+
m2

T̃+

. (3.11)

As can be seen form this formula, when one of the states T− or T̃− is much lighter than the

other, the contribution to β from the first level of resonances is enhanced by the logarithmic

factor log(mT−/mT̃−
). In this case the light states contribution completely dominates and

the corrections due to the second layer of resonances become negligible. On the other

hand, if the two light states have comparable masses, the second level of resonances, in

certain regions of the parameter space, can be relatively close in mass to the first one, thus

giving sizable corrections to the Higgs mass. The sign of these corrections is fixed, and

they always imply a decrease of the Higgs mass. The size of the corrections in the relevant

regions of the parameter space is typically below 50%.

The expression of the Higgs mass in terms of the β coefficient has already been given

in eq. (2.20) and reads

m2
H =

2β

f2π
sin2(2v/fπ) ≃

Nc

π2
(m̃Q − m̃T )

2∆4 y2L y
2
R f

3
π

log
(
mT−/mT̃−

)
(
m2

T−
−m2

T̃−

)
m2

T+
m2

T̃+

sin2(2v/fπ) .

(3.12)

3.3 The Higgs mass and the top partners

As shown in the general analysis of section 2, it is useful to compare the Higgs mass with

the top mass, with the aim of obtaining a relation between mh and the masses of the

top partners.

By performing an expansion in sin2(v/fπ), we can obtain an approximate expression

for the top mass. The result can be recast in the general form of eq. (2.26),

mt ≃
|m̃Q − m̃T |

2
√
2

sinϕL sinϕR sin

(
2v

fπ

)
. (3.13)

where the mixing angles ϕL,R are now replaced by some “effective” compositeness angles

sinϕL ≡ ∆√
∆2 + m̃2

Q

yLf√
(∆2−mm̃Q)2

∆2+m̃2
Q

+ (yLf)2
, (3.14)

sinϕR ≡ ∆√
∆2 + m̃2

T

yRf√
(∆2−mm̃T )2

∆2+m̃2
T

+ (yRf)2
.
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Figure 2. Scatter plots of the masses of the lightest T and T̃ resonances for ξ = 0.2 (left panel)

and ξ = 0.1 (right panel) in the three-site DCHM model. The black dots denote the points for

which 115 GeV ≤ mH ≤ 130 GeV, while the gray dots have mH > 130 GeV. The scans have been

obtained by varying all the composite sector masses in the range [−8f, 8f ] and keeping the top

mass fixed at the value mt = 150 GeV. The area between the solid red lines represents the range

obtained by applying the result in eq. (3.16) for 115 GeV ≤ mH ≤ 130 GeV. The dashed blue line

corresponds to the estimate of the lower bound on mT− given in eq. (3.20).

There is an equivalent way to rewrite the approximate expression for the top mass in

eq. (3.13) in terms of the masses of the T and T̃ resonances:

mt ≃
|m̃Q − m̃T |

2
√
2

yLyRf
2∆2

mT+mT−mT̃+
m

T̃−

sin

(
2v

fπ

)
. (3.15)

By comparing this expression with the approximate formula for the Higgs mass in eq. (3.12)

we find a remarkable relation betweenmh and the masses of the lightest T and T̃ resonances:

mH

mt
≃

√
2Nc

π

mT−mT̃−

fπ

√√√√ log
(
mT−/mT̃−

)

m2
T−

−m2
T̃−

. (3.16)

As discussed in the previous section, the above expression receives the corrections due to

the presence of the second layer of resonances. These corrections are sizable only when the

second level of resonances is relatively light. In this case corrections of the order 50% to

eq. (3.16) can arise.

Let us now compare the expression in eq. (3.16) with the general result obtained in

section 2.1 (eq. (2.25)). The two equations show the same qualitative relation between the

Higgs mass and the masses of the lightest resonances T and T̃ . In the case mT = m
T̃

the two expressions exactly coincide, while, when a large hierarchy between the two light

states T and T̃ is present, they differ by a coefficient of O(1). This shows that the general

analysis of section 2.1 correctly capture the main connection between the Higgs and the

top partners masses, both at a qualitative and a quantitative level. Notice that also the

logarithmic term, which originates from the one in the Higgs mass (3.12), could have

been computed within the general approach of section 2.1. It is indeed an IR loop effect

associated to the light top partners.
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Figure 3. Scatter plots of the masses of the lightest exotic state of charge 5/3 and of the lightest

T̃ resonance for ξ = 0.2 (left panel) and ξ = 0.1 (right panel) in the three-site DCHM model.

The black dots denote the points for which 115 GeV ≤ mH ≤ 130 GeV, while the gray dots have

mH > 130 GeV. The scans have been obtained by varying all the composite sector masses in the

range [−8f, 8f ] and keeping the top mass fixed at the value mt = 150 GeV.

We checked numerically the validity of our results by a scan on the parameter space

of the model. In our numerical analysis we take the interval 115 GeV ≤ mH ≤ 130 GeV as

the range of Higgs masses compatible with the current LHC exclusion bounds. This range

has been chosen slightly larger than the current exclusion for a SM-like Higgs to take into

account the corrections due to the composite nature of the Higgs [54–56]. In our analysis

we also fix the top mass to the value mt = mMS
t (2 TeV) = 150 GeV, which corresponds to

mpole
t = 173 GeV.

The scatter plots of the masses of the T and T̃ light resonances are shown in figure 2.

One can see that eq. (3.16) describes accurately the relation between the Higgs and the

resonance masses in the regions in which one state is significantly lighter than the others.

For a realistic Higgs mass this happens only when the T̃− is much lighter than the other

states. Instead, the situation of a T much lighter than the T̃ can not happen for a light

Higgs due to the presence of a lower bound on the mT− , which will be discussed in details

in the next section. In the region of comparable T− and T̃− masses sizable deviations from

eq. (3.16) can occur. These are due to the possible presence of a relatively light second

level of resonances, as already discussed.

The numerical results clearly show that resonances with a mass of the order or below

1.5 TeV are needed in order to get a realistic Higgs mass both in the case ξ = 0.2 and

ξ = 0.1. The prediction is even sharper for the cases in which only one state, namely the

T̃−, is light. In these regions of the parameter space a light Higgs requires states with

masses around 400 GeV for the ξ = 0.2 case and around 600 GeV for ξ = 0.1.

The situation becomes even more interesting if we also consider the masses of the other

composite resonances. As we already discussed, the first level of resonances contains, in

addition to the T− and T̃−, three other states: a top-like state, the T2/3−, a bottom-like

state, the B−, and an exotic state with charge 5/3, the X5/3−. These three states together

with the T− form a fourplet of SO(4). Obviously the X5/3− cannot mix with any other

state even after EWSB, and therefore it remains always lighter than the other particles
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in the fourplet. In particular (see figure 9 for a schematic picture of the spectrum), it is

significantly lighter than the T− . In figure 3 we show the scatter plots of the masses of

the lightest exotic charge 5/3 state and of the T̃ . In the parameter space region in which

the Higgs is light the X5/3− resonance can be much lighter than the other resonances,

especially in the configurations in which the T− and T̃− have comparable masses. In these

points the mass of the exotic state can be as low as 300 GeV.

Notice that in the plots in figure 2 there are no points in which the masses of the T−
and of the T̃− coincide. This is due to a repulsion of the mass levels induced by the mixings

due to EWSB. As expected, this effect is more pronounced for larger values of ξ.

3.4 The top mass and a lower bound on the Higgs mass

As noticed above, the asymptotic region mT− ≪ m
T̃−

, which could in principle give rise

to configurations with realistic Higgs masses, is not accessible in our model. Indeed in the

scatter plots of figure 2 we find a lower bound on mT−. We will show below that this

bound comes from the requirement of obtaining a realistic top mass and that an analogous

bound, which however is not visible in figure 2, exists for the T̃− mass. From these results

we will also derive an absolute lower bound on the Higgs mass.

The starting point of our analysis is the approximate expression for the top mass in

eq. (3.13). Our aim is to abtain a lower bound on the resonance masses, so we will focus

on the configurations in which one of the top partners is much lighter than the others.

For definiteness we will consider the case in which the lightest state is the T− resonance.

In a generic situation, all the parameters of the composite sector are of the same order

∆ ∼ m ∼ m̃Q ∼ m̃T . The only mass which gets cancelled is mT− , so we can also assume

that mT+ ∼ m
T̃+

and that they are of the same order of the composite sector masses. In

this regime the effective compositeness angles in eq. (3.14) can be approximated as

sinϕL ∼ 1 , sinϕR ≃ yRf

m
T̃−

. (3.17)

The first equation comes from the fact that we assumed the T− state to be nearly massless

before the mixing with the elementary sector. This condition is equivalent to the relation

∆2 −mm̃Q = 0 (see eq. (80) of [14]).

The expression for the top mass in eq. (3.13) now becomes

mt ≃
yRf

2
√
2
sin

(
2v

fπ

)
≃ yRv , (3.18)

and, by using the relation between yL and yR in eq. (3.9), we get

yL ≃
√
2 yR ≃

√
2mt

v
. (3.19)

Given that the mass of the light state predominantly comes from the mixing with the

elementary fermions we can use the estimate

mT− & yLf ≃ 2mt

v
fπ . (3.20)
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Figure 4. Schematic structure of the two-site DCHM.

This inequality implies the lower bounds

mT− & 5mt ≃ 750 GeV , for ξ = 0.2 , (3.21)

and

mT− & 6.7mt ≃ 1000 GeV , for ξ = 0.1 , (3.22)

obtained for mt = 150 GeV. In a similar way a lower bound on the mass of the lightest T̃

state can be found. This bound is a factor 2 weaker than the one on mT−:

m
T̃−

& yRf ≃ mt

v
fπ . (3.23)

The lower bounds on the lightest top partners masses agree with the results of the numerical

scans in figure 2. The lower bound on m
T̃−

is instead below the range of values needed to

get a realistic Higgs mass, so it is not visible in the the plot.

The lower bound on the resonance masses can be translated, through eq. (3.16) into

a lower bound on the Higgs mass. The most favourable configuration is the one in which

the lightest mass is m
T̃−

. This leads to the bound

mH &

√
2Nc

π

m2
t

v

√
log

(
v

mt

mT−

fπ

)
. (3.24)

For mT−/fπ ∼ 4, which represent a typical point in our parameter space, we get

mH & 100 GeV . (3.25)

This result is in good agreement with the bound obtained in the scans.

4 The simplest composite Higgs model

As shown in ref. [14], the three-site DCHM we considered in the previous section is the

minimal realization of an effective description of a composite Higgs in which all the key ob-

servables, and in particular the Higgs potential, are computable at the leading order. This

property allowed us to decouple the UV physics and fully characterize the model in terms

of the parameters describing the elementary states and two levels of composite resonances.

If we accept to give up a complete predictivity, a much simpler effective model can be

employed to describe the low-energy dynamics of a composite Higgs boson and of the top

partners. In this model only one layer of composite resonances is introduced, leading to a
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structure representable with a two-site model (see figure 4). The pattern of divergences in

the two-site DCHM has been fully analyzed in ref. [14]: the electroweak precision parame-

ters remain calculable at leading order, while the Higgs potential becomes logarithmically

divergent at one loop.

There is however an interesting property which partially preserves predictivity also for

the potential. In the expansion in powers of the elementary-composite mixings, only the

leading terms can develop a logarithmic divergence, while the higher order ones are finite at

one loop. We have shown in section 2.1 (see eq. (2.14)) that at the leading order only two

operators exist and that they both give the same contribution, proportional to sin2 h/fπ, to

the potential. A single counterterm is therefore enough to regulate the divergence, which

corresponds to the renormalization of a single parameter. An interesting possibility is to

fix the value of the Higgs VEV, or more precisely of the ratio v/fπ, as renormalization

condition obtaining the Higgs mass as a prediction. In this sense, mH is predictable also

in the DCHM2.

4.1 Structure of the 2-site model

Let us briefly summarize the structure of the DCHM2. The model is based on a non-linear

σ-model SO(5)L×SO(5)R/SO(5)V and it is schematically representation in figure 4. As in

the three-site DCHM, the first site is associated with the elementary states, while the other

is related to the composite resonances. Of course, in this case, only one level of composite

resonances is present. In order to accommodate the hypercharge for the fermions an extra

U(1)X symmetry must be introduced, which acts on the fermion fields at both sites.

The elementary gauge bosons are added at the first site by gauging an SU(2)L ×
U(1)Y subgroup of SO(5)L × U(1)X , with the choice of the hypercharge as Y = T 3

R +X.

The composite gauge resonances are in the adjoint representation of SO(4) and gauge a

corresponding subgroup of SO(5)R.

One level of composite fermions ψ̃ is introduced at the second site. They transform

in the fundamental representation of the SO(5)R global group and have U(1)X charge 2/3.

Analogously to the three-site case, the spontaneous breaking of SO(5) in the composite

sector is parametrized by the explicit breaking of the additional SO(5)R global group. In

the fermionic sector this is achieved by a mass term which only respects the SO(4) subgroup.

The Lagrangian for the composite states ψ̃, in the holographic gauge, is given by

Lf
comp = i ψ̃ /Dψ̃ − m̃QQ̃Q̃− m̃TT̃ T̃ , (4.1)

where we have split ψ̃ in SO(4) representation, 5 = (2,2)⊕ (1,1), as

ψ̃ =

(
Q̃

T̃

)
, (4.2)

where Q̃ ∈ (2,2) and T̃ is the singlet.

The elementary fermions, i.e. the SM chiral states qL and tR, are introduced at the

first site. Their Lagrangian is

Lf
elem = i qL /DqL + i tR /DtR − yLfπq

5

LUψ̃R − yR fπt
5

RUψ̃L + h.c. , (4.3)
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where we used the embeddings of the elementary states in the fundamental representation

of SO(5) given in eq. (2.11).

Notice that we have already encountered the fermion Lagrangian of the DCHM2 in the

general discussion of section 2, and in particular at the end of section 2.1. The DCHM2

can indeed be obtained from the general Lagrangian of eq. (2.22) by restricting aL = aR =

bL = bR in order to respect the SO(5) symmetry.

4.2 The Higgs potential

Analogously to the DCHM3 case, the fermionic contribution to the Higgs potential only

comes from the charge 2/3 states. Its structure can be put in the same form as eq. (3.4)

V (h) = −2Nc

8π2

∫
dp p3 log

(
1− C1(p

2) sin2(h/fπ) + C2(p
2) sin2(h/fπ) cos

2(h/fπ)

D(p2)

)
.

(4.4)

The denominator of the expression in the logarithm now contains only one level of reso-

nances and is given by

D(p2) = 2p2
∏

I=T,T̃ ,T2/3

(
p2 +m2

I

)
, (4.5)

where we used a notation similar to the one adopted for the three-site model. For the

two-site model the expression for the masses of the top parteners before EWSB are very

simple and can be given in closed form

m2
T =

√
m̃2

Q + (yLfπ)2 , m2
T2/3

= m̃2
Q , m2

T̃
=
√
m̃2

T + (yRfπ)2 . (4.6)

The C1,2 coefficients appearing in the expression of the Higgs potential are given by




C1(p

2) = −
(
m̃2

Q − m̃2
T

)
p2
((
p2 +m2

T2/3

)
(y2L − 2y2R)f

2
π − y2Ly

2
Rf

4
π

)

C2(p
2) = −(m̃Q − m̃T )

2
(
p2 +m2

T2/3

)
y2Ly

2
Rf

4
π

. (4.7)

Similarly to the three-site model, the second term appearing in the logarithm argument

in eq. (4.4) is typically much smaller than one, so that we can use a series expansion.19 The

potential, taking into account terms up to the quartic order in the elementary-composite

mixings, has the usual form

V (h) ≃ α sin2(h/fπ)− β sin2(h/fπ) cos
2(h/fπ) . (4.8)

As we already mentioned, the O(y2L,R) terms in the potential are logarithmically divergent,

as can be easily checked using the explicit results given above. This implies that the

coefficient α in eq. (4.8) must be regularized. For this purpose we can add a counterterm

of the form given in eq. (2.14) with a suitable coefficient. This procedure is equivalent,

from a practical point of view, to just consider α as a free parameter. This coefficient

can then be fixed by imposing one renormalization condition, for instance by choosing the

value of v/fπ.

19For more details see the discussion before eq. (3.8).
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Notice that, differently from the three-site model, in the two-site case there is no reason

to assume that the leading order term in the potential is cancelled by a tuning among yL
and yR. The tuning of the potential can be totally due to the counterterm which cancels

the logarithmic divergence. For this reason, in the following analysis we will not impose

any relation between the left and the right elementary-composite mixings.

In order to compute the coefficient β at quartic order in yL,R we need to take into

account an expansion of the logarithm in eq. (4.4) at the quadratic order. The value of the

coefficient β can be easily found analytically and is given by

β =
Nc

8π2
(m̃Q − m̃T )

2y2Ly
2
Rf

4
π

m2
T −m2

T̃

log

(
mT

m
T̃

)

+
Nc

8π2

(m̃2
Q − m̃2

T )
2(y2L − 2y2R)

2f4π

[
−(m2

T −m2
T̃
) + (m2

T +m2
T̃
) log

(
mT

m
T̃

)]

4(m2
T −m2

T̃
)3

. (4.9)

The term on the first line of the above expression is analogous to the result found in the

three-site case. On the other hand, the second contribution is specific of the two-site model

and is there because we did not impose any relation between yL and yR. The accidental

factor of 4 in the denominator of the second contribution and some cancellations which

happen in the expression between square brackets make the second contribution smaller

than the first one typically by one order of magnitude. Notice, moreover, that the sign of

the two contributions are always the same. Thus the second contribution always determine

a small increase of β in absolute size. Neglecting this second term we obtain a Higgs mass

m2
H =

2β

f2π
sin2(2v/fπ) ≃

Nc

4π2
(m̃Q − m̃T )

2y2Ly
2
Rf

2
π

m2
T −m2

T̃

log

(
mT

m
T̃

)
sin2(2v/fπ) . (4.10)

As we did in the three-site model, we can rewrite the Higgs mass in terms of the

top mass. The approximate expression for the top mass was already found in section 2.1

(eq. (2.26)) and is given by

mt ≃
|m̃Q − m̃T |

2
√
2

yLyRf
2
π

mTmT̃

sin

(
2v

fπ

)
. (4.11)

Making use of eq. (4.10) we find

mH

mt
≃

√
2Nc

π

mTmT̃

fπ

√√√√ log
(
mT /mT̃

)

m2
T −m2

T̃

, (4.12)

which exactly coincides with the expression (3.16) obtained in the three-site model when

the second level of resonances is heavy.

4.3 Numerical results

We can verify the validity of the relation in eq. (4.12) between the Higgs and the top

partners masses by performing a numerical scan on the parameter space of the two-site
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Figure 5. Scatter plots of the masses of the T and T̃ resonances for ξ = 0.2 (left panel) and

ξ = 0.1 (right panel) in the two-site DCHM model. The black dots denote the points for which

115 GeV ≤ mH ≤ 130 GeV, while the gray dots have mH > 130 GeV. The scans have been

obtained by varying all the composite sector masses in the range [−8fπ, 8fπ] and keeping the top

mass fixed at the value mt = 150 GeV. The area between the solid red lines represents the range

obtained by applying the result in eq. (4.12) for 115 GeV ≤ mH ≤ 130 GeV.

Ξ=0.2

0 1 2 3 4
0

1

2

3

m5�3 HTeVL

m
� T
HT

e
V
L Ξ=0.1

0 1 2 3 4 5 6
0

1

2

3

4

m5�3 HTeVL

m
� T
HT

e
V
L

Figure 6. Scatter plots of the masses of the exotic state of charge 5/3 and of the T̃ resonance for

ξ = 0.2 (left panel) and ξ = 0.1 (right panel) in the two-site DCHM model. The black dots denote

the points for which 115 GeV ≤ mH ≤ 130 GeV, while the gray dots have mH > 130 GeV. The

scans have been obtained by varying all the composite sector masses in the range [−8fπ, 8fπ] and

keeping the top mass fixed at the value mt = 150 GeV.

model. However the computation of the Higgs effective potential in the two-site case is not

completely straightforward and requires an ad hoc procedure to deal with the logarithmic

divergence. In particular, we can not directly integrate eq. (4.4) as in the 3-site model.

The simplest way to proceed is to notice that eq. (4.4) can be rewriten in the standard

Coleman-Weinberg form

V (h) = −2Nc

8π2

∫
dp p3 log

[
∏

i

(p2 +m2
i (h))

]
, (4.13)

where the product is over all the 2/3-charged fermionic states of our model. Actually, we

could have derived eq. (4.4) starting from the Coleman-Weinberg expression in eq. (4.13).

We can now regulate the integral with a hard momentum cutoff Λ and we obtain the
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standard formula

V (h) = − Nc

8π2
Λ2
∑

i

m2
i (h)−

Nc

16π2

∑

i

m4
i (h)

[
log

(
m2

i (h)

Λ2

)
− 1

2

]
. (4.14)

In the two-site model only a logarithmic divergence can appear in the Higgs potential,

and therefore the quadratically divergent term must be independent of the Higgs. This is

ensured by the condition

∑

i

m2
i (h) =

∑

i

m2
i (h = 0) = const. , (4.15)

which we can explicitly verify in our model.20 The logarithmic divergence, as discussed

above, must be proportional to sin2 h/fπ as in eq. (2.14). Indeed in our 2-site model one

can verify explicitly that ∑

i

m4
i (h) ∝ sin(h/f2π) + const .

We can therefore, as anticipated, cancel the divergence by introducing a single countert-

erm in the potential, proportional to sin2 h/fπ. This leaves only one free renormalization

parameter which we can trade for a scale µ, the renormalized potential takes the form

V (h) = − Nc

16π2

∑

i

m4
i (h) log

(
m2

i (h)

µ2

)
. (4.16)

We will treat µ as a free parameter, the strategy of our scan will be to choose it, once the

other parameters are fixed, in order to fix the minimum of the potential to the required

value of v/fπ.

The result of the numerical scan is shown in figure 5. The black points correspond to

configuration with realistic Higgs mass and they lie approximately between the two solid

red lines which correspond to the bounds derived from eq. (4.12). The small deviations

come from the corrections due to the (y2L−2y2R) term in the expression for β in eq. (4.9). As

discussed before, the effect of these corrections is to increase the Higgs mass, and therefore,

keeping the Higgs mass fixed, to make the resonances lighter. In figure 5 we show the scatter

plot of masses of the exotic charge 5/3 state and of the T̃ . As in the three-site model the

exotic state is lighter than the T , so that, in a large part of the parameter space it is the

lightest composite resonance.

4.4 Modeling the effect of the heavy resonances

By comparing the scatter plots obtained for the two-site model with the ones for the

three-site one, one can see that, although the relation between the Higgs mass and the

resonance masses is always reasonably well satisfied, significant deviations can appear. In

particular the region in which mT and m
T̃
are comparable shows larger deviations, while

the asympthotic regions in which one of the resonances is much lighter than the others

20If, as in the 3-site case, the Higgs potential was completely finite at one loop, an analogous condition

would hold for the logarithmic term, i.e.
∑

im
4
i (h) =

∑
im

4
i (h = 0) = const.
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Figure 7. Scatter plots of the masses of the T and T̃ resonances for ξ = 0.2 (left panel) and

ξ = 0.1 (right panel) in the two-site DCHM model with the addition of the operator in eq. (4.17).

The black dots denote the points for which 115 GeV ≤ mH ≤ 130 GeV, while the gray dots have

mH > 130 GeV. The scans have been obtained by varying all the composite sector masses in the

range [−8fπ, 8fπ] and keeping the top mass fixed at the value mt = 150 GeV. The mass of the

heavy resonances has been chosen to be at least 50% higher than the one of all the light states. The

area between the solid red lines represents the range obtained by applying the result in eq. (4.12)

for 115 GeV ≤ mH ≤ 130 GeV.

have a smaller spread. The 2-site model is therefore slightly too restrictive, and also too

“pessimistic” in that it requires very low resonances. The effect of an additional level of

resonances, as the 3-site model results show, can change the 2-site picture significantly.

However, the effect of the heavy resonances on the Higgs potential can be rather

simply mimicked in the two-site model by adding to the potential a new contribution to

the coefficient β in eq. (4.8). The size of the contributions coming from the heavy resonances

can be estimated by symmetry considerations and power counting. In our derivation we

will respect the general properties which characterize the heavy resonances in the three-site

model. First of all we assume that the source of SO(5) breaking is in common with the

light states, so that the new operator must contain a factor (m̃Q− m̃T )
2. Morever we must

introduce four powers of the elementary-composite mixings as dictated by spurion analysis.

For simplicity we will write the contribution of the new operator to β in the same form

of the contribution coming from the light states. In particular we choose the form of the

most relevant term, the one on the first line of eq. (4.9). Denoting by M the mass of the

heavy resonances we write their contribution to the Higgs effective potential as

∆V (h) =
Nc

8π2
(m̃Q − m̃T )

2y2Ly
2
Rf

4
π

M2
sin2(v/fπ) cos

2(v/fπ) . (4.17)

Guided by the results of the three-site model, in which the heavy resonances tend to lower

the Higgs mass, we fix the sign for the corrections in order to reproduce this effect.

The numerical results of a scan including the effect of the operator in eq. (4.17) are

shown in figure 7. In the scan we assume that the mass of the heavy resonances is at

least 50% higher than the masses of all the light resonances. One can see that the plots

show a good qualitative and quantitative agreement with the ones obtained in the three-

site model (see figure 2). In particular the plots show an agreement with the relation in
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Figure 8. Scatter plots of the masses of the exotic state of charge 5/3 and of the T̃ resonance for

ξ = 0.2 (left panel) and ξ = 0.1 (right panel) in the two-site DCHM model with the addition of the

operator in eq. (4.17). The black dots denote the points for which 115 GeV ≤ mH ≤ 130 GeV, while

the gray dots have mH > 130 GeV. The scans have been obtained by varying all the composite

sector masses in the range [−8fπ, 8fπ] and keeping the top mass fixed at the value mt = 150 GeV.

The mass of the heavy resonances has been chosen to be at least 50% higher than the one of all the

light states.

eq. (4.12) in the asymptotic regions in which one state is much lighter than the others.

Larger deviations are present when all the state have comparable masses. This effect can

be simply understood by comparing the form of the leading contributions to β in eq. (4.9)

(the ones on the first line) and the form of the contributions of the operator representing

the heavy resonances in eq. (4.17). When a high hierarchy between mT and m
T̃
is present,

the logarithm appearing in eq. (4.9) enhances the light states contributions to the Higgs

mass, thus making the heavy resonances corrections negligible. On the other hand, when

mT ∼ m
T̃
, the light states contribution are somewhat reduced and the heavy states can

give a sizable correction to β.

Finally in figure 8 we show the scatter plot for the masses of the exotic charge 5/3

state and of the T̃ state. Again a good agreement with the results for the three-site model

in figure 3 is found.

5 Bounds on the top partners

The top partners are generically so light, often below the TeV, than the present experimen-

tal results can already place some non-trivial bounds on their mass. In this section we will

present a simple discussion of the available constraints; our aim will not be to perform a

comprehensive study of all the bound coming from the existing experimental data, but in-

stead to focus on some simple and universal searches whose results are approximately valid

independently of the specific model and of the corner of the parameter space we consider.

In particular we will restrict our analysis to the lightest resonance which comes from

the composite sector and we will only consider pair production processes in which, due to

the universal QCD couplings, the production cross section depends exclusively on the mass

of the resonance. The bounds we will derive are thus quite robust and apply to generic

composite models. Notice however that, in a large region of the parameter space, single

– 28 –



J
H
E
P
0
1
(
2
0
1
3
)
1
6
4

∆m2
∼ y2Lv

2

∆m2
∼ y2Lv

2

∆m2
∼ y2Lf

2

T
B

T2/3

X5/3

˜T

t

Figure 9. Schematic structure of the spectrum of the lightest multiplet of resonances.

production processes, as well as the presence of other relatively light resonances, can give

an enhancement of the signal in the channels considered in the present analysis. In this

case the bounds on the masses of the resonances can also become tighter. Taking into

account these effects is however beyond the scope of the present paper.

Before discussing the details of our analysis, it is useful to briefly describe the gen-

eral structure of the spectrum of the first level of fermionic resonances. These states, as

schematically shown in figure 9, are approximately organized in SU(2)L multiplets

Q =

(
T

B

)
, X =

(
X5/3

T2/3

)
, T̃ . (5.1)

The splitting between the two doublets arises from the mixing of the composite fermions

with the elementary states and its size is of order ∆m2 ∼ y2Lf
2. Notice that only the Q

doublet is mixed to the elementary fermions, thus it is always heavier than the X doublet.

On the other hand, the mass of the T̃ singlet has no relation to the ones of the two doublets.

After the breaking of the electroweak symmetry the fermions acquire mass corrections

giving rise to a small splitting inside the doublets. Due to the Goldstone nature of the

Higgs, the effects of EWSB can only arise if the Goldstone symmetry is broken, that is

they must be mediated by the elementary-composite mixings. The mass splitting inside

the doublets are thus of order y2L,Rv
2, and are typically suppressed by a factor (v/f)2 with

respect to the mass gap between the two doublets. For all the relevant configurations

the lightest state of the X doublet is the exotic fermion with charge 5/3, the X5/3. The

ordering of the states in the Q multiplet instead is not fixed and depends on the specific

point in the parameter space we choose.

As we mentioned before, in our analysis we will only consider the lightest fermionic

resonance, which is always given by the exotic state X5/3 or by the singlet T̃ . We will

discuss these two cases separately in the following subsections.

– 29 –



J
H
E
P
0
1
(
2
0
1
3
)
1
6
4

5.1 Bounds on the exotic charge 5/3 state

As a first case we will consider the configurations in which the exotic state X5/3 is the

lightest new resonance. A search for an exotic state of this type has been performed by

the CDF collaboration [57]. This analysis focuses on the case in which the exotic state is

associate with a charge −1/3 fermion, the B, with the same mass. Moreover it is assumed

that these two states always decay in tW±. The considered channel is pair production of

the new resonances, which then give rise to a signal in events with two same-sign leptons.

With an integrated luminosity of 2.7 fb−1, masses of the new statesm5/3 = mB < 365 GeV

are excluded at 95% confidence level.

Dedicated searches for charge 5/3 states are currently not available for the LHC data.

Some interesting bounds on the mass of the exotic states can however be derived by adapt-

ing the existing searches of new bottom-like resonances. The analyses we can use for

our aim are the ones in which the bottom-like resonance B is pair produced and decays

in top: BB → W−tW+t. The same final state is obviously obtained also in a process

in which a pair of exotic states X5/3 are produced, which then decay to SM particles:

X5/3X5/3 →W+tW−t.

The strongest exclusion bound on new bottom-like quarks decaying in tops is the one

obtained by the CMS Collaboration [47], which sets a lower bound mB > 611 GeV at 95%

confidence level assuming BR(B → W−t) = 1. This analysis is performed by condidering

final states with a pair of same-sign leptons or with three leptons.21 To translate this result

into an exclusion bound for the exotic X5/3 resonance, we need to take into account possible

differences in the efficiencies for the cuts used in the analysis. These differences can arise

from finite-width effects and from the different kinematic distribution of the final states of

the two processes. In particular in the X5/3X5/3 process the two same-sign leptons come

from the decay of the same heavy particle, while in the BB case they come from different

heavy legs. The structure of the cuts used in the analysis, however, is rather symmetric with

respect to the leptons, so we expect the efficiencies to be reasonably close. To determine

the variation of the cut acceptances we simulated the signal using our implementation of

the three- and two-site models in MadGraph 5. We found that the deviations from the

BB process are always negligible (below 5%).

The production cross sections for X5/3X5/3 and BB are equal, given that the two

processes are induced by QCD. Moreover, being the X5/3 the lightest resonance, it can

only decay to the SM, so that BR(X5/3 → W+t) = 1. This means that we can directly

reinterpret the exclusion bound on the bottom-like resonances as a lower bound on the

mass of the exotic state X5/3: m5/3 > 611 GeV.

Notice that the presence of other resonances with a mass relatively close to the X5/3,

and in particular a light B, can sizably enhance the signal used in the previous analysis,

thus leading to stronger bounds. The analysis of this effect is however beyond the scope of

the present paper.

21Less stringent bounds have been obtained by the ATLAS Collaboration, whose public analysis, for

same-sign dilepton final states, reports a bound mB > 450 GeV [58]. An analysis with final states with

a single lepton and multiple jets has also been published by the ATLAS Collaboration, in which a bound

mB > 480 GeV is reported [59].
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Figure 10. Scatter plot of the branching ratios of the lightest T̃ resonance into W+b for the

three-site DCHM model with ξ = 0.2 (left panel) and ξ = 0.1 (right panel). In all the points shown

in the plot the T̃ state has been required to be the lightest composite resonance. The black dots

denote the points for which 115 GeV ≤ mH ≤ 130 GeV, while the gray dots have mH > 130 GeV.

The scans have been obtained by varying all the composite sector masses in the range [−8f, 8f ] ane

keeping the top mass fixed to the value mt = 150 GeV.

5.2 Bounds on the T̃

We now focus on the case in which the lightest resonance is given by the charge 2/3 state

T̃ . For a state of this kind exclusion analysis have been performed for the available LHC

data. At present the strongest bounds are the ones obtained by the CMS Collaboration.

They considered two possible scenarios in which a top-like resonance decays with 100%

branching ratio either in tZ, yielding a bound mt′ > 475 GeV [60], or in bW+, with

bounds mt′ > 560 GeV [61] and mt′ > 552 GeV [62] depending on the specific final states

considered.22

These bounds can not be directly translated into bounds on the T̃ resonance in our

model, due to the different branching ratios of the resonance into SM particles. In particular

three channels are relevant T̃ → bW+, T̃ → tZ and T̃ → th. The branching ratios for

these three channels are all comparable, hence a process in which two T̃ resonances are

produced, which then decay in the same channel, has a cross section which is usually an

order of magnitude smaller than the total pair production cross section. From a scan on

the parameter space of the explicit models, see figure 10, we find that typically the W and

Higgs channels dominate, BR(T̃ → bW+) ∼ BR(T̃ → th) ∼ 0.4, while the Z channel is

slightly suppressed, BR(T̃ → tZ) ∼ 0.2.

To find an exclusion bound on the T̃ resonance we adopt the simple and conservative

approach of just rescaling the cross section of each channel considered in the experimental

analysis by the typical branching ratios predicted by our models for a low resonance mass.

Of course, a more refined procedure, would need to take into account possible enhancements

of the signal coming from the other decay channels. For instance, in the search of a top-like

resonance decaying in Zt [60] the masses of the resonances are not reconstructed and only

a mild cut is put to reconstruct one of the Z’s. In this case a sizable part of events in

22A search for a t′ states decaying in bW+ has been performed also by the ATLAS Collaboration, which

derives a bound mt′ > 404 GeV [63].
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Figure 11. Scatter plot of the masses of the lightest exotic state of charge 5/3 and of the lightest

T̃ resonance for the three-site DCHM model with ξ = 0.2 (left panel) and ξ = 0.1 (right panel).

The shaded region corresponds to the points excluded by our analysis, which gives the bounds

m5/3 > 611 GeV and mT̃ > 370 GeV. The black dots denote the points for which 115 GeV ≤
mH ≤ 130 GeV, while the gray dots have mH > 130 GeV.

which one or even both T̃ resonances do not decay in Zt could pass the selection cuts and

significantly enhance the signal, thus tightening the exclusion bounds.

Following our simple approach we find that only one of the searches gives a significant

bound, namely the one exploiting the channel T̃ T̃ → bW+bW− → bl+νbl−ν [62]. To

obtain the bound we performed the analysis using for the relevant branching ratio the value

BR(T̃ → bW+) = 0.4. As can be seen by the scatter plot in figure 10, this value represents

the actual branching ratio for a light T̃ in the three-site DCHM model, quite independently

of the value of v/fπ. With this procedure we infer a lower bound m
T̃
> 370 GeV on the

mass of the T̃ resonance at 95% confidence level.

5.3 Exclusion bounds in the DCHM3

To appreciate the impact of the previously derived bounds in the explicit models we show

in figure 11 the exclusion regions superimposed on the scatter plots for the masses of the

X5/3 and T̃ resonances for the three-site DCHM model.

The bound on the exotic state with chagre 5/3 is already strong enough to exclude

a sizable portion of the parameter space with realistic Higgs mass. Of course, the bound

has a greater impact on the configurations with larger ξ, which predict lighter resonances.

Nevertheless even in the case of a relatively small v/fπ, namely ξ = 0.1, the exclusion

bound on the exotic resonance puts non-trivial constraints.

The situation is different for the cases in which the lightest new state is the singlet T̃ .

The bounds obtained in our analysis can only exlude a limited number of configurations

at ξ relatively large. In particular for ξ = 0.2 realistic configurations start to be excluded

only in the asymptotic region with a light T̃ . On the other hand, for ξ = 0.1 the mass of

the T̃ resonances is always above the current bounds.

6 Conclusions and outlook

In this paper we explored the relation which, in a broad class of composite Higgs models,

links a light Higgs boson to the presence of light resonances coming from the new strong
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sector of the theory. The class of models we focused on are the ones based on the symmetry

pattern SO(5)/SO(4) and in which the fermionic resonances come in the fundamental

representation of SO(5). As a first step, we analyzed from a general point of view the

mechanism which generates the correlation of the Higgs mass with the top partners. We

found that the connection has a simple qualitative explanation in terms of the structure

of partial fermion compositeness which is realized in the composite Higgs scenario. The

point is that the presence of light partners would tend to increase the fraction of top

quark compositeness, thus increasing its mass. Keeping the latter fixed requires that the

elementary-composite mixings, must be decreased in order to compensate. But the mixings

also control the Higgs potential, and their decrease lowers the the Higgs quartic coupling

and consequently the Higgs mass.

Through a detailed analysis performed in a general effective parametrization of the

composite Higgs set-up, we found that the Higgs mass scales linearly with the mass of

the lightest partner. This model-independent result is encoded in the simple relation

of eq. (2.25). The relevant partners are those which are most strongly mixed with the

elementary tL and tR, namely the T and the T̃ resonances.

From a quantitative point of view, assuming only a moderate degree of tuning between

the Higgs VEV and the Goldstone decay constant fπ, we found that a Higgs mass in the

current LHC preferred region mh ≃ 120 GeV requires at least one top partner with a mass

of the order or below the TeV. This result strengthens the common assertion that light

top partners are an essential feature of the composite Higgs scenario. Moreover it shows

that the lightest of such states are well within the reach of the LHC and they constitute

one of the most important probes of the composite Higgs paradigm.

To confirm the validity of our general results we analyzed in detail the relation between

the Higgs and the resonance masses in two explicit models. The first model we consid-

ered is the three-site Discrete Composite Higgs Model, which gives a simple but complete

realization of the composite Higgs framework. Good agreement with the general result is

found (see eq. (3.16)). The study of this explicit model allowed us to quantify the effects

of the higher levels of resonances coming from the composite sector. Their contribution

has been determined analytically (see eq. (3.10)) and checked numerically by a scan on

the parameter space of the model (see figures 2 and 3). We found that in the asymptotic

regions in which there is a large mass hierarchy between the resonances of the first level, the

effect of the heavier states is very small. On the contrary, when the masses are comparable

the corrections can be sizable and can affect the Higgs mass by as much as 50%. These

corrections, however, do not spoil the agreement with the qualitative picture obtained by

the general analysis.

As a second explicit model, we considered an even simpler and more minimal imple-

mentation of the composite Higgs idea, the two-site Discrete Composite Higgs Model. This

model contains only one level of composite resonances, thus it only retains the amount of

information relevant for the present collider experiments. The price we have to pay in

adopting this minimal description is a partial loss of predictivity: in the two-site model

the Higgs potential is no more finite at one loop. Nevertheless only one counterterm is

needed to regulate the divergence, thus one condition is enough to fix the renormalization
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ambiguity. We can therefore chose the value of v/fπ as a renormalization condition and

retain the Higgs mass as a calculable quantity.

We also showed how the effect of the higher resonance levels on the Higgs potential can

be efficiently modeled by introducing a suitable extra contribution. With this modification,

the spectrum of the top partners in correlation with the Higgs mass is completely analogous

to the one found in the three-site case.

Generically, our result should apply to any explicit realization of the composite Higgs

idea, and in particular to the popular 5d holographic models. This is partially confirmed

by the numerical results of ref. [11], which indeed show an approximately linear correlation

between the mass of the Higgs and the one of the lightest T state. From what can be

seen in the plots, moreover, the agreement with our general formula seems good also at a

quantitative level. It might be worth checking the agreement in more detail.

Another aspect which could be worth investigating is how much our results depend on

the choice of the fermion representations. In the set-ups considered so far in the literature,

in which the fermions are in the spinorial or in the adjoint representation of SO(5) there will

be no qualitative difference with respect to the case of the fundamental we have considered

in the present paper. The general analysis of section 2 will apply in the same way because

also in these alternative scenarios only one invariant operator contributes to the Higgs

potential at the leading order in the elementary-composite mixing. This implies that the

leading order must be canceled and the Higgs mass squared scales as y4 (rather than y2)

like in eq. (2.20). Also the estimate of the top mass will remain the same and therefore

the final result of eq. (2.25) will be parametrically unchanged. At the quantitative level,

however, the relation among the Higgs and the resonance masses could be modified at

order one, due to possibly different group theory factors. It would be interesting to assess

this point.

With other choices of the fermion representations, in which two or more invariants

appear at order y2, our conclusions could instead change qualitatively. A model of this

kind could for instance be obtained by embedding the fermions in the adjoint but re-

laxing the requirement of left-right symmetry,23 or by considering higher and possibly

reducible representations.

The models with more invariants are particularly interesting because they do not suffer

of the enhanced (or “double”) tuning which we described in section 2 (see eq. (2.19)).

This indeed originates only in the case of a single invariant because of the “preliminary”

cancellation of theO(y2) term which is needed to make it of the same order of the subleading

O(y4) contributions. Models in which the double tuning is not present, however, should face

another possible problem. Given that the potential, including the quartic Higgs coupling,

now arises at O(y2), the mass of the Higgs is expected to be a factor g∗/y larger than in

the models with the preliminary cancellation. The situation would therefore be worse than

the one considered in the present paper, so we expect that either we will find a too large

Higgs mass or too light top partners.

23Introducing a breaking of the left-right symmetry would of course lead to potentially large deviations

in the ZbLbL coupling, which could invalidate the model or lead to additional tuning.
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The last step of our work has been to derive some non trivial constraints on the reso-

nance masses from the current LHC data. We performed a simple analysis in which only

the lightest resonances have been considered and the contributions from heavier states

have been altogether neglected. The lightest composite states are either the exotic partner

of charge 5/3, the X5/3, or the SO(4) singlet top-like state T̃ . No dedicated LHC anal-

ysis exists for states of charge 5/3, however the existing searches for pair-produced new

bottom-like quarks can be used to derive some exclusion bounds also for the exotic reso-

nance. Our simulations show that the current exclusion can be translated into a bound

m5/3 > 611 GeV. This bound is already enough to exclude a non-negligible portion of the

configurations with a realistic Higgs mass.

The situation is different for the cases in which the lightest state is the T̃ . LHC

searches for pair-produced charge 2/3 resonances are available, however the bounds given

in the experimental analyses can not be naively applied to the composite models, due to

the fact that 100% branching ratios to specific channels are assumed. Taking into account

the branching ratios predicted by our explicit models, a lower bound m
T̃
> 370 GeV is

obtained. This bound is still too weak to put significant constraints on the model. However

it is not far from the masses obtained in realistic configurations and can already exclude a

small region of the parameter space in the case ξ = 0.2.

The simple analysis we used to derive the exclusion bounds leads to some robust and

conservative constraints on the masses of the composite resonances. The assumption of

having only one relevant light state and to consider only pair production is however a

drastic simplification which often neglects important contributions. In particular some of

the heavier states can be close enough to the lightest resonance to give a sizable contribution

to the relevant search channels. Moreover single production processes can be relevant in

specific regions of the parameter space. It is plausible that the inclusion of these effects

could considerably strengthen the bounds we derived in this paper.

A complete study of the exclusion bound, including the effects of the heavier resonances

and of single production, is not completely straightforward. An analysis of this kind should

take into account possible decay chains from the heavier resonances as well as non-universal

production cross sections due to single production channels. To perform this task it seems

unavoidable to employ a concrete model. We already produced complete MadGraph

5 cards implementing the two-site and the three-site models. In particular the two-site

model contains only three free parameters and one could imagine performing a complete

scan. These cards were used in the present paper to adapt the experimental analysis and

derive the bounds on the exotic state X5/3. We leave for future work the complete study

of the constraints coming from the experimental data.
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