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LIGHT-TRAFFIC ANALYSIS FOR QUEUES WITH
SPATIALLY DISTRIBUTED ARRIVALS

DIRK P. KROESE anp VOLKER SCHMIDT

We consider the following continuous polling system: Customers arrive according to a
homogeneous Poisson process (or a more general stationary point process) and wait on a
circle in order to be served by a single server. The server is “greedy,” in the sense that he
always moves (with constant speed) towards the nearest customer. The customers are served
according to an arbitrary service time distribution, in the order in which they are encountered
by the server. First-order and second-order Taylor-expansions are found for the expected
configuration of customers, for the mean queue length, and for expectation and distribution
function of the workload. It is shown that under light traffic conditions the greedy server
works more efficiently than the cyclically polling server.
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1. Introduction. Queueing systems in which customers arrive at a “continuum’
of stations—rather than at a finite number of stations—have been studied in recent
years as convenient descriptions of transportation systems, machine repair systems,
Local Area Networks, computer disk systems, etc., cf. Altman and Levy (1993),
Bertsimas and van Ryzin (1991), Coffman and Gilbert (1986, 1987), Coffman and
Stolyar (1993), Fuhrmann and Cooper (1985b), Kroese and Schmidt (1992, 1993,
1994), Nahimas and Rothkopf (1984). Often, these continuous models are more
transparent and easier to analyze than their discrete analogs, where the customers
are assumed to arrive at a finite number of fixed service stations (see, e.g., Takagi
(1986)).

The best studied “continuum queueing miodel” is the scanning or (cyclically)
polling server model. Here customers arrive (usually according to a Poisson process)
on a closed curve (usually a circle) C in the plane. A single server travels at constant
speed on C, according to a fixed route which does not depend on the actual
configuration of customers on C (cf. Coffman and Gilbert (1986), Coffman and
Stolyar (1993), Fuhrmann and Cooper (1985b), Kroese and Schmidt (1992)). When-
ever the server encounters a customer he stops and serves this customer according to
a fixed service time distribution. This model is the continuous counterpart of discrete
polling systems where the server visits consecutive stations according to a (determinis-
tic) “polling table.” Recently, random polling tables have been investigated as well;
see Altman and Yechiali (1993), Blanc and van der Mei (1995), Keilson and Servi
(1986), Kleinrock and Levy (1988), for Bernoulli polling, and Borovkov and Schass-
berger (1994), Boxma and Weststrate (1989), Schassberger (1993) for more general
Markov polling. The Brownian server model, considered in Kroese and Schmidt
(1994), where the server’s movement on C is governed by a Brownian motion with
drift, can be seen as an approximative continuous model for a certain class of discrete
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Markov polling systems with many stations. In the rest of the paper we will refer to
the cyclically polling server simply as “the polling server.”

A common feature of the polling and Brownian server model is that the movement
of the server is not influenced by the actual “state” of the system, i.e., the actual
configuration of customers on C. This is not the case for the so-called greedy server
model. The greedy server always walks (at constant speed) towards the nearest
customer on C. A newly arriving customer can thus change the direction of the
server’s movement. This makes the performance analysis of the greedy server much
more difficult than that of the polling and Brownian server. However for all these
models an interesting decomposition. principle holds (under Poisson arrivals). It says
that certain performance characteristics (e.g., the stationary mean queue length and
the stationary mean workload) can be represented as the sum of two corresponding
conditional mean values, one given that the server is walking (i.e., not serving) and
the other given that all customers arrive at one and the same point (i.e., no walking
times). This means in particular that the second summand of this sum is a perfor-
mance characteristic of the “usual” M/G/1 queue and, consequently, well known.
Thus, in case when the first summand can be determined, a performance analysis of
the continuous polling system as a whole is possible (see, e.g., Fuhrmann and Cooper
(1985b), Kroese and Schmidt (1994)). Note that analogous decomposition results hold
not only for mean values, but for the corresponding distributions as well (see Boxma
and Weststrate (1989), Doshi (1990a, b), Fuhrmann and Cooper (1985a), Miyazawa
(1994)).

For the greedy server it seems not possible to determine the first summand of the
stochastic decomposition result analytically. For this reason, the performance analysis
of the greedy server is very difficult. Moreover, even the question seems to be open
whether the usual condition “traffic intensity less than one” is sufficient for stability
of the greedy-server queue with spatially distributed Poisson arrivals (cf. Kroese and’
Schmidt (1994)).

A natural question to ask is whether the greedy server is always better than the
polling server. Intuitively this should be the case when dealing with light-traffic
conditions, i.e., for small enough arrival intensity. A comparative (simulation) study of
the greedy and polling server was discussed in Coffman and Gilbert (1987), for the
case that C is a circle (or a line interval), the arrival epochs form a homogeneous
Poisson process with intensity @, the speed of a server is a™!, and the service times
are deterministic with duration e;. Remarkably, the simulation study indicates that,
for a wide range of parameter vectors (a™!, e, a), the polling and greedy servers are .
roughly equally effective. Indeed, the polling server is sometimes better. However, as
expected, the greedy server gives substantial improvements in case of light traffic
(i.e., small a).

In the present paper we show that analytic techniques can be fruitfully used to
examine queues with spatially distributed arrivals. The greedy server, who has proved
to be notoriously elusive, can in fact be tackled via light-traffic arguments. We show
how first- (and second-) order Taylor-expansions (with respect to a at a = 0) for
several performance measures can be derived, in particular for the greedy server and
for the polling server with non-Poisson arrivals. These expansions could be used
(possibly in combination with heavy-traffic results) to construct approximations for
several performance measures under “moderate” traffic conditions. A paradoxic
result is found concerning the configuration of waiting customers on C for the greedy
server model. Moreover, it is shown that under quite general assumptions the greedy
server is “better” than the polling server in light traffic. That is, we show that with
respect to queue length, waiting time-and workload, the greedy server works more
efficient in light traffic than the polling server.
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2. The polling and greedy server models

2.1. Description of the models. Consider a circle C with circumference 1. We
assume, when not noted otherwise, that customers arrive according to a Poisson
process with intensity a; 0 < @ < . In §4 we admit however that the arrival epochs
form a general stationary ergodic point process with finite intensity. Upon arrival the
customers choose their positions on C according to a uniform distribution (indepen-
dently of everything else), and wait there for service. A single server travels on the
circle until he meets a customer. He then stops and serves this customer. We consider
two different servers: (a) the polling server who moves uni-directionally at constant
speed a~! (when not serving; 0 < a™! < =) and (b) the greedy server who always
walks (at constant speed a™!) towards the nearest customer on C. Thus, any newly
arriving customer can change the direction of the greedy server’s movement, whereas
the movement of the (walking) polling server is not influenced by changes of the
actual configuration of customers on C. The customers are served in the order in
which they are encountered by the server. The consecutive service times are indepen-
dent of each other (and of everything else) and identically distributed having an
arbitrary distribution function F with finite first five moments ey,..., es. After
service completion, the customer is removed from the circle and the server resumes
his walk. For both models we assume that there is no customer on C at time ¢ = 0.

2.2. Definition of performance characteristics. An important performance charac-
teristic for both models is the stationary mean number of customers on the circle.
Another, more detailed performance characteristic is the stationary expected configu-
ration of waiting customers given that the server is walking (i.e., not serving). We will
specify first in which mathematical framework these quantities can be precisely
defined.

Note that, in steady state, the actual position of the server is not very important to
the analysis of the model. It is the configuration of customers relative to the position
of the server that counts. From the point of view of the server, customers arrive
according to a two-dimensional homogeneous Poisson process on R, X[0,1] with
intensity a. An arbitrary atom of this process (or random measure, rather) corre-
sponds to the time of arrival of a customer, and to his initial position on the circle
_ with respect to the server (whom we think at 0 or 1). Once having arrived, the
customers in the polling server case move towards 0 at speed a~!, unless there is a
customer being served, in which case all customers stop for a random (service) time.
(Think of the customers “glued onto a rotating circle”). Figure 2 of Kroese and
Schmidt (1992) gives an illustration. Hence, we are dealing with a kind of particle
system, where particles are born at certain times and certain positions, move around
and then die. We will define several performance measures of the polling and greedy
server models in this more abstract and perhaps simpler context.

Particle System 1a. On the strip D = R X[0, 1] particles are born and die according
to the following rules. Particles are born according to a (two-dimensional) homoge-
neous Poisson point process on D with mean measure av, where v denotes the
Lebesgue measure in D. All particles move at constant speed a~! towards level 0.
When a particle hits 0, all particles stop moving during a random amount of time
which is independent of everything else, and which has distribution function F, after
which the particle dies that hit the zero level, and the movement of the particles is
continued. As explained before, the positions of the particles at a given time can be
interpreted as the positions of the customers at this time (with respect to the server)
in the polling server case.
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Particle System 1b. It is defined in the same way as particle system la with the
exception that particles move in a different way. Namely, when the uppermost
particle is further away from 1 than the lower-most one is from 0, all particles move
at speed a~! towards 0. On the other hand, when the uppermost particle is closer to
level 1 than the lower-most is to level 0, all points move at speed a~! towards 1.
Consequently, in the present case, particles die after hitting one of the levels 0 or 1
and after spending there a time with distribution function F. This particle system
describes the positions of the customers (with respect to the server) in the greedy
server case.

For both particle systems 1a and 1b, let W, denote the random counting measure on
the Borel o-algebra ([0, 1]) whose atoms are the positions of the particles that are
“alive” at time ¢ > 0. Clearly, W, corresponds to the positions of waiting customers
relative to the position of the server at time ¢. As in Kroese and Schmidt (1992) (see
also Kroese and Schmidt (1993, 1994)) it will be convenient to introduce a further
kind of particle systems which is obtained from the particle systems 1a and 1b by
“deleting” the times when the particles do not move.

Farticle Systems 2a, 2b. There are two different kinds of particles, parents and
offspring. Parent particles are born according to a (two-dimensional) homogeneous
Poisson point process on [ with mean measure av. In the systems 2a and 2b,
particles move in the same way as in systems 1a and 1b, respectively. When a particle
hits 0 or 1, it dies immediately, but, simultaneously, a random number of offspring is
produced at that time, the position of each individual child being uniformly dis-
tributed on [0, 1], independently of each other and of everything else. The number of
offspring generated by a single dying particle has the same distribution as the random
variable N with generating function

(2.1) Ez¥ = [Te=0-vdF(u), 0<zs<1.
| |

The link between these particle systems and our original models is somewhat more
difficult than before. These systems describe the positions of the customers (with
respect to the server) for both models at “traveling times” (when no service is going
on). Hence the times when the server is busy are omitted. During such a (service)
time one or more customers could arrive, i.e., the number of customers arriving
during a service is a random variable, with generating function given by (2.1). For an
illustration, see Figure 3 of Kroese and Schmidt (1992).

Let O, denote the random counting measure on ([0, 1]) corresponding to the
configuration of particles that are “alive” at time ¢ > 0 in the second kind of particle
systems. The measure-valued stochastic process (Q,) describes the evolution of the
configuration of waiting customers on C given that the server is walking (i.c., not
serving).

Besides the two objects O, and W, that describe the configuration (and, in
particular, the number) of waiting customers at time ¢, another important perfor-
mance measure is the workload on the circle. We can define the workload in terms of
particle systems la and 1b in the following way. Suppose at time ¢, n particles are
alive and are not at level 0 or 1. Each of these particles will eventually hit 0 or 1 and
will then die after a “service time” y, ..., y,, respectively. The sum of these times is
denoted by Z,. When one of the n particles is at 0 or 1, Z, is defined as the sum of
the residual lifetime of that particle and the “service times” of the other n — 1
particles. Notice that the random variable Z, can be interpreted as the workload on
the circle at time ¢.
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Furthermore, we introduce the workload process (R,), by defining R, to be the
sum of the “service times” of the particles that are alive at time ¢ in particle systems
2a and 2b. Notice that one never actually observes these service times in these
particle systems. A proper way to define (R,) would be via a random time change of
(Z). Note that R, has the same distribution as §; + -+ +S5, where §,,S,,... isa
sequence of i.i.d. random variables with distribution functlon F, which are indepen-
dent of |Q,|, the number of particles alive at time ¢ in system 2a or 2b. Notice that R,
describes the workload at traveling time ¢t (¢ is the time according to a clock that stops
whenever the server is busy). Z,, however, is the workload at a “general” time ¢,
which can be either a traveling time or a time where the server is busy. In the last
case the customer at 0 has a remaining service time which is less than what it was
before this service began. By some authors, a different notion of workload is
considered for queues with vacations which is defined by summing up service times
and adding the residual vacation time provided that the server is actually on vacation.
It is called the virtual workload (cf. Doshi (1990b), Lucantoni et al. (1990), Miyazawa
(1994)). For continuous polling systems, an analogous virtual workload process can be
defined in the following way. Let Z denote the amount of time that elapses
beginning from time ¢ until all partlcles die being present at time ¢ in the systems la
and 1b, respectively, provided that in the meantime no new customers arrive. Thus,
Z is obtained by summing up service times and all walk times needed for “serving”
the particles being in the system at time ¢. By (R ) we denote the corresponding
workload process in the systems 2a and 2b.

It turns out (see next subsection) that the random measures W, and Q, converge in
distribution to random measures W and Q, respectively. Moreover, Z, and R, (or Z
and R,) converge in distribution to random variables Z and R (or V4 and R)
respectively. Other random variables, notably the sojourn time U and the waiting time
V of a random customer will be introduced later. These steady-state performance
characteristics, in particular the light-traffic behavior of their expectations and
distribution functions, will be the subject of our studies in the present paper.

2.3. Stability conditions and representation of steady-state performance characteristics.
In the following we will, for a (random) measure M on ([0, 1}), abbreviate M([0, 1])
to |M|, and, consequently, EM([0, 1) to E|M|.

The quantity p = ae, is usually called the traffic intensity of the considered
single-server system. Under the condition that

(22) p<1,

it has been shown in Kroese and Schmidt (1994) that, for the polling server, there
exist time-stationary regenerative processes (W,) and (Q,) such that the finite-dimen-
sional distributions of the processes (W,,,;t=0) and (Q,,,;t = 0)_converge _in
variation to the corresponding finite-dimensional distributions of (W,) and (Q,),
respectively, as A tends to infinity.

On the other hand, the question is still open whether, under (2.2), an analogous
stability theorem holds true also for the greedy server (see the remark at the end of
§4 in Kroese and Schmidt (1994)). However, under light traffic, stability of the greedy
server follows from the following argument. Assume that

(2.3) a(e1 + %) <1,

where a is the time which the server needs for walking once around the whole circle
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(without stopping on the way). Then, using the point-process approach to Loynes’
scheme concerning the construction of stationary ergodic queueing processes in
(standard) single-server queues with a general stationary ergodic input (but without
walking), one can show that for the greedy server the same stability theorem holds as
for the polling server. The crucial idea of this approach is to construct the queueing
process on the canonical probability space of the input that both the queueing
process and the input are jointly stationary, where a coupling argument is used. In
connection with this it suffices to show that, with probability one, the queue empties
infinitely often for an arbitrary initial state. It is well known that the standard
single-server queue possesses this property and, consequently, the desired construc-
tion exists provided that the mean service time is less than the mean interarrival time
(see, e.g., Chapter 2 of Franken et al. (1982)). Next observe that, adding the value
a/2 to the service time of each customer, a stable (standard) M/G/1 queue is
obtained with mean service time equal to e; + a/2, which works slower than the
original greedy server and for which, in particular, each empty point (i.e., an arrival
epoch at which the system is empty) is simultaneously an empty point of the
greedy-server system. Thus, under (2.3), the greedy server empties infinitely often and
Loynes’ scheme for constructing the stationary ergodic queuelng process (W) works.
The stationary ergodic process (Q,) can be constructed in a completely analogous
way. Because we are interested in the light-traffic behavior (i.e., a — 0) of queues with
spatially distributed arrivals, the strengthened stability condition (2.3) is not restric-
tive for our purposes. Moreover, for a small enough, by the same consideration as
above one can show that Loynes’ scheme works for constructing the stationary ergodic
process (W,), also under the assumption that the arrival epochs form a general
stationary ergodic point process, for both the polling and greedy servers. This case
will be considered in §4. B 3

For the rest of the paper we use the notation W= W, and Q = Q,. From the
individual ergodic theorem (see, e.g., Theorem 1.3.12 of Franken et al. (1982)) it
follows that

(2.4) lim —}—fO'Ws(B) ds = EW(B) for B €#([0,1]),
and
(2.5) lim %]ZQS(B) ds = EQ(B) for B &([0,1]),

with probability one. Thus, the stationary mean measures EW(-) and EQ(") are two
important performance characteristics.

The random counting measure W can be interpreted as the stationary configura-
tion of customers on the circle relative to the posmon of the server, at an arbitrary
point in time (i.e., not specifying whether the server is actually walking or serving).
Similarly, Q can be interpreted as the statlonary configuration of waiting customers
(relative to the server) given that the server is walking, i.c., “at a random travelling -
epoch.”

In the same way, using Loynes’ scheme, one can show for both the polling and
greedy servers that, for a small enough, there exists a stationary ergodic process (Z )
such that the finite-dimensional distributions of the workload processes (Z,, ;¢ > 0)
converge in variation to the corresponding finite-dimensional distributions of (Z,).
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Moreover, with the notation Z = Z,, we get from the individual ergodic theorem that

N _
(2.6) lim — OZS ds=EZ

=0

with probability one. The random variable Z can be interpreted as the stationary
workload on C, at an arbitrary point in time. Similarly, R, converges in variation, to a
random variable R, where R can be interpreted as the stationary workload on C, at a
random travelling epoch. A completely analogous argument can be used for proving
the existence of random variables Z and R, representing the virtual workload in the
stationary situation at an arbitrary point in time and at a random travelling epoch,
respectively. Finally, note that the distribution of R can be represented by

Y]
(2.7) R=Y S,
k=1
where §,, S,, ... is a sequence of i.i.d. nonnegative random variables with distribution

function F, which are independent of Q.

2.4. Stochastic decomposition. Assume that the arrival process is Poisson and
that (2.3) holds. The following stochastic decomposition results show that the distribu-
tions of |W| and Z are completely specified by the distributions of |Q| and R, and
vice-versa.

PrOPOSITION 1.  For every p = 0 we have

(1 —p)(1 —e™P)Lg( B) e-Pl0l

2.8 | Ee 7%l =
(28) e L:(B) -7
and

_ 1-p)p _
2.9 Ee?Z = —{ Ee 7R,
(2.9) P =a ¥ al(p)

where Lo(s) = [y e " dF(t) and B = a(1 — e7?).

For a rigorous proof of (2.8) we refer to Theorem 3.3 of Kroese and Schmidt
(1992); (2.9) can be proved along similar lines. For a discussion of workload decompo-
sition in polling models (with finitely many service stations), see, e.g., Boxma (1989),
Boxma and Groenendijk (1987), Doshi (1990a, b), Miyazawa (1994). More ““informal”
proofs can be found in Boxma and Westrate (1989) and Fuhrmann and Cooper
(1985a).

Note that the first factor at the right-hand side of (2.8) and (2.9) is equal to the
Laplace-Stieltjes transform of queue length and workload, respectively, in the “usual”
M /G /1 queue. Unfortunately it seems that, for the virtual workload Z, an analogous
decomposition formula does not hold. At first glance, this might be surprising.
Namely, for this kind of workload, a decomposition result similar to (2.9) has been
obtained in Theorem 3.3 of Miyazawa (1994) for quite general server vacations. Note
however that, in continuous polling systems, the increment of the virtual work load
process (Z ) at an arrival epoch is not independent of the value of (Z ) at this arrival
epoch because this increment consists not only of a service time, but for some
configurations of waiting customers, also of an increase of total walking time which is
not independent of the actual value of (Z) Consequently, the PASTA argument
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used in Miyazawa (1994) does not work in our case because this argument is based on
the assumption that the increment of the virtual work load process at an arrival epoch
is independent of the actual value of this process.

COROLLARY 1.  In particular, it holds that

2

ae
(2.10) EW|=p+ m—z_p) + E|Q|
and
L T L
(2.11) EZ = 2= 7) +ER 20 -p) + ¢,E|Q,

where we have used (2.7) and Wald’s lemma in the second equation of (2.11).

It turns out that, sometimes, the random variable |Q| (or the random measure Q) is
easier to analyze than |W/|(or W). In fact, for the polling server, the exact form of the
Laplace-Stieltjes transform of |Q| is known (cf. Theorem 4.1 of Kroese and Schmidt
(1992)). Moreover, even when the distribution of |Q] is hard to get—as is the case in
the Brownian server model—closed formulas for the mean measure EQ(-) are usually
much easier to find. The performance characteristics E|W| and EZ then follow from
(2.10) and (2.11).

REMARK 1. For the polling server, the mean measure of Q is given by (see Kroese
and Schmidt (1992) or Fuhrmann and Cooper (1985b)):

(2.12) EQ(d) = 7= (1-x)ds,  x<[0,1],
and hence,
a’e, + aa

2.13 EW|=p+ —2—r0,
(2.13) Wl=r 2(1 = p)
and

ae, + aae
2.14 EZ=—-32—1,
(2.14) 2(1 - p)

Another performance characteristic, the stationary mean sojourn time of a “random
customer” EyU, follows from Little’s formula (see, e.g., Theorem 4.2.1 of Franken
et al. (1982)):

(2.15) EIW| = aE,U.

Here the expectation E, is taken with respect to the Palm distribution of arrival
epochs. Notice that (2.14) also follows from (2.13), (2.15) and Brumelle’s formula (see,
e.g., Corollary 4.2.2 in Franken et al. (1982)):

e
(2.16) EZ - p(E0V+ 2—31-)

where EgV = E U — e, is the stationary mean waiting time of a random customer.
Note that Little’s formula (2.15) and Brumelle’s formula (2.16) hold for both the
polling and the greedy server model. Moreover, for both models these formulas
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remain true when the arrival epochs form an arbitrary stationary ergodic point
process with finite intensity such that (2.3) is fulfilled (see §4.2 of Franken et al.
(1982)). This will be used in §4 for getting light-traffic derivatives for E|W|, EZ and
EZ for the polling and the greedy server systems with general input.

For the greedy server, no analytic formulas for probabilistic characteristics of |Q]
are known, not even for the expectation E|Q]| in the Poisson arrival case. This makes
it impossible to give, in this case, closed formulas for the performance characteristics
E|W|, E,V and EZ. However, it is possible to derive asymptotic results for these
performance characteristics and for the mean measure of @, for small a.

3. Light-traffic results for the greedy server model. In §2.4, several performance
characteristics have been given for the polling model, but no such results exist for the
greedy server model. However, by using light-traffic analysis we can derive second-
order Taylor-expansions for several performance characteristics, e.g., for E[W| and
EZ. These Taylor-expansions could be used to obtain approximations to the true
performance characteristics. They show that the greedy server is indeed considerably
better than the polling one, when dealing with light traffic.

Moreover, we obtain an expansion for the expected configuration of customers,
given that the server is traveling. For the polling server, the expected density of
waiting customers (given that the server is not busy) is given in (2.12). This is a quite
intuitive result: The density is highest in front of the server, and decreases linearly
with the distance in front of the server. For the greedy server, one would (just as
intuitively) expect that the density of waiting customers (given that the server is not
busy) would be maximal at locations opposite to the server, as in the drunken server
case (cf. Kroese and Schmidt (1993)). But this is not true, at least not in light traffic.
On the contrary, the density is minimal at a distance 1/2 of the server. An
explanation for this is that the density should be viewed as a mixture of two densities,
one given that the server moves in a clockwise fashion, and the other given that the
server moves in a counter-clockwise fashion. Each such density resembles the density
in the polling server model, that is a (in first order linearly) decreasing density. We
can see this in the following theorem, where a (second-order) Taylor-expansion (at
a = 0) for EQ(0, x] is given, for all x € [0,1], viewing this quantity as a function
of a.

THEOREM 1. The following expansion holds for all x € [0,1]:

(3.1) EQ([0, x]) = /O”mQ(u) du + 0(a*)
as a — 0, where

(32) mg(u) = aa(l + p)(% - u) + azaz(%z _ 2Tu3)

for u €[0,1/2), and mo(u) =my(l —u) foru € (3,11

The proof of the theorem is given at the end of this section.

Notice that Theorem 1 suggests that m,, defined in (3.2), is the second-order
expansion of the density of EQ() in light traffic. But, formally, we have not proved
the existence of such a density. However, from a pragmatic point we tacitly assume
that such a density exists.
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The following corollary follows immediately from Theorem 1, (2.10) and (2.11).

COROLLARY 2. The second-order expansion for the mean number of customers is:

&, 2

2
(3.3) EW| = a(el + %) + a2( =+ + -j%) +0(a%).

And the second-order expansion for the mean workload is given by:

2 2

(3.4) EZ=a(%+e{Ta) +a2(e12ez + a:‘ + a4§‘) + 0(a%).
Notice that (3.3) and (3.4), when compared to (2.13) and (2.14), show that (in light

traffic) the greedy server is considerably more effective than the polling server.

REMARK 2. From the (second-order) Taylor-expansions we can derive approxima-
tions of the performance characteristics by simply dropping the O(a®) term. In order
to see how good the approximations are, simulation studies should be carried out.
This will be done in a separate paper. Also if heauy traffic results would be available,
these Taylor-expansions could be used to get via an appropriate interpolation,
approximation formulas for an arbitrary positive arrival rate a; see Fendick and Whitt
(1989), Reiman and Simon (1988a), Whitt (1989). The behavior of the greedy server in
heavy traffic is a very interesting (open) problem. All that is known (through
simulation studies) is that the greedy server behaves in heavy traffic as a polling
server, that is, during a busy period the greedy server will either travel almost always
in a positive direction (with probability 1,/2) or almost always in a negative direction.

In our search for light-traffic results, we are led by Baccelli and Brémaud (1993),
Blaszczyszyn (1995) and Reiman and Simon (1989) (see also Baccelli and Brémaud
(1994), Reiman and Simon (1988b), Sigman (1992), Simon (1993), Whitt (1988, 1989)).
In particular, we will use an extension of Corollary 5.2 in Blaszczyszyn (1995) to the
case of an independently marked Poisson process. Since we are now concerned with
stationary characteristics, we assume, in view of §2, that the arrival times {T,} form a
Poisson process on the whole real line R with intensity a, where we make the
convention

* <T_1<T0<OST1<T2< .

Assume also that (2.3) holds. Observe that we are in the same framework as Reiman
and Simon (1989), that is, we are dealing with a marked Poisson process {(T,,Z,)} on
R, with markings Z, = (X,, S,), where X, denotes the position (relative to the
position of the server at time T,) and S, the service time of the customer arriving at
T, These markings are i.i.d. and independent of the Poisson process {T}.

Next, consider other marked point processes with the same iid. markings as
{(T,, Z,)}, independent of the (nonmarked) point process. For such processes, let W,
be the random measure of waiting customers at time ¢, t € R. And, for ¢ € R, let

(3.5) L, =W(lz, z + dz]) Iy, 0,10

where z € (0,1), dz is some small strictly positive number, and I, denotes the
indicator of the set B. That is, L, denotes the number of customers at time ¢ waiting
in the interval [z, z + dz], provided that the server is not busy, or else L, = 0.

The idea behind the light-traffic analysis is to regard EL,, for the marked Poisson
process {(T,, Z,)}, as a function f of the arrival intensity a, and to obtain a (Taylor-)
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expansion of f in a at 0. This is accomplished by considering the behaviour of L, for
input processes that consist of only a few arrivals. For example, suppose that there is
only one arrival on R, at time s. Define G(s,x) = L, and let g(s,x) = EG(s, x).
Analogously, for the case that the arrival process consists only of two arrivals, at s
and ¢, we define H(s,t,x) = L, and h(s, ¢, x) = EH(s,t, x). We will show by using
the following Theorem 2 (which is an extension of Corollary 5.2 in Blaszczyszyn
(1995)) that the first and second (right-hand) derivatives f(0) and f®(0) of f at
a = 0 exist, under the condition that (2.3) holds and that the fifth moment es of
service times is finite. Moreover, Corollary 5.2 in Blaszczyszyn (1995) provides a way
to calculate these derivatives via the functions h and g, defined above (see also
Theorem 2 of Reiman and Simon (1989), where an additional “admissibility” condi-
tion is assumed). Related results for the “usual” multi-server queue (without walking
times) have recently been derived in Blaszczyszyn, Frey and Schmidt (1995); see also
the survey given in Blaszczyszyn, Rolski and Schmidt (1995). Before we state Theo-
rem 2 we give some preliminaries:

Let {(T,, Z,)} be an independently marked stationary Poisson process with the
mark space K = [0,1] X R,. By Qy we denote the set of realizations of {(T,, Z,)},
ie., Q is the set of (locally finite) counting measures @ on R X K with

o([a,b] XK) <=

for every bounded interval [a, b]. Let ¢ be a real-valued (measurable) functional
defined on Q. For every ¢ € R, let the restriction wl, of @ € Q be defined by

wl(BXC)=w(BN(-xt)XC).
Furthermore, for any ¢t € R and z € K, let

ll’(:,z)("’) = (//(wl, + 8(:,:)) - l,’/(wh)
where 8, ,, € Qy denotes the counting measure with

1 for(t,z) € BXC,

8(‘»1)(8 XC) = 0 for(t,z)€BXC.

Let k > 1 be an arbitrary, but fixed integer. Forany ¢,,...,t, € Rand z,..., 2, €K,
let Y, 2.0z D€ defined by iteration of the mapping ¢ — ¢, ,, i€,

Note that the functional ¢, ,,

.....

Yty 200t 20 (@)

k .
(3:6) r(-n7 X t//(wlfk + Y 6(,',21)) fore, < - <ty

o TR 1 A

0 otherwise,
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where { (f)} denotes the collection of all those subsets of {1,..., k} containing j

elements.
Following Blaszczyszyn (1995), we call the functional ¢ continuous at infinities if

lirrl Yol +v) =y¢(v)

and

Jim p(l) = ¥ (o)

for all w, v € O with ¥(R X K) < oo,

The following result is a straightforward extension of Corollary 5.2 in Blaszczyszyn
(1995), where the nonmarked case has been considered. However, in order to make
the paper more self-contained we sketch the proof of Theorem 2 in the Appendix.

THEOREM 2. Let P, denote the distribution of the independently marked Poisson
process {(T,,, Z,)} with intensity a, and let F denote the distribution of the random
variables Z,,. Let k 2 1 be a fixed integer. If the functional  is continuous at infinities, if

foralli=1,...,k, and if

3.8 lim su
( ) a»Op'/;RxK)k*'

-dt; F(dzy) ... dt,, Fdzy,,) <=,

then

(3.9) Ey (T, Z,))) = ¥(0) + La @ ey 200 50(0)

i1 xXK)

-dty F(dzy) ... dt, F(dz,) + O(a**").

PROOF OF THEOREM 1. We apply Theorem 2 to the functional ¢ = L, defined in
(3.5). It is easy to see that this functional is continuous at infinities. Furthermore
from (3.5) and (3.6) we get that condition (3.7) is fulfilled for k = 2 because the
fourth moment e, of service times is finite. This can be seen in the following way:
With the notation |L| = |W, II(W (0, 1=0y We first show that (3.7) holds for i = 1. Note
that, for ¢, > 0, the mtegrand in (3.7) vanishes and, for ¢, < 0, we have

|Lo( @l + 8,.2) “"n)l Z (U + D hypandioy, < i sz

where Sy =S, + a/2, and §,,S,,... denote the service times of the customers
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served after time ¢,. This gives

[ [ o0l + 8, 2p) = Lo(l)|Pu(dw) dty F(dz)
RXK7 Qg
o ) a
< ¥+ 1R(L = De + 7),
=0
because the distribution of |L| does not depend on ¢,. The sum in the last inequality
is finite, because |L| can be bounded by the stationary queue length in the standard
M/G /1 queue with service times Sy. Thus, E|L|* < » in view of e, < . Hence,

(3.7) follows for i = 1. Observe that, for i = 2, the integrand in (3.7) again vanishes if
t, > 0. Thus, assume that ¢, < t, < 0. Moreover, we have

(Lo)aey, 20,05, (@) = 0

for each w € {ZIL28* < —t,}, because in this case

n=1

Lo(wl‘z + 8(‘2-12) + 8(‘1:11)) = LO(wI‘Z + 8(‘1v11))
and
Lo(wl,2 + 8(,2,22)) = Lyo(wly,).
Consequently, using analogous bounds as for i = 1, we obtain the inequality
Sl JED 20,0 s @) Pu( d) it F(dey) iy F(d)
o o r0 1+2
<2Y (I+2)P(Ll= l)f [ P(—t2 <Y S,’;) dt, dt,
1=0 —®7h n=1
o 1+2 2
=Y (I+2)P(ILI = l)E( Y s,*;) .
=0 n=1

This sum over / is finite because E|L|> < % in view of e, < . By similar arguments
we get from e < % that (3.8) is also fulfilled for k = 2. Thus, the Taylor expansion
(3.9) holds for ¢ = L, and k = 2. Specifically:

(3.10) FO(0) = f_°° g(s,0) ds
and
(3.11) F(0) = 2f_°° [ (h(5,£,0) - g(s,0) — g(1,0)) drds.

Trivially, f(0) = 0. Moreover, it is easy to see that

(3.12) EQ([z,z + dz]) = f(a)/(1 - p),
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for z € (0,1). In order to prove (3.1), it remains therefore to show that for all
z€(0,1/2],

(3.13) FO0) = a(% - z) dz + o(dz)
and
(3.14) £O(0) = a2(22 - 4723) dz + o(dz),

as dz — 0. The result for z € [1/2,1) follows then by symmetry.

Instead of evaluating the integrals (3.10) and (3.11) we will use a convenient
transformation which reduces the calculations to “integration over paths.” Notice that
h(s,t,0) = h(0,t — 5, —s), g(s,0) = g(0, —s) and g(¢,0) = g(0, —¢). Substitute this
into (3.10) and (3.11). Now perform the transformation (s, t) = (u(s; t), v(s, t)), where
u(s,t) =t —s and u(s,t) = —s. Finally use the fact that for u > 0, A(0,u,v) =
g(0,v) = 0, for all v < 0. This leads to the following results:

(3.15) o0 = [ “g(0, v) dv
and
(3.16)  f(0) = 2[0°°[0°°(h(0, u,v) - 2g(0, v)) dvdu.

From (3.15) it is easy to see that (3.13) holds. Next, we determine, for fixed u, the
integral [Fh(0, u, v) dv. Consider thus the situation that there are only two arrivals,
one customer arriving at time 0, at a distance X (say) from the server and another
arriving at time u, at a distance Y (say) from the server. We may assume that X and
Y are i.id. r.v’s, uniformly distributed on [0, 1]. If u > @/2, we are certain that the
second customer does not arrive before the server has reached the first customer.
Consequently,

(3.17) f h(0,u,v)dv = 2/ g(0,v)dv, foru = a/2.

0 0
Let E* denote the conditional expectation given “X = x,” and define
(3.18) k(x,u,z,dz) = Ej H(0,u,v) dv,

for (x,u) €0,1] X [0, @/2]. Below, this quantity will be calculated (up to o(dz)).
Notice, that by the symmetry of the model,
(3.19) k(x,u,z,dz) = k(1 —x,u,1 -z,dz) + o(dz).

Hence combination of (3.13)-(3.19) shows that (3.14) is proved if we can show that
Zfa/zfl/z[k(x,u, z,dz) + k(x,u,1 — z,dz)] dxdu
o ‘o

3 ( )’

forall z € (0,1), as dz — 0.
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FIGURE 1. Possible movements of two particles starting at x € [0,1/2] and y. A(x, y, z) is given at the
end of the horizontal line-segment at height z.

For u > ax and x < 1/2 the server reaches the first customer (who arrived at 0)
before the arrival of the second customer. It is easy to see that for this case, for
z€[0,1] and dz — 0,

(321) k(x,u,z,dz) = adz(l, 1 5(x) g 1/9(2) +11/2 — z|) + o(dz).

The more difficult case arises when the second customer arrives before the first
customer has been reached, that is when u < ax (again, we only consider the case
x < 1/2). It is now possible that the server reverses his direction. Before time u there
is only one customer in the system travelling with constant speed a~' towards 0
(from the perspective of the server), so

u
(3.22) E[O H(O,u,v)dv=adzl, .-, ,(z) +o(dz).
At time u there are two particles in the system. In connection with this, consider the
following deterministic particle system:

Particle System 3. Suppose at time 0 two particles are born, at positions x € [0, 1]
and y € [0, 1]. These particles move towards 0 or 1 in the “greedy server way” (as in
the particle systems 1 and 2). They die instantaneously when they hit 0 or 1 without
producing offspring. All possible particle movements are depicted in Figure 1. For
(x,y,2) €[0,1/2]) X [0,1] X [0,1], let A(x,y,z) be the number of times that a
particle trajectory crosses level z (see Figure 1). Let

(3.23) r(x,z) = j:)t(x, ¥y, z) dy.

Notice that the value of r(x, z) does not depend on a. A moment of reflexion will
show that

(3.24) E[ H(0,u,v)dv=adzr(x - a”'u,z) + o(dz).
u
It remains therefore to calculate r(x, z) for (x, z) € [0,1/2] X [0, 1]. These calcula-
tions form the most involved part of the proof, but they are straightforward. In Figure
2 a complete specification of r is given.
The reader may check that from (3.22), (3.24) and Figure 2 it follows that

j;l/zj;axk(x, u, z,dz) dudx

3.25
(3:2) = a?dz(19 — 12z — 242> — 4023) /96 + o(dz) if z € [0,1/2],

a’dz( =7 + 36z — 4822 + 242%) /96 + o(dz) if z € [1/2,1].
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1/4
1 A =1/242+2
¢ B:3/2-z-32z
z 7 B D C: -124z—-xz
D: -3/24+:+3z
A E
E:1/2-z42
1/2 F [ F:1/2—-2+2
e v 1/2- 32452
J H:3/2-z2+4¢
U 1:3/2-32z4¢2
J:58/2—2z-3z
0 r— 1/2

FiGURE 2. The values for r(x, z).

On the other hand, from (3.21) it follows that for all z € [0, 1),

fl/zfa/zk(x, u,z,dz) dudx

0 ax

(3.26)

2
= azdz( (1/24_ ) . I1/28_ zl) +o(dz).

The combination of (3.19), (3.25) and (3.26) now yields the desired result (3.20), which
completes the proof of Theorem 1. o

REMARK 3. Note that, using the same approach, it should (in principle) be
possible to derive higher-order expansions for EQ(-). It is also possible to derive the
expansions for E[W| and EZ directly; indeed the analysis is somewhat simpler. The
Taylor-expansion for EW(:) can also be computed via the same method.

REMARK 4. The nonmarked version of Theorem 2 has been obtained in
Blaszczyszyn (1995) as a corollary of a much more general expansion for functionals
of arbitrary stationary (nonmarked) point processes, where the notions of higher-order
Campbell measures and Palm distributions of such processes have been used. This
approach seems to be very promising for deriving (higher-order) light-traffic approxi-
mations for queues with a (non-Poissonian) arrival process possessing some special
dependence structure which still allows us to calculate limits of higher-order Palm
distributions and factorial moment measures when the arrival intensity a tends to
zero. In Baccelli and Brémaud (1993), conditions different from those in Blaszczyszyn
(1995) and Reiman and Simon (1989) have been given for the validity of analogous
formulas for light-traffic derivatives, where in Baccelli and Brémaud (1993) mostly the
case has been considered that the input is a general stationary marked point process.
The crucial step of the approach given in Baccelli and Brémaud (1993) is to show that
a certain functional g is nonnegative almost surely (see condition (i) of Theorem 1 in
Baccelli and Brémaud (1993)) and, then, to use Campbell’s formula for stationary
marked point processes. Unfortunately, for the work loads Z and Z in the greedy-
server model (and, even more, for the queue length [W) it is difficult to check the
conditions given in Baccelli and Brémaud (1993) because their nonnegativity condi-
tion (with respect to the functionals g corresponding to these queueing characteris-
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tics) seems not to hold for the greedy-server model. However, we show in §4 that
(first-order) light-traffic results for the greedy server can indeed be derived under
mild conditions on the input process.

4. Light-traffic derivatives for general stationary ergodic arrival processes. In
this section we show how standard formulas of queueing and point process theories
can be used in order to get, in an elementary way, light-traffic derivatives for
stationary characteristics of (total) queue length and work-load of the polling server
(PS) and of the greedy server (GS) with general input considering these characteris-
tics as functions of the arrival intensity a. For getting first-order light-traffic deriva-
tives in the greedy-server model (with not necessarily Poisson arrival process), no
additional condition on the service time distribution is needed, where we do not use
Campbell’s formula in its general form. It turns out that two well-known specifica-
tions of the general Campbell formula, i.e., Little’s and Brumelle’s formulas, are more
appropriate tools for the purpose of §4.1.

The arrival epochs are assumed to form a quite general stationary ergodic (neither
necessarily Poisson nor recurrent) point process satisfying, however, the following
conditions. For each a small enough, consider a stationary ergodic point process of
arrival epochs (7,{*) with intensity a. Let A, denote the event that the customer
arriving at zero, under the Palm distribution P, of arrival epochs, finds no further
customers in the system and that the next inter-arrival time is greater than x.
Moreover, let ¥ denote the stationary actual waiting time of a random customer; see
also §2.4.

ASSUMPTION. We assume that

(4.1) lim Py(A4,) =1
a—0
and that there is a random variable V such that

(4.2) E,/ <o and V<V for all sufficiently small a.

Note that the conditions (4.1) and (4.2) are fulfilled, e.g., in the case when (i) the
arrival processes (T(?) are obtained by dilation of a fixed point process (7)), i.e.,
T(® = q~'T,, which means that the mapping @ — V is stochastically monotone, and
(i) the point process (7,,) satisfies some mixing condition which ensures that Ejl” < «
and which, for example, is fulfilled for Markov modulated Poisson processes and for
recurrent point processes (cf. Daley and Rolski (1992, 1994)).

Throughout this section we use the variable y in the following sense:

a 01
Y=3 forPS and y= 7 for GS.

4.1. Light-traffic derivatives via Little’s and Brumelle’s formulas. Because. Little’s
and Brumelle’s formulas can be seen as special cases of Campbell’s formula for
stationary point processes (cf. Franken et al. (1982)), the present section is closely
related to the light-traffic approaches considered in Baccelli and Brémaud (1993) and -
Blaszczyszyn (1995). First we investigate the limit behavior of the stationary mean
waiting time E V' of a random customer when the arrival intensity a tends to zero.
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THEOREM 3. We have

(4.3) lim E)V = v.

a—-0

Proor. Clearly,

(4.4) EoV = Py(4,)Eo(VI4,) + Eo(VL),
where
(4.5) E|(Vl4,) =

for all a satisfying (2.3). Furthermore, from (4.1) and (4.2) we get that

(4.6) lim Eq(VL,;) =0,
a-—

so that (4.3) follows from (4.4)-(4.6). O
The following result is an immediate consequence of Theorem 3 and of Little’s and
Brumelle’s formulas (2.15) and (2.16).

COROLLARY 3. We have the light-traffic derivatives

. E|W|
(4.7) all_r’% — —aty
and
EZ e
(4.8) . all_!}}) T = ‘yel 72

Thus, comparing the formulas in (4.7) and (4.8) with (2.13) and (2.14), we see that for
the greedy server the considered light-traffic derivatives are significantly smaller than those
for the polling server, in particular when service times are not too lqrge.

Furthermore, we conjecture that, for a large class of arrival processes, the perfor-
mance characteristics E|W| and EZ seen as functions of the arrival intensity a are
continuously differentiable in the interval (0, (e, + a/2)~!). Note that, for the polling
server with Poisson arrival process, this smoothness property of E|W| and EZ follows
directly from (2.13) and (2.14). Then, with respect to E|W| and EZ, the greedy server
would be better than the polling server in a certain interval (0, §) of positive length
& > 0. However, it seems to be difficult to determine & analytically although, clearly,
it would be extremely interesting to clarify how & depends on the form of the
distributions of the sequences of arrival epochs and service times. A further open
problem seems to be how (say, in case of Poisson arrivals) higher-order moments of
the distribution of service times affect the performance characteristics E{W| and EZ
of the greedy server. Perhaps, a simulation study could help to solve this question.

Finally, let us discuss the light-traffic behavior of the mean work load EZ defined
in §2.2. For investigating EZ, we introduce the following auxiliary “usual”single-server
queue by considering “fictitious” service times (and omitting, in this way, vacations of
the server). Namely, we add to the usual service time of an arriving customer the
amount of walk time which additionally arises for serving the actual configuration of
customers on the circle (now including the newly arriving one). Of course, these
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fictitious service times are not independent of the arrival process. But Brumelle’s
formula can still be applied. Namely, assume that the auxiliary queue is in steady
state. By J, let us denote the additional walk time caused by a random arriving
customer. Its service time we denote by S. Then, Brumelle’s formula gives (see,
e.g., Theorem 4.2.1 in Franken et al. (1982))

(4.9) EZ = aB,|V(S +7) + 5(S +J)’
Because lim,_, o Eo[V(S + J)] = 0 and

o et 2e;5 + 5  forPs,
lim E(S +J)? = P
a=0 e, + 2e12— t 13 for GS,

we get from (4.9) that

)

2 6e, +2) forPS,

h|E>

2,2
(4.10) li 5 12 (
' 1m e a
a—0 - + —2-(3e1 ) for GS.
Thus, for the greedy server, the light-traffic derivative of EZ can also be significantly

smaller than that for the polling server.

4.2. Light-traffic derivatives for distribution of work load. In addition to the light-
traffic derivatives (4.8) and (4.10) for the stationary mean workloads EZ and EZ now
we give corresponding light-traffic derivatives for the distributions of Z and Z,
respectively. For queueing systems without server vacations, a similar result has been
obtained in Sigman (1992).

First we consider the conditional distribution of the work load Z under the
condition that the server is busy with serving a customer, i.e., that W({0,1}) > 0.
From the rate conservation law for stationary processes with stationary embedded
point process, it follows that (see, e.g., formula (2.1) in Miyazawa (1994)),

(411)  P(Z>xW({0,1}) >0) =1 - foxPo(Z < x ~ u) dF,(u),

for every x = 0, where P, denotes the Palm probability measure taken with respect
to the stationary point process of arrival epochs, and F, is the distribution function of
stationary residual servicé time given by

(4.12) F(x) =e! [0"(1 ~ F(u)) du.

From (4.1) we get

(4.13) lim Py(Z < x) = 1
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for every x = 0. Thus,

(4.14) lim P(Z > xW((0,1}) > 0) = 1~ F(x).
a—
Furthermore, from (4.11) and (4.12) we get

: - &
E(Z|server is busy) = E,Z + Te.

Assume now, additionally to (4.2), that

(4.2) Z<V and Z <V forall sufficiently small a

which is fulfilled for the same class of arrival processes that satisfy (4.2). Then
lim,_, ,E,Z = 0 and, consequently,

(4.15) lim E( Z |server is busy) = Ze—ez,
1

a=0
which is in accordance with the intuition. Moreover, because
P(server is busy) = p = ae,

for all sufficiently small a, from (4.8) and from the law of total probability, taking
(4.15) into account, we get that

(4.16) i E(Z Iserverisidle)

a=0 (ay)e,

Now, let us discuss the work load Z. For this purpose, we again consider the auxiliary
single-server queue with “fictive” service time J + § of a random customer intro-
duced in §4.1. Then, Takacs’s formula on the relationship between virtual and actual
workload in stationary single-server queues (see, e.g., Theorem 4.5.1 of Franken et al.
(1982)) gives

P(Z >x)
(4.17) .

- mE0 min(J + S, (x - Z),)

= aE,(J + S)(l

for every x > 0, where y,= max(0, y). From (4.1) and (4.2') it follows that

lim E, min(J + S, (x = Z), ) = lim E, min(J + S, x)
a— a-

X X
= lim [ Py(J + 8> u)du= [ P(Jy+S > u)du,
0 0

a-0

where the random variable J; is independent of S, and uniformly distributed on
[0, a] for the polling-server model, and on [0, a/2] for the greedy-server model,
respectively. Moreover, lim,_, , E((J + 8) = E((J, + §) = EyJ, + e;. Thus, we get
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the light-traffic derivative

lim P(Z > x)
a—0 a

(4.18)

1 X
= (EOJO +e1)(1 - WAPO(JO +S >u) dui,

where EgJ; = y. This is in accordance with the light-traffic derivative (4.10) for the
expectation EZ.

Appendix. Now we sketch the proof of Theorem 2 which is a straightforward
extension of Corollary 5.2 in Blaszczyszyn (1995) to the case of (independently)
marked Poisson point processes. Note that, by similar arguments, Theorem 3.2 in
Blaszczyszyn (1995) which concerns the factorial moment expansion of the expecta-
tion of functionals of an arbitrary nonmarked point process, can also be extended to
the case of an underlying marked point process. However, for the purposes of the
present paper, we will concentrate on functionals of a marked Poisson process.

The proof of Theorem 2 is provided by induction with respect to k and based on
the following result which concerns the case & = 0 and which was obtained, for
functionals of a general (not necessarily Poisson) point process, in Baccelli and
Brémaud (1993) (see also Baccelli and Brémaud (1994) and Lemma 3.3 in Blaszczyszyn
(1995)).

LEMMA A. For a continuous at infinities functional { of an independently marked
homogeneous Poisson process (T, Z,)} with intensity a and mark distribution F, it holds
that '

(A1) EY({(T,.Z)}) = w(0) +af [ W, (0)P(do)dtF(dz)
RXK’Qy
provided that
(A.2) fR . fn K| Y. (@) |P(dw) dtF(dz) < .
Observe that the integral at the right-hand side of (A.1) can be written in the form
o(@)P(dw) dtF(dz) = Ey, .(((T,,Z,)}) dt F(dz).
Joiy Yoot @) P(d) deF(dz) = [ B (T, 2,))) deF(d2)

Next, for any fixed (¢, z), we apply Lemma A to the functional , ,, of {(T,, Z,)}
getting that

EY({(Tns Z))) = (0) +af 4, o(0) dtF(d2)

\ 3 .
ta j;RxK)Z'/a:IK(ll/(tl'zl))(tz’zz)( w)P,(dw) dt, F(dz,) dt, F(dz,)
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provided that, besides (A.2),

P(dw) dt, F(dz,) dt, F(dz,) < .

'I;RXK )z'fﬂxl( lIl('lr Zl))(tz, zz)( w)

Then, using the fact that
¢,(’1,21)»~-‘('i»1i)( w) = ( v t’,’(fpll) T )(t,«,z,-)( w)’
by induction we obtain the expansion

Ey({(T.. Z.,)})

k
=60 + Ta[ W (0) di F(dzy) .t F(dz)
(RxK)

i=1

k+1
e '/;RXK)k+1'/;1K¢(‘1’Zl)"'"(’k+1~zk+1)( w)Pa(dw)

dty F(dz,) ... dty,, F(dzy 1)

provided that, forall i = 1,...,k + 1,

P(dw)dt, F(dz,) ... dt, F(dz)) < .

'/(‘RXK)"'/;]Kl "[/(’l’zl)v---v(‘uzr)( )

From this, the statement of Theorem 2 follows.
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