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Abstract: The transmission of light through a subwavelength hole
drilled in a metallic thin film is calculated by numerically solving
Maxwell’s equations both for a simple hole and for a hole with ad-
ditional structure. A maximum in the transmission cross section is ob-
served for hole diameters of the order of but smaller than the wave-
length. Transmission cross sections well above the hole area are shown
to be attainable by filling the hole with a high-index material. The
effect of adding a small particle inside the hole is also analyzed.
c© 2002 Optical Society of America

OCIS codes: (050.1220) Apertures; (050.1960) Diffraction theory

References and links
1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, ”Extraordinary optical
transmission through subwavelength hole arrays,” Nature 391, 667 (1998).

2. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, , and T. W. Ebbesen, ”Enhanced light trans-
mission through a single subwavelength aperture,” Optics Letters 26, 1972 (2001).

3. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Mart́ın-Moreno, F. J. Garćıa-Vidal, and T. W.
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13. J. A. Porto, F. J. Garćıa-Vidal, and J. B. Pendry, ”Transmission resonances on metallic gratings
with very narrow slits,” Phys. Rev. Lett. 83, 2845 (1999).

14. S. Astilean, Ph. Lalanne, and M. Palamaru, ”Light transmission through metallic channels much
smaller than the wavelength,” Opt. Comm. 175, 265 (2000).

15. Q. Cao and Ph. Lalanne, ”Negative role of surface plasmons in the transmission of metallic gratings
with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).

(C) 2002 OSA 16 December 2002 / Vol. 10,  No. 25 / OPTICS EXPRESS  1475
#1768 - $15.00 US Received October 28, 2002; Revised December 03, 2002

mailto:jga@sw.ehu.es
http://dipc.ehu.es/jga


The limit imposed by diffraction on the wavelength scale has been recently challenged by
new photonic designs aimed at transmitting light through subwavelength apertures. In
this context, extraordinary light transmission through arrays of holes has been reported
[1]. Also, the transmission through isolated apertures in metallic films has been shown
to be enhanced when the entrance surface is decorated with appropriate additional
structure [2] and the angular distribution of the transmitted light is focused around the
direction of the incoming beam when the exit surface is also decorated [3]. For narrow
slits and light polarization perpendicular to the aperture, the transmission has also been
shown to reach values that are several orders of magnitude higher than those expected
from the geometrical area of the aperture in the absence of diffraction effects [4, 5, 6].

For circular holes in thin metallic films, light transmission becomes very small when
the wavelength λ is much larger than the radius of the hole a. Actually, the transmission
behaves like ∝ (a/λ)4 in the long wavelength limit, a result first obtained by Bethe [7],
and subsequently corrected to include higher-order terms by Bouwkamp [8]. However,
the behavior in the λ ∼ a region cannot be easily addressed by analytical means and
numerical simulation becomes essential.

The infinite extension of the film becomes difficult to handle by numerical methods.
In particular, finite-difference in the time domain calculations require a finite integration
area of diameter R, and the numerical results show a poor convergence with R for
transmission through a hole, which reflects the fact that the currents and charges induced
near the hole produce a field of strength proportional to 1/R near the film boundary, and
this acts back on the hole region with an overall strength also proportional to 1/R (notice
that a factor of 2πR for the film circumference needs to be invoked in this argument).
Therefore, it is convenient to use a method that can project the entire problem onto
the region near the hole. One possibility is to use mode-expansion matching techniques
[9], which are difficult to adapt to geometries as those discussed in the final part of this
paper. Instead, projection on the hole region can be accomplished by using the more
versatile boundary element method, as explained below.

In what follows, the boundary element method will be used to solve Maxwell’s equa-
tions numerically in the presence of a perfect-metal film. This method consists in ex-
pressing the electromagnetic field in terms of boundary charges and currents within each
homogeneous region of the geometry under consideration. The boundary sources are in
turn obtained by imposing the customary boundary conditions on the electromagnetic
field. This method has already been applied to other problems like the simulation of
electron low-energy losses in the presence of complex targets [10] and also to calculate
extinction cross sections of nanoparticles [11]. A modified version of this method will
be discussed next that is more suitable to deal with the specific geometry of the hole
under consideration.

The electromagnetic field inside a region j filled with a homogeneous material de-
scribed by its dielectric function εj and magnetic permeability µj can be expressed in
terms of equivalent electric currents and charges (σj and hj , respectively) distributed on
its boundary. These sources describe the outer electromagnetic environment as observed
from region j. Working in frequency space ω and using the continuity equation (i.e.,
∇ · hj = iωσj), the electric and magnetic fields inside j can be written

E(r) = Eext
j + ik

∫
Sj

ds [1 +
1

k2εjµj
∇∇]Gj(r − s)hj(s)
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Fig. 1. Boundary element method approach to the transmission through a small
hole. The problem is solved in terms of magnetic boundary charges and currents
distributed around the hole boundary. See text for more details.

and

H(r) = Hext
j +

1
µj

∫
Sj

ds∇Gj(r − s)× hj(s),

where k = ω/c is the momentum of light in vacuum, Sj represents the boundary of
region j, and Eext

j and Hext
j are external fields with sources inside j. One can recog-

nize the presence of the Greenean of Maxwell’s equations [1 + (1/k2εjµj)∇∇]Gj in the
first of these expressions, whereas the second one is directly obtained from the first
using Fadaray’s law. The scalar Green function Gj(r) = exp(ik√εjµjr)/r has also been
employed. Now, it is well known that, in the absence of external sources, Maxwell’s
equations are invariant under the transformation {ε → µ, µ → ε,E → H,H → −E},
and therefore, one might as well use magnetic boundary charges and currents instead of
electric ones, so that an entirely equivalent formulation of the boundary element method
can be given based upon the following expressions:

E(r) = Eext
j − 1

εj

∫
Sj

ds∇Gj(r − s)× mj(s) (1)

and

H(r) = Hext
j + ik

∫
Sj

ds[1 +
1

k2εjµj
∇∇]Gj(r − s)mj(s),

where mj are magnetic currents parallel to the boundary of region j.
Following Bethe [7], we will use magnetic charges and currents only in the boundary

around the hole to solve Maxwell’s equations exactly in the presence of a perfect-metal
film. He obtained the transmission cross section of a small hole in infinitesimally-thin
films by considering a distribution of magnetic charges and currents in the hole, making
use of the fact that the induced electric field [i.e., the integral in Eq. (1)] is perpendicular
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to the film at its surface. He worked out an analytical expression in the long wavelength
limit (see below), in which case the magnetic sources can be regarded as a magnetic
dipole. Our case is slightly more complicated, since we want to solve the problem for
an arbitrary size of the hole and for films of finite thickness. However, Bethe’s ideas
can be still applied by considering the construction sketched in Fig. 1: the magnetic
boundary sources in regions I and III (right on the upper and lower sides of the hole,
respectively), do not contribute to the parallel electric field on their respective side of
the film surface. The boundary sources in the inner region of the hole are then used to
match the electromagnetic field in that region to the field outside it.

Now, the external field is taken to be a plane wave reflected on an infinite metallic
film, so that the parallel components of Eext

j vanish at the film surfaces. Therefore, the
boundary conditions at the film surfaces are just satisfied because the parallel compo-
nents of both external and induced fields vanish altogether by construction. The actual
solution of the boundary sources is obtained by discretizing the boundary of the hole,
which will be described by a set of representative points. Two values of the magnetic
current are defined at each of these points in the upper and lower parts of the hole: one
for the vacuum side and a different one for the inner side. Also, the parallel components
of the electric and magnetic fields are set to be continuous at each discretization point
[12], so that the number of equations (2 two-component vector equations per point)
equals the number of variables (2 two-component parallel currents). On the vertical
boundaries of the hole, there is only one condition per discretization point (i.e., the
vanishing of the parallel electric field), but no current has to be defined on the metal
side of the boundary, so that the total number of variables and equations remains equal
to each other.

The symmetry of the geometry under consideration allows us to use cylindrical co-
ordinates to solve the problem, and in particular for normal incidence only the m = ±1
components are relevant, which lowers the dimensionality of the numerical method to
1.

A typical solution of this problem is presented in Fig. 2, where the transmission
cross section is represented as a function of the radius of the hole for a film thickness
t equal to 0.1 times the radius a and for light incident normally to the film. The cross
section is defined as the area by which one has to multiply the incoming photon flux per
unit area to obtain the transmitted photon flux. The cross section has been normalized
to the area of the hole in the plot. Obviously, this ratio has to go to 1 in the small
wavelength limit, and this can be already observed for holes as small as the wavelength
in diameter. Notice that the transmission presents a maximum in the subwavelength
regime for a = 0.27λ.

In the related context of slits in metallic films, the transmission of light polarized
perpendicularly to the aperture can reach cross sections that are several orders of magni-
tude larger than the aperture area [5, 6]. This is the result of Fabry-Pérot resonances in
the narrow channel formed by the slit and involving evanescent modes of the waveguide
[13, 14, 15]. However, such resonances do not occur when the electric-field polarization
is along the slit [5, 6], in which case the resulting transmission is very small. Similarly,
one can attribute the maximum in transmission observed in Fig. 2 to such a type of
resonance, although in the case of circular holes the incident electric field is not per-
pendicular to the aperture edge in all of its contour, and this, together with the finite
size of the aperture, causes an attenuation of the strength of the mentioned resonance
as compared to the case of the slit.

In our case, the relevant modes of the circular waveguide can be propagating. Indeed,
whereas the condition required by a square waveguide drilled in a perfect metal material
to sustain propagating modes is that its side is not smaller than half the wavelength, the
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Fig. 2. Transmission cross section of a cylindrical hole in a perfect-metal slab as a
function of the hole radius. The slab thickness is 0.1 times the radius. The cross
section is normalized to the area of the hole, and the radius is normalized to the
wavelength. The incidence of the light is perpendicular to the slab. The contour-plot
inset shows the polar angle distribution of transmitted light as a function of hole
radius (brighter regions stand for higher transmission intensity).
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case of circular waveguides is governed by zeros of Bessel functions and its derivative,
which under normal incidence (i.e., for fields belonging to the m = 1 symmetry) imply
that ka must be above the first zero of J ′

1, that is, a > 0.3λ. This limiting value is close
to where the resonance is observed in the transmission curve of Fig. 2.

The inset of Fig. 2 shows that the angular distribution of the transmitted light is
very broad for small radius, whereas it is highly directly along the propagation direction
of the incoming beam as the hole radius increases. In connection to this, the presence of
additional structure on the exit surface of the film has been recently shown to greatly
modify this angular dependence of the transmission [3].

Figure 3(a) shows the results obtained for different ratios of the film thickness to the
radius of the hole, t/a. As the relative thickness increases, the transmission diminishes
considerably in the subwavelength region. In Fig. 3(b) these calculations are represented
in logarithmic scale, showing the expected ∝ (a/λ)4 dependence of the transmission
in the small-hole limit [7]. The actual value of the transmission for a given radius
decreases nearly exponentially with film thickness in the long wavelength limit, and this
permits one to speculate that the transmission is actually mediated by evanescent modes
that propagate along the hole. However, the maximum of transmission [Fig. 3(a)] shifts
towards larger values of the radius as the thickness increases and its actual value does
not decrease exponentially, but rather seems to approach a limiting value. This behavior
could be due to the contribution coming from transmission mediated by propagating
modes of the circular waveguide, as discussed above.

The results of Fig. 3 have been compared with the analytical formula

σ

πa2
=

64
27π2

(ka)4[1 +
22
25

(ka)2 +
7312
18375

(ka)4 + . . .], (2)

which applies to infinitesimally-thin films (ka = 2π/λ � 1). The first term in this
expression was first derived by Bethe [7] and subsequent terms were calculated later on
by Bouwkamp [8]. Equation (2) is in good agreement with the extrapolated behavior
of the calculations presented in Fig. 3(b) to zero thickness within the large wavelength
limit. However, Fig. 3(b) also indicates that Eq. (2) is rather inaccurate for a radius as
small as 0.2 times the wavelength, and while the Bouwkamp correction terms describe
the change in slope actually better than Bethe’s first term in Eq. (2) within the 0.07 <
a/λ < 0.15 range, the former breaks down earlier as a/λ increases.

Dielectrics are to light what metals are to electrons in the sense that Helmholz
equation for light in a material of dielectric function larger than one can be rewritten as
Schrödinger equation with a negative potential. So, one could expect that light would be
attracted to the hole if one filled it with a high-index dielectric material, and this would
in turn result in improved transmission. This is actually the case, as shown in Fig. 4 for
a hole filled with Si (ε = 11.9). The transmission resonance in the subwavelength region
reaches a cross section that is nearly three times the area of the hole, and a factor of two
larger than that of the undressed hole (see Fig. 2). Besides, the resonance is considerably
narrower when the hole is filled with Si. The transmittance of a homogeneous Si film of
the same thickness is also given in Fig. 4 for comparison (broken curve showing a smooth
dependence on wavelength, as the resonances in the solid curve are connected with the
presence of the hole, which is missing in the homogeneous Si film considered in the broken
curve). The normalized cross section of the hole converges to the transmittance through
a homogeneous Si film in the large radius limit. In addition to the main resonance
near a = 0.18λ, a series of resonances is observed in this case for larger radius, which
originate in the reduction of the wavelength by a factor of nearly 3.5 in Si as compared
to the wavelength in vacuum, so that more propagating modes are switched on within
the range of radius under consideration. The narrowing of the resonance could also
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Fig. 3. (a) Transmission cross section of a cylindrical hole drilled in a perfect-metal
film as a function of the hole radius for different ratios of the slab thickness to the
radius (see labels). The light is coming perpendicular to the film. (b) Same as (a)
in log− log scale and compared with the asymptotic formulas of Bethe (Ref. [7])
and Bouwkamp (Ref. [8]), which are valid for vanishing thickness [see Eq. (2)].
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Fig. 4. Transmission cross section of a cylindrical hole drilled in a perfect-metal thin
film and filled with Si (solid curve) as a function of hole radius. The broken curve
represents the transmittance of a homogeneous Si film of the same thickness. The
dependence of the transmitted intensity on the polar angle upon exit is shown in
the inset (brighter regions stand for higher transmission intensity).
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Fig. 5. Transmission cross section of a cylindrical hole drilled in a perfect-metal thin
film and containing a perfect-metal sphere in its center (solid curve). The light is
coming perpendicular to the film. The broken curve corresponds to the transmission
of the same geometry but with the hole filled with Si (see insets).

originate from this contraction of the wavelength. This argument would lead also to an
effective film thickness that is larger by the same factor, but the height of the peak is
larger than in the case of the naked hole of the same thickness considered above, so
that the coupling mechanism of the external light to propagating modes of the circular
waveguide is certainly complex.

Finally, the effect of introducing additional structure inside the hole has been illus-
trated in Fig. 5. A perfect-metal sphere has been placed inside the hole and the resulting
normalized cross section is slightly larger than in the case of the undressed hole (Fig.
2). If the hole is now filled with Si (dashed curve in Fig. 5), the width of the resonance
is significantly reduced, as it occurred in the hole without the sphere. The modifica-
tion of the resonance introduced by the sphere can be significant, as one can see in the
vanishing of the transmittance near λ = 3.2a in the broken curve.

In summary, the transmission of light through a single cylindrical hole in a perfect-
metal film has been studied by solving Maxwell’s equations using a modified version of
the boundary element method. The transmission has been shown to exhibit a resonance
in the subwavelength region that is attributed to the resonant coupling with propagating
modes of the cylindrical cavity defined by the hole. The case of films of finite thickness
has been addressed and their long-wavelength limit behavior has been compared to the
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analytical formulas of Bethe [7] and Bouwkamp [8], which have been shown to be valid
only for a radius smaller than 0.2 times the wavelength. The presence of additional
structures inside the hole has been shown to modify the transmission modes and their
corresponding transmission resonances. The effect of filling the hole with a high-index
material has also been shown to lead to improved transmission cross sections and narrow
transmission resonances, suggesting a way to actually construct light funnels in the
subwavelength domain.
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