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The three-dimensional radiative transfer equation is solved for modeling the light propagation in anisotropically
scattering semi-infinite media such as biological tissue, considering the effect of internal reflection at the inter-
faces. The two-dimensional Fourier transform and the modified spherical harmonics method are applied to derive
the general solution to the associated homogeneous problem in terms of analytical functions. The obtained solu-
tion is used for solving boundary-value problems, which are important for applications in the biomedical optics
field. The derived equations are successfully verified by comparisons with Monte Carlo simulations. © 2012
Optical Society of America
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1. INTRODUCTION
The radiative transfer equation (RTE) is involved in many
areas of physics to model the propagation of waves in random
scattering media such as in astronomy, neutron transport,
heat transfer, computer graphics, and climate research [1–3].
In the field of biomedical optics, the RTE is considered to be
the gold standard both for therapeutic and diagnostic applica-
tions. Because of the lack of analytical solutions of the RTE
for relevant geometries, numerical methods or approximative
equations were considered. The Monte Carlo method was
mostly used as numerical solution of the RTE [4–6], but other
techniques like the finite element [7], the finite-difference [8],
or the discrete-ordinate method [9] were also applied. For the
isotropic scattering case, Williams [10] solved the RTE for the
semi-infinite geometry with internal reflection. Recently, ana-
lytical solutions for the steady-state RTE were obtained for
unbounded anisotropically scattering media [11,12] and the
slab geometry [13,14]. In this study we derived the solution
to the boundary-value problem in the semi-infinite geometry
including, for the first time to our knowledge, its successful
validation by comparison with Monte Carlo simulations.
Additionally, we considered mismatched boundary conditions
(BCs) by implementing Fresnel reflection.

The paper is divided into the following sections. In
Subsection 2.A, an analytical expression for the general solu-
tion to the homogeneous RTE is derived similar to what was
recently accomplished for the two-dimensional case [15,16].
To this end, we make use of the method of rotated reference
frames that was developed by the authors of the publications
[11,13,14]. In Subsection 2.B, the obtained homogeneous solu-
tion is applied for solving the boundary-value problem in the
semi-infinite geometry considering internal and external
sources. In Section 3, the derived general solution is verified
by comparing the reflectance, the fluence, and the radiance
with Monte Carlo simulations. In support of the implementa-
tion of the derived equations, we included the numerical

procedure for obtaining the general solution to the homoge-
neous RTE in Appendix A.

2. THEORY
A. General Solution to the Homogeneous RTE
In this section, the general solution to the homogeneous
RTE is derived for solving the boundary-value problem in the
semi-infinite geometry. The three-dimensional homogeneous
RTE for the radiance ψ�r; ŝ� in Cartesian coordinates is given
by [1]

ŝ ·∇ψ�r; ŝ� � μtψ�r; ŝ� � μs
Z

f �ŝ · ŝ0�ψ�r; ŝ0�d2s0; (1)

where μt � μa � μs is the total attenuation coefficient, μa the
absorption coefficient, and μs the scattering coefficient. The
unit vector ŝ specifies the direction of the wave propagation,
and the phase function f �ŝ · ŝ0� describes the probability that a
particle coming from direction ŝ0 is scattered into direction ŝ.
In the following it is assumed that the scattering half-space
medium is laterally unbounded so that the only BC regarding
the coordinates (ρ, ϕρ) is given by ψ�r; ŝ� → 0 for ρ → ∞. At the
beginning of the derivations, the radiance is expanded by the
two-dimensional Fourier integral

ψ�r; ŝ� � 1

�2π�2
Z

ψ�q; z; ŝ� exp�iq · ρ�d2q; (2)

leading to a simplified version of Eq. (1) with only one spatial
derivative,

�
cos θ ∂

∂z
� iq sin θ cos�ϕ − ϕq� � μt

�
ψ�q; z; ŝ�

� μs
Z

f �ŝ · ŝ0�ψ�q; z; ŝ0�d2s0: (3)
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The boundary-value problem to RTE Eq. (3) for the semi-
infinite geometry can be solved by seeking solutions in form
of the plane-wave mode

ψ�q; z; ŝ� � eξzψ�q; ŝ�; (4)

where ξ and ψ�q; ŝ� are the unknown eigenvalue and eigen-
function, respectively. Substitution of this mode in Eq. (3)
results in the eigenvalue problem

�μt � k · ŝ�ψ�q; ŝ� � μs
Z

f �ŝ · ŝ0�ψ�q; ŝ0�d2s0; (5)

where k is a complex wave vector of the form

k �
0
@ iq1
iq2
ξ

1
A � k

0
@ sin θk cos ϕq

sin θk sin ϕq

cos θk

1
A; (6)

with the norm k � ����������
k · k

p
and an unknown polar angle θk. For

the further procedure, the method of rotated reference frames
[11,13,14] is used to expand the eigenfunctions in terms of
spherical harmonics Ylm�ŝ; k̂�, which are rotated by the azi-
muthal and polar angle of the above wave vector, yielding

ψ�q; ŝ� �
X∞
l�0

Xl

M�−l

�−1�lψ lMY lM�ŝ; k̂�; (7)

where ψ lM are the unknown expansion coefficients and the
alternating sign is only due to convenience. Similarly, valid
for the conventional spherical harmonics Ylm�ŝ� � Ylm�ŝ; ẑ�
[17], the rotated functions satisfy the relation

�k̂ · ŝ�Ylm�ŝ; k̂� �
����������������
l2 −m2

4l2 − 1

s
Yl−1;m�ŝ; k̂�

�
����������������������������
�l� 1�2 −m2

4�l� 1�2 − 1

s
Yl�1;m�ŝ; k̂�: (8)

The rotationally invariant phase function is independent on
the direction of the wave vector and analogously used in the
form [13]

f �ŝ · ŝ0� �
X∞
l�0

Xl

M�−l

f lY lM�ŝ; k̂�Y�
lM�ŝ0; k̂�; (9)

where the expansion coefficients are defined by

f l � 2π
Z

1

−1
f �ζ�Pl�ζ�dζ; (10)

and Pl�x� are the Legendre polynomials. Inserting all series in
Eq. (5) and making use of relation Eq. (8) leads to the simpli-
fied block-diagonal eigenvalue problem for M ∈ Z∧l ≥ jM j:

k

����������������
l2 −M2

4l2 − 1

s
ψ l−1;M � k

�����������������������������
�l� 1�2 −M2

4�l� 1�2 − 1

s
ψ l�1;M − σlψ lM � 0; (11)

where σl � μa � �1 − f l�μs. Because of reasons regarding the
numerical implementation of the derived solution, all series
are truncated at l � N with ψ−1;M � ψN�1;M � 0, and N is al-
ways assumed as an odd number. The solution of the above
block-diagonal system Eq. (11) is reducible to an eigenvalue
decomposition (EVD) of N symmetric tridiagonal matrices
BM � B−M for the values M � 0; 1;…; N − 1, which have the
form

BM �

0
BBBBBBBBBB@

0 βlM 0 0 � � � 0

βlM 0 βl�1;M 0 � � � ..
.

0 βl�1;M
. .
. . .

. � � � 0

0 0 . .
. . .

. . .
.

0
..
. � � � � � � . .

.
0 βNM

0 � � � 0 0 βNM 0

1
CCCCCCCCCCA
; (12)

where l � M � 1, M � 2;…; N , and the quantities

βlM �
������������������������������

l2 −M2

�4l2 − 1�σl−1σl

s
: (13)

Note that the special case M � N leads directly to the trivial
solution ψNN � 0. Furthermore, it can be seen that, for in-
creasing values of M , the dimensions of the resulting block
matrices BM decrease where the largest value M � N − 1
results in

BN−1 �
�

0 βN;N−1

βN;N−1 0

�
: (14)

Every block matrix BM gives �N � 1�∕2 − dM∕2e positive and
real eigenvalues so that the EVD ∀M � f0;…; N − 1g leads all
in all to �N � 1�2∕4 eigenvalues Λ � fλ1; λ2;…g with the cor-
responding eigenvectors jνi. Here dxe � minfk ∈ Zjk ≥ xg is
the ceiling function, which rounds the elements of x to the
nearest integers greater than or equal to x. Note that the
eigenvalues within Λ are ordered according to increasing
indices of the block matrices BM . The EVD also delivers
eigenvalues with negative sign and additionally for M odd ei-
genvalues that are zero. However, it can be shown that the
complete set of plane-wave modes is spanned by the eigenva-
lues λ ∈ Λ. Upon the EVD of the above tridiagonal matrices,
the solution of the block-diagonal system Eq. (11) is obtained
as ψ lM � hljνi∕ ����σlp

, where jM j ≤ l ≤ N . Additionally, the
symmetry relation of the Green’s function for the radiance
requires that the expansion coefficients must satisfy the con-
dition ψ l;−M � �−1�Mψ lM , which leads to the fact that the eigen-
vector components for positive and negativeM are not always
the same. Thus, for a fixed eigenvalue λ ∈ Λ, the correspond-
ing eigenfunction from Eq. (7) becomes the form

ψ�q; ŝ� �
XN
l�M

�−1�l hljνi����σlp �YlM�ŝ; k̂� � �−1�M�1 − δM0�Yl;−M�ŝ; k̂��:

(15)

Note that there exists a function f : λ↦M that associates each
eigenvalue λ ∈ Λ for which the corresponding tridiagonal
matrix is BM . The solution of Eq. (11) involves the dispersion

1476 J. Opt. Soc. Am. A / Vol. 29, No. 7 / July 2012 A. Liemert and A. Kienle



relation k �
���������������
ξ2 − q2

p
� 1∕λ, which leads to the required ei-

genvalues for evanescent plane-wave modes in the scattering
half-space z ≥ 0:

ξ � ξ�q� � −

����������������
q2 � 1

λ2

r
: (16)

The general solution to the homogeneous RTE is completed
after the evaluation of the rotated spherical harmonics in
Eq. (15), which can be expanded by the linear combination
[13,14]

YlM�ŝ; k̂� �
Xl

m�−l

dlmM�θk�Ylm�θ;ϕ − ϕq�; (17)

where dlmM �θk� is the Wigner d function. For the calculation of
the Wigner d functions, we first determine the unknown polar
angle θk via comparison of the vector components in Eq. (6),
yielding

θk � θk�qλ� � arccos
�ξ
k

�
� π − i arsinh�qλ�: (18)

Inserting the obtained polar angle in the closed-form expres-
sion for the Wigner d functions gives the result

dlmM �θk�qλ�� � iM−m
��������������������������������������������������������������������
�l�m�!�l −m�!�l�M�!�l −M�!

p

×
X
k

h ��������������������
1� �qλ�2

p
− 1

i
l−k�M−m

2
h
1�

��������������������
1� �qλ�2

p i
k�m−M

2

2lk!�l −m − k�!�l�M − k�!�m −M � k�! ; (19)

where maxfM −m; 0g ≤ k ≤ minfl −m; l�Mg. The above
closed-form expression can be evaluated efficiently by mak-
ing use of a recursively defined algorithm reported in [18].
In Appendix A, readers will find this algorithm, including all
required recurrences. Substitution of the rotation formula
Eq. (17) into Eq. (15) leads to the superposition of plane-wave
modes

ψ�q;z; ŝ� �
X
λi>0

Ci�q�e−
�������������
q2�1∕λ2i

p
z
XN
l�M

Xl

m�−l

ψ lm�qλi�Ylm�θ;ϕ−ϕq�;

(20)

where

ψ lm�qλi� � �−1�l hljνii����σlp �dlmM �θk�qλi��

� �−1�M�1 − δM0�dlm;−M �θk�qλi���; (21)

and ψ lm�qλi� � 0∀ l < M . Remember that each eigenvalue λi
corresponds exactly with one M . Equation (20) states the
general solution to the homogeneous RTE Eq. (3) for the
semi-infinite geometry.

The obtained homogeneous solution must be integrated ac-
cording to Eq. (2). Further simplification regarding the inverse
Fourier transform can be obtained in cases of cylindrical
symmetry when the radiance only depends on the difference
χ � ϕ − ϕρ. Then the constants Ci�q� � Ci�q� become inde-
pendent of the angular variable ϕq so that the integration
regarding this variable can be performed analytically, yielding
the radiance in real space

ψ�r; ŝ� �
XN
l�0

�������������
2l� 1
4π

r Xl

m�0

�2 − δm0�ψ lm�ρ; z�dlm0�θ� cos�mχ�;

(22)

where the kernels are given in form of an inverse Hankel
transform [19],

ψ lm�ρ; z� �
im

2π

Z
∞

0
Jm�qρ�

Xil
i�1

Ci�q�ψ lm�qλi�e−
�������������
q2�1∕λ2i

p
zqdq;

(23)

and Jm�x� is the Bessel function of the first kind. The upper
limit of the inner sum is given by

il �
�N � 1��l� 1�

2
−

�
l� 1
2

��
l� 1
2

	
; (24)

where bxc � maxfk ∈ Zjk ≤ xg is the floor function. Note that
the upper limit is due to convenience for selecting only the
nonzero coefficients ψ lm�qλi� ≠ 0. The final results do not
change in any way if the summations are performed over
all eigenvalues λi, which entails the limit il � �N � 1�2∕
4∀l ∈ f0;…; Ng.

B. Solution of Boundary-Value Problems
In this section the derived general solution to the homo-
geneous RTE is used for solving two different types of
boundary-value problems. The semi-infinite geometry is
bounded by the plane z � 0 with the corresponding outward
normal vector n̂ � −ẑ.

1. Isotropic Point Source in the Semi-Infinite Medium
Suppose that the radiation field inside a semi-infinite medium
is caused by the isotropic emitting point source S�r; ŝ� �
δ�ρ�δ�z − z0�∕�4π�, which is located at z � z0 on the positive
z axis. For modeling the light propagation in the scattering
half-space medium, we at first require knowledge of the radia-
tion field in the unbounded medium, which is given by the
infinite-space Green’s function

ψ �p��r; ŝ� �
XN
l�0

Xl

m�−l

ψ �p�
lm �ρ; z�Ylm�θ; χ�; (25)

where

ψ �p�
lm �ρ; z� � 1

4π ������������πσ0σl
p

������������������
�l −m�!
�l�m�!

s
Pm
l

�
z − z0
R

�

×
XN�1

2

i�1

hljνiihνij0i
λ3i

kl

�
R
λi

�

and the distance R �
������������������������������
ρ2 � �z − z0�2

p
. The functions Pm

l �x�
and kl�x� are the associated Legendre polynomials and the
spherical Bessel function of the second kind, respectively.
Note that the above infinite-space Green’s function only con-
tains the positive eigenvalues and the belonging eigenvectors
of the tridiagonal matrix B0, which are labeled by the indices
i � 1; 2;…; �N � 1�∕2. For obtaining the corresponding
Green’s function in the semi-infinite medium, the RTE must
be solved under the BC
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ψ�ρ; z � 0; ŝ� � R�ŝ0 · n̂�ψ�ρ; z � 0; ŝ0�; ŝ · n̂ < 0; (26)

where R�ŝ0 · n̂� is the Fresnel reflection coefficient, which is
defined below, and ŝ0 is the mirrored unit vector of propaga-
tion characterized by the angles θ0 � π − θ and ϕ0 � ϕ. Note
that, for solving this boundary-value problem, the radiance
ψ�r; ŝ� � ψ �h��r; ŝ� � ψ �p��r; ŝ� is considered in parts of the
homogeneous solution Eq. (22) and the particular part of
Eq. (25). For the further procedure, the infinite-space Green’s
function Eq. (25) must be expanded in plane-wave decompo-
sition according to Eq. (2). Performing the two-dimensional
Fourier transform

ψ �p��q; z; ŝ� �
Z

ψ �p��r; ŝ� exp�−iq · ρ�d2ρ (27)

yields the infinite-space Green’s function in the transformed
space

ψ �p��q; z; ŝ� �
XN
l�0

Xl

m�−l

ψ �p�
lm �q; z�Ylm�θ;ϕ − ϕq�; (28)

where

ψ �p�
lm �q; z� � �−1�l��������������

4πσ0σl
p �sgn�z − z0��l�m

XN�1
2

i�1

×
hljνiihνij0i

λ2i
e−

�������������
q2�1∕λ2i

p
jz−z0j���������������������

q2 � 1∕λ2i
q dlm0�θk�qλi�� (29)

and the associated BC

ψ�q; z � 0; ŝ� � R�ŝ0 · n̂�ψ�q; z � 0; ŝ0�; ŝ · n̂ < 0: (30)

Substituting the general solution in the BC Eq. (30), multiply-
ing both sides with Y�

l0m0 �ŝ�, and integrating over the hemi-
sphere ŝ · n̂ < 0 results in the following set of linear equations:

X
λi>0

Ci�q�
XN
l�l

ψ �h�
lm0 �qλi�Rm0

l0 l � −
XN
l�m0

ψ �p�
lm0 �q; z � 0�Rm0

l0l ; (31)

where l � maxfm0; Mg and the coefficients

Rm0
l0 l �

1
2

��������������������������������������������������������������������
�2l� 1��2l0 � 1��l−m0�!�l0 −m0�!

�l�m0�!�l0 �m0�!

s Z
1

0
�1− �−1�l�m0

R�μ��

×Pm0
l �μ�Pm0

l0 �μ�dμ: (32)

By defining the ratio n � nin∕nout, the Fresnel reflection
coefficient can be written in the form [20]

R�μ� � 1
2

�μ − nμ0
μ� nμ0

�
2
� 1

2

�μ0 − nμ
μ0 � nμ

�
2
; μ > μc; (33)

where μc�
������������
n2−1

p
∕n is the cosine of the critical angle,

μ0�
���������������������������
1−n2�1−μ2�

p
, and nout and nin are the refractive indices

outside and inside the scattering half-space, respectively. Note
that, for μ < μc, the reflection coefficient becomes R�μ� � 1.

For every value m0 � 0; 1;…; N − 1, taking equations

from Eq. (31) for the corresponding numbers l0 � m0 � 1,

m0 � 3;…; N results in �N � 1�2∕4 linearly independent equa-
tions, which is exactly the number of unknown constants.
Because of the cylindrical symmetry of the obtained solution,
the homogenous part must be integrated according to the
inverse Hankel transform Eq. (23).

The spatially resolved reflectance on the boundary of the
semi-infinite medium is defined as

R�ρ� �
Z

ŝ·n̂>0

�1 − R�ŝ · n̂���ŝ · n̂�ψ�ρ; z � 0; ŝ�d2s: (34)

By using the BC Eq. (26), the reflectance can be also written
without the Fresnel reflection coefficients

R�ρ� �
Z
�ŝ · n̂�ψ�ρ; z � 0; ŝ�d2s; �35�

where the integration has been extended to the full unit
sphere. Inserting the obtained Green’s function for the
semi-infinite medium in Eq. (35) leads to the rotationally
symmetric reflectance

R�ρ� � −

������
4π
3

r
�ψ �h�

10 �ρ; 0� � ψ �p�
10 �ρ; 0��; (36)

where

ψ �h�
10 �ρ; 0� �

1
2π

Z
∞

0
J0�qρ�

XN
i�1

Ci�q�ψ10�qλi�qdq. (37)

The fluence within the semi-infinite medium is given by

Φ�r� �
Z

ψ�r; ŝ�d2s �
������
4π

p
�ψ �h�

00 �ρ; z� � ψ �p�
00 �ρ; z��; (38)

where

ψ �h�
00 �ρ; z� �

1
2π

Z
∞

0
J0�qρ�

XN�1
2

i�1

Ci�q�ψ00�qλi�e−
�������������
q2�1∕λ2i

p
zqdq.

(39)

2. External Incident Beam on the Semi-Infinite Medium
For modeling the light propagation in the semi-infinite med-
ium caused by the external radiation field ψ inc�ρ; ŝ� �
S�ρ�δ�ŝ − ŝ0�, the radiance must satisfy the BC

ψ�ρ; z � 0; ŝ� � ψ inc�ρ; ŝ� � R�ŝ0 · n̂�ψ�ρ; z � 0; ŝ0�;
ŝ · n̂ < 0; (40)

where S�ρ� is an arbitrary function for describing the beam
profile. By applying the two-dimensional Fourier transform
Eq. (27), the BC becomes

ψ�q; z � 0; ŝ� � ψ inc�q; ŝ� � R�ŝ0 · n̂�ψ�q; z � 0; ŝ0�;
ŝ · n̂ < 0. (41)

At this stage the principle procedure is the same as in the case
for the isotropic point source inside the medium. However,
here we must only consider the source free solution of the
RTE. By substituting the homogeneous solution Eq. (20) in
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the BC Eq. (41), multiplying both sides with Y�
l0m0 �ŝ� and inte-

grating over the hemisphere ŝ · n̂ < 0 results in the following
set of linear equations:

X
λi>0

Ci�q�
XN
l�l

ψ lm0 �qλi�Rm0
l0l � S�q�Y�

l0m0 �ŝ0� exp�im0ϕq�: �42�

For the special case of a perpendicular incident beam with
a rotationally symmetric profile function S�ρ� � S�ρ�, the
system of linear equation becomes

X
λi>0

Ci�q�
XN
l�l

ψ lm0 �qλi�Rm0
l0 l � S�q�

�������������
2l� 1
4π

r
δm00; �43�

where the constants Ci�q� depend only on the length of the
two-dimensional vector q. Now we consider exactly the same
linear independent equations from Eq. (31) labeled by l0 and
m0 as before.

The spatially resolved reflectance caused by an external
incident beam can also be obtained from Eq. (34) by using
the BC Eq. (40) leading to

R�ρ� �
Z
�ŝ · n̂�ψ�ρ; z � 0; ŝ�d2s − �ŝ0 · n̂�S�ρ�: (44)

For the case of a perpendicular incident beam with ŝ0 � ẑ, we
obtain the rotationally symmetric reflectance

R�ρ� � S�ρ� −
������
4π
3

r
ψ �h�
10 �ρ; 0�: (45)

Finally, the fluence in the semi-infinite medium becomes the
simple form

Φ�r� �
������
4π

p
ψ �h�
00 �ρ; z�: �46�

3. NUMERICAL RESULTS
In this section the obtained general solution to the RTE is
validated against the Monte Carlo method, which converges
in the limit of an infinitely large number of simulated photons

to the exact solution. For the following comparisons the
Henyey–Greenstein phase function with g � 0.9 is used.
The optical properties of the scattering half-space medium
is assumed to be μa � 0.01 mm−1 and μs � 10 mm−1, which
are typical for biological tissue in the near-infrared spectral
range. The refractive index of the nonscattering half-space
is set to nout � 1.0.

A. Reflectance
For the first comparison, we consider a isotropic point source
inside the semi-infinite geometry, which is placed on the z axis
at z0 � l�, where l� � 1∕σ1 is the transport mean free path.
The resulting reflected light from the boundary is computed
with Eq. (44) and compared to the result obtained from the
Monte Carlo method for matched and mismatched BCs;
see Fig. 1.

Because of the small differences between the derived solu-
tion (solid curves) and the Monte Carlo simulation (symbols),
we computed the relative error versus radial distance for the
mismatched BC, which can be seen in Fig. 2.

The differences of the two solutions at small radial dis-
tances are due to the finite spatial resolution Δx � Δy �
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Fig. 1. (Color online) Spatially resolved reflectance caused by an
isotropic point source located at z0 � l� inside the semi-infinite
medium. The approximation order is N � 21.

Fig. 2. (Color online) Relative differences between the analytical
approach and the Monte Carlo simulation. The inset shows the rela-
tive differences for a higher spatial resolution within the Monte Carlo
simulation and the radial distances 0 ≤ ρ ≤ 3 mm.
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Fig. 3. (Color online) Fluence inside the semi-infinite medium with
nin � 1.0 caused by a Gaussian incident beam with radius η � 1 mm.
The approximation order is N � 13.
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0.1 mm used in the Monte Carlo simulation. This error can be
arbitrarily reduced by decreasing the spatial grid as is shown
in the inset of Fig. 2, where Δx � Δy � 0.02 mm was used.

The obtained analytical reflectance from the semi-infinite
medium agrees with the result from the Monte Carlo method
for both matched and mismatched BCs.

B. Fluence
The fluence caused by an external radiation field of the form

ψ inc�ρ; ŝ� �
2

πη2 exp
�
2ρ2
η2

�
δ�ŝ − ẑ� (47)

within the half-space medium is computed by the analytical
Eq. (46) and the Monte Carlo method for two different radial
distances. Here η denotes the radius of the Gaussian beam.
The corresponding results are shown in Fig. 3.

As in the case for the reflectance, the derived analytical ex-
pression (smooth curves) and the Monte Carlo simulation
(noisy curves) lead practically to the same fluence.

C. Radiance
The Green’s function for the RTE in the semi-infinite geometry
caused by the perpendicular incident δ beam

ψ inc�ρ; ŝ� � δ�ρ�δ�ŝ − ẑ� (48)

is computed according to Eq. (22) and with the Monte Carlo
method for nin � 1.0. The resulting radiance is evaluated for
two different detector positions at the z axis and is shown in
Fig. 4 as function of the polar angle θ.

The analytical Green’s function for the radiance (smooth
curves) also agrees to the radiance as simulated with the
Monte Carlo method (noisy curves) within the statistical
errors of the simulations.

4. CONCLUSIONS
In this study the three-dimensional RTE is solved for the
boundary-value problem in the semi-infinite geometry includ-
ing the effect of Fresnel reflection at the interface. The ob-
tained general solution to the homogenous RTE has an
analytical dependence on the spatial and angular variables.

The unknown constants result from the solution of a system
of linear equations that arises from the corresponding BC.
Apart from the truncation of the applied spherical harmonics
expansions, the derivations contain no approximations and/or
are not based on simplified assumptions for obtaining the gen-
eral solution to the homogeneous RTE.

The derived solutions were compared to Monte Carlo simu-
lations for the reflectance, fluence, and radiance considering
external and internal sources. The differences of the results
obtained by both methods were within the statistics of the
Monte Carlo method.

Besides the direct application of the derived equations for
a variety of problems in different scientific fields, another
important point is the validation of numerical methods for sol-
ving the RTE such as the Monte Carlo simulation. Especially
for the numerical solution of the spherical harmonics equa-
tions, also called the PN approximation, the derived analytical
equations can be used to estimate the accuracy of the applied
approximation order N .

APPENDIX A: NUMERICAL PROCEDURE
This appendix contains the complete numerical procedure
divided into six steps for obtaining the general solution to
the homogeneous RTE in cases when the radiance takes
the form ψ�r; ŝ� � ψ�ρ; z; θ; χ�.
Step 1. Compute the coefficients Rm0

l0 l for the values
l0 � m0 � 1, m0 � 3;…; N , and m0 ≤ l ≤ N , where m0 �
0;…; N − 1, according to Eq. (32).
Step 2. Perform the EVD of the matrices BM from Eq. (12)

for M � 0; 1;…; N − 1, which gives all in all �N � 1�2∕4 eigen-
values λi > 0 together with the corresponding eigenvectors
jνii having components hljνii, where M ≤ l ≤ N . Note that
the eigenvalues λi ≤ 0, which also appear within the EVD,
are excluded from the solution. The EVD for the value M �
N − 1 can be directly performed, leading to the eigenvalue λ �
1∕

�����������������������������������
�2N � 1�σN−1σN

p
and the eigenvector components

hN − 1jνi � hNjνi � 1∕
���
2

p
. Regarding Steps 4 and 5, it would

be advantageous here to provide the mapping f : λ↦M . In
other words, we must keep in mind which eigenvalues λi
follows from the EVD of which matrix BM .
Step 3. In this step, the Wigner d functions are evaluated

as a function of the transform variable q by using the recur-
sively defined algorithm reported in [18]. To this end, we de-
fine five start values, namely d000�θk�qλ�� � 1 and

d100�θk�qλ�� � −

��������������������
1� �qλ�2

q
;

d110�θk�qλ�� � −i
qλ���
2

p ;

d111�θk�qλ�� �
1 −

��������������������
1� �qλ�2

p
2

;

d11;−1�θk�qλ�� �
1�

��������������������
1� �qλ�2

p
2

: (A1)

The following procedure written in italic text must be per-
formed successively for each value l � 2; 3;…; N in upward
direction.

Compute the Wigner d functions for allm � 0;…; l − 2 and
jMj ≤ m according to the recurrence
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Fig. 4. (Color online) Angle-resolved Green’s function for the RTE in
the semi-infinite geometry caused by a perpendicular incident δ beam.
The approximation order is N � 13.
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dlmM � l�2l − 1����������������������������������������
�l2 −m2��l2 −M2�

p ��
d100 −

mM
l�l − 1�

�
dl−1mM

−

�����������������������������������������������������������
��l − 1�2 −m2���l − 1�2 −M2�

p
�l − 1��2l − 1� dl−2mM

�
: (A2)

After that, evaluate the relations

dll−1;l−1 � �1 − l� ld100�dl−1l−1;l−1; (A3)

dlll � d111d
l−1
l−1;l−1: (A4)

Next, for M � l, l − 1;…; 1 − l making use of the recurrence

dll;M−1 �
���������������������
l�M

l −M � 1

r
iqλ��������������������

1� �qλ�2
p

− 1
dll;M ; (A5)

and for M � l − 1, l − 1;…; 2 − l of

dll−1;M−1 �
ld100 −M � 1

ld100 −M

���������������������
l�M

l −M � 1

r
iqλ��������������������

1� �qλ�2
p

− 1
dll−1;M ;

(A6)

replace l by l� 1 and repeat the procedure written in italic

text until the final value l � N is reached.
Finally, for every value l � 1; 2;…; N , evaluate the two

symmetry properties

dlMm � �−1�m�MdlmM; (A7)

dlM;−m � dlm;−M; (A8)

for all m � 1;…; l and M � 0;…;m − 1 to find the remaining
Wigner d functions. The closed-form expression Eq. (19) can
be used for checking results obtained by the above recursively
defined algorithm.
Step 4. For every eigenvalue λi, compute the kernels

ψ lm�qλi� according to Eq. (21), where M ≤ l ≤ N and
0 ≤ m ≤ l. For finding the correct value M , we remember on
the function M � f �λ� from Step 2. At this stage the general
solution Eq. (20) to the homogeneous RTE Eq. (3) is given
in terms of analytical functions.
Step 5. Compute the unknown constants Ci�q�, which ap-

pears in the homogeneous solution Eq. (22), by solving a sys-
tem of �N � 1�2∕4 linearly independent equations, which
follows from the corresponding BC. The principle procedure
is analogous to that as already shown in Subsection 2.B. For
every valuem0 � 0;…; N − 1 compute the pairs �l0;m0�, where
l0 � m0 � 1, m0 � 3;…; N . Then use all linear equations
labeled by the above computed pairs.
Step 6. For obtaining the general solution Eq. (22) in real

space, we must calculate the corresponding kernels ψ lm�ρ; z�
via numerical integration according to the inverse Hankel
transform Eq. (23). This fact entails that Steps 3–5 must be
performed for every value of the transform variable q, which
becomes a finite number of discretization points qj within the
numerical implementation. Note that the Wigner d functions

regarding the angular dependence within Eq. (22) can also be
expanded in terms of associated Legendre polynomials

dlm0�θ� �
������������������
�l −m�!
�l�m�!

s
Pm
l �cos θ�: (A9)
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