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AGCCPF [9] DCC-Net [56] StableLLVE [55] GHE [1] BPHEME [37] MBLLVEN [23] DCC-Net [56] SGZSL [59] CapCut [4]

V-BLIINDS [27] ✔ ✔ ✔

TLVQM [12] ✔ ✔ ✔

VIDEVAL [35] ✔ ✔ ✔

RAPIQUE [36] ✔ ✔ ✔

Simple-VQA [33] ✔ ✔ ✔

FAST-VQA [42] ✔ ✔ ✔

Light-VQA (Ours) ✔ ✔ ✔

MOS ✔ ✔ ✔

Figure 1: Which video has the best visual perceptual quality in each example listed? The above 9 figures are representative
frames of sample enhanced videos obtained by applying different enhancement algorithms to corresponding original low-light
videos. The concrete algorithms are listed below the figures. Then we use 6 state-of-the-art VQA models (V-BLIINDS [27],
TLVQM [12], VIDEVAL [35], RAPIQUE [36], Simple-VQA [33], and FAST-VQA [42]) and the proposed Light-VQA to predict the
quality of these enhanced videos. The check marks represent the enhanced video with the best perceptual quality predicted by
each model. Mean Opinion Scores (MOSs), the ground-truth perceptual quality of enhanced videos, are obtained through a
subjective experiment. It is evident that the prediction results of Light-VQA are highly consistent with human perception as
compared to others. More detailed qualitative results can be found in Supplementary.

ABSTRACT
Recently, Users Generated Content (UGC) videos becomes ubiq-
uitous in our daily lives. However, due to the limitations of pho-
tographic equipments and techniques, UGC videos often contain
various degradations, in which one of the most visually unfavor-
able effects is the underexposure. Therefore, corresponding video
enhancement algorithms such as Low-Light Video Enhancement
(LLVE) have been proposed to deal with the specific degradation.
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However, different from video enhancement algorithms, almost all
existing Video Quality Assessment (VQA) models are built gener-
ally rather than specifically, which measure the quality of a video
from a comprehensive perspective. To the best of our knowledge,
there is no VQA model specially designed for videos enhanced by
LLVE algorithms. To this end, we first construct a Low-Light Video
Enhancement Quality Assessment (LLVE-QA) dataset in which
254 original low-light videos are collected and then enhanced by
leveraging 8 LLVE algorithms to obtain 2,060 videos in total. More-
over, we propose a quality assessment model specialized in LLVE,
named Light-VQA. More concretely, since the brightness and noise
have the most impact on low-light enhanced VQA, we handcraft
corresponding features and integrate them with deep-learning-
based semantic features as the overall spatial information. As for
temporal information, in addition to deep-learning-based motion
features, we also investigate the handcrafted brightness consistency
among video frames, and the overall temporal information is their
concatenation. Subsequently, spatial and temporal information is
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fused to obtain the quality-aware representation of a video. Exten-
sive experimental results show that our Light-VQA achieves the
best performance against the current State-Of-The-Art (SOTA) on
LLVE-QA and public dataset. Dataset and Codes can be found at
https://github.com/wenzhouyidu/Light-VQA.
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• Computing methodologies→ Modeling and simulation.
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1 INTRODUCTION
Compared to text and images also spreading widely [16, 57], videos
are generally more entertaining and informative. However, due
to the influence in photographic devices and skills, the quality of
UGC videos often varies greatly. It is frustrating that the precious
and memorable moment is degraded by photographic limitations
(e.g., underexposure, low frame-rate, and low resolution). To ad-
dress the problems mentioned above, specific video enhancement
algorithms have been proposed, such as Low-Light Video Enhance-
ment (LLVE) [9, 37, 56, 59], video frame interpolation [3, 25, 29, 30],
and super-resolution reconstruction [19–21, 28, 51]. In this paper,
we focus on the quality assessment of enhanced low-light videos.
Low-light videos are often captured in the low- or back-lighting
environments and suffer from significant degradations such as low
visibility and noises [54]. Such degraded videos will challenge many
computer vision downstream tasks [60] such as object detection,
semantic segmentation, etc., which are usually resorted to videos
with good quality. Therefore, many LLVE algorithms have been
developed to improve the visual quality of low-light videos. To this
end, one straightforward way is to split the video into frames and
apply Low-Light Image Enhancement (LLIE) algorithms to enhance
each frame of this video. Representative traditional LLIE algorithms
include AGCCPF [9], GHE [1], and BPHEME [37]. There are also
some deep-learning-based LLIE algorithms, such as MBLLEN [23],
SGZSL [59], and DCC-Net [56]. However, applying LLIE algorithms
directly to videos can lead to severe temporal instability. In order
to fill the niche existing in LLIE, some LLVE algorithms that take
temporal consistency into account are proposed, such as MBLL-
VEN [23], SDSD [38], SMID [5], and StableLLVE [55].

Video Quality Assessment (VQA) is of great significance to fa-
cilitate the development of LLVE algorithms. Objective VQA can
be divided into Full-Reference (FR) VQA [2], Reduced-Reference
(RR) VQA [32], and No-Reference (NR) VQA [27] contingent on
the amount of required pristine video information [33]. Due to
the difficulty in obtaining reference videos, NR-VQA has attracted

a large number of researchers’ attention. In the early develop-
ment stages of NR-VQA, researchers often evaluate video qual-
ity based on handcrafted features [12, 13, 24, 27, 34–36], such as
structure, texture, and statistical features. Recently, owing to the
potential in practical applications, deep learning based NR-VQA
models [15, 17, 33, 40, 42, 49, 52] have progressively dominated the
VQA field. However, most existing VQA models are designed for
general purpose. To the best of our knowledge, few models specifi-
cally evaluate the quality of videos enhanced by LLVE algorithms.
One possible reason is the lack of corresponding datasets.

Therefore, in this paper, we elaborately build a Low-Light Video
Enhancement Quality Assessment (LLVE-QA) dataset to facilitate
the work on evaluating the performance of LLVE algorithms. Dif-
ferent from general datasets which commonly consist of original
UGC videos with various degradations, LLVE-QA dataset contains
254 original low-light videos and 1,806 enhanced videos from rep-
resentative enhancement algorithms, each with a corresponding
MOS. Subsequently, we propose a quality assessment model spe-
cialized for low-light video enhancement, named Light-VQA. The
framework of Light-VQA is illustrated in Figure 2. Considering
that among low-level features, brightness and noise have the most
impact on low-light enhanced VQA [54], in addition to semantic
features and motion features extracted from deep neural network,
we specially handcraft the brightness, brightness consistency, and
noise features to improve the ability of the model to represent the
quality-aware features of low-light enhanced videos. Extensive
experiments validate the effectiveness of our network design.

The contributions of this paper are summarized as follows:

(1) By leveraging representative LLVE algorithms on the col-
lected videos with diverse content and various degrees of
brightness, we conduct a subjective experiment to build a
low-light video enhancement dataset, named LLVE-QA.

(2) Benefiting from the built dataset, we propose a novel quality
assessment model named Light-VQA specifically designed
for low-light enhanced videos that integrates the luminance-
sensitive handcrafted features into deep-learning-based fea-
tures in both spatial and temporal information, which is then
fused to obtain the quality-aware representation.

(3) The proposed Light-VQA achieves the best performance as
compared to 6 SOTA models on LLVE-QA and public dataset.
We envision that the Light-VQA is promising to be a funda-
mental tool to assess the LLVE algorithms.

2 RELATEDWORK
2.1 Low-Light Enhancement
To enhance the low-light videos, it is straightforward to split the
low-light video into frames, so as to take advantage of existing LLIE
algorithms. AGCCPF [9] enhances the brightness and contrast of
low-light images using the gamma correction and weighted proba-
bility distribution of pixels. GHE [1] applies a transformation on im-
age histogram to redistribute the pixel intensity, resulting in a more
favorable visual result. BPHEME [37] enhances the low-light video
by balancing the brightness preserving histogram with maximum
entropy. In addition to the above traditional algorithms, low-light
image enhancement algorithms based on deep learning [23, 56, 59]

https://github.com/wenzhouyidu/Light-VQA
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Figure 2: Framework of Light-VQA. The model contains the spatial and temporal information extraction module, the feature
fusion module, and the quality regression module. Concretely, spatial information contains semantic features, brightness, and
noise. Temporal information contains motion features and brightness consistency.

are rapidly emerging. Zhang et al. [56] propose a consistent net-
work to improve illumination and preserve color consistency of
low-light images. However, applying LLIE algorithms directly to
videos can lead to temporal consistency problems such as motion
artifacts and brightness consistency, which will ultimately reduce
the quality of videos.

In order to maintain the temporal consistency of videos bet-
ter, specific LLVE algorithms [5, 23, 38, 55] are proposed. MBLL-
VEN [23] processes low-light videos via 3D convolution to extract
temporal information and preserve temporal consistency. Wang et
al. [38] collect a new dataset that contains high-quality spatially-
aligned video pairs in both low-light and normal-light conditions,
and further design a self-supervised network to reduce noises and
enhance the illumination based on the Retinex theory. Chen et al. [5]
propose a siamese network and introduce a self-consistency loss
to preserve color while suppressing spatial and temporal artifacts
efficiently. StableLLVE [55] maintains the temporal consistency af-
ter enhancement by learning and inferring motion field (i.e.,optical
flow) from synthesized short-range video sequences. In order to en-
sure the diversity of visual effects of the enhanced videos, we apply
both LLIE and LLVE algorithms when constructing the LLVE-QA
dataset.

2.2 VQA Datasets
In order to facilitate the development of VQA algorithms, many
VQA datasets [7, 8, 11, 18, 31, 39, 52, 53] have been proposed. Videos
in LIVE-Qualcomm [8] contain the following 6 distortion types:
color, exposure, focus, artifacts, sharpness, and stabilization. LIVE-
VQC [31] contains 585 videos, which are captured by various cam-
eras with different resolutions. In addition to the common distor-
tions, the visual quality of UGC videos is influenced by compression
generated while they are uploaded to and downloaded from the
Internet. UGC-VIDEO [18] and LIVE-WC [53] simulate the spe-
cific distortion by utilizing several video compression algorithms.
KoNViD-1k [11], YouTube-UGC [39], and LSVQ [52] extensively

collect in-the-wild UGC videos from the Internet, greatly expand
the scale of VQA datasets. Besides, VDPVE [7] is constructed to
fill in the gaps of VQA datasets specially for video enhancement,
which can further promote the refined development of VQA mod-
els. However, most of existing datasets only contain unprocessed
UGC videos containing various distortions. While VDPVE takes
videos after enhancement into account, it is still general and not
targeted. Our LLVE-QA dataset focuses on original low-light videos
and corresponding enhanced videos after LLVE, which lays a solid
foundation for designing a specific LLVE quality assessment model.

2.3 NR-VQA Models
The traditional and naive NR-VQAmodels are based on handcrafted
features [12, 13, 24, 27, 35]. These handcrafted features, including
spatial features, temporal features, statistical features, and so on,
can be extracted to learn the quality scores of videos. For example,
V-BLIINDS [27] builds a Natural Scene Statistics (NSS) module to
extract spatial-temporal features and a motion module to quan-
tify motion coherency. The core of TLVQM [12] is to generate
video features in two levels, in which low complexity features are
extracted from the full sequence first, and then high complexity
features are extracted in key frames which are selected by utilizing
low complexity features. VIDEVAL [35] combines existing VQA
methods together and proposes a feature selection strategy, which
can choose appropriate features and then fuse them efficiently to
predict the quality scores of videos.

With the rapid pace of technological advancements, VQAmodels
based on deep learning [14, 15, 17, 33, 36, 40, 42–48, 50, 52, 58] have
progressively emerged as the prevailing trend. For example, based
on a pre-trained DNN model and Gated Recurrent Units (GRUs),
VSFA [17] reflects the temporal connection between the semantic
features of key frames well. BVQA [15] and Simple-VQA [33] fur-
ther take the impact of motion features on videos into account and
introduce motion features extracted by the pre-trained 3D CNN



MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada. Yunlong Dong, Xiaohong Liu∗ , Yixuan Gao, Xunchu Zhou, Tao Tan, and Guangtao Zhai

(a) Original (b) AGCCPF (c) BPHEME (a) Original (b) AGCCPF (c) BPHEME

(d) CapCut (e) DCC-Net (f) GHE (d) CapCut (e) DCC-Net (f) GHE

(g) MBLLVEN (h) SGZSL (i) StableLLVE (g) MBLLVEN (h) SGZSL (i) StableLLVE

Figure 3: Representative frames of two original videos and their corresponding enhanced videos.

models. Wang et al. [40] propose a DNN-based framework to mea-
sure the quality of UGC videos from three aspects: video content,
technical quality, and compression level. FAST-VQA [42] creatively
introduces a Grid Mini-patch Sampling to generate fragments, and
utilizes a model with Swin Transformer [22] as the backbone to
extract features efficiently from these fragments. RAPIQUE [36]
leverages quality-aware statistical features and semantics-aware
convolutional features, which first attempts to combine handcrafted
and deep-learning-based features. While prior VQA models are de-
signed for general UGC videos without exception, our Light-VQA
model focuses on LLVE quality assessment by additionally intro-
ducing handcrafted brightness and noise features that significantly
affect the quality of low-light videos and their corresponding en-
hanced results to improve the assessment accuracy.

3 DATASET PREPARATION
3.1 Video Collection
A high-quality dataset is a prerequisite for a well-performing model.
To start with, we elaborately select 254 low-light videos from
VDPVE [7], LIVE-VQC [31], YouTube-UGC [39], and SDSD [38]
datasets. The low-light videos we choose contain diverse content
and various degrees of brightness. Subsequently, we employ 7
low light enhancement algorithms (i.e., AGCCPF [9], GHE [1],
BPHEME [37], SGZSL [59], DCC-Net [56], MBLLVEN [23] and
StableLLVE [55]) and one commercial software CapCut [4] respec-
tively to obtain the enhanced videos. We further remove the videos
with extremely poor visual quality due to the distortions generated
in the process of enhancement. Eventually, 254 original low-light
videos and 1,806 enhanced videos constitute our LLVE-QA dataset.
To the best of our knowledge, this is the first dataset specifically
designed for evaluating low-light video enhancement algorithms.
Representative frames of two original videos and their correspond-
ing enhanced videos are shown in Figure 3.

3.2 Subjective Experiment
We invite 22 subjects to participate in the subjective experiment.
All of them are professional and experienced data labeling staff.

Subjects are required to score the quality of videos within the range
of [0, 100]. The scoring criteria are that higher score corresponds to
the better video quality. In the process of scoring a group of videos
(including an original low-light video and corresponding enhanced
videos), to make subjects not limited to the video content but pay
more attention to the visual perceptual quality of the videos, we cus-
tomize a scoring interface which is demonstrated in Supplementary.
Subjects are supposed to score the original video first. When they
score the enhanced videos, they can observe and compare them to
the original video repeatedly. Compared to randomly shuffling the
order of videos for scoring, the subjective quality scores obtained in
this way can better reflect the visual perceptual difference caused
by LLVE.

3.3 Data Analysis
In order to measure the visual perceptual difference between orig-
inal and enhanced videos, we calculate three video attributes [7]:
brightness, contrast, and colorfulness, which are normalized and
shown in Figure 4. Colorfulness is not significantly changed before
and after video enhancement, while the brightness and contrast
have undergone major changes, which is in line with visual per-
ception. Since there is a large amount of redundant information
between adjacent frames, we only select a subset of all video frames
for processing. The concrete calculation process are listed as fol-
lows [11]:

(1) Brightness: Given a video frame, we convert it to grayscale
and compute the average of pixel values. Then the brightness result
of a video is obtained by averaging the brightness of all selected
frames.

(2) Contrast: For a video frame, its contrast is obtained simply
by computing standard deviation of pixel grayscale intensities [26].
Then we average the contrast results of all selected frames to get
the contrast of a video.

(3) Colorfulness: We utilize Hasler and Suesstrunk’s metric [10]
to calculate this attribute. Specifically, given a video frame in RGB
format, we compute 𝑟𝑔 = 𝑅 −𝐺 and 𝑦𝑏 = 1

2 (𝑅 +𝐺) − 𝐵 first, and
then the colorfulness is calculated by

√︃
𝜎2𝑟𝑔 + 𝜎2

𝑦𝑏
+ 3

10

√︃
𝜇2𝑟𝑔 + 𝜇2

𝑦𝑏
,
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Figure 4: Distributions of brightness, contrast, and colorful-
ness over the original and enhanced videos in our LLVE-QA
dataset.
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Figure 5: Detailed MOS distributions of the original and en-
hanced videos in our LLVE-QA dataset.

where 𝜎2 and 𝜇 represent the variance and mean value respectively.
Finally, we average the colorfulness values of all selected frames to
obtain the colorfulness of a video.

After the subjective experiment, we collect 45, 320 (i.e., 22 ×
2, 060) scores in total. Considering the standard deviation can well
reflect the distribution of data, we calculate the standard deviation
of 2,060 scores generated by each subject and reject two invalid
subjects whose standard deviations of ratings are significantly lower
than others. Finally, we obtain 20 valid subjects and MOSs for all
videos in LLVE-QA dataset. In order to provide the insights in
the difference between the MOSs of original videos and enhanced
videos, we draw the MOS distributions in Figure 5. The relatively
uniform MOS distribution in Figure 5b reflects the diversity of
visual quality of enhanced videos obtained by our selected LLVE
algorithms.

4 PROPOSED METHOD
Benefiting from the built dataset, we propose a multi-dimensional
quality assessment model named Light-VQA for low-light video
enhancement. This model consists of the spatial and temporal in-
formation extraction module, the feature fusion module, and the
quality regression module as shown in Figure 2. Specifically, spatial
information extracted from key frames contains deep-learning-
based semantic features, handcrafted brightness, and noise features.
Temporal information extracted from video clips contains deep-
learning-based motion features and handcrafted brightness con-
sistency features. Then they are fused to obtain the quality-aware
representation. Finally, we utilize two Fully Connected (FC) layers
to regress fused features into the video quality score.

4.1 Spatial Information
Since the adjacent frames of a video contain plenty of redundant
contents, spatial information shows the extreme sensitivity to the
video resolution and is not quite relevant to the video frame rate.
Therefore, in order to reduce the computational complexity, we
uniformly select 𝑘 key frames from the video to extract spatial infor-
mation. In Light-VQA, we design two branches to simultaneously
extract features in a video. Concretely, one is for deep-learning-
based features, which contain rich semantic information, the other
is for handcrafted features, which contain brightness and noise
specifically designed for evaluating the quality of low-light and
corresponding enhanced videos.

Swin Transformer [22] has achieved more excellent performance
than traditional CNNs in computer vision tasks such as image clas-
sification, object detection, and segmentation. For deep-learning-
based features, we utilize the semantic information extracted from
the last two stages of the pre-trained Swin Transformer:

𝑆𝐹𝑖 = 𝛼1 ⊕ 𝛼2, 𝑖 ∈ {1, · · · , 𝑘},

𝛼 𝑗 = 𝐺𝐴𝑃 (𝐹 𝑗
𝑖
), 𝑗 ∈ {1, 2},

(1)

where 𝑆𝐹𝑖 indicates the extracted semantic features of the 𝑖-th sam-
pled key frame of a video, ⊕ represents the concatenation operation,
𝐺𝐴𝑃 (·) stands for the global average pooling operation, 𝐹 𝑗

𝑖
indi-

cates the feature maps in the 𝑖-th key frame generated from the 𝑗-th
last stage of Swin Transformer, and 𝛼 𝑗 denotes the features after
average pooling. For handcrafted features, we extract brightness
and noise features which influence the quality of low-light and
corresponding enhanced videos greatly [54] to better improve the
quality-aware representation of Light-VQA:

𝐵𝐹𝑖 = Θ(𝐹𝑖 ),
𝑁 𝐹𝑖 = Ψ(𝐹𝑖 ),

(2)

where 𝐵𝐹𝑖 and 𝑁𝐹𝑖 indicate the extracted brightness and noise fea-
tures from the 𝑖-th sampled key frame, respectively. Θ(·) and Ψ(·)
represent the extraction process of brightness and noise features,
respectively.

Therefore, given a video, we first uniformly select 𝑘 key frames,
and then extract deep-learning-based and handcrafted features
through two branches respectively. Finally, quality-aware spatial
information is obtained by concatenating semantic features, bright-
ness and noise features together:

𝑆𝐼𝑖 = 𝑆𝐹𝑖 ⊕ 𝐵𝐹𝑖 ⊕ 𝑁𝐹𝑖 , (3)

where 𝑆𝐼𝑖 indicates the ultimate spatial information of the 𝑖-th
sampled key frame.

4.2 Temporal Information
Different from spatial information, temporal information is ex-
tremely susceptible to video frame-rate variations but not sensitive
to resolution [33]. Therefore, in order to preserve adequate tem-
poral information while reducing computational complexity, we
uniformly split the video into 𝑘 clips with lower resolution for tem-
poral information extraction. Concretely, similar to the extraction
of spatial information, we design two branches to obtain deep-
learning-based and handcrafted features respectively. One is for
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Table 1: Experimental performance on our constructed LLVE-QA dataset and subset of KoNViD-1k. Our proposed Light-VQA
achieves the best performance. ‘Handcrafted’ and ‘Deep Learning’ denote two types of leveraged features. The handcrafted
models are inferior to deep-learning-based models. Best in red and second in blue.

VQA Model Handcrafted Deep Learning LLVE-QA Subset of KoNViD-1k
SRCC↑ PLCC↑ RMSE↓ SRCC↑ PLCC↑ RMSE↓

V-BLIINDS (TIP, 2014) [27] ✔ 0.7123 0.7130 11.6185 0.5927 0.6157 13.2098
TLVQM (TIP, 2019) [12] ✔ 0.7321 0.7401 9.0957 0.4260 0.4671 12.4164
VIDEVAL (TIP, 2021) [35] ✔ 0.5294 0.5233 13.9555 0.4963 0.4052 12.6448
RAPIQUE (OJSP, 2021) [36] ✔ ✔ 0.5890 0.5922 13.2555 0.3861 0.4751 14.5661

Simple-VQA (ACM MM, 2022) [33] ✔ 0.8984 0.8983 7.2287 0.6978 0.7101 10.0307
FAST-VQA (ECCV, 2022) [42] ✔ 0.9156 0.9159 6.3528 0.7064 0.7156 10.7450

Light-VQA ✔ ✔ 0.9374 0.9393 5.6523 0.7975 0.7860 8.8070

motion, the other is for brightness consistency which is a significant
feature in low-light videos.

For deep-learning-based features, we utilize a pre-trained Slow-
Fast network [6] to extract motion features for each video clip:

𝑀𝐹𝑖 = Φ(𝑉𝑖 ), (4)

where 𝑉𝑖 indicates the 𝑖-th video clip, Φ(·) denotes the extraction
operation of motion features, and 𝑀𝐹𝑖 stands for the extracted
motion features from the 𝑖-th video clip. For handcrafted features,
we extract brightness consistency features:

𝐶𝐹𝑖 = Γ(𝑉𝑖 ), (5)

where Γ indicates the extraction operation of brightness consis-
tency features, and𝐶𝐹𝑖 denotes the extracted brightness consistency
features from the 𝑖-th video clip.

To sum up, given a video, we split it into 𝑘 clips with lower
resolution uniformly, and then extract deep-learning-based and
handcrafted features through two branches respectively. Finally,
temporal information is obtained by concatenating motion features
and brightness consistency features together:

𝑇 𝐼𝑖 = 𝑀𝐹𝑖 ⊕ 𝐶𝐹𝑖 , (6)

where 𝑇 𝐼𝑖 indicates the temporal information of the the 𝑖-th video
clip.

4.3 Spatial-Temporal Fusion
After obtaining the both spatial and temporal information, it is
essential to fuse them to get a more comprehensive feature expres-
sion. In this paper, we utilize Multi-Layer Perception (MLP) as the
fusion module to integrate spatial with temporal information due
to its simplicity and effectiveness. Various fusion strategies based
on attention mechanisms can be included, but they are beyond
the scope of this paper. Specifically, given spatial information 𝑆𝐼𝑖
extracted from the 𝑖-th key frame and temporal information 𝑇 𝐼𝑖
extracted from the 𝑖-th video clip, we concatenate them first and
then pass them through a MLP:

𝐹𝐹𝑖 = F (𝑆𝐼𝑖 ⊕ 𝑇 𝐼𝑖 ), (7)

where F (·) indicates the learnable feature fusion that contains one
FC layer with 1,024 neurons and one REctified Linear Unit (RELU),
and 𝐹𝐹𝑖 represents features after fusion of the 𝑖-th video clip (the
𝑖-th key frame can be regarded as one frame in the 𝑖-th video clip

but with original resolution). All elements in 𝐹𝐹𝑖 are calculated
jointly by 𝑆𝐼𝑖 and 𝑇 𝐼𝑖 .

4.4 Quality Regression
Subsequently, we utilize another two FC layers to regress quality-
aware representation 𝐹𝐹𝑖 into the video quality score:

𝑄𝑖 = 𝐹𝐶 (𝐹𝐹𝑖 ), (8)

where 𝑄𝑖 indicates the quality score of the 𝑖-th video clip. Finally,
the overall score of the entire video is obtained by averaging the
quality scores of all 𝑘 video clips:

𝑄 =
1
𝑘

𝑘∑︁
𝑖=1

𝑄𝑖 , (9)

where𝑄 is the quality score of the video and 𝑘 indicates the number
of video clips.

Our loss function for training is composed of two parts [33]:
Mean Absolute Error (MAE) loss and rank loss [41]. MAE loss is
widely used in various deep learning tasks, and in this paper it is
defined as:

𝐿𝑀𝐴𝐸 =
1
𝑁

𝑁∑︁
𝑚=1

|𝑄𝑚 − �̂�𝑚 |, (10)

where �̂�𝑚 is the predicted MOS for the𝑚-th video in a batch and N
is the batch size. Rank loss can help the network to learn the relative
quality of different videos, which exactly coincides with our need
to compare the quality of different LLVE algorithms. Specifically,
the rank loss is defined as follows:

𝐿𝑟𝑎𝑛𝑘 =
1
𝑁 2

𝑁∑︁
𝑚=1

𝑁∑︁
𝑛=1

𝑚𝑎𝑥 (0, |�̂�𝑚 − �̂�𝑛 | − 𝑒 (�̂�𝑚, �̂�𝑛) · (𝑄𝑚 −𝑄𝑛)),

(11)
where𝑚 and 𝑛 are two different videos in one training batch, and
𝑒 (�̂�𝑚, �̂�𝑛) is formulated as:

𝑒 (�̂�𝑚, �̂�𝑛) =
{

1, �̂�𝑚 ≥ �̂�𝑛,

−1, �̂�𝑚 < �̂�𝑛,
(12)

Then, the optimization objective can be obtained by:

𝐿 = 𝐿𝑀𝐴𝐸 + 𝛽 · 𝐿𝑟𝑎𝑛𝑘 , (13)

where 𝛽 is a hyper-parameter for balancing the MAE loss and the
rank loss.
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Figure 6: The scatter plots of the predicted scores versus theMOSs. The curves are obtained by a four-order polynomial nonlinear
fitting. It is evident that the predicted scores of our proposed VQA bear the closest resemblance to the MOSs.

5 EXPERIMENT
5.1 Performance Comparisons with the SOTA

VQA Models
To validate the effectiveness of Light-VQA on LLVE-QA dataset,
we compare it with 6 state-of-the-art VQA models including V-
BLIINDS [27], TLVQM [12], VIDEVAL [35], RAPIQUE [36], Simple-
VQA [33], and FAST-VQA [42]. We utilize the same training strategy
to train all models on the LLVE-QA dataset and ensure their conver-
gence. Then we test them on the testing set. The numbers of videos
in training set, validation set, testing set are 1260, 400, and 400
respectively. The overall experimental results are shown in Table
1. Figure 6 shows the scatter plots of the predicted MOSs versus
the ground-truth MOSs on LLVE-QA dataset for 7 VQA models
listed in Table 1. The curves shown in Figure 6 are obtained by a
four-order polynomial nonlinear fitting. According to Table 1, Light-
VQA achieves the best performance in all 7 models and leads the
second place (i.e., FAST-VQA) by a relatively large margin, which
demonstrates its effectiveness for the perceptual quality assessment
of low-light video enhancement.

5.2 Cross Dataset Performance
To examine the cross-dataset performance of the model, we conduct
experiments on the subset of low light videos in KoNViD-1k [11].
The distributions of three attributes (i.e., brightness, colorfulness
and contrast) and MOS of the subset are shown in Figure 7. We
directly leverage the models pre-trained on LLVE-QA dataset to per-
form testing on the newly built subset with ease and efficiency. The
overall experimental results on subset of KoNViD-1k are shown in
Table 1. Since LLVE-QA dataset includes both low-light videos and
their corresponding enhanced versions, whereas KoNViD-1k exclu-
sively consists of low-light videos, the quality-aware representation
learned from LLVE-QA dataset is less effective on KoNViD-1k. All
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Figure 7: Detailed attribute and MOS distribution for low
light video subset of KoNViD-1k [11].

methods have experienced the decline of performance. However,
our proposed Light-VQA still surpasses the other 6 VQAmethods by
a large margin, which demonstrates its good generalization ability
in terms of the quality assessment of low light videos.

5.3 Ablation Studies
In this subsection, a series of ablation experiments are conducted to
analyze the contributions of different modules in Light-VQA. Table
2 shows the experimental results of ablation studies. Model 1 only
utilizes Semantic Features (SF) extracted by Swin Transformer [22].
Model 2 only utilizes Motion Features (MF) extracted by SlowFast
R50 [6]. Model 3 utilizes both SF and MF, and obtains the results
after passing them through the Feature Fusion (FF) module. Based
on Model 3, Model 4 adds handcrafted Brightness and Noise Fea-
tures (BF + NF) that belong to spatial information together with SF.
Based onModel 3,Model 5 adds handcrafted Brightness Consistency
Features (CF) that belong to temporal information coupled with
MF. Model 6 utilizes all the spatial information and temporal infor-
mation, but instead of performing feature fusion, Multiple Linear
Regression (MLR) is used as a replacement.Model 7 is the complete
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Table 2: Experimental results of ablation studies on LLVE-QA dataset. Best in red and second in blue. [Key: SF: Semantic Features,
BF: Brightness Features, NF: Noise Features, MF: Motion Features, CF: Brightness Consistency Features, FF: Feature Fusion, MLR: Multiple
Linear Regression]

Model Spatial Information Temporal Information Fusion Method LLVE-QA
SF BF + NF MF CF FF MLR SRCC↑ PLCC↑ RMSE↓

1 ✔ 0.9120 0.9143 6.5377
2 ✔ 0.8446 0.8438 8.8438
3 ✔ ✔ ✔ 0.9223 0.9245 6.6829
4 ✔ ✔ ✔ ✔ 0.9324 0.9354 5.8278
5 ✔ ✔ ✔ ✔ 0.9299 0.9310 5.9764
6 ✔ ✔ ✔ ✔ ✔ 0.9231 0.9243 6.7132
7 ✔ ✔ ✔ ✔ ✔ 0.9374 0.9393 5.6523

Table 3: The average scores predicted by Light-VQA on origi-
nal low-light videos, results of StableLLVE w/o Light-VQA,
and results of StableLLVE w/ Light-VQA.

Dataset Origin w/o Light-VQA w/ Light-VQA
Average score 39.0933 59.4926 86.2688

model we propose, in which we fuse all the spatial and temporal
information, and obtain the best results.

Feature Extraction Module. For Light-VQA, both spatial and
temporal information is composed of deep-learning-based and hand-
crafted features. First, Model 1 and Model 2 are designed to verify
the contribution of deep-learning-based features in spatial infor-
mation and temporal information, respectively. It can be observed
from the results that semantic features in spatial information are
significantly superior to motion features in temporal information.
When we fuse them in Model 3, the performance of the model is
further improved. Second, based on Model 3, Model 4, and Model
5 are designed to prove the effectiveness of handcrafted features
in spatial information and temporal information respectively. It is
evident that both of them obtain better results compared to Model
3. When we add them all in Model 7, the final model Light-VQA
exhibits the best performance.

Feature Fusion Module. In this paper, we utilize MLP as the
feature fusion module to integrate spatial-temporal information.
To verify its effectiveness, we train two models separately, one
of which only contains temporal information and the other only
contains spatial information, and then we utilize Multiple Linear
Regression (MLR) to get the predicted score:

𝑄𝑚
𝑖 = 𝑎 ·𝑄𝑠

𝑖 + 𝑏 ·𝑄𝑡
𝑖 + 𝑐, (14)

where 𝑄𝑠
𝑖
indicates the score obtained by spatial information mod-

ule, 𝑄𝑡
𝑖
indicates the score obtained by temporal information mod-

ule, and𝑄𝑚
𝑖

denotes the score after MLR. 𝑎, 𝑏, and 𝑐 are parameters
to be fitted in MLR. By comparing the results of Model 6 and Model
7 in Table 2, it is evident that our feature fusion module plays a
role in improving the prediction performance.

5.4 Refinement for Training LLVE Algorithms
To demonstrate that Light-VQA can be utilized as a metric to fa-
cilitate the development of LLVE algorithms by approaching the

human visual system, we use Light-VQA as a loss function to train
a recent low-light video enhancement algorithm named StableL-
LVE [55]. Experimental results show that training with Light-VQA
as a loss function yields videos with better perceptual quality com-
pared to the original training method. The dataset we use for ex-
periments is from SDSD [38]. The average scores predicted by
Light-VQA on original low-light videos, results of StableLLVE w/o
Light-VQA, and results of StableLLVE w/ Light-VQA are shown
in Table 3. The detailed qualitative comparisons of are shown in
Figure 8. It is evident that the results of StableLLVE training with
Light-VQA have better perceptual quality.

(a) Origin (b) w/o Light-VQA (c) w/ Light-VQA

Figure 8: The detailed qualitative comparisons of original
low-light videos, results of StableLLVE w/o Light-VQA, and
results of StableLLVE w/ Light-VQA.

6 CONCLUSION
In this paper, we focus on the issue of evaluating the quality of
LLVE algorithms. To facilitate our work, we construct a LLVE-
QA dataset containing 2,060 videos. Concretely, we collect 254
original low-light videos that contain various scenes and generate
the remaining videos by utilizing different LLVE algorithms. Further,
we propose an effective VQA model named Light-VQA specially
for low-light video enhancement. Concretely, we integrates the
luminance-sensitive handcrafted features into deep-learning-based
features in both spatial and temporal information extractions. Then
we fuse them to obtain the overall quality-aware representation.
Extensive experimental results have validated the effectiveness of
our Light-VQA. For future work, we will enable the Light-VQA to
evaluate the recovery performance of overexposed videos.
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