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Abstract 

This paper presents an on-going research on a light-weight 3-dimensional (3D) laser distance and ranging 
(LADAR) system development at the Peter Kiewit Institute (PKI) in University of Nebraska–Lincoln. The 
developed LADAR can be readily applied to several construction applications related to automated or 
robotic tasks, mobile robot navigation, reverse engineering, quality assurance/control, schedule control, and 
safety.  A design concept of a LADAR system on a dynamic mobile platform is introduced which is 
especially designed for precise construction robotic operations such as welding, bolting, and connecting 
materials. Barriers for rapid 3D graphical workspace visualization at construction sites are discussed as well. 
The preliminary laboratory test results demonstrate that the 3D LADAR scanner developed in this study 
provides reliable scanned data. Unlike most of the heavy and bulky commercial LADAR products, the 
developed economical LADAR system can be used on mobile platforms and manipulators or confined area 
scanning applications due to its small size and light-weight characteristics.   
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1 Introduction  

In construction, significant time is spent every day on job sites to identify and track construction 
materials and equipment and to capture, align and compare field measured data to planned data to detect 
defects and improve quality control.  This requires rapid recognition and accurate measurement of  objects in 
the field so that timely, on-site decisions can be made. Especially 3-dimensional (3D) graphical visualization 
of  the site can help to optimize material tracking and automated equipment control, significantly improve 
safety, and enhance a remote operator’s spatial perception of  the workspace. FIATECH (2008) envisions 
that construction sites will become more ‘intelligent and integrated’ as materials and equipment, and people 
become elements of  a fully sensed and monitored work environment.   

Although studies in several fields have proven that 3D visualization of the work environment can 
significantly enhance construction defect control, material tracking, schedule control, and automated 
equipment control, unstructured work areas like construction sites are difficult to visualize graphically 
because they contain highly unpredictable activities and change rapidly. Automated construction site 
operation, e.g., robotic operation, requires real-time or near real-time information about the surrounding 
work environment, which further complicates graphical modeling and updating. Especially, solid material 
handling tasks in construction require not only rapid visualization of unstructured workspace but highly 
accurate position data for safe and secure physical contact between a target object and an end-effector of 
automated mobile equipment or robots.  

This paper discusses the current 3D visualization technologies and their limitations for construction 
applications and introduces a 3D LADAR scanner being developed for robotic applications in construction 
sites.  
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(a) Iteration k 

 
 

(b) Iteration k+1 

 
(c) Iteration k+2 

 
(d) Iteration k+ n 

Figure 8. Establishing correspondences between an image and a 3D model based on closest 
points. 

4. Conclusions 

A 3D LADAR scanner development research is introduced in this paper. The developed small and light-
weight scanner is readily applicable for several dynamic construction automation applications such as robotic 
manipulator control, robotic inspection, crane application, road profiling, and confined space scanning, 
where many of commercial scanners have not been well utilized because of their bulky and heavy 
mechanisms, and expensive purchasing cost.  As a major contribution of this research, such a small LADAR 
system developed in this study can be a useful component to make more “intelligent and integrated” 
construction sites by providing a highly accurate rapid 3D workspace for automated construction equipment 
or robotic operations.  As an on-going research, the research team continues to conduct the tasks including 
dynamic multi-scan and registration, rapid data process for real-time robotic operations, error modeling, 3D 
model registration algorithm development, and mobilization for construction site navigation.  
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