
This paper is included in the Proceedings of the
12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’16).
November 2–4, 2016 • Savannah, GA, USA

ISBN 978-1-931971-33-1

Open access to the Proceedings of the
12th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

Light-Weight Contexts: An OS Abstraction for
Safety and Performance

James Litton, University of Maryland, College Park and Max Planck Institute for Software
Systems (MPI-SWS); Anjo Vahldiek-Oberwagner, Eslam Elnikety, and Deepak Garg, Max

Planck Institute for Software Systems (MPI-SWS); Bobby Bhattacharjee, University of
Maryland, College Park; Peter Druschel, Max Planck Institute for Software Systems (MPI-SWS)

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/litton

Light-weight Contexts: An OS Abstraction for Safety and Performance
James Litton1,2, Anjo Vahldiek-Oberwagner2, Eslam Elnikety2, Deepak Garg2, Bobby

Bhattacharjee1, and Peter Druschel2

1University of Maryland, College Park
2Max Planck Institute for Software Systems (MPI-SWS), Saarland Informatics Campus

Abstract
We introduce a new OS abstraction—light-weight con-
texts (lwCs)—that provides independent units of protec-
tion, privilege, and execution state within a process. A
process may include several lwCs, each with possibly
different views of memory, file descriptors, and access
capabilities. lwCs can be used to efficiently implement
roll-back (process can return to a prior recorded state),
isolated address spaces (lwCs within the process may
have different views of memory, e.g., isolating sensitive
data from network-facing components or isolating differ-
ent user sessions), and privilege separation (in-process
reference monitors can arbitrate and control access).

lwCs can be implemented efficiently: the overhead of
a lwC is proportional to the amount of memory exclu-
sive to the lwC; switching lwCs is quicker than switching
kernel threads within the same process. We describe the
lwC abstraction and API, and an implementation of lwCs
within the FreeBSD 11.0 kernel. Finally, we present an
evaluation of common usage patterns, including fast roll-
back, session isolation, sensitive data isolation, and in-
process reference monitoring, using Apache, nginx, PHP,
and OpenSSL.

1 Introduction
Processes abstract the unit of isolation, privilege, and
execution state in general-purpose operating systems.
Computations that require memory isolation, privilege
separation, or continuations at the OS level must be
run in separate processes1. Unfortunately, switching
and communicating between processes incurs the cost
of invoking the kernel scheduler, resource account-
ing, context-switching, and IPC. The actual hardware-
imposed cost of isolation and privilege separation, how-
ever, is much smaller: if the TLB is tagged with an ad-
dress space identifier, then switching context requires as
little as a system call and loading a CPU register.

Just as threads separate the unit of execution from
a process, we assert that there is benefit to decoupling
memory isolation, execution state, and privilege separa-
tion from processes. We show that it is possible to isolate
memory and privileges, and maintain multiple execution

1Language runtimes can provide these properties at the expense of
additional overhead, language dependence, and an increased trusted
computing base.

states within a process with low overhead, thus stream-
lining common computation patterns and enabling more
efficient and safe code.

We introduce a new first-class OS abstraction: the
light-weight context (lwC). A process may contain multi-
ple lwCs, each with their own virtual memory mappings,
file descriptor bindings, and credentials. Optionally and
selectively, lwCs may share virtual memory regions, file
descriptors and credentials.

lwCs are not schedulable entities: they are completely
orthogonal to threads that may execute within a process.
Thus, a thread may start in lwC a, and then invoke a sys-
tem call to switch to lwC b. Such a switch atomically
changes the VM mappings, file table entries, permis-
sions, instruction and stack pointers of the thread. Indeed
multiple threads may execute simultaneously within the
same lwC. lwCs maintain per-thread state to ensure a
thread that enters a lwC resumes at the point where it
was created or last switched out of the lwC.

lwCs enable a range of new in-process capabilities, in-
cluding fast roll-back, protection rings (by credential re-
striction), session isolation, and protected compartments
(using VM and resource mappings). These can be used
to implement efficient in-process reference monitors to
check security invariants, to isolate components of an
app that deal with encryption keys or other private in-
formation, or to efficiently roll back the process state.

We have implemented lwCs within the FreeBSD 11.0
kernel. The prototype shows that it is possible to im-
plement lwCs in a production OS efficiently. Our ex-
perience with implementing and retrofitting large appli-
cations such as Apache and nginx with lwCs has taught
us that it is possible to introduce many new capabilities,
such as rollback and secure data compartments, to ex-
isting production code with minimal overhead. This
paper’s contributions are:
• We introduce lwCs, a first-class OS abstraction that ex-
tends the POSIX API, and present common coding pat-
terns demonstrating its different uses.

• We describe an implementation of lwCs within
FreeBSD, and show how lwCs can be used to implement
efficient session isolation in production web servers,
both process-oriented (Apache, via roll-back) and event-
driven (nginx, via memory isolation). We show how ef-
ficient snapshotting can provide session isolation while

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 49

improving performance on web-based applications using
a PHP-based MVC application on nginx. We show how
cryptographic libraries such as OpenSSL can efficiently
create isolated data compartments within a process to
render sensitive data (such as private keys) immune to ex-
ternal attacks (e.g., buffer overruns a la Heartbleed [7]).
Finally, we show how lwCs can efficiently implement
in-process reference monitors, again for industrial-scale
servers such as Apache and nginx, that can introspect on
system calls and memory.

• We evaluate lwCs using a range of micro-benchmarks
and application scenarios. Our results show that exist-
ing methods for session isolation are often slower than
lwCs. Other common uses such as lwC-supported sen-
sitive data compartments and reference monitoring have
little to negligible overhead on production servers. Fi-
nally, we show that using the lwC snapshot capability to
quickly launch an initialized PHP runtime can improve
the performance of a production server.

The rest of this paper is organized as follows: we
discuss related work in Section 2 and describe the lwC
abstraction, API, and design in Section 3. We present
common lwC coding patterns in Section 4. We describe
our FreeBSD implementation of lwCs in Section 5, and
present an experimental evaluation in Section 6. We con-
clude in Section 7.

2 Related work
Wedge [5] provides privilege separation and isolation
among sthreads, which otherwise share an address space.
Sthreads are implemented using Linux processes. lwCs
are orthogonal to threads and therefore avoid the cost
of scheduling when switching contexts. Moreover, lwCs
can snapshot and resume an execution in any state, while
a sthread can only revert to its initial state. Wedge pro-
vides a software analysis tool that helps refactor existing
applications into multiple isolated compartments. lwCs
could benefit from a such a tool as well.

Shreds [9] builds on architectural support for memory
domains in ARM CPUs, a compiler toolchain, and ker-
nel support to provide isolated compartments of code and
data within a process. Like lwCs, shreds provide isolated
contexts within a process. lwCs, however, are fully in-
dependent of threads, require no compiler support, and
rely on page-based hardware protection only. lwCs also
provide protection rings and snapshots, which shreds do
not.

In SpaceJMP [12], address spaces are first-class ob-
jects separate from processes. While both systems can
switch address spaces within a process, SpaceJMP and
lwCs provide different abstractions, capabilities, and are
motivated by entirely different applications. SpaceJMP
supports applications that wish to use memory larger
than the available virtual address bits allow, wish to

maintain pointer-based data structures beyond process
lifetime, and share large memory objects among pro-
cesses. A SpaceJMP context switch is not associated
with a mandatory control transfer and, therefore, Space-
JMP does not support applications that require isolation
or privilege separation within a process. lwCs, on the
other hand, provide in-process isolated contexts, privi-
lege separation, and snapshots.

Dune [4] provides a kernel module and API that ex-
port the Intel VT-x architectural virtualization support
safely to Linux processes. Privilege separation, refer-
ence monitors, and isolated compartments can be imple-
mented within a process using Dune. lwCs instead pro-
vide a unified abstraction and API for these capabilities,
and their implementation does not rely on virtualization
hardware, the use of which could interfere with execution
on a virtualized platform. While the lwC implementation
incurs a higher cost for system call redirection, it avoids
Dune’s overhead on TLB misses and kernel calls.

In Trellis [20], code annotations, a compiler, run
time, and OS kernel module provide privilege separation
within an application. The kernel and runtime ensure that
functions can be called and data accessed only by code
with the same or higher privilege level. lwCs provide
privilege separation without language/compiler support,
and can switch domains at lower cost. Moreover, lwCs
additionally support snapshots.

Switching among lwCs is similar to migrating threads
in Mach [13], where they were implemented to optimize
local RPCs. Migration of threads across address spaces
is also an element of the model described by Lindström
et al. [18] and the COMPOSITE OS [24]. In single ad-
dress space operating systems (SASOS) like Opal [8] and
Mungi [15], all processes as well as persistent storage
share a single large (64-bit) address space. Unlike lwCs,
these systems do not provide privilege separation, isola-
tion, or snapshots within a process.

Mondrian Memory Protection (MMP) [32] and Mon-
drix [33] use hardware extensions to provide protection
at fine granularity within processes. The CHERI [31,34]
architecture, compiler, and operating system provides
hybrid hardware-software object capabilities for fine-
grained compartmentalization within a process. lwCs
provide in-process isolation at page granularity without
specialized hardware or language support.

Resource containers [3] separate the unit of resource
accounting from a process and account for all resources
associated with an application activity, even if the activ-
ity requires processing in multiple processes and the ker-
nel. lwCs are orthogonal to resource containers.

The Corey [6] OS provides fine-grained control over
the sharing of memory regions and kernel resources
among CPU cores to minimize contention. lwCs provide
the orthogonal capability of in-process isolation, privi-

50 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

lege separation, and snapshots.
Light-weight isolation, privilege separation, and snap-

shots can be provided also within a programming lan-
guage. Functional languages like Scheme and ML pro-
vide closures through the primitive call/cc, which can be
used to record a program state and revert to it later, and to
implement co-routines. Typed object-oriented languages
like C++ and Java provide static isolation and privilege
separation through private and protected class fields but
do not isolate objects of the same class from each other.
Dynamic language-based protection, often implemented
as object capabilities [14, 22, 23], provides fine-grained
isolation and privilege separation but has considerable
runtime overhead. lwCs instead provide in-process isola-
tion, privilege separation, and snapshots at the OS level,
independent of a programming language.

In low-level languages like C, isolation and privilege
separation can be attained using binary rewriting and
compiler-inserted checks as in CFI [1], CPI [17] and se-
cure compilation [25]. All these techniques rely on dy-
namic checks that have runtime overhead. Techniques
such as CPI and secure compilation rely on OS support
for the isolation of a reference monitor, which lwCs can
provide at low cost.

Software fault isolation (SFI) [29] and NaCl [35] rely
on static checking and instrumentation of binaries to iso-
late memory within applications running on unmodified
operating systems. SFI and NaCl do not selectively pro-
tect system calls and file descriptors. lwCs instead al-
low fine-grained control over memory, file descriptors
and other process credentials, and provide snapshots as
part of an OS abstraction.

Process checkpoint facilities create a linearized snap-
shot of a process’s state [10,19,26,38]. The snapshot can
be stored persistently and subsequently used to reconsti-
tute the process and resume its execution on the same or
a different machine. Checkpoint facilities are used for
fault-tolerance and load balancing. lwCs instead provide
very fast in-memory snapshots of a process’s state.

The Determinator OS [2] relies on a private workspace
model for concurrency control, which enables deter-
ministic execution on multi-core platforms. To support
the model, Determinator provides spaces, in which pro-
grams mutate private copies of shared objects. Like
lwCs, spaces provide isolated address spaces. Unlike a
lwC, however, a space is tied to one thread, does not
have access to I/O or shared memory, and can interact
only with its parent and only in limited ways.

Intel’s Software Guard Extensions (SGX) [16] provide
ISA support to isolate code and data in enclaves within a
process. By mapping contexts to enclaves, SGX could be
used to harden lwCs against a stronger threat model (un-
trusted OS) and to provide hardware attestation of con-
texts. However, enclaves have no access to OS services,

so some lwC applications would need considerable re-
architecting to run on SGX.

NOVA [27] provides protection domains (separate ad-
dress spaces) and execution contexts (an abstraction sim-
ilar to threads) in a micro hypervisor. NOVA’s goal is to
isolate VMMs and VMs from the core hypervisor, which
is different from lwC’s goal of providing isolation, privi-
lege separation, and snapshots within processes.

3 lwC design
lwCs are separate units of isolation, privilege, and execu-
tion state within a process. Each lwC has its own virtual
address space, set of page mappings, file descriptor bind-
ings, and credentials. Threads and lwCs are independent.
Within a process, a thread executes within one lwC at a
time and can switch between lwCs. lwCs are named us-
ing file descriptors. Each process starts with one root
lwC, which has a well-known file descriptor number.

Table 1 shows the lwC API. A lwC may create a new
(child) lwC using the lwCreate operation and receive
the child’s file descriptor. If a context a has a valid de-
scriptor for lwC c, a thread executing inside a may switch
to c using the lwSwitch operation. A lwC c is termi-
nated (and its resources released) when the last lwC with
a descriptor for c closes the descriptor. Common usage
patterns of the lwC API will be shown in Section 4.

3.1 Creating lwCs
The lwCreate call creates a new (child) lwC in the cur-
rent process. The operation’s default semantics are simi-
lar to that of a POSIX fork, in that the child lwC’s initial
state is an identical copy of the calling (parent) lwC’s
state, except for its descriptor. Unlike with fork, how-
ever, child and parent lwC share the same process id, and
no new thread is created. No execution takes place in the
new lwC until an existing thread switches to it.
lwCreate returns the descriptor of the new child lwC

new to the parent lwC with the caller descriptor set to
-1. When a thread switches to the new lwC (new) for
the first time, the lwCreate call returns with the caller’s
lwC descriptor in caller and the parent’s lwC descriptor
in new, along with any arguments from the caller in args.

By default, the new lwC gets a private copy of the
calling lwC’s state at the time of the call, including per-
thread register values, virtual memory, file descriptors,
and credentials. Shared memory regions in the calling
lwC are shared with the new lwC. The parent lwC may
modify the visibility of its resources to the child lwC us-
ing the resource-spec argument, described in Section 3.3.

The implementation does not stop other threads exe-
cuting in the parent lwC during an lwCreate. To ensure
that the child lwC reflects a consistent snapshot of the
parent’s state, all threads that are active in the parent at
the time of the lwCreate therefore should be in a consis-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 51

Function Return Value System Call
Create lwC {new, caller, args} ← lwCreate(resource-spec, options)

Switch to lwC {caller, args} ← lwSwitch(target, args)

Resource access status ← lwRestrict(l, resource-spec)
status ← lwOverlay(l, resource-spec)
status ← lwSyscall(target, mask, syscall, syscall-args)

Table 1: API for interacting with lwCs. Parameters in italics new, caller, . . . are lwC descriptors. Arguments args are
passed during lwC switches; resource-spec denotes resources (e.g. memory pages, file descriptors) that can be shared
or narrowed.

tent state. The application may achieve this, for instance,
by barrier synchronizing such threads with the thread that
calls lwCreate. A thread that does not exist in the par-
ent lwC at the time of the lwCreate may not switch to
the child in the future.

The lwCreate call takes several option flags.
LWC_SHAREDSIGNALS controls signal handling in the child
lwC, as described in Section 3.7. LWC_SYSTRAP indicates
that any system calls for which the child does not hold the
required OS capability should be redirected to its parent.
This feature enables a parent to interpose and mediate its
child’s system call activity, as described in Section 3.6.

The fork semantics of lwCreate enable the conve-
nient, language independent creation of lwCs based on
the current state of the calling lwC. No additional APIs
are required to initialize a new lwC. The new lwC can be
viewed also as a snapshot of the state of the caller at the
time of invoking lwCreate, enabling the caller to revert
to this state in the future.

3.2 Switching between lwCs
The lwSwitch operation switches the calling thread to
the lwC with descriptor target, passing args as parame-
ters. lwSwitch retains the state of the calling thread in
the present lwC. When this lwC is later switched back
into by the same thread, the call returns with the switch-
ing lwC available as caller and arguments passed in args.

Note that returns from a lwSwitch and lwCreate,
any signal handlers that were installed, and the instruc-
tion pointer locations of threads in a parent lwC at the
time of a lwCreate define the only possible entry points
into a lwC. (The root lwC has an additional one-time en-
try point when the process is launched.)
lwSwitch is semantically equivalent to a coroutine

yield. In fact, as far as control transfer is concerned,
lwCs can be viewed as isolated and privilege separated
coroutines. Recall that a procedure is a special case of a
coroutine. To achieve a (remote) procedure call among
lwCs, the called procedure, when done, simply switches
to its caller and then loops back to its beginning. This
functionality can be provided easily as part of a library.

3.3 Static resource sharing
When a lwC is created using lwCreate, the child lwC
receives a copy-on-write snapshot of all its parent’s re-
sources by default. The parent can modify this behavior
using the resource-spec argument in the lwCreate oper-
ation. The resource-spec is an array of C unions: each
array element specifies either a range of file descriptors,
virtual memory addresses, or credentials. For each range,
one of the following sharing options can be specified.
LWC_COW: the child receives a logical copy of the range
of resource (the default). LWC_SHARED: the range of re-
sources is shared among parent and child. LWC_UNMAP:
the range of resources is not mapped from the parent into
the child. (The child may subsequently map different re-
sources in the address range.)

When restricting the resources inherited by the child,
care must be taken to minimally pass on the stacks, code,
synchronization variables, and other dependencies of all
threads in the parent lwC, to ensure predictable behavior
if these threads switch to the child in the future.

3.4 Dynamic resource sharing
A lwC may dynamically map (overlay) resources from
another lwC into its address space using the lwOverlay
operation. The caller specifies which regions of a given
resource type (file descriptor or memory) are to be
overlayed, and whether the specified region should be
copied or shared, in the resource-spec parameter. The
lwOverlay call will only succeed if the caller lwC holds
access capabilities (described below in Section 3.5) for
the requested resources. A successful lwOverlay oper-
ation unmaps any existing resources at the affected ad-
dresses in the caller’s address space.

3.5 Access capabilities
Access capabilities are associated with lwC file descrip-
tors. Each lwC holds a descriptor with a universal access
capability for itself. When a lwC is created, its parent re-
ceives a descriptor with a universal access capability for
the child. A parent lwC may grant a child lwC access

52 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

capabilities for the parent lwC selectively by marking re-
source ranges as LWC_MAY_ACCESS in the resource-spec
argument passed to the lwCreate call.

Access capabilities may be restricted on a lwC de-
scriptor with the lwRestrict call. The resource-spec
parameter restricts the set of resources that may be over-
layed or accessed by any context that holds the lwC de-
scriptor l. The valid resource types are file descriptors,
virtual memory addresses, and syscall numbers. Subse-
quent to the call, the descriptor will allow lwOverlay to
succeed for any file descriptors and memory addresses,
and lwSyscall for any syscalls, respectively, that are
within the intersection of the resource-spec set and what-
ever capabilities l had previous to the call.

3.6 System call interposition/emulation
Consider an lwC C that was created with the
LWC_SYSTRAP flag. If a thread in C invokes a system call
for which C does not hold a capability according to the
OS’s sandboxing mechanism, the thread is switched to
its parent lwC instead, if the thread exists in the parent
(if the thread does not exist in the parent, the call fails
with an error). When the thread is resumed in the par-
ent lwC as a result of a faulting syscall by the child, the
arguments in the switch contain the system call number
attempted and the arguments passed to it. The parent can
choose to decline the syscall and return an error to the
child, or perform a syscall on behalf of the child, possibly
with different arguments (see below). To signal the com-
pletion of the child’s system call, the thread executing in
the parent lwC switches back to the child with the return
value and any error code as arguments to the switch call.

An authorized lwC may perform a syscall on behalf
of another lwC target using the lwSyscall operation.
The lwSyscall succeeds if the lwC calling the operation
holds an access capability (see Section 3.5) for the tar-
get and syscall, and holds the OS credentials required to
perform the requested syscall. The effects of a successful
execution of lwSyscall are as if the target had executed
the requested syscall, except that it returns to the calling
context. The mask parameter allows the caller to mod-
ify this behavior by specifying aspects of its own context
that are to be put in place for the duration of the system
call. Specifically, the caller may specify that the target’s
file table, memory space, credentials, or any combination
be replaced by the caller’s equivalent for the duration of
the call. This allows the efficient implementation of use-
ful patterns, such as enabling a untrusted lwC to read (or
append) a fixed number of bytes from (to) a protected file
without having access to the file descriptor.

3.7 Signal handling
lwCs modify the standard POSIX signal handling se-
mantics in the following way. We distinguish between

attributable signals, which can be attributed to the ex-
ecution of a particular instruction in a lwC, and non-
attributable signals, which cannot. Attributable signals,
such as SIGSEGV or SIGFPE, are delivered to the lwC that
caused the signal immediately. Non-attributable signals,
such as SIGKILL or SIGUSR1, are delivered to the root
lwC and any lwCs in the process that were created with
the LWC_SHARESIGNALS option by a parent lwC that
is able to receive such signals. A non-attributable signal
is delivered to a lwC upon the next switch to the lwC.

3.8 System call semantics
lwCs modify the behavior of some existing POSIX sys-
tem calls. During a fork, all lwCs in the calling process
are duplicated in the child process. Any memory regions
that were mmap’ed as MAP_SHARED in some lwCs of
the calling process are shared with the corresponding
lwCs in the new child process, within and across the two
processes. Any memory regions that are shared among
lwCs in the parent process using the LWC_SHARED op-
tion in lwCreate are shared among the corresponding
lwCs within the child process only. An exit system call
in any lwC of a process terminates the entire process.

3.9 lwC isolation
Because lwCs do not have access to the state of each
others’ memory, file descriptors, and capabilities un-
less explicitly shared, they can provide strong isola-
tion and privilege separation within a process. Since
lwCs share executable threads, however, an application
needs to make certain assumptions about the behavior
of other lwCs in the same process, even if they don’t
share resources and don’t have overlay capabilities for
each other. Specifically, a lwC can block or execute a
thread indefinitely or terminate the process prematurely
by invoking exit.

We believe these assumptions are reasonable in prac-
tice because the lwCs of a process are part of the same
application program. Denial-of-service within a process
is self-defeating. On the other hand, lwCs can reliably
prevent accidental leakage of private information across
user sessions, isolate authentication credentials and other
secrets, and ensure the integrity of a reference monitor.

A lwC can learn about certain activities of other lwCs
by registering for non-attributable signals. An applica-
tion that wishes to limit information flow across lwCs
should create lwCs without the LWC_SHARESIGNALS
option (the default).

3.10 lwC security
lwCs provide isolation and privilege separation within a
process, but include powerful mechanisms for sharing
and control among the lwCs of a process. Therefore, it is
important to understand the threat model and the security
properties provided by the lwC abstraction.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 53

Threat model We assume that the kernel is trustwor-
thy and uncompromised, and that the tool chain used to
build, link, and load the application does not have ex-
ploitable vulnerabilities that can be used to hijack con-
trol before main() starts. When a lwC is created, its par-
ent has universal privileges on the lwC. Consequently,
the security of a lwC assumes that its parent (and, by
transitivity, all its ancestors) cannot be hijacked to abuse
these privileges. In practice, the parent should drop all
unnecessary privileges on the child immediately after the
child is created, so this assumption is needed only with
respect to the remaining privileges. When an application
uses dynamic sharing, the same assumption must be ex-
tended to all lwCs that obtain privileges indirectly. The
lwC API does not enable any inter-process communica-
tion or sharing beyond the standard POSIX API. Con-
sequently, no new assumptions regarding lwCs in other
processes are needed.

Security properties The properties of a lwC are con-
strained by the properties of the process in which it ex-
ists. A lwC cannot attain privileges that exceed those of
its process, and the confidentiality and integrity proper-
ties of any lwC cannot be weaker than those of its pro-
cess. The properties of the root lwC are those of the pro-
cess. In applications that do not use dynamic sharing,
the privileges of a non-root lwC are bounded by those of
its parent and, transitively, by those of its ancestors; its
integrity and confidentiality cannot be weaker than those
of any of its ancestors. In applications that use dynamic
sharing through the exchange of access capabilities via
a common ancestor, the integrity (confidentiality) of a
lwC depends on all siblings and descendants that have
write (read) rights to it. For this reason, dynamic sharing
should be used with caution.

In typical patterns of privilege separation, the root
lwC should run a high-assurance component, i.e., one
that is simple, heavily scrutinized, and exports a nar-
row interface. A component that protects sensitive state
is at or near the root, to minimize its dependencies.
More complex, less stable, network or user-facing com-
ponents should be encapsulated in de-privileged lwCs at
the leaves of a process’s lwC tree and should execute with
the least privileges required.

4 Common lwC usage patterns
In this section, we illustrate lwC use patterns for snap-
shots, isolation and protection rings. For some of the
patterns, we use a web server as an illustrative setting.
However, all the patterns are broadly applicable.

Snapshot and rollback A common lwC use pattern is
snapshot and rollback, where a service process (such as
a server worker process) initializes its state to the point
where it is ready to serve requests (or sessions), snap-
shots this state, serves a request and rolls its state back

to the snapshot before serving the next request. As com-
pared to a setup where the process manually cleans up
request-specific state after each request, the snapshot and
rollback can improve performance by efficiently discard-
ing the request-specific state with a single call, and also
improves security by isolating sequential requests served
by the same task from each other.

Algorithm 1 shows the pseudocode of a small library
containing two functions—snapshot() and rollback()—
and a main() server function illustrating their use. The
server initializes its state and calls snapshot() on line 12
to create a snapshot. snapshot() duplicates the current
lwC (copy-on-write) using lwCreate on line 2. The
descriptor of the duplicated snapshot, called new, is re-
turned at line 4 and stored in the variable snap. The pro-
gram serves the request and then, to reset its state, calls
rollback(). Control transfers to line 2 in the snap (the
child) and then immediately to line 6 where the original
lwC is closed (its resources are reclaimed). The snap re-
cursively calls snapshot() (line 7). At line 2, it creates a
duplicate of itself and returns that duplicate to main() at
line 12. The cycle then repeats, with snap and its dupli-
cate having taken the roles of the original lwC and the
snap, respectively.

Algorithm 1 Snapshot and rollback

1: function SNAPSHOT()
2: new,caller,arg = lwCreate(default_spec, . . .)
3: if caller = -1 then . parent
4: return new
5: else
6: close(caller)
7: return snapshot()
8: function ROLLBACK(snap) . never returns
9: lwSwitch(snap, 0)

10: function MAIN()
11: initialize state
12: snap = snapshot()
13: serve request
14: rollback(snap)

. kills current lwC, continues at line 12 in snap

In our evaluation, we use this pattern to roll back the
state of pre-forked worker processes after each session in
the Apache web server.

Isolating sessions in an event-driven server High
throughput servers like nginx handle several sessions in
single-threaded processes using event-driven multiplex-
ing. However, they provide no isolation among sessions
within a process. This shortcoming can be addressed us-
ing lwCs. Algorithm 2 illustrates the usage pattern.

The program defines a set of network socket descrip-
tors to poll, one for each client connection, on line 10

54 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Algorithm 2 Event-driven server with session isolation

1: function SERVE_REQUEST(retlwc, client)
2: loop
3: if would_block(client) then
4: lwSwitch(retlwc, 0);
5: else if finished(client) then
6: lwSwitch(retlwc, 1);
7: else
8: serve(client)
9: function MAIN

10: descriptors = { accept_ descriptor }
11: file2lwc_map = { accept_descriptor => root }
12: loop
13: next = descriptors.ready()
14: if next = accept_descriptor then
15: fd = accept(next)
16: descriptors.insert(fd)
17: specs = { ... } . Share fd descriptor only
18: new,caller,arg = lwCreate(specs, ...)
19: if caller = -1 then . context created
20: file2lwc_map[fd] = new
21: else
22: serve_request(root, fd)
23: else
24: lwc = file2lwc_map[next]
25: from, done = lwSwitch(lwc, ...)
26: if done = 1 then
27: close(next);close(from)
28: descriptors.remove(next)
29: file2lwc_map.unset(next)

and sets a mapping of the listening socket descriptor to
the current lwC on line 11.

Once a descriptor is ready the program moves past
line 13 and either accepts and encapsulates a new de-
scriptor in a worker lwC or resumes execution of a pre-
vious one that is now ready. In the former case, the
worker’s lwC is created on line 18 such that no descrip-
tor other than fd is passed to it (line 17), the created lwC
descriptor is mapped on line 20 and the loop resumes.
In the latter case, the previously mapped worker lwC
is retrieved on line 24. This lwC is now immediately
switched into on the subsequent line. At this point exe-
cution resumes on line 18 in the worker. As a result, it
enters the serve_request function on line 22.

When the worker is done executing it switches back
into the root lwC. It uses the lwSwitch argument to in-
dicate whether it is done with its work (arg = 1) or not
(arg = 0). When it switches back to the root, control flow
resumes at line 25. Depending on the argument passed
in from the worker, the root lwC either closes the socket
and the worker or leaves them intact for later service.

Since all worker lwCs obtain a private copy of the

root’s state, no worker sees session-specific state of other
workers. This isolates the sessions from each other.

Sensitive data isolation A third common use pattern
isolates sensitive data within a process by limiting access
to a single lwC that exposes only a narrow interface. As
an illustration, Algorithm 3 shows how to isolate a pri-
vate signature key that is available to a signing function,
but kept hidden from the rest of the (large and network-
facing) program.

Algorithm 3 Sensitive Data Isolation

1: function SIGN(key, data, out_buffer)
2: function SIGN_SSTUB(caller,arg)
3: loop
4: lwOverlay(caller,{VM,arg,sizeof(arg),SHARE})
5: sign(privkey, arg.in, arg.out)
6: lwOverlay(caller,{VM,arg,sizeof(arg),UNMAP})
7: caller,arg = lwSwitch(caller, 0)
8: function SIGN_CSTUB(buf)
9: caller,res = lwSwitch(child, buf)

10: function MAIN
11: initialization, load privkey
12: child,caller,arg =
13: lwCreate({VM,0,MAX,MAY_OVERLAY}, 0)
14: if caller != -1 then
15: sign_sstub(caller,arg)
16: privkey = 0 . erase key
17: lwRestrict(child, {VM,0,MAX,NO_ACCESS})
18: loop
19: ...
20: sign_cstub(buf)
21: ...

The main function initializes the program and loads
the private signing key into the variable privkey
(line 11). Next, it calls lwCreate to create a second lwC
with the same initial state (line 13). The child lwC, which
will become the isolated compartment with access to the
privkey, is granted the privilege to overlay any part of
the parent’s virtual memory.

The parent lwC continues executing on line 16, where
it deletes its copy of the private signing key and then re-
vokes its privilege to overlay any part of the child lwC’s
memory. Any code executed in the parent after this point
(line 17) has no way to access the private key. When this
code wishes to sign data, it calls SIGN_CSTUB passing as
argument a structure that contains the data to sign and a
large enough buffer to hold the returned signature.

The SIGN_CSTUB function performs a lwSwitch to
the child lwC, passing a pointer to the buffer as the ar-
gument. The first time the child is switched to, it returns
from lwCreate with caller != -1 and calls SIGN_SSTUB
(line 15), from which it does not return.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 55

SIGN_SSTUB now uses lwOverlay to map the buffer
from the parent lwC as a shared region into its own ad-
dress space (line 4), calls the SIGN function with the pri-
vate key, and then unmaps the buffer from its address
space. Finally, the function calls lwSwitch to return
control to the parent lwC, which resumes by returning
from the lwSwitch in line 9. Upon future invocations of
SIGN_CSTUB, the child lwC returns from the lwSwitch
in line 7 and loops back.

In our evaluation with web servers, we use this pattern
to isolate parts of the OpenSSL library that handle long-
term private keys, thus protecting the keys from vulner-
abilities like the widespread Heartbleed bug [7]. (Heart-
bleed remains a threat even after global key revocations
and reissues [11, 37].)

Protected reference monitor Next, we describe a pat-
tern that allows a parent lwC to intercept any subset of
system calls made by its child and monitor those calls.
In our evaluation, we use this pattern to implement a ref-
erence monitor for system calls made by the web server.

Algorithm 4 Reference Monitor

1: function MONITOR(child)
2: _,call = lwSwitch(child, NULL)
3: loop
4: if is_allowed(call) then
5: spec = { type = CRED, SANDBOX }
6: rv = lwSyscall(child, spec,

call.num, call.params)
7: out.err,out.rv = errno, rv;
8: else
9: out.err,out.rv = EPERM, -1;

10: _,call = lwSwitch(child, out)
11: function MAIN
12: specs = { ... } . Share (COW) all but private data
13: child,c,_ = lwCreate(specs, LWC_SYSTRAP)
14: if c = -1 then . parent becomes refmon
15: monitor(child) . Never returns
16: privdrop() && run() . Child starts here

Algorithm 4 shows the pseudocode of the pattern for
the case where the monitoring parent is the root lwC. On
line 13, the root creates a child lwC but reserves a private
region, which may contain secrets (e.g., encryption keys)
of which the child is not allowed to get a copy. The child
is created with the flag LWC_SYSTRAP, so any system calls
that the child lacks the capability for trap to the root lwC.
Once the child lwC is created, the root lwC enters the
monitoring function, which never returns.

Within the monitoring function, the root, now acting
as the reference monitor, yields to the child immediately
(line 2). The reference monitor regains control when the
child makes a system call that it does not have the ca-

pabilities for. The reference monitor checks whether the
call should be allowed (line 4) and, if so, makes the call
in the context of the child (line 6). It yields to the child
with the system call’s result and error code. If the system
call should be disallowed, the reference monitor yields to
the child with error code EPERM. The reference monitor
loops to handle the next system call.

The child starts execution on line 16 where it immedi-
ately drops privileges for all system calls that should be
monitored. This causes all these system calls to trap to
the reference monitor, which handles them as described
above.

For simplicity, our example reference monitor merely
filters system calls, a capability already provided by
many operating systems. A more interesting monitor
could inspect the system call arguments or other parts of
the child’s state by overlaying in the appropriate regions,
or perform arbitrary actions and system calls on behalf
of the child.

5 Implementation
We have implemented lwCs in the FreeBSD 11.0. We be-
gin with a brief background of the FreeBSD kernel struc-
tures used in implementing lwCs.

5.1 FreeBSD Background
In implementing lwCs, we had to modify FreeBSD ker-
nel data structures corresponding to process memory, file
tables and credentials.

Memory In FreeBSD, the address space of a process
is organized under a vmspace structure (described fully
in [21]). Within the address space, there are virtual
memory regions that correspond to a contiguous inter-
val of memory mapped into the process’s virtual ad-
dress space. These memory regions are represented as
vm_map_entry structures. Attempting to access any
memory that is not within a memory region results in
a segmentation fault.

Two memory regions that are contiguous and have
the same protection bits can be merged into a single
vm_map_entry. The number of memory regions within
a process is typically small (few tens), though for some
processes (notably Apache, that maps modules into dif-
ferent regions) it can be larger. Work performed dur-
ing fork and lwCreate is proportional to the number
of vm_map_entry structures.

Switching the virtual address space map of a process
during a context switch (lwC or otherwise) can be a rela-
tively efficient operation on modern processors. Previous
generations of processors required a TLB flush whenever
the address space had to be changed, as is the case dur-
ing process context switches, or lwC switches. Modern
processors include a “process context identifier” (PCID)
that can be used to distinguish pages that belong to differ-

56 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ent page tables. (On current Intel processors, the PCID
is 12-bits, enabling 4096 different page tables to be dis-
tinguished.) TLB entries are tagged with the PCID that
was active when they were resolved. Whenever the ac-
tive page table is ready to be changed, the kernel sets the
CR3 register to a value containing the PCID and the ad-
dress of the first page directory entry. Any cached TLB
entries that share this PCID are considered valid and may
be used. Importantly, the entire TLB does not have to be
flushed upon a context switch since entries belonging to
other PCIDs are simply considered invalid by the hard-
ware. This facility reduces the cost of context switches
by reducing the frequency of TLB flushes. FreeBSD 11.0
supports PCIDs and each lwC is assigned a unique one
for every core it is activated on.

File Table In FreeBSD, all files, sockets, devices, etc.
open in a process are accessible via the process’s file ta-
ble, which is held as a reference in the process structure.
Each entry contains a cursor, per-process flags, and ac-
cess capabilities. In our implementation, lwCs are also
accessed via file-table entries. Upon fork, the file table
is copied from the parent to the child process.

Credentials Process credentials determine capabilities
and privileges, and include process user identifiers (uid,
gid), limits (cpu time, maximum number of file descrip-
tors, stack size, etc.), the current FreeBSD jail (a restric-
tive chroot-like environment) the process is operating in,
and other accounting information.

The credentials of a process are attached to the process
structure via a struct ucred pointer. Upon a fork, a
reference to the parent structure is given to the child; sys-
tem calls that modify the credential structure allocate a
new struct ucred for the process, and copy unmodi-
fied fields from the parent.

5.2 lwC Implementation
Like a process, each lwC has a file table, virtual memory
space, and credentials associated with it.

Memory Unless otherwise specified, lwCreate repli-
cates the vmspace associated with the parent lwC in ex-
actly the same manner as fork. However, any mem-
ory regions that are specified as LWC_UNMAP during the
lwCreate call are not mapped into the new lwC’s ad-
dress space. Any memory regions that are marked as
LWC_SHARE are mapped into the lwC as memory that
differs from shared memory in only one respect: a sub-
sequent fork will not share this region with its parent.
During a lwSwitch, the calling thread saves its CPU reg-
isters, releases its reference to the current vmspace struc-
ture, and acquires a reference from the address space of
the switched to lwC.

File Table By default, during a call to lwCreate all
file descriptors are copied into the lwC file table in the

same manner as fork except that any associated file de-
scriptor overlay rights are copied as well, as described
in section 5.2. If the user specifies an interval in the
resource specifier as LWC_UNMAP, the corresponding de-
scriptors are not copied into the file table. The user may
specify that the entire file table is to be shared; in this
scenario, as an optimization, we store a reference to the
parent lwC’s file table.

lwC descriptors With one exception, lwC descriptors
have the same visibility as regular file descriptors. Upon
lwCreate, if the file table or a lwC descriptor is not
shared, then the child lwC is not able to access the par-
ent’s lwCs. lwCs closed with the close syscall results
in their removal from the calling lwC’s file table. Upon
a lwCreate or lwSwitch, if a caller parameter is speci-
fied, then the newly created (or switched to) lwC a inher-
its a reference to the caller lwC b as a file descriptor. This
descriptor, corresponding to b, is inserted into a’s file ta-
ble when a is switched to next. (If a’s file table already
had a descriptor for b, then that descriptor is reused, and
a’s file table is not modified.)

Credentials We copy credentials the same way that
they are copied during a fork call. Restoring previous
credentials (using a lwC switch) may reverse calls that
dropped privileges/put the process into a sandbox. Our
reference monitor example (Section 4) shows how this
mechanism can be used. Credentials are treated similarly
to file descriptors and vmspace structures. The calling
thread’s credential structure is replaced with a reference
to the target lwC’s reference structure.

Permissions and Overlays An executing lwC interacts
with another lwC within a process by either switching to
it or by overlaying (some of) that lwC’s resources.

A lwC a may switch to a lwC b only if b’s descrip-
tor is present in a’s file table. Overlay permissions are
more fine-grained: upon creating a new lwC c, the par-
ent p passes a set of resource specifiers. Some of these
may have LWC_MAY_OVERLAY flag set, which allows c to
overlay specified resources from p.

The lwCreate call (p creating c) results in two file de-
scriptors. One refers to c and has full overlay rights, and
is inserted into p’s file table. Thus the creator (parent)
lwC obtains all rights to the child.

The second descriptor, given to c, refers to the p lwC
and only allows overlays on the descriptor as specified
by p in the lwCreate call. File descriptors duplicated
via the dup or similar calls create a new descriptor with a
copy of the overlay rights. These rights can be narrowed
using the lwRestrict call.

The lwOverlay call imports resources from one lwC
into the calling lwC, assuming permissions are not vio-
lated. File table entries that are masked by an overlay are
closed prior to inserting new entries. Similarly, mem-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 57

ory region overlays unmap existing regions in the calling
lwC that are within the overlay interval prior to importing
overlaid regions. If the LWC_SHARE flag is set, the mem-
ory will be shared with the target lwC (i.e., writes will be
visible to both lwCs). This sharing does not persist past
a fork.

Multi-Threaded Support Our implementation sup-
ports lwCs in multithreaded programs. In addition to
necessary synchronization, lwC-specific state that used
to be associated with a process (and shared amongst all
threads) must instead be associated with each lwC. This
does not affect the existing semantics of processes be-
cause in normal operation each thread has a reference
counted pointer to shared objects (e.g., memory spaces).
Once lwC system calls are invoked it is possible for two
threads to reference separate address spaces (i.e., lwCs).
The modifications to the existing kernel were largely su-
perficial outside of process creation and destruction.

6 Evaluation
In this section, we evaluate lwCs using micro-
benchmarks, and when applying the usage patterns dis-
cussed in Section 4 in the context of the Apache and ng-
inx web servers. Our experiments were performed on
Dell R410 servers, each with 2x Intel Xeon X5650 2.66
GHz 6 core CPUs with both hyperthreading and Speed-
Step disabled, 48GB main memory, running FreeBSD
11.0 (amd64) and OpenSSL 1.0.2. The servers were con-
nected via Cisco Nexus 7018 switches with 1Gbit Ether-
net links. Each server has a 1TB Seagate ST31000424SS
disk formatted under UFS.

6.1 lwC switch
Table 2 compares the time to execute a lwSwitch
call compared to context switching between processes
(using a semaphore), between kernel threads (using a
semaphore, which we found to be faster than a mutex),
and user threads. The user threads use the getcontext
and setcontext calls specified by POSIX.1-2001. A
lwC switch takes less than half the time of a process or
kernel thread switch. The reason is that a lwC switch
avoids the synchronization and scheduling required for a
process or thread context switch, instead requiring only a
switch of the vm mapping. Somewhat surprisingly, a ker-
nel thread switch is on par with a process context switch
when both use the same form of synchronization. The
reason is that the kernel code executed during a switch
between two kernel threads in the same process or in dif-
ferent processes is largely the same.

User threads are only moderately faster than lwC
switches, because in FreeBSD 11, the user context switch
is implemented by a system call. In Linux glibc, it
is instead implemented in userspace assembly. In an
experiment with Linux 3.11.10 on the same hardware,

user thread switches run in 6% of the time required by
semaphore-based kernel thread switches.

lwC process k-thread u-thread
2.01 (0.03) 4.25 (0.86) 4.12 (0.98) 1.71 (0.06)

Table 2: Median switch time (in microseconds) and stan-
dard deviation over ten trials.

6.2 lwC creation
Next, we measured the total cost of creating, switching
to, and destroying lwCs with default arguments (all re-
sources shared COW with the parent) within a single
process. When no pages are written in either the parent
or child lwC during the lifetime of the child, the system
is able to create, switch into once, and destroy an lwC
in 87.7 microseconds on average, with standard devia-
tion below 1%. This result is independent of the amount
of memory allocated to the process. Each page written
in either parent or child, however, causes a COW fault,
which requires a page frame allocation and copy. When
100, 1000, 10000, and 100000 pages are written in the
child during the experiment described above, the average
total time taken per lwC increases to 397, 3054, 35563,
and 34182 microseconds, respectively. Standard devia-
tion was below 7% in all cases. The cost of maintaining a
separate lwC is approximately linearly dependent on the
number of unique pages it creates, and is lowest when
lwCs in a process share most of their pages.

The results of our microbenchmarks can be used to
estimate the cost of using lwCs in an application, given
an estimate of the rate of lwC creations and switches, and
the number of unique pages in each lwC. Later in this
section, we evaluate the overhead of lwCs in the context
of specific applications: Apache and nginx.

6.3 Reference monitoring
Following the pattern described in Section 4, we have im-
plemented an in-process reference monitor using lwCs.
When a process starts, the reference monitor gains con-
trol first and creates a child lwC, which executes the
server application. The child lwC is sandboxed using
FreeBSD Capsicum and disallowed from using certain
system calls, which are instead redirected to the parent
lwC using the LWC_SYSTRAP option. Our reference
monitor restricts access to the filesystem, though other
policies that restrict any system call or inspect memory
(using lwOverlay) can readily be implemented within
our basic schema. We compare the lwC reference moni-
tor (lwc-mon) to two other techniques:

Inline Monitoring (inline) This is a baseline scheme
where the reference monitor checks are inlined with
the application code. The monitored process is

58 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0.01

 0.1

 1

open 4K
read

4K
 write

128K
read

128K
write

T
im

e
 i
n

 s
e

c
o

n
d

s
 (

lo
g

)
inline procsep lwc-mon

Figure 1: Cost of 10,000 monitored system calls in sec-
onds (log scale). Error bars show standard deviation.

LD_PRELOADed with a library that intercepts each sys-
tem call and checks arguments. Inlining provides a lower
bound on overhead, but does not provide security since
the monitored process can overwrite the checks or other-
wise bypass the interception library.

Process Separation (procsep) This method provides
a secure reference monitor in a separate process. The
monitored process runs in a sandbox based on FreeBSD
Capsicum [30]: the sandbox ensures that the monitored
process is unable to issue prohibited system calls (e.g.
open). At initialization, but prior to entering the sand-
box, the monitored process connects to the reference
monitor process over a Unix domain socket, which it
can subsequently use to communicate with the refer-
ence monitor, even while sandboxed. All open calls
(which the sandbox restricts) must be vectored through
this socket, which allows the reference monitor to inspect
and restrict the access as necessary. If the access is to be
granted to the sandboxed application, the reference mon-
itor shares a file descriptor over the socket.

Figure 1 shows the overhead of monitoring open, read
and write system calls, while an application is accessing
a file stored in an in-memory file system. The application
calls each system call 10,000 times and we report the av-
erage of 5 runs. Faster system calls have higher relative
overhead since the fixed cost of redirecting the system
call has to be paid. lwc-mon does not require data copy-
ing or IPC and hence outperforms procsep by a factor of
two or more.

6.4 Apache
Modern web servers are designed to efficiently map user
sessions to available processing cores. For instance, the
popular Apache HTTP server provides multi-threading
using kernel threads (threads) in one configuration and
pre-forked processes that map to different cores (pre-
fork) in another. Higher performance servers, such as
nginx, use an event loop (based on kqueue or epoll)
within a process, and have the option of spawning mul-
tiple processes that map to cores, each with their own

 0

 10

 20

 30

 40

 50

 60

 70

1 4 16 64 256 1024 4096 ∞

T
h

ro
u

g
h

p
u

t
(G

E
T

s
/s

e
c
 x

1
0

0
0

)

Session length

threads
prefork

fork
lwc

(a) HTTP

 0

 10

 20

 30

 40

 50

1 4 16 64 256 1024 4096 ∞

T
h

ro
u

g
h

p
u

t
(G

E
T

s
/s

e
c
 x

1
0

0
0

)

Session length

threads
prefork

fork
lwc

(b) HTTPS

Figure 2: Apache throughput in (GETs/sec) of 128 con-
current clients, 45 byte docs. Error bars show standard
deviation, which was below 3.7%.

event loop.
Consider the problem of isolating individual user ses-

sions to separate the privileges of different user sessions
or to implement per-user information flow control. None
of the above mentioned server configurations provide
such isolation: multi-threaded and event-driven configu-
rations serve different sessions concurrently in the same
process; pre-forked processes sequentially share among
different sessions. Apache can be configured to fork a
new process for each user session (fork), which provides
memory isolation and privilege separation. As our results
demonstrate, however, this configuration has low perfor-
mance for small session lengths, due to the overhead of
forking processes2.

lwCs can provide memory isolation, privilege separa-
tion, and high performance. We have augmented the pre-
fork mode in Apache (version 2.4.18) to provide session
isolation using the snapshot and rollback pattern from
Section 4. Within each Apache process, we create a lwC
that serves a user session; when the session ends, the

2In fact, we had to patch Apache (in server/mpm_common.c) to
continuously check the status of child processes (rather than at 1s in-
tervals) to get this configuration to perform at all at small to modest
session lengths.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 59

lwC switches (reverts) to its initial (untainted) state be-
fore serving the next user session, thereby ensuring the
isolation property.

In the following set of experiments, we use
ApacheBench (ab) to issue HTTP and HTTPS requests
to our Apache server. We modified ab to support vary-
ing client session lengths by using HTTP Keepalive and
terminating a session after a certain number of requests.
We launch a single ApacheBench instance which repeat-
edly makes up to 128 concurrent requests for a small
45 byte document. We chose small document requests
to make sure the results are not I/O-bound. Figure 2
shows the number of GET requests served per second
by the different Apache configurations at different ses-
sion lengths, and for HTTP and HTTPS. For HTTPS,
the server uses TLSv1.2, ECDHE-RSA-AES256-GCM-
SHA384 with 4096 bit keys. The results were averaged
over five runs of 60 seconds each.

At session length ∞, each client maintains a session
for the duration of the experiment. The threads and pre-
fork configurations, which provide no isolation, perform
comparably for all session lengths and protocols. fork
and lwc configurations provide isolation: lwc has bet-
ter throughput in all cases, and has a significant advan-
tage for short sessions (256 and below), particularly for
HTTP. (In HTTPS, the high CPU overhead for session
establishment dominates overall cost; however, emerging
hardware support for crypto will diminish these costs,
exposing once again the costs of isolation.) Moreover,
lwc achieves performance comparable to the best config-
uration without isolation for sessions lengths of 256 and
larger.

We also repeated the experiment with GET requests
for 900 byte documents. These documents are 20x larger
but still small enough not to saturate the network link.
The trends and relative throughput between the different
configuration were very close to those in Figure 2, with
the absolute peak throughput within 10%.

We have integrated reference monitoring within
Apache (and nginx). Figure 3 shows the throughput of
Apache prefork in different reference monitor configu-
rations when used to serve short (45 byte) documents.
The results were averaged over five runs of 20 seconds
each. In this experiment, the open and stat system calls
are monitored and checked against a whitelist of allowed
directories. These results show that a reference moni-
tor implementation based on in-process lwC incurs lower
overhead than an implementation based on process sep-
aration even for large applications where the monitored
system calls constitute only part of what the applications
do. The overhead of reference monitoring increases with
session length due to the increase in relative number of
reference monitored system calls (open and stat) com-
pared to other system calls (accept, read, send, close).

 0

 10

 20

 30

 40

 50

 60

 70

1 4 16 64 256 1024 4096 ∞

T
h

ro
u

g
h

p
u

t
(G

E
T

s
/s

e
c
 x

1
0

0
0

)

Session length

inline
procsep
lwc-mon

Figure 3: Throughput of different Apache reference
monitoring configurations in (GETs/sec) of 128 concur-
rent clients, 45 byte docs. Error bars show standard de-
viation, which was below 2%.

6.5 Nginx
To enable session isolation in nginx (version 1.9.15), we
allocate a lwC for each new connection: each event for
a single connection is isolated within the lwC, following
the session isolation pattern from Section 4. Note that
in the nginx case, each process may serve many differ-
ent connections simultaneously, and our implementation
creates a lwC per active connection within the process.
We have also integrated a reference monitor with nginx.

We experiment with different nginx configurations:
the stock nginx, lwc-event augments nginx’s event loop
to create a new lwC per connection, and lwc-event-mon
combines a reference monitor with the per-connection
lwC. In each case we configured nginx to use 10 worker
processes, as we found that this had the best perfor-
mance. We launch four ApacheBench instances, each
of which repeatedly makes up to 75 concurrent requests
for a small 45 byte document.

Figure 4 shows the average number of queries served
by each of the configurations over five runs of 60 seconds
each. The standard deviation did not exceed 0.9%.

nginx is considered the state of the art high-
performance server. It uses a highly optimized event
loop and is about 2.88x quicker than Apache. Introduc-
ing lwCs in this base configuration (named lwc-event in
the results) has no significant impact on the throughput
of this high-performance configuration. Similarly, refer-
ence monitoring adds only minimal overhead. For both
HTTP and HTTPS, with isolation and reference monitor-
ing, lwC-augmented nginx performs comparably to na-
tive nginx.

Large scale servers may need to maintain tens of thou-
sands of concurrent user sessions. Using lwCs for ses-
sion isolation increases the amount of per-session state.
Therefore, our next experiment explores how using lwCs
for session isolation affects nginx’s performance under a

60 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 4 16 64 128 256 ∞

T
h

ro
u

g
h

p
u

t
(G

E
T

s
/s

e
c
 x

1
0

0
0

)

Session length

nginx
lwc-event

lwc-event-mon

(a) HTTP

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 4 16 64 128 256 ∞

T
h

ro
u

g
h

p
u

t
(G

E
T

s
/s

e
c
 x

1
0

0
0

)

Session length

nginx
lwc-event

lwc-event-mon

(b) HTTPS

Figure 4: Nginx throughput in GETs/sec with 10 work-
ers, 45B documents, 300 concurrent requests. Error bars
show standard deviation, which was below 0.9%.

large number of concurrent client connections. We ex-
perimented with two configurations: in the first, we use
between 6 and 76 ApacheBench instances, and each in-
stance issues 250 concurrent requests for a 45 byte docu-
ment. The session length was 256 and we used 10 nginx
workers. The second configuration is identical except the
ApacheBench instances request 900 byte documents.

Figure 5 shows the average number of requests served,
over 5 runs of the experiment, as a function of the number
of client sessions for stock nginx and lwc-eventfor both
file sizes.

For small documents, lwc-event matches the perfor-
mance of native nginx up to 6500 clients. Beyond, the
performance of both configurations declines following
the same trend, but the absolute throughput of lwc-event
falls below that of nginx by up to 19% at 19,500 concur-
rent clients. In investigating this result further, we find
that FreeBSD kernel threads, in particular, the interrupt
handler thread, gets CPU bound after 6500 clients, and
the CPU consumption of the nginx worker threads re-
duces with higher numbers of clients as the nginx worker
threads block waiting for the kernel to demultiplex pack-
ets. The lwc-event configuration further pays an extra
cost of lwC switches, which reduces performance com-

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 5000 10000 15000 20000

T
h

ro
u

g
h

p
u

t
(G

E
T

s
/s

e
c
 x

1
0

0
0

)

Number of concurrent clients

nginx (45B)
lwc-event (45B)

nginx (900B)
lwc-event (900B)

Figure 5: Nginx cumulative throughput in GETs/sec with
10 workers, session length 256, 45B and 900B docu-
ments, increasing number of concurrent clients. Error
bars show standard deviation.

pared to stock nginx. However, given that lwc-event pro-
vides session isolation, this is a still a strong result.

For 900 byte documents, the performance of stock ng-
inx and lwc-event remain similar until ∼12000 simul-
taneous clients. Performance of stock nginx is not af-
fected by increasing numbers of clients: this is because
the rate of incoming requests is lower, which means the
kernel threads do not saturate the CPU. With increasing
numbers of clients, eventually the cost of lwC switches,
which were amortized over serving a larger document,
become a measurable factor.

Overall, our results show that using lwCs, it is possible
to implement features such as session isolation and refer-
ence monitoring at low cost for both HTTPS and HTTP
sessions, and even in a high-performance server under a
challenging workload.

6.6 Isolating OpenSSL keys
lwCs provide a particularly effective way to isolate sensi-
tive data from network-based attacks such as buffer over-
flows or overreads. The sensitive data is stored in a lwC,
within the process, such that the network-facing code has
no visibility into pages that store the sensitive data. In
this way, unless the kernel is compromised, the data is
guaranteed safe, but access to functions that require the
data can be rapid, using a safe lwC-crossing interface.

As an example, we have isolated parts of the OpenSSL
library that manipulate secret information within Apache
and nginx. In our case, the web server certificate private
keys are isolated; note that such a scheme would have
rendered attacks such as Heartbleed completely ineffec-
tive since the buffer overread that Heartbleed relied on
would not have visibility into the memory storing the pri-
vate keys. We evaluate this scheme using the following
configurations:

In-process LwC Sensitive data is stored in a lwC
within the process, following the pattern from Algo-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 61

rithm 3 in Section 4. The network-facing code within the
process has no visibility into the sensitive data; access
is through a narrow interface exported via lwC switch
entry points. The isolated lwC has a copy of the orig-
inal process at the time of creation and may call what-
ever functions are available within its address space. Our
encapsulated OpenSSL library takes advantage of this
fact because the isolated lwC hosts a COW copy of the
OpenSSL code and global state and need not be aware
that it is running in a restricted environment. None of the
changes in the sensitive lwC are visible to the network
facing code.

We evaluate the cost of providing this isolation by
performing SSL handshakes (TLSv1.2,ECDHE-RSA-
AES256-GCM-SHA384 with 4096 bit keys) with the ng-
inx web server. The server was configured to spawn four
worker processes. We used ApacheBench with concur-
rency level 24 and a session length of 1. In our exper-
iments, native nginx required 99.7 seconds to complete
ten thousand SSL handshakes, whereas the configuration
with a lwC isolated SSL library required 100.4 seconds.
With lwCs, isolating SSL private keys is essentially free.

Our prototype isolates only the server certificate pri-
vate key, but not session keys or other sensitive informa-
tion. More fine-grained isolation of the OpenSSL state,
such as that described in [5], can be implemented readily
using lwCs.

6.7 FCGI fast launch
We demonstrate the utility of lwC snapshotting by adding
a “fast launch” capability to a PHP application. When a
PHP request is served, a PHP script is read from disk,
compiled by the interpreter, and then executed. During
execution, other PHP files may be included and executed.
We modified the PHP 7.0.11 programming language to
add a pagecache call that allows the script to “fast-
forward” using previous snapshots. Our implementation
augments PHP-FPM [28], which functions as a FCGI
server for nginx. Our test application is based on the
MVC skeleton application that is included with the Zend
PHP framework [36], which provides the core function-
ality for creating database-backed web-based applica-
tions such as blogs.

Before a PHP script performs any computation that
depends on request-specific parameters (e.g., cookie in-
formation), the script may invoke the pagecache call,
which implements the snapshot pattern (Algorithm 1).
The first time a pagecache is invoked, we take a snap-
shot and then revert to it on subsequent requests to the
same URL, effectively jumping execution forward in
time. We use a shared memory segment to store data
that must survive a snapshot rollback, including request-
specific data and network connection information.

Our experiments run PHP-FPM with 11 workers. PHP

itself includes an opcode cache (which caches the compi-
lation of each script in memory) and our results include
configurations where the PHP opcode cache is enabled
and not. When combining the opcode cache and the lwC
snapshot, we warm up the opcode cache before taking
the snapshot. The results in Table 3 are an average of five
runs and overall standard deviation was less than 2%.

stock php lwC php stock php lwC php
no cache no cache cache cache

226.1 615.8 1287.5 1701.4

Table 3: Average requests per second over 60 seconds
with 24 concurrent requests.

With or without the opcode cache, the lwC snapshot
is able to skip over much of the initialization of the run-
time and whatever PHP execution would otherwise occur
before the pagecache call. This result is remarkable in
that it shows lwCs can provide significant performance
benefit to highly optimized end-to-end applications such
as web frameworks, while adding isolation between user
requests.

7 Conclusions
We have introduced and evaluated light-weight contexts
(lwCs), a new first-class OS abstraction that provides
units of isolation, privilege, and execution state indepen-
dent of processes and threads. lwCs provide isolation and
privilege separation among program components within
a process, as well as fast OS-level snapshots and co-
routine style control transfer among contexts, with a sin-
gle abstraction that naturally extends the familiar POSIX
API. Our results show that fast roll-back of FCGI run-
times, compartmentalization of crypto secrets, isolation
and monitoring of user sessions can be implemented in
the production Apache and nginx web server platforms
with performance close to or better than the original con-
figurations in most cases.

8 Acknowledgments
We would like to thank the anonymous reviewers, Paari-
jaat Aditya, Björn Brandenburg, Mike Hicks, Pete Kele-
her, Matthew Lentz, Dave Levin, Neil Spring, and our
shepherd KyoungSoo Park for their helpful feedback.
This research was supported in part by US National
Science Foundation Awards (TWC 1314857 and NeTS
1526635), the European Research Council (ERC Syn-
ergy imPACT 610150), and the German Science Foun-
dation (DFG CRC 1223).

References
[1] ABADI, M., BUDIU, M., ERLINGSSON, U., AND LIGATTI, J.

Control-flow integrity. In Proceedings of the 12th ACM Confer-
ence on Computer and Communications Security (CCS) (2005),
pp. 340–353.

62 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[2] AVIRAM, A., WENG, S.-C., HU, S., AND FORD, B. Efficient
system-enforced deterministic parallelism. In Proceedings of the
9th USENIX Conference on Operating Systems Design and Im-
plementation (Berkeley, CA, USA, 2010), OSDI’10, USENIX
Association, pp. 193–206.

[3] BANGA, G., DRUSCHEL, P., AND MOGUL, J. C. Resource
containers: A new facility for resource management in server
systems. In Proceedings of the Third Symposium on Operating
Systems Design and Implementation (Berkeley, CA, USA, 1999),
OSDI ’99, USENIX Association, pp. 45–58.

[4] BELAY, A., BITTAU, A., MASHTIZADEH, A., TEREI, D.,
MAZIÈRES, D., AND KOZYRAKIS, C. Dune: Safe user-level
access to privileged CPU features. In Presented as part of
the 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 12) (Hollywood, CA, 2012), USENIX,
pp. 335–348.

[5] BITTAU, A., MARCHENKO, P., HANDLEY, M., AND KARP,
B. Wedge: Splitting applications into reduced-privilege com-
partments. In Proceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementation (Berkeley, CA,
USA, 2008), NSDI’08, USENIX Association, pp. 309–322.

[6] BOYD-WICKIZER, S., CHEN, H., CHEN, R., MAO, Y.,
KAASHOEK, F., MORRIS, R., PESTEREV, A., STEIN, L., WU,
M., DAI, Y., ZHANG, Y., AND ZHANG, Z. Corey: An operating
system for many cores. In 8th USENIX Symposium on Operating
Systems Design and Implementation (OSDI) (2008).

[7] CERT Vulnerability Note VU#720951: OpenSSL TLS heartbeat
extension read overflow discloses sensitive information. http:
//www.kb.cert.org/vuls/id/720951.

[8] CHASE, J. S., LEVY, H. M., FEELEY, M. J., AND LAZOWSKA,
E. D. Sharing and protection in a single-address-space operating
system. ACM Trans. Comput. Syst. 12, 4 (Nov. 1994), 271–307.

[9] CHEN, Y., REYMONDJOHNSON, S., SUN, Z., AND LU, L.
Shreds: Fine-grained execution units with private memory. 2016
IEEE Symposium on Security and Privacy, SP 2016, San Jose,
CA, USA, May 23-25, 2015 (2016), 20–37.

[10] DIETER, W. R., AND LUMPP, JR., J. E. User-level checkpoint-
ing for LinuxThreads programs. In Proceedings of the FREENIX
Track: 2001 USENIX Annual Technical Conference (Berkeley,
CA, USA, 2001), USENIX Association, pp. 81–92.

[11] DURUMERIC, Z., KASTEN, J., LI, F., AMANN, J., BEEKMAN,
J., PAYER, M., WEAVER, N., HALDERMAN, J. A., PAXSON,
V., AND BAILEY, M. The matter of Heartbleed. In ACM Internet
Measurement Conference (IMC) (2014).

[12] EL HAJJ, I., MERRITT, A., ZELLWEGER, G., MILOJICIC, D.,
ACHERMANN, R., FARABOSCHI, P., HWU, W.-M., ROSCOE,
T., AND SCHWAN, K. SpaceJMP: programming with multiple
virtual address spaces. In Proceedings of the Twenty-First Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems (New York, NY, USA, 2016),
ASPLOS ’16, ACM, pp. 353–368.

[13] FORD, B., AND LEPREAU, J. Evolving Mach 3.0 to a migrating
thread model. In Proceedings of the USENIX Winter 1994 Tech-
nical Conference on USENIX Winter 1994 Technical Conference
(Berkeley, CA, USA, 1994), WTEC’94, USENIX Association.

[14] GOOGLE CAJA TEAM. Google-Caja: A source-to-source trans-
lator for securing javascript-based web.

[15] HEISER, G., ELPHINSTONE, K., VOCHTELOO, J., RUSSELL,
S., AND LIEDTKE, J. The Mungi single-address-space operating
system. Softw. Pract. Exper. 28, 9 (July 1998), 901–928.

[16] INTEL CORP. Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual: Vol. 3D, June 2016.

[17] KUZNETSOV, V., SZEKERES, L., PAYER, M., CANDEA, G.,
SEKAR, R., AND SONG, D. Code-pointer integrity. In 11th
USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI) (2014), pp. 147–163.

[18] LINDSTROM, A., ROSENBERG, J., AND DEARLE, A. The grand
unified theory of address spaces. In Proceedings of the Fifth

Workshop on Hot Topics in Operating Systems (HotOS-V) (Wash-
ington, DC, USA, 1995), HOTOS ’95, IEEE Computer Society.

[19] LITZKOW, M., TANNENBAUM, T., BASNEY, J., AND LIVNY,
M. Checkpoint and migration of UNIX processes in the Con-
dor distributed processing system. Tech. Rep. UW-CS-TR-1346,
University of Wisconsin—Madison CS Department, April 1997.

[20] MAMBRETTI, A., ONARLIOGLU, K., MULLINER, C.,
ROBERTSON, W., KIRDA, E., MAGGI, F., AND ZANERO, S.
Trellis: Privilege Separation for Multi-User Applications Made
Easy. In International Symposium on Research in Attacks, Intru-
sions and Defenses (RAID) (Sept. 2016).

[21] MCKUSICK, M. K., AND NEVILLE-NEIL, G. V. The Design
and Implementation of the FreeBSD Operating System. Pearson
Education, 2004.

[22] METTLER, A., WAGNER, D., AND CLOSE, T. Joe-e: A security-
oriented subset of java. In NDSS (2010), vol. 10, pp. 357–374.

[23] MILLER, M. Robust composition: Towards a unified approach
to access control and concurrency control. PhD thesis, Johns
Hopkins University, 2006.

[24] PALMER, G. The case for thread migration: Predictable IPC in
a customizable and reliable OS. In Proceedings of the Workshop
on Operating Systems Platforms for Embedded Real-Time appli-
cations (OSPERT ’10) (2010).

[25] PATRIGNANI, M., AGTEN, P., STRACKX, R., JACOBS, B.,
CLARKE, D., AND PIESSENS, F. Secure compilation to pro-
tected module architectures. ACM Transactions on Programming
Languages and Systems 37, 2 (Apr. 2015).

[26] PLANK, J. S., BECK, M., KINGSLEY, G., AND LI, K. Libckpt:
Transparent checkpointing under Unix. In Usenix Winter Techni-
cal Conference (January 1995), pp. 213–223.

[27] STEINBERG, U., AND KAUER, B. Nova: A microhypervisor-
based secure virtualization architecture. In Proceedings of the
5th European Conference on Computer Systems (2010), EuroSys
’10, pp. 209–222.

[28] THE PHP GROUP. FastCGI Process Manager (FPM). http:
//php.net/manual/en/install.fpm.php, 2016.

[29] WAHBE, R., LUCCO, S., ANDERSON, T. E., AND GRAHAM,
S. L. Efficient software-based fault isolation. SIGOPS Oper.
Syst. Rev. 27, 5 (Dec. 1993), 203–216.

[30] WATSON, R. N. M., ANDERSON, J., LAURIE, B., AND KEN-
NAWAY, K. A taste of Capsicum: Practical capabilities for unix.
Commununications of the ACM 55, 3 (Mar. 2012).

[31] WATSON, R. N. M., WOODRUFF, J., NEUMANN, P. G.,
MOORE, S. W., ANDERSON, J., CHISNALL, D., DAVE, N. H.,
DAVIS, B., GUDKA, K., LAURIE, B., MURDOCH, S. J., NOR-
TON, R., ROE, M., SON, S., AND VADERA, M. CHERI: A
hybrid capability-system architecture for scalable software com-
partmentalization. In 2015 IEEE Symposium on Security and
Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015 (2015),
pp. 20–37.

[32] WITCHEL, E., CATES, J., AND ASANOVIĆ, K. Mondrian mem-
ory protection. In Proceedings of the 10th International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems (New York, NY, USA, 2002), ASPLOS X,
ACM, pp. 304–316.

[33] WITCHEL, E., RHEE, J., AND ASANOVIC, K. Mondrix: Mem-
ory isolation for Linux using Mondriaan memory protection. In
Proceedings of the 20th Symposium on Operating Systems Prin-
ciples (SOSP ’05) (Brighton, UK, October 2005).

[34] WOODRUFF, J., WATSON, R. N., CHISNALL, D., MOORE,
S. W., ANDERSON, J., DAVIS, B., LAURIE, B., NEUMANN,
P. G., NORTON, R., AND ROE, M. The CHERI capability
model: Revisiting RISC in an age of risk. In Proceeding of the
41st Annual International Symposium on Computer Architecuture
(Piscataway, NJ, USA, 2014), ISCA ’14, IEEE Press, pp. 457–
468.

[35] YEE, B., SEHR, D., DARDYK, G., CHEN, J. B., MUTH, R.,
ORMANDY, T., OKASAKA, S., NARULA, N., AND FULLAGER,

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 63

N. Native Client: A sandbox for portable, untrusted x86 native
code. 2009 IEEE Symposium on Security and Privacy, SP 2016,
Berkeley, CA, USA, May 17-20, 2009 (2016), 79–93.

[36] ZEND. MVC Skeleton Application. https://framework.
zend.com/downloads/skeleton-app, 2016.

[37] ZHANG, L., CHOFFNES, D., DUMITRAŞ, T., LEVIN, D., MIS-
LOVE, A., SCHULMAN, A., AND WILSON, C. Analysis of SSL

Certificate Reissues and Revocations in the Wake of Heartbleed.
In ACM Internet Measurement Conference (IMC) (2014).

[38] ZHONG, H., AND NIEH, J. CRAK: Linux checkpoint/restart as a
kernel module. Tech. Rep. CUCS-014-01, Columbia University
CS Department, November 2001.

64 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

