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Abstract

In this paper we describe a low footprint implementation

of HyperElliptic Curve Cryptography (HECC) for RFID

tags. This HECC processor supports divisor multiplica-

tion on a hyperelliptic curve defined over GF(283). We pro-
pose a Unified GF(2m) Multiplier/Inverter (UMI) which is

smaller than ALUs with separated multipliers and inverters.

With the UMI divisor multiplications using affine coordi-

nates can be efficiently supported. Since affine coordinates

require less registers than projective coordinates, the size of

register file is also reduced.

We choose hyperelliptic curves defined with the h(x) =
x and f(x) = x5 + f3x

3 + x2 + f0. The HECC proces-

sor, synthesized with 130 nm standard cell library, uses 14.5

kGates. It consumes 13.4 µW when running at 300 kHz.

One divisor multiplication takes 450 ms, which makes our

solution a feasible option for light-weight applications.

Keywords: Hyperelliptic Curve Cryptography, Modular

multiplication, Modular inversion, RFID

1 Introduction

RFID tags are now widely used in logistics, medical ap-

plications, access control and so on. It is also believed that a

large scale of utilization of RFID will take place in the near

future. Security is one of the key concerns in many applica-

tions. By security we mean that an RFID tag should be un-

clonable and untraceable by attackers. Moreover, the secu-

rity features built in the RFID tags should not limit the scal-

ability of the system. Protocols [20, 17, 15] based on Public

Key Cryptography (PKC) have been suggested. However,

implementing PKCs with a sufficient security level on a pas-

sive RFID tag is a big challenge in terms of area, power and

energy.
Several PKC implementations have been reported for

passive RFID tags. For instance, Elliptic Curve Cryptosys-

tem (ECC) was implemented for RFID tags [13, 16]. Ac-

cording to [1], a passive RFID tag should have power con-

sumption less than 15 µW to guarantee a 1 meter operation

range. Some ECC implementations can already fulfill the

requirements. For example, ECC processor proposed by

Lee et al. [16], using 15.4 kGates with 130 nm technol-

ogy, consumes 12.08 µW when running at 323 kHz, and

one scalar multiplication takes only 243 ms. The ECC core

proposed by Hein et al. [13] consumes 10.08 µW when

running at 106 kHz.
In this paper, we propose a compact implementation of

Hyperelliptic Curve Cryptography (HECC) targeting RFID

tags. HECC can be used for all the protocols that are based

on ECC. To the best of our knowledge, there is no patents

on HECC. We show that HECC can also fulfill the require-

ments with a comparable performance. We propose a Uni-

fied Multiplier and Inverter (UMI) for GF(2m) arithmetic

as well as a smaller register file. With 130 nm technology,

the HECC core takes about 14.5 kGates. Running at 300

kHz, the power consumption is about 13.4 µW according

to our simulation results. One divisor multiplication takes

136k clock cycles.
The rest of the paper is organized as follows. Sec-

tion 2 gives the mathematical background of HECC and

field arithmetic. Section 3 describes the methods that we

propose to reduce the footprint of the HECC processor. The

architecture of the proposed HECC processor is described

in Sect. 4. In Sect. 5 we present the implementation re-

sults. We conclude the paper and give some future works in

Sect. 6.

2 Mathematical Background

2.1 Hyperelliptic curve cryptography

Hyperelliptic curves are a special class of algebraic

curves; they can be viewed as a generalization of elliptic

curves. Namely, a hyperelliptic curve of genus g = 1 is an



elliptic curve, while in general, hyperelliptic curves can be

of any genus g ≥ 1.
Let GF(2m) be an algebraic closure of the field

GF(2m). Here we consider a hyperelliptic curveC of genus

g = 2 over GF(2m), which is given with an equation of the
form:

C : y2 + h(x)y = f(x) in GF(2m)[x, y], (1)

where h(x) ∈ GF(2m)[x] is a polynomial of degree at most

g (deg(h) ≤ g) and f(x) is a monic polynomial of degree

2g + 1 (deg(f) = 2g + 1). Also, there are no solutions

(x, y) ∈ GF(2m) ×GF(2m) which simultaneously satisfy

the equation (1) and the equations: 2v+h(u) = 0, h′(u)v−
f ′(u) = 0. These points are called singular points. For the

genus 2, in the general case the following equation is used

y2 + (h2x
2 + h1x + h0)y = x5 + f4x

4 + f3x
3 + f2x

2 +
f1x + f0.

A divisor D is a formal sum of points on the hyperellip-

tic curve C i.e. D =
∑

mP P and its degree is degD =∑
mP . Let Div denote the group of all divisors on C

and Div0 the subgroup of Div of all divisors with de-

gree zero. The Jacobian J of the curve C is defined as

quotient group J = Div0/P . Here P is the set of all

principal divisors, where a divisor D is called principal if

D = div(f), for some element f of the function field

of C (div(f) =
∑

P∈C ordP (f)P ). The discrete loga-

rithm problem in the Jacobian is the basis of security for

HECC. In practice, the Mumford representation according

to which each divisor is represented as a pair of polyno-

mials [u, v] is usually used. Here, u is monic of degree 2,

deg(v) < deg(u) and u|f − hv − v2 (so-called reduced

divisors). For implementations of HECC, we need to im-

plement the multiplication of elements of the Jacobian i.e.

divisors with some scalar.

2.2 Field Arithmetic

An elementα inGF(2m) can be represented as a polyno-

mial A(x)=
∑m−1

i=0 aix
i, where ai is an element of GF(2).

Addition of two elements in GF(2m) is performed as poly-

nomial addition in GF(2)

m−1∑

i=0

aix
i +

m−1∑

i=0

bix
i =

m−1∑

i=0

(ai ⊕ bi)x
i,

where ⊕ is the XOR operation.

2.2.1 Multiplication

In the literature there are various algorithms and archi-

tectures [4, 21] proposed for modular multiplication in

GF(2m). Algorithm 1 shows a bit-serial multiplication al-

gorithm.

Algorithm 1 MSB-first bit-serial multiplication algorithm

in GF(2m)

Input: A(x) =
∑m−1

i=0 aix
i, B(x) =

∑m−1
i=0 bix

i, irre-

ducible binary polynomial P (x) with deg(P (x)) = m.

Output: A(x)B(x) mod P (x).

1: C(x)(=
∑m

i=0 cix
i)← 0;

2: for i = m− 1 to 0 do

3: C(x)← x(C(x) + cmP (x) + biA(x));
4: end for

Return: C(x)/x.

2.2.2 Inversion

The multiplicative inverse of α ∈ GF(2m) is an element

β ∈ GF(2m) such that αβ ≡ 1 mod P (x), where β is

denoted as α−1. Compared with the other modular opera-

tions, modular inversion is considered as a computationally

expensive operation. Thus, projective coordinates are pro-

posed to avoid inversions. However, one inversion is still

required to convert projective coordinates to affine coordi-

nates.

The most commonly used methods to perform the mod-

ular inversion are based on Fermat’s little theorem [2], Ex-

tended Euclidean Algorithm [14] and Gaussian elimina-

tion [12]. EEA is widely used in practice. The schoolbook

EEA-based inversion algorithm in GF(2m) is considered

inefficient due to the long polynomial division in each it-

eration. This problem was partially solved by replacing

degree comparison with a counter [5]. Many variants of

EEA [23, 11] have been proposed. Architecture for inverter

and divider [6, 9] have also been reported using EEA-based

algorithms.

2.3 HECC implementations

HECC has been implemented in both hardware [7, 19,

22, 3, 8] and software [18]. Most of the implementa-

tions are targeting high performance. For example, the im-

plementation of HECC described in [22], using affine co-

ordinates, uses three modular multipliers and two modu-

lar inverters. It uses 7785 slices on the Xilinx Virtex II

FPGA(XC2V4000), and finishes one divisor multiplication

of HECC over GF(281) in 415 µs. Sakiyama reported a

compact data-path for HECC targeting RFID tags [19]. Im-

plemented with 130 nm standard cell library, the HECC pro-

cessor takes 7652 gates and the estimated power consump-

tion is 19 µW when it’s running at 500 kHz. Note that the

area and power consumption in [19, 3] do not include data

memory.

In this paper, we try to minimize the area of both data-

path and the data memory. We use affine instead of projec-

tive coordinates, thus the number of registers to store inter-

mediate values is reduced. In order to improve the perfor-



mance, we also use a unified multiplier and inverter, which

supports fast inversion.

3 Reducing the footprint

We use several techniques to reduce the footprint of the

HECC processor. The register file occupies the biggest por-

tion of the total area. Thus, reducing the size of register

file is the key step towards a compact HECC processor. Be-

sides, the modular arithmetic logic unit (MALU) is also of

vital importance in terms of size and performance of the

processor.

3.1 Reducing the register file size

The number of registers is determined by divisor multi-

plication algorithm. As described in Sect. 2, one can use

affine coordinates and projective coordinates for divisor ad-

dition and doubling. Choosing projective or affine coordi-

nates, when targeting a high performance implementation,

is decided by the efficiency of multiplication and inversion.

However, affine coordinates require less registers for stor-

ing intermediate results since they do not include Z coor-

dinates. Moreover, using affine coordinates also reduces

the number of intermediate results. Our investigation shows

that 12 registers are sufficient for scalar multiplication with

flexible base divisor.

Table 1 and 2 show the memory allocation of divisor

doubling and divisor addition.

Table 1. Divisor doubling.
Input: {R4,R5,R6,R7} = D1(={u10,u11,v10,v11}).

R3:= R4*R4; R4:= R5*R5+f3; R6:= R6*R6+f0;

R6:= 1/R6; R6:= R6*R3; R2:= R4*R6;

R0:= R2+R5; R5:= R6*R6; R1:= R6+R4 ;

R4:= R0*R0+R6; R2:= R1*R2+f2; R2:= R6*R5 +R2;

R7:= R7*R7+R2; R6:= R1*R4 +R3;

Return: {R4,R5,R6,R7} = 2*D1.

3.2 Reducing the ALU size

There are several techniques to reduce the size of the

data-path. First, fixing the underlying field can significantly

reduce the complexity of modular reduction, resulting in

a smaller multiplier. Second, using bit-serial multiplier or

digit-serial multiplier with small digit size is also beneficial.

Third, using a smaller multiplier, such as 16x16 bit instead

of full length digit-serial multiplier, is also a good strategy

in general to reduce the size and power [13].

In this paper, we use affine coordinates, thus a fast in-

verter is required. We propose a unified architecture for

inversion and multiplication. The inversion algorithm is

Table 2. Divisor addition.
Input: {R4,R5,R6,R7} = D1(={u10,u11,v10,v11}),

{R8,R9,R10,R11} = D0(={u00,u01,v00,v01}).

R0:=R5+R9 ; R1:=R0*R0 ; R1:=R1*R4 ;

R2:=R5*R0 ; R3:=R8+R4 ; R2:=R2+R3 ;

R3:=R3*R2+R1 ; R6:=R6+R10 ; R1:=R2*R6 ;

R7:=R7+R11 ; R6:=R7+R6 ; R0:=R5+R9 ;

R7:=R0*R7 ; R2:=R2+R0 ; R6:=R2*R6+R1 ;

R6:=R7*R5+R6 ; R6:=R7+R6 ; R7:=R4*R7+R1 ;

R2:=R3*R6 ; R2:=1/R2 ; R6:=R6*R6 ;

R6:=R6*R2 ; R2:=R3*R2 ; R3:=R3*R2 ;

R4:=R4+R3 ; R7:=R7*R2 ; R0:=R9+R5 ;

R5:=R7+R5 ; R7:=R7+R0 ; R4:=R5*R7+R4 ;

R7:=R7+R0 ; R1:=R9*R7+R8 ; R4:=R4+R1 ;

R5:=R3*R3 ; R3:=R8*R7 ; R4:=R0*R5+R4;

R5:=R0+R5 ; R7:=R9+R7 ; R7:=R7+R5 ;

R0:=R5*R7+R4; R0:=R0+R1 ; R7:=R4*R7+R3 ;

R0:=R0*R6+R11 ; R6:=R7*R6+R10 ; R7:=R0+1 ;

Return: {R4,R5,R6,R7} = D1 + D0.

Algorithm 2 Left-Shift EEA-Based Inversion Algorithm

Input: irreducible binary polynomial P (x) with

deg(P (x)) = m, polynomial A(x) with deg(A(x)) < m.

Output: A−1(x) mod P (x).

1: R(x) ← P (x), S(x) ← A(x), H(x) ← 0, J(x) ←
x−m, d← 0;

2: for i = 0 to 2m− 1 do

3: if sm=1 & d > 0 then

4: [R(x), S(x)]← [S(x), x(S(x) + R(x))];
[H(x), J(x)] ← [J(x), x(H(x) + J(x)) mod

P (x)];
d = −d + 1;

5: else

6: [R(x), S(x)]← [R(x), x(smR(x) + S(x))];
[H(x), J(x)] ← [H(x), x(smH(x) + J(x)) mod

P (x)];
d = d + 1;

7: end if

8: end for

Return: H(x).

proposed in [9]. Note that here x−m is precomputed and

hardwired.

Figure 3.2 shows the data-path of our proposed digit-

serial inverter and multiplier. Note that in order to further

reduce the area, we choose a low Hamming-Weight irre-

ducible polynomial, P (x) = x83 + x7 + x4 + x2 + 1.
Only 5 AND gates and 5 XOR gates are required to perform

(amP (x)+A(x)). The architecture realizes both Alg. 1 and
Alg. 2. The multiplier and the inverter share AND-XOR

cells and two registers.

This data-path supports the following operations.



Modular Multiplication In the multiplication mode, the

data-path realizes Alg. 1 by taking the following configura-

tion:

• si ← cm, S(x)← S J(x), R(x)← R(x).

In this case, R(x) and J(x) are not updated, thus both can

be used to store intermediate results. The final result of

multiplication is stored in register S(x).

Modular Inversion In the inversion mode, R(x)−S(x)
pair and H(x) − S(x) pair are updated alternatively. For

R(x) − S(x) pair, there is no need of reduction, thus s is

set to 0. For H(x) − J(x) here, reduction may be needed

depending on the value of hm and sm. Note that the choice

of branch only depends on sm and d, thus R(x) and S(x)
can be updated first. The information about the branch that

has been taken is recorded in a register, afterwards H(x)
and J(x) are updated accordingly.

• d > 0, sm = 1,
R(x)← S(x). S(x)← x(R(x) + S(x)).
H(x) ← J(x), J(x) ← x(J(x) + H(x) + (hm +
jm)P (x)).

(a) Bit-serial modular multiplier

(b)Digit-serial modular multiplier/inverter (d = 2).

Figure 1. Unified Multiplier and Inverter (UMI).

• d ≤ 0, sm = 1,
R(x)← R(x). S(x)← x(R(x) + S(x)).
H(x) ← H(x), J(x) ← x(J(x) + H(x) + (hm +
jm)P (x)).

• sm = 0,
R(x)← R(x). S(x)← xS(x).
H(x)← H(x), J(x)← x(J(x) + jmP (x)).

When choosing the digit-size d, one multiplication in

GF(2m) takes ⌈m/d⌉ cycles, while one inversion takes

⌈4m/d⌉ cycles.

4 HECC processor architecture

The HECC processor is shown in Fig. 2. It contains

an Instruction ROM, a main controller, a unified modular

multiplier/inverter, a Register File, and an input/output in-

terface. The Instruction ROM contains the field operation

sequences of divisor addition and doubling. The main con-

troller calls different routines, i.e. load, store, divisor addi-

tion and divisor doubling, depending on the key bit.

We use ten 84-bit registers in the register file. During the

scalar multiplication, 8 registers are used to store divisor

D0 and D1. We need four registers to store temporary data,

thus 12 registers in total. However, the register R(x) and

J(x) in the unified multiplier and inverter are used only for

inversion. Thus, we could use them as temporary storage.

As a result, the register file contains only 10 registers.

5 Implementation Results

The processor is described with Gezel [10] language and

synthesized with design compiler. We implemented the

Figure 2. Block diagram of the proposed

HECC processor.



HECC processor, as shown in Figure 2, with 130 nm stan-

dard cell library. Table 3 summarizes the area and power of

the proposed design.

Our HECC implementation uses 14.5 kGates and fin-

ishes one divisor multiplication in 136838 clock cycles.

The power consumption, estimated with power compiler, is

around 13.4 µW when running at 300 kHz. The implemen-

tation of [19], using projective coordinates, requires 266133

clock cycles for one scalar multiplication. Note that the im-

plementation in [19] is defined on a smaller field and the

result does not include data memory. The power and energy

consumption of our design is also significantly lower when

achieving the same delay compared to that of [19]. The

main speedup of our design comes from the fast inverter

and the use of affine coordinates.

There are many ECC implementations proposed for

RFID tags. Lee et al. [16] explored the trade-off between

area and power of ECC implementation using digit-serial

multiplier with various digit size. From d = 2 to d = 4,
the number of clock cycles for one scalar multiplication is

halved, while the area increases only 10%. A trade-off can

be made between power, performance and energy.

The architecture proposed in [13] uses a different ap-

proach. It utilizes 16x16 GF(2) multiplier and 32-bit accu-

mulator. With shorter registers, the power consumption can

be significantly reduced. On the other hand, it requires 296k

clock cycles, twice as many as our HECC implementation,

for one scalar multiplication, which makes the overall en-

ergy requirement significantly higher.

Our HECC processor can meet the requirements for pas-

sive RFID tags in terms of area, power and energy. How-

ever, our current implementation can hardly match the en-

ergy efficiency of some ECC implementations [16]. This is

due to the fact that the computational complexity of HECC

divisor scalar multiplication is higher than the point mul-

tiplication for ECC. Because divisor operations in HECC

are much more complicated than point operations in ECC,

almost double number of clock cycles is required for one

scalar multiplication even if the multiplier has the same

digit size.

Note that our current implementation is based on bi-

nary scalar multiplication method. No countermeasures

for side-channel attacks are deployed. The ECC imple-

mentations [16, 13] use Montgomery scalar multiplication,

which is believed to be secure against simple power analy-

sis. Adding countermeasures normally causes area increase,

performance degradation or both.

6 Conclusions

We describe a low-power HECC implementation for

RFID tags. The reported HECC processor uses a unified

modular multiplier/inverter to support fast scalar multipli-

cation using affine coordinates. With a reduction on the size

of register file, the area of the processor is largely reduced.

The HECC implementation uses 14.5 kGates and finishes

one scalar multiplication in 136838 clock cycles. The over-

all power consumption is estimated at 13.4 µW when run-

ning at 300 kHz. The results show that HECC can fully

meet the requirements for passive RFID tags.

For the future study, we would like to include counter-

measures against side-channel attacks. Also, in order to im-

prove energy efficiency, a design trade-off between energy

and area can be explored by adjusting the digit-size of the

multiplier/inverter.
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