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Abstract

Motivation: Computational prediction of protein–protein complex structure by docking can provide

structural and mechanistic insights for protein interactions of biomedical interest. However, current

methods struggle with difficult cases, such as those involving flexible proteins, low-affinity com-

plexes or transient interactions. A major challenge is how to efficiently sample the structural and

energetic landscape of the association at different resolution levels, given that each scoring func-

tion is often highly coupled to a specific type of search method. Thus, new methodologies capable

of accommodating multi-scale conformational flexibility and scoring are strongly needed.

Results: We describe here a new multi-scale protein–protein docking methodology, LightDock, cap-

able of accommodating conformational flexibility and a variety of scoring functions at different

resolution levels. Implicit use of normal modes during the search and atomic/coarse-grained com-

bined scoring functions yielded improved predictive results with respect to state-of-the-art rigid-

body docking, especially in flexible cases.

Availability and implementation: The source code of the software and installation instructions are

available for download at https://life.bsc.es/pid/lightdock/.

Contact: juanf@bsc.es

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein–protein interactions are involved in virtually all cellular

processes, such as protein expression regulation, cell-cycle control

or immune response, among many others (Eisenberg et al., 2000).

Characterizing such interactions at atomic level is of paramount im-

portance to better understand pathological conditions at molecular

level. However, structural data at atomic resolution is only available

for a tiny fraction of the estimated number of protein–protein com-

plexes in human (Mosca et al., 2013; Stumpf et al., 2008;

Venkatesan et al., 2009). In this context, computational docking is

being increasingly applied for the structural modeling of protein–

protein interactions, aiming to complement experimental methods.

From a technical point of view, the docking problem presents

two main challenges: the efficient sampling of the conformational

and orientation space in search of near-native structures (sampling),

and the identification of such near-native structures among the

many models generated (scoring) (Moal and Bates, 2010). In most

of the cases, the applicability of a given scoring function is strongly

dependent on the sampling approaches used. The widely used Fast-

Fourier Transform (FFT) based methods can efficiently generate

geometrically complementary rigid-body docking poses (Gabb et al.,

1997; Katchalski-Katzir et al., 1992). Their main advantage is their

high computational speed, which can be even further accelerated by

using graphics processing units (GPU) (Ritchie and Venkatraman,
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2010). However, the inclusion of new scoring schemes within the

FFT approach is difficult, since any extra atomic pairwise scoring

function needs to be defined as one or more additional 3D grids,

usually at a higher computational cost. Thus very often, it is more

efficient to use external scoring functions, such as that in pyDock

(Cheng et al., 2007). Another major limitation of the FFT grid-

based methods is that they cannot explicitly consider conform-

ational flexibility, although recently reported new developments

could alleviate some of these limitations (Padhorny et al., 2016).

Other docking methods are based on explicit representation of the

interacting proteins, using a larger variety of scoring functions at

atomic or coarser-grained level. However, in the majority of the cases,

these scoring functions are highly coupled to a specific sampling

protocol. In addition, the computational cost of conformational

search in atomistic representation is high, so in practice, these meth-

ods usually consist in an initial rigid-body docking search, followed

by an additional flexible refinement step (Dominguez et al., 2003;

Fernández-Recio et al., 2003; Schueler-Furman et al., 2005). A few

docking procedures consider flexibility during the entire search phase,

using a reduced representation of the conformational search space (Li

et al., 2010; May and Zacharias, 2007; Zacharias, 2003).

The development of new scoring functions that can be independ-

ently applied to different sets of docking models generated by a variety

of docking methods is an active area of research (Brenke et al., 2012;

Moal et al., 2013a,b; Schneidman-Duhovny et al., 2012). However,

as above mentioned, the use of new scoring functions in docking has

been traditionally limited by the type of sampling method. On the one

hand, grid-based docking search methods have difficulties in effi-

ciently including energy-based scoring functions. On the other hand,

molecular dynamics, minimization or Monte-Carlo sampling methods

usually are linked to a specific force-field and cannot easily accept

new scoring schemes. It is thus necessary the development of new

sampling schemes in docking that can use multi-scale representation

of the proteins, accept flexibility at different degrees and accommo-

date a large variety of new scoring functions.

In this context, Swarm Intelligence (SI) is a family of the artificial

intelligence algorithms inspired by emergent systems in nature,

which can perform a more efficient search in a complex space, quite

independently on the scoring function to optimize. Basically, those

algorithms make use of simple agents that interact locally in a decen-

tralized way, and whose interactions lead to complex emergent pat-

terns or systems in nature, e.g. fish schooling or termite mounds. SI

algorithms have been applied to protein–protein docking, such as

Particle Swarm Optimization (PSO) in SwarmDock (Li et al., 2010).

Another algorithm is Glowworm Swarm Optimization (GSO)

(Krishnanand and Ghose, 2009a), a bio-inspired algorithm from the

SI family, which is based in the concept that in nature, glowworms

are being attracted by other mates depending on the quantity of

emitted light. This metaphor is used by the GSO algorithm for sim-

ultaneously capturing multiple local optima in multimodal func-

tions. Each agent in the algorithm, a glowworm, carries out a

quantity of luciferin which encodes the actual fitness of the position

of the agent in the explored search space. The algorithm has been

applied to many different problems (Huang and Zhou, 2011;

Krishnanand and Ghose, 2009b; Liao et al., 2011), but not explicitly

to protein–protein docking. GSO has some advantages over PSO

(Krishnanand and Ghose, 2009a). First, while PSO was initially de-

signed for capturing global minima or maxima, GSO was also in-

tended for capturing multimodal local. This property is especially

relevant when exploring the protein–protein docking energetic land-

scape, which tends to be very noisy. This can be overcome in ad-hoc

PSO implementations, such as in SwarmDock (Li et al., 2010),

which has additional features efficiently adapted to the docking

problem and uses multiple trajectories to avoid focusing only on a

single global minimum. Moreover, in GSO the number of captured

minima or maxima is proportional to the number of defined agents,

while this is not true in PSO, which poses a major drawback in sys-

tems which are required to scale. On the contrary, the major draw-

back of GSO over PSO is the computation time, which tends to be

one order of magnitude higher.

Here in this work we show that GSO can capture the multiple

local and global energetic minima of the docking energetic land-

scape, independently from the force-field used. The new method

shows robust performance in very noisy environments, and good

scalability (an interesting property in high-performance computing

architectures), and has been devised as a protein–protein docking

framework for fast-prototyping and testing of new scoring functions.

2 Materials and methods

2.1 LightDock: GSO algorithm applied to

protein–protein docking
The agents in the GSO algorithm are defined as glowworms which

carry a luminescent quantity called luciferin. At each step of the

simulation, the quantity of luciferin l depends on the evaluation of

the complex energy by the user-defined scoring S function in the ac-

tual search space x and the previous value of the luciferin based on

the trajectory of the given glowworm (Eq. 1). Decay of the quantity

of luciferin is controlled by the q variable, and c represents the en-

hancement constant, i.e. how much affects the actual evaluation of

the energy in the luciferin quantity.

li t þ 1ð Þ ¼ 1� qð Þ � li tð Þ þ c � S xi t þ 1ð Þð Þ (1)

In LightDock, these parameters are defined by default as: q ¼ 0:4,

c ¼ 0:6, initial luciferin l 0ð Þ ¼ 5:0 (Krishnanand and Ghose,

2009a). Each glowworm gi initially represents a specific position in

the translational and rotational space of the ligand (Eq. 2), where tx,

ty and tz are the components of the vector vorigin�ligandcenter
and qw, qx,

qy and qz are the components of the quaternion that represents the

ligand rotation in the four-dimensional quaternions space. The use

of quaternions needs fewer variables than rotation matrices, and

avoids the known gimbal lock problem of sampling based on Euler

angles or polar coordinates (Shoemake and Ken, 1985).

gi ¼ tx; ty; tz; qw; qx;qy; qz

� �
(2)

In addition, the framework has the capability of using the aniso-

tropic network model (ANM) (Atilgan et al., 2001; Doruker et al.,

2000) to introduce a certain degree of backbone flexibility during

the protein–protein binding process. In this case, each glowworm

agent represents, in addition to a translation/rotation ligand pos-

ition, the extent of deformation along each non-trivial normal mode

for the receptor, nr, and the ligand, nl, in the optimization vector

(Eq. 3). The number of normal modes is customizable for the recep-

tor, R, and the ligand, L.

gi ¼ tx; ty; tz;qw;qx; qy; qz; nr1::R; nl1::L
� �

(3)

ANM is implemented in the LightDock framework via the ProDy

Python library (Bakan et al., 2011). The ANM model is calculated

on the Ca atoms of the backbone of both receptor and ligand and

then extended to the rest of atoms for each residue. By default, we

considered the first ten non-trivial normal modes (R¼L¼10) be-

cause of the good compromise between the percentage of recovery
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in the interface as seen in (Moal and Bates, 2010) (55% in ten nor-

mal modes versus 44% for the first five non-trivial normal modes)

and the computation time required.

2.2 Initial receptor/ligand models (glowworms)
Each independent simulation in a LightDock run will contain a fixed

number of receptor/ligand models (glowworm swarm) in which the

randomly defined ligand positions will cover a given region around

the receptor. The initial ligand positions can show a certain overlap-

ping between some of the swarms so that taking all together they

will cover all regions around the receptor. The use of independent

simulations from different swarms has important advantages. First,

only the glowworms within the same swarm can see each other. In

this way, the agents can only sample a localized region of the recep-

tor and thus can maximize the acquired information by the swarm

in this specific region of the search space. Second, it makes the algo-

rithm to be embarrassingly parallel, with no need of communication

between parallel executions and facilitates the optimal execution of

the algorithm in high-performance computing architectures or small

clusters. Finally, by selecting the swarms centers to be used in the

simulation, it offers the opportunity to the users to avoid regions

that are known in advance not to be likely involved in binding, i.e.

transmembrane domains, as opposed to many FFT-based methods

where this filtering has to be performed a posteriori.

The setup of the initial glowworm swarms is as follows. Initially, a

fixed number of initial swarm centers Ns (by default 400) are defined

around the receptor, by using the spiral method (Rakhmanov et al.,

1994), and are projected using a ray-tracing technique to find the clos-

est atom from the receptor at the distance of the maximum radius of

the ligand. To guarantee a correct sampling over the surface, a certain

density of these centers is needed (Supplementary Methods 1.1). For

each initial swarm center, glowworms are defined by randomly pos-

itioning the ligands (by default 300) so that their center of coordinates

are placed within a 10Å radius sphere from the given swarm center

(Fig. 1). LightDock framework can also support the use of pre-

calculated ligand poses generated by FTDock (Gabb et al., 1997)

(Supplementary Methods 1.2).

If ANM model is considered, deformational extents for receptor

and ligand are randomly generated from a Gaussian distribution

with l ¼ 4:0 and r ¼ 3:0. To minimize over-fitting, these values

were tested against a small set of only four complexes of the

Protein–Protein Benchmark 3.0 (Hwang et al., 2008) that were clas-

sified as rigid in the mentioned benchmark. Intuitively, a relatively

large value of r is required to ensure some variability, but l centered

in 0.0 does not seem to be a good choice according to our tests (data

not shown), since the range of the normal mode extents generated is

not sufficient to recover unbound-bound conformational changes.

Other methods as ATTRACT (de Vries and Zacharias, 2013) and

SwarmDock (Moal and Bates, 2010) reported similar values for the

deformational extents.

2.3 GSO sampling
As above described, sets of initial receptor/ligand putative models

(glowworms) are defined for their use in independent simulations.

Each given glowworm gi will move towards the best-scoring (luci-

ferin) neighbor glowworm gj with a given probability pij (Eq. 4)

(Krishnanand and Ghose, 2009a),

pij tð Þ ¼ lj tð Þ � liðtÞP
k2NiðtÞlk tð Þ � li tð Þ (4)

where the number of neighbor glowworms (Ni) of glowworm gi is

defined by its vision range distance (initially ri
d ¼ 5:0 Å), limited by

the maximum number of neighbors (by default Nmax ¼ 5).

The distance in the search space between two receptor/ligand

models (glowworms) used to update this list of neighbors (Ni) is

computed as that between the centers of the minimum ellipsoids of

the ligands (translation and rotation of the receptors does not vary).

Other definitions of distance based on RMSD did not improve sam-

pling (Supplementary Methods 1.3). The vision range of each glow-

worm ri
d is dynamically updated at each step (Eq. 5) (Krishnanand

and Ghose, 2009a) up to a maximum vision range (by default

rs ¼ 20:0 Å),

ri
d t þ 1ð Þ ¼ min rs; max 0; ri

d tð Þ þ b nt � NiðtÞj jð Þgg
��

(5)

where the b parameter indicates how the vision range depends on

the number of neighbors in the GSO algorithm (by default

b ¼ 0:16).

The evolution from one ligand pose (initial glowworm gi) to-

wards another one (target glowworm gj) is composed of two differ-

ent movements: a translation in the Cartesian space and a rotation

in the space of the quaternions. Within the translational space, a

new pose will be built from the initial pose by applying a number

from the interval (0, 1) as defined in the translation step variable (by

default 0.5) to the translation vector tij between gi and gj. As for the

rotational movement, the movement in the quaternion space is cal-

culated using the spherical linear interpolation (SLERP) (Morrison

and Jack, 1992) between the quaternion components of gi and gj

with a default step of 0.5. In the case of using the ANM representa-

tion, a simple interpolation in Euclidean space with a step of 0.5

will be included in both receptor and ligand values. All of these step

values can be changed by the users.

2.4 Scoring functions
The movement of the different agents though the search space is

driven by the fitness of the scoring function S (which defines the

quantity of luciferin; Eq. 1). The GSO algorithm is able to optimize

the function as long as the agents are uniformly distributed along

the search space. In that sense, the optimization method is independ-

ent from the search space and makes the strategy valid for any

Fig. 1. Initial glowworm swarms together with initial ligand positions.

Tryptophan synthase a(2)b(2) complex (PDB code 1WDW). The receptor is

shown in blue, 300 ligand random positions for a given glowworm swarm are

represented using a three-axis arrows model (red, yellow and blue represent

the x, y and z orthogonal axis), showing their initial translation and rotation.

Orange points over the surface of the receptor represent the 400 initial swarm

centers
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scoring function used. LightDock framework offers the possibility

to add new scoring functions abstracting the way of how molecules

are considered. In particular, users can easily specify their own pro-

tein models (full atoms or coarse grained) through the Adapter class.

In the movement step, the model will be rotated and translated and

there will be a new class coded by the user, the evaluation module,

the one in charge of evaluating the fitness of the scoring function.

To demonstrate the possibilities of the framework regarding further

extension, nine scoring functions have been implemented (see

Results).

The program allows the combination of two or more scoring

functions, even if they are defined at different resolution levels. It

only requires from the user a file containing, for each line, the name

of the scoring function already implemented in LightDock and the

weight of the function. For each simulation step, each scoring func-

tion is evaluated and the scoring function S is the result of the linear

combination of the selected individual scoring functions.

2.5 Clustering of final docking poses
The resulting models from each independent simulation (by default

300) are merged and clustered. Clustering plays an essential role in

the final success rate independently of the scoring function applied,

since it removes redundant models. We applied a simple clustering

procedure based on the Basic Sequential Algorithmic Scheme (BSAS)

algorithm (Theodoridis and Koutroumbas, 2008), which is devised

to be able to discard redundant poses with a ligand RMSD below

4 Å. First, the best docking pose, in terms of energy, is identified,

thus establishing the first sub-cluster. Then, and sequentially, the

rest of receptor-ligand complexes are structurally evaluated against

the already clustered poses. If their ligand RMSD is within 4 Å from

any of the cluster representatives, they will be included in that clus-

ter, otherwise they will establish a new one. The final representative

of each cluster corresponds to the structure with the best energy.

Another hierarchical method (Supplementary Methods 1.4) was

tested on the cases of the Protein–Protein Docking Benchmark ver-

sion 5.0 (Vreven et al., 2015), but it yielded worse performance

based on the ratio of near native solutions versus the number of total

predictions.

3 Results and discussion

3.1 Overall predictive performance of LightDock
The predictive performance of LightDock was tested on the Protein–

Protein Docking Benchmark 5.0, composed of a total of 230 com-

plexes. The predictive success rates were based on the percentage of

cases in which at least one near-native solution was found within

the top N solutions (N¼10, 100), as ranked according to the corres-

ponding scoring function. Near-native solutions were defined as

those ones with a ligand RMSD<10 Å with respect to the ligand

position in the reference structure (when receptor molecules are

superimposed). We tested the performance of LightDock (using de-

fault parameters; see Methods) with DFIRE (Zhou and Zhou, 2002)

scoring function (LightDock-DFIRE), as well as that of LightDock

with a faster implementation of the pyDock (Cheng et al., 2007)

scoring function (Supplementary Methods 1.6) called pyDockLite

(LightDock-pyDockLite). For each docking case, LightDock gener-

ated a total of 120 000 poses, which were clustered as described in

the Methods section. After clustering, the final number of docking

models obtained by LightDock-pyDockLite ranged between 600

(PDB 1CLV) and 6387 (PDB 1DE4), and near-native poses were

found in 70% of the cases. In LightDock-DFIRE, the total number

of docking models ranged between 748 (PDB 1CLV) and 6713

(PDB 1AKJ), and near-native poses were found in 75% of the cases.

As a further test, docking simulations on the same complex using

different scoring functions were combined in order to capture dif-

ferent near-native predictions. With this purpose, all the models in-

dependently generated by LightDock-DFIRE or by LightDock-

pyDockLite were merged and re-scored by pyDock scoring function

(i.e. combination of LightDock-DFIRE/pyDock and LightDock-

pyDockLite/pyDock). The scoring function in pyDock has shown

excellent performance in the scorers round of the CAPRI

community-wide experiment (Lensink et al., 2016; Pallara et al.,

2013), and it is sufficiently fast not to become an overhead in the

total computation time of LightDock.

As can be seen in Figure 2A, the use of pyDockLite scoring func-

tion within LightDock showed better success rates for the top 10

docking solutions than when using the DFIRE scoring function. The

performance of LightDock-pyDockLite is only slightly worse than

that of pyDock applied on FTDock docking models (FTDock/

pyDock), as in pyDock server (Jiménez-Garcı́a et al., 2013). For the

top 100 success rates (Supplementary Fig. S3A), this difference in

performance between LightDock-pyDockLite and LightDock-

DFIRE scoring functions is higher, and interestingly, LightDock-

pyDockLite top 100 success rate is even slightly better than that of

the standard FTDock/pyDock.

Interestingly, the number of successful cases after pyDock rescor-

ing increased for both methods. The improvement was more evident

for LightDock-DFIRE models, which after re-scoring with pyDock

(LightDock-DFIRE/pyDock), achieved success rates similar to

LightDock-pyDockLite. This shows that the differences in the suc-

cess rates when using pyDockLite or DFIRE as scoring function dur-

ing the search mainly depended on the scoring of the resulting

Fig. 2. Predictive success rates for LightDock on the Protein–Protein Docking

Benchmark 5.0, n¼ 230. (A) Success rates for the top 10 docking models

are shown for: LightDock-pyDockLite (blue), LightDock-DFIRE (orange),

LightDock-pyDockLite/pyDock (grey), LightDock-DFIRE/pyDock (yellow), com-

bination of LightDock-pyDockLite/pyDock and LightDock-DFIRE/pyDock (pur-

ple). For comparison, the performance of the standard protein–protein

docking protocols FTDock/pyDock (green) and ZDock 3.0.2 (red) are shown.

(B) Top 10 success rates are shown according to unbound-to-bound conform-

ational changes
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models, and not on the search algorithm itself, given that sampling,

even with DFIRE, was able to provide good models that were later

identified by pyDock re-scoring. When combining the docking mod-

els obtained from the two LightDock versions, and subsequent re-

scoring by pyDock, global success rates (19% for top 10; 44% for

top 100) slightly improved with respect to the individual simula-

tions, and were even better than those of standard pyDock on

FTDock models (Fig. 2A). To explore whether these results by

LightDock were due to the above mentioned clustering step, we

applied the same clustering method to FTDock docking poses prior

to pyDock scoring, but the results did not significantly change (data

not shown). For the sake of comparison, we checked that top 10 per-

formance of state-of-the-art ZDock 3.0.2 (Pierce et al., 2011) was

only slightly better than the combination of LightDock-pyDockLite/

pyDock and LightDock-DFIRE/pyDock (Fig. 2A), but top 100 per-

formance was clearly worse (Supplementary Fig. S3A). However,

we should note that this small improvement comes at the expense of

doubling the computational cost, since two independent simulations

are needed.

Preliminary tests on the use of two scoring functions during

search have shown an improvement over the results when using the

individual scoring schemes (data not shown). Although further ana-

lyses are needed, this opens new possibilities for the efficient com-

bination of different multi-scale models within LightDock protocol.

3.2 LightDock is more efficient in flexible cases
It is interesting to analyze whether the performance of LightDock

(with different scoring functions) depends on the flexibility of the

interacting proteins. For that, we have classified the cases, according

to the RMSD of the interface Ca atoms (I-RMSDCa) between the

unbound and bound states (as defined in the Protein–Protein

Docking Benchmark 5.0), in the following categories: rigid

(I-RMSDCa<0.5 Å), low-flexible (0.5 Å< I-RMSDCa<1.0 Å),

medium-flexible (1.0 Å< I-RMSDCa<2.0 Å), flexible (2.0 Å< I-

RMSDCa<3.0 Å) and highly flexible (I-RMSDCa>3.0 Å).

LightDock-pyDockLite performs better in the low-flexible cases

(Fig. 2B), while the standard FTDock/pyDock or ZDock protocols

were more successful in the rigid cases. The introduction of the

ANM representation is probably improving the predictions in the

more flexible cases, but at the expense of worsening the results in

the rigid cases (due to the introduction of some noise in the already

good geometries). Strikingly, LightDock-DFIRE showed its best re-

sults in the rigid cases, as in rigid-body FTDock/pyDock. It seems

that the DFIRE scoring function cannot take advantage of the ANM

model in the more flexible cases, perhaps due to the more coarse-

grained character of the potentials. When both approaches are

rescored with pyDock, these tendencies remain, which suggests that

the scoring function imposed some differences in the ANM-based

conformational search. Results for top 100 show a similar fashion

compared to top 10 (Supplementary Fig. S3).

The use of ANM-based flexibility aims to provide better pre-

dicted models. To evaluate this, we tested a version of LightDock

that did not use the ANM model, being thus completely rigid-body

sampling, on a heterogeneous set of 30 complexes (6 rigid, 17 low-

flexible, 5 medium-flexible and 2 flexible) from the Protein–Protein

Benchmark 5.0. The success rates were much worse (10% for top

10; 20% for top 100; as compared to 17 and 27%, respectively,

when using ANM and LightDock-DFIRE option). Interestingly, the

analysis by category of flexibility shows that there is no difference

between the use of ANM in the rigid-body class (17% for top 10

and top 100, using or not ANM), but the difference of success rate

comes from an improvement in the low-flexible and medium-

flexible categories for both top 10 and top 100 results. This im-

provement provided by ANM is in the same range as that reported

for other state of the art methods that use normal mode analysis

(Moal and Bates, 2010; de Vries and Zacharias, 2013).

3.3 Extending the framework to multi-scale
Seven additional scoring functions have been implemented in the

framework (see Supplementary Methods 1.5 for more details on

defining new scoring functions) as a demonstration of the capabil-

ities of LightDock for being extended with new scoring functions:

DFIRE2 (Yang and Zhou, 2008), MJ3h (Miyazawa et al., 1999),

PISA (Viswanath et al., 2013), TOBI (Tobi and Bahar, 2005),

SIPPER (Pons et al., 2011), a truncated van der Waals scoring as

defined in pyDock (Cheng et al., 2007) and the SwarmDock scoring

energy (Moal and Bates, 2010) with electrostatics and van der

Waals charges from AMBER force-field. Several other options are

supported by the framework. For instance, local energy optimiza-

tion using a non-gradient algorithm has been implemented. For each

swarm and each step, the best glowworm in terms of scoring energy

is minimized using this non-gradient algorithm. This strategy should

help the algorithm to converge in fewer steps (data not shown).

On the other hand, the LightDock framework includes the op-

tion of using pre-calculated conformational ensembles, in which

case each structure for receptor and ligand is identified by a unique

identifier that is added to the optimization vector. For the future, a

clearer strategy to define the distance between two conformers is

needed so that it can be more efficiently used when one of the glow-

worms is moving towards the other one. The search could be opti-

mized by maintaining a global list of the most successful or used

conformers for receptor and ligand, and then use it to define a prob-

ability for selecting a given conformer.

Multi-scale chained simulations are currently supported by the

framework. One possible strategy is to perform a first run of the

LightDock protocol using a given scoring function and then, after

identifying the best energy wells, the predictions could be expanded

by a new LightDock run, using the same scoring function or a differ-

ent one, with finer sampling parameters for instance. In this way, a

first quick run could be performed with a coarse-grained force-field,

which can be followed by a more accurate refinement using a full-

atom scoring function. As mentioned before, LightDock also sup-

ports the use of multiple weighted scoring functions upon search,

which opens the protocol to the use of multi-scale models at the

sampling process. For example, coarse-grained models could be

combined with full-atomistic models for a better sampling of the en-

ergetic landscape. This approach would be only limited by computa-

tional resources.

Finally, the framework includes more than 200 unit tests and

more than 10 regression tests from point to point to guarantee a

good testing coverage of the code, and additional usage examples to

users who aim to extend the framework.

3.4 Computational performance
Optimizations at the level of the scoring function (the most time-

consuming part) were performed using the Python C extensions

mechanism. The average computation time for all the 230 com-

plexes in the Protein–Protein Docking Benchmark 5.0 using DFIRE

scoring function and 400 CPU cores (1 core per swarm) is of 1.5 h,

while for pyDockLite scoring function is of 2.0 h in the same condi-

tions. For demonstration purposes, some scoring functions are pro-

vided in native Python, Cython (www.cython.org) and Python/C
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versions. In addition, LightDock is implemented using multicore

and MPI Python libraries, and the algorithm is embarrassingly par-

allel, which means that can ideally scale proportional to the number

of CPU cores used.

4 Conclusions

We have presented here a new protein–protein docking protocol

called LightDock, which is based on the GSO algorithm for sam-

pling the translational and rotational space of protein–protein dock-

ing, and ANM representation for the inclusion of flexibility.

LightDock aims to be a publicly available framework for testing and

developing new scoring strategies for protein–protein docking. The

use of pyDockLite scoring function during the search provides com-

parable success rates to state-of-the-art protocols, and the combin-

ation with additional functions, like DFIRE, can further improve the

predictions. This multi-scale docking framework has capabilities for

the use of many different scoring functions (alone or in combin-

ation) and the inclusion of flexibility at different resolution levels.
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