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Abstract

This paper deals with lightlike hypersurfaces of indefinite trans-Sasakian manifolds of type (α, β),

tangent to the structure vector field. Characterization Theorems on parallel vector fields, integrable dis-
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tion in an Einstein parallel lightlike hypersurface which does not contain the structure vector field. We

characterize the normal bundle along any totally contact umbilical leaf of an integrable screen distribu-

tion. We finally prove that the geometry of any leaf of an integrable distribution is closely related to the

geometry of a normal bundle and its image under φ.
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1 Introduction

The Contact and almost contact structures are two of the most interesting examples of differential ge-

ometric structures. Their theory is a natural generalization of so-called contact geometry, which has

important applications in classical and quantum mechanics. Their study as differential geometric struc-

tures dates from works of Chern [6], Gray [13], and Sasaki [29]. Almost contact metric structures are

an odd-dimensional analogue of almost Hermitian structures and there exist many important connec-

tions between these two classes. This paper is devoted to the geometry of the class of almost contact

metric manifolds of Kählerian type known as trans-Sasakian manifolds [28]. They are interesting due

to their position in the natural niche between three contact analogues of Kähler manifolds, α-Sasakian,

β-Kenmotsu and cosymplectic manifolds. Trans-Sasakian manifolds were introduced by Oubina [28].

In the Gray-Hervella classification of almost Hermitian manifolds [14], there appears a class, W4, of

Hermitian manifolds which are locally conformal Kähler structures (see [7], [18] and many more refer-

ences therein). Gray and Hervella also introduced two subclasses of trans-Sasakian structures, the C5 and

C6-structures, which contain, respectively, the β-Kenmotsu and α-Sasakian structures. The class C5 ⊕C6

coincides with the class of trans-Sasakian structures of type (α, β) and their local nature is known on

connected differentiable manifolds of dimension greater than or equal to 5 [21]. The literature about

the lightlike contact geometry is very limited and some specific discussions on this matter can be found

in [5], [12], [23], [24], [25], [26] and [27].

As is well known, the geometry of lightlike submanifolds [10] is different because of the fact that

their normal vector bundle intersects with the tangent bundle. Thus, the study becomes more difficult

and strikingly different from the study of non-degenerate submanifolds. This means that one cannot use,

in the usual way, the classical submanifold theory to define any induced object on a lightlike submani-

fold. To deal with this anomaly, the lightlike submanifolds were introduced and presented in a book by

Duggal and Bejancu [10]. They introduced a non-degenerate screen distribution to construct a noninter-

secting lightlike transversal vector bundle of the tangent bundle. Several authors have studied lightlike

hypersurfaces of semi-Riemannian manifolds (see [12] and many more references therein).

The growing importance of lightlike geometry is motivated by its extensive use in mathematical

physics, in particular in relativity. In fact, semi-Riemannian manifolds (M,g) with dim M > 4 are

natural generalizations of spacetime of general relativity and lightlike hypersurfaces are models of dif-

ferent types of horizons separating domains of (M,g) with different physical properties. In this case, the

relationship between Killing and geodesic notions is well understood. Lightlike hypersurfaces are also

studied in the theory of electromagnetism [10].

There are many reasons that motivate the study of the lightlike hypersurfaces of indefinite trans-

Sasakian manifolds. In [10], Duggal and Bejancu proved that a lightlike framed hypersurface of a Lorentz

C-manifold, with an induced metric connection, is a Killing horizon. Duggal and Sahin in [12] began

to work on lightlike submanifolds of indefinite Sasakian manifolds because the contact geometry has

a significant use in differential equations, optics and phase spaces of dynamical systems. Furthermore,
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Duggal [9] shows that a globally hyperbolic spacetime and the de Sitter spacetime can carry a framed

structure.

The paper is organized as follows. In section 2, we recall some basic definitions for indefinite

trans-Sasakian manifolds of type (α, β) supported by an example and lightlike hypersurfaces of semi-

Riemannian manifolds. In section 3, after giving a decomposition of almost contact metrics of lightlike

hypersurfaces in indefinite trans-Sasakian manifolds of type (α, β), tangent to the structure vector field,

we study its geometric aspects. We prove that the structure vector field is η-conformal Killing on a

lightlike hypersurface. Explicit formulae for Ricci tensor in a lightlike hypersurface is obtained. Theo-

rems on parallel vector fields, geodesibility, Ricci-semi symmetric of lightlike hypersurfaces in indefinite

trans-Sasakian manifolds of type (α, β) are obtained. We prove that there are no parallel lightlike hy-

persurfaces of indefinite trans-Sasakian space forms with constant curvature c 6= α2 − β2. By Theorem

3.10, we establish the geometric configuration of lightlike hypersurfaces in trans-Sasakian space forms.

We prove the non-existence of totally contact umbilical lightlike hypersurfaces of trans-Sasakian space

forms with constant curvature c 6= −β2 − 3α2, tangent to the structure vector field. A characterization

of parallel lightlike hypersurfaces is given (Theorem 3.14). We show that there exists a totally umbili-

cal distribution in an Einstein parallel lightlike hypersurface which does not contain the structure vector

field (Theorem 3.15). In section 4, we investigate the geometry of integrable distributions. Theorems on

integrable distributions, minimal distributions, Killing distributions, geodesibility of lightlike hypersur-

faces and of leaves of integrable distributions S(TM), D0 ⊥ 〈ξ〉 and D0 are stated. We characterize

the normal bundle along any totally contact umbilical leaf of an integrable screen distribution (Theorem

4.6). By Theorem 4.10, we characterize the geometry of any leaf of an integrable distribution D0 ⊥ 〈ξ〉.

Finally, we discuss the effect of any change of the screen distribution on different results found.

2 Preliminaries

Let M be a (2n + 1)-dimensional manifold endowed with an almost contact structure (φ, ξ, η), i.e. φ is

a tensor field of type (1, 1), ξ is a vector field, and η is a 1-form satisfying

φ
2

= −I + η ⊗ ξ, η(ξ) = 1, η ◦ φ = 0 and φξ = 0. (2.1)

Then (φ, ξ, η, g) is called an almost contact metric structure on M if (φ, ξ, η) is an almost contact

structure on M and g is a semi-Riemannian metric on M such that [2],

η(X) = g(ξ,X), g(φ X,φ Y ) = g(X,Y ) − η(X) η(Y ), ∀X,Y ∈ Γ(M). (2.2)

An almost contact metric structure (φ, ξ, η, g) on M is called trans-Sasakian if (M × R, J, ĝ) be-

longs to the class W4, where J is the almost complex structure on M × R denoted by J
(
X, f d

dt

)
=

(
φX − fξ, η(X) d

dt

)
for all vector fields X on M and f is C∞- function on M ×R, is integrable, which

is equivalent to the condition Nφ + 2dη ⊗ ξ = 0, where Nφ denotes the Nijenhuis torsion of φ (see [3],

for details), and ĝ is the product metric on M × R. This may be expressed by the condition [3]

(∇Xφ)Y = α
{
g(X,Y )ξ − η(Y )X

}
+ β

{
g(φ X, Y )ξ − η(Y )φX

}
, (2.3)
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where ∇ is the Levi-Civita connection for the semi-Riemannian metric g, α and β are smooth functions

on M , and we say that the trans-Sasakian structure is of type (α, β). From (2.3), it is easy to see that the

following equations hold for a trans-Sasakian manifold,

dη = αΦ, (2.4)

∇Xξ = −αφ X + β
{
X − η(X)ξ

}
, (2.5)

where Φ is the fundamental 2-form of M defined by Φ(X,Y ) = g(X,φ Y ).

If α = 0, then M is β-Kenmotsu manifold and if β = 0 then M is α-Sasakian manifold [16].

Moreover, if α = 0 and β = 1 then M is Kenmotsu manifold [17] and if α = 1 and β = 0 then M

is Sasakian manifold [22]. Another important kind of trans-Sasakian manifolds is that of cosymplectic

manifolds, obtained for α = β = 0. This is equivalent to M being normal with η and Φ closed forms [2]

and this implies, using (2.5), that ∇Xξ = 0. Therefore, ξ is a Killing vector field on cosymplectic

manifolds.

In this paper, the functions α and β are non-zero, unless specifically mentioned otherwise.

Let R be a curvature tensor of ∇. Then, by direct calculations one obtains

R(X,Y )ξ = (α2 − β2)
{
η(Y )X − η(X)Y

}
+ 2αβ

{
η(Y )φ X − η(X)φ Y

}

+Y (α)φ X − X(α)φ Y + X(β)
{
Y − η(Y )ξ

}
− Y (β)

{
X − η(X)ξ

}
. (2.6)

Using (2.6) in g(R(ξ, Y )X,Z) = g(R(X,Z)ξ, Y ), we obtain

R(ξ, Y )X = (α2 − β2)
{
g(X,Y )ξ − η(X)Y

}
+ 2αβ

{
g(φ X, Y )ξ − η(X)φ Y

}

+X(α)φ Y + g(φ X, Y ) gradα + X(β)
{
Y − η(Y )ξ

}
− g(φ X,φY ) gradβ. (2.7)

From (2.8), in view of (2.1), we obtain R(ξ, Y )ξ = (α2 −β2 − ξ(β)){η(Y )ξ −Y }− (2αβ + ξ(α))φ Y ,

while (2.7) gives R(ξ, Y )ξ = (α2 − β2 − ξ(β)){η(Y )ξ − Y } + (2αβ + ξ(α))φ Y . The above two

equations lead, in a trans-Sasakian manifold of type (α, β), to

R(ξ,X)ξ =
(
α2 − β2 − ξ(β)

) {
η(X)ξ − X

}
(2.8)

and 2αβ + ξ(α) = 0. (2.9)

Note that, by (2.9) a trans-Sasakian manifold of type (α, β) with α a non-zero constant is always α-

Sasakian. If ξ(α) = 0, the trans-Sasakian structure is of class C5 or is of class C6. Therefore, in a

trans-Sasakian manifold of type (α, β), the functions α and β are not arbitrary.

Next, we have an specific example of a trans-Sasakian manifold of type (α, β). Let M
3

be a 3-

dimensional manifold defined by M
3

=
{
(x1, x2, x3) ∈ R

3 : x3 6= 0
}

. The vector fields e1 = ex3( ∂
∂x1

−

x2
∂

∂x3
), e2 = ex3 ∂

∂x2
, e3 = ∂

∂x3
, are linearly independent at each point of M

3
. Let g be the semi-

Riemannian metric defined by g(ei, ej) = 0, ∀ i 6= j, i, j = 1, 2, 3 and g(ek, ek) = −1, ∀ k = 1, 2,

g(e3, e3) = 1. Let η be the 1-form defined by η(X) = g(X, e3), for any X ∈ Γ(TM). Let φ be the

(1, 1) tensor field defined by φe1 = −e2, φe2 = e1, φe3 = 0. Then, using the linearity of φ and g,
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we have φ
2
X = −X + η(X)e3, g(φ X,φ Y ) = g(X,Y ) − η(X)η(Y ). Thus, for e3 = ξ, (φ, ξ, η, g)

defines an almost contact metric structure on M . Let ∇ be the Levi-Civita connection with respect to the

metric g. Then, we have [ei, e3] = −ei, ∀ i = 1, 2. The metric connection ∇ of the metric g is given by

2g(∇XY ,Z) = X(g(Y ,Z)) + Y (g(Z,X)) − Z(g(X,Y )) − g(X, [Y ,Z])

−g(Y , [X,Z]) + g(Z, [X,Y ]),

which is known as Koszul’s formula. Using this formula, the non-vanishing covariant derivatives are

given by ∇e1
e1 = −ξ − x2e

x3e1, ∇e1
e2 = −x2e

x3e2 + 1
2e2x3ξ, ∇e1

ξ = −e1 + 1
2e2x3e2, ∇e2

e1 =

−1
2e2x3ξ, ∇e2

e2 = −ξ, ∇e2
ξ = −1

2e2x3e1 − e2, ∇ξe1 = 1
2e2x3e2, ∇ξe2 = −1

2e2x3e1. From these

relations, it is easy to check that (φ, ξ, η, g) is a trans-Sasakian structure of type (1
2e2x3 ,−1) in M

3
.

Hence, M
3

is a trans-Sasakian manifold of type (1
2e2x3 ,−1). In general, in a 3-dimensional K-contact

manifold with structure tensors (φ, ξ, η, g) for a non-constant function f , if we define g′ = fg + (1 −

f)η ⊗ η; then (φ, ξ, η, g) is a trans-Sasakian structure of type (1/f, (1/2)ξ(ln f)) [21].

A plane section σ in TpM is called a φ-section if it is spanned by X and φX , where X is a unit

tangent vector field orthogonal to ξ. Since φσ = σ, the φ-section σ is a holomorphic φ-section and the

sectional curvature of a φ-section σ is called a φ-holomorphic sectional curvature. If a trans-Sasakian

manifold of type (α, β), M , has constant φ-holomorphic sectional curvature c, then, by virtue of the

Theorem 2.3 in [4], the curvature tensor R of M satisfies,

g(R(X,Y )Z,W ) =
c + 3(α2 − β2)

4

{
g(X,W )g(Y ,Z) − g(X,Z)g(Y ,W )

}

+
c − α2 + β2

4

{
g(X,φ W )g(Y , φ Z) − g(X,φ Z)g(Y , φ W )

−2g(X,φY )g(Z,φ W )
}

, ∀X, Y , Z, W ∈ Γ(ker η). (2.10)

A trans-Sasakian manifold M of type (α, β) of constant φ-holomorphic sectional curvature c will be

called trans-Sasakian space form and denoted by M(c).

Let (M,g) be a (2n + 1)-dimensional semi-Riemannian manifold with index s, 0 < s < 2n + 1 and

let (M,g) be a hypersurface of M , with g = g|M . M is a lightlike hypersurface of M if the metric g is

of constant rank 2n − 1 and the orthogonal complement TM⊥ of tangent space TM , defined as

TM⊥ =
⋃

p∈M

{
Yp ∈ TpM : gp(Xp, Yp) = 0, ∀Xp ∈ TpM

}
, (2.11)

is a distribution of rank 1 on M [10]: TM⊥ ⊂ TM and then coincides with the radical distribution

Rad TM = TM ∩ TM⊥. A complementary bundle of TM⊥ in TM is a constant rank 2n − 1 non-

degenerate distribution over M . It is called a screen distribution and denoted by S(TM). The existence

of S(TM) is secured provided M be paracompact. However, in general, S(TM) is not canonical (thus

it is not unique) and the lightlike geometry depends on its choice but it is canonically isomorphic to the

vector bundle TM/Rad TM [20].

A lightlike hypersurface endowed with a specific screen distribution is denoted by the triple

(M,g, S(TM)). As TM⊥ lies in the tangent bundle, the following result has an important role in

studying the geometry of a lightlike hypersurface [10].
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Theorem 2.1 [10] Let (M,g, S(TM)) be a lightlike hypersurface of (M,g). Then, there exists a

unique vector bundle N(TM) of rank 1 over M such that for any non-zero section E of TM⊥ on

a coordinate neighborhood U ⊂ M , there exists a unique section N of N(TM) on U satisfying

g(N,E) = 1 and g(N,N) = g(N,W ) = 0, ∀W ∈ Γ(S(TM)|U ).

Throughout the paper, all manifolds are supposed to be paracompact and smooth. We denote by Γ(E) the

smooth sections of the vector bundle E. Also by ⊥ and ⊕ we denote the orthogonal and nonorthogonal

direct sum of two vector bundles. By Theorem 2.1 we may write down the following decompositions

TM = S(TM) ⊥ TM⊥,

TM = TM ⊕ N(TM) = S(TM) ⊥ (TM⊥ ⊕ N(TM)). (2.12)

Let ∇ be the Levi-Civita connection on (M,g), then, using the second decomposition of (2.12) and

considering a normalizing pair {E,N} as in Theorem 2.1, we have Gauss and Weingarten formulae in

the form, for any X, Y ∈ Γ(TM |U ), V ∈ Γ(N(TM)),

∇XY = ∇XY + h(X,Y ) and ∇XV = −AV X + ∇⊥
XV, (2.13)

where ∇XY , AV X ∈ Γ(TM) and h(X,Y ), ∇⊥
XV ∈ Γ(N(TM)). ∇ is an induced a symmetric linear

connection on M , ∇⊥ is a linear connection on the vector bundle N(TM), h is a Γ(N(TM))-valued

symmetric bilinear form and AV is the shape operator of M concerning V . Equivalently, consider a

normalizing pair {E,N} as in Theorem 2.1. Then (2.13) takes the form, for any X, Y ∈ Γ(TM |U ),

∇XY = ∇XY + B(X,Y )N and ∇XN = −ANX + τ(X)N, (2.14)

where B, AN , τ and ∇ are called the local second fundamental form, the local shape operator, the

transversal differential 1-form and the induced linear torsion free connection, respectively, on TM|U . It

is important to mention that B is independent of the choice of screen distribution, in fact, from (2.14),

we obtain, B(X,Y ) = g(∇XY,E) and τ(X) = g(∇⊥
XN,E).

Let P be the projection morphism of TM on S(TM) with respect to the orthogonal decomposition

of TM . We have, for any X, Y ∈ Γ(TM |U ),

∇XPY = ∇∗
XPY + C(X,PY )E and ∇XE = −A∗

EX − τ(X)E, (2.15)

where ∇∗
XPY and A∗

EX belong to Γ(S(TM)). C , A∗
E and ∇∗ are called the local second fundamental

form, the local shape operator and the induced connection on S(TM). The induced linear connection ∇

is not a metric connection and we have, for any X, Y ∈ Γ(TM |U ),

(∇Xg)(Y,Z) = B(X,Y )θ(Z) + B(X,Z)θ(Y ), (2.16)

where θ is a differential 1-form locally defined on M by θ(·) := g(N, ·). Also, we have, g(A∗
EX,PY ) =

B(X,PY ), g(ANX,PY ) = C(X,PY ) and B(X,E) = 0. Using (2.14), the curvature tensor fields R
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and R of M and M , respectively, are related as

R(X,Y )Z = R(X,Y )Z + B(X,Z)ANY − B(Y,Z)ANX

+ {(∇XB)(Y,Z) − (∇Y B)(X,Z) + τ(X)B(Y,Z) − τ(Y )B(X,Z)}N, (2.17)

where (∇XB)(Y,Z) = X.B(Y,Z) − B(∇XY,Z) − B(Y,∇XZ). (2.18)

3 Lightlike hypersurfaces of indefinite trans-Sasakian manifolds

Let (M,g) be a lightlike hypersurface of an indefinite trans-Sasakian manifold (M,φ, ξ, η, g) of type

(α, β), tangent to the structure vector field ξ (ξ ∈ TM ). If E is a local section of TM⊥, then g(φE,E) =

0, and φE is tangent to M . Thus φ(TM⊥) is a distribution on M of rank 1 such that φ(TM⊥)∩TM⊥ =

{0}. This enables us to choose a screen distribution S(TM) such that it contains φ(TM⊥) as a vector

subbundle. If we consider a local section N of N(TM), since g(φN,E) = −g(N,φ E) = 0, we deduce

that φE belongs to S(TM). At the same time, since g(φ N,N) = 0, φN ∈ Γ(S(TM)). From (2.1),

we have g(φN,φE) = 1. Therefore, φ(TM⊥) ⊕ φ(N(TM)) is a non-degenerate vector subbundle of

S(TM) of rank 2. If M is tangent to the structure vector field ξ, then, we may choose S(TM) so that ξ

belongs to S(TM). Using this, and since g(φ ·, ξ) = 0, there exists a non-degenerate distribution D0 of

rank 2n − 4 on M such that

S(TM) =
{
φ(TM⊥) ⊕ φ(N(TM))

}
⊥ D0 ⊥< ξ >, (3.1)

where 〈ξ〉 = Span{ξ}. The distribution D0 is invariant under φ. Moreover, from (2.12) and (3.1) we

obtain the decompositions

TM =
{

φ(TM⊥) ⊕ φ(N(TM))
}
⊥ D0 ⊥< ξ >⊥ TM⊥, (3.2)

TM =
{

φ(TM⊥) ⊕ φ(N(TM))
}
⊥ D0 ⊥< ξ >⊥ (TM⊥ ⊕ N(TM)). (3.3)

Note that a hypersurface of a 3-dimensional indefinite trans-Sasakian manifold of type (α, β), tangent to

the structure vector field ξ is of dimension 1 and its tangent space is reduced to the distribution spanned

by ξ which is non-degenerate. This means that the dimension 3 is too low to develop the theory and this

agrees with the decomposition (3.3) which requires n ≥ 2.

Example 3.1 We consider the 7-dimensional manifold M
7

=
{
x ∈ R

7 : x7 6= 0
}

, where x = (x1, x2,

..., x7) are the standard coordinates in R
7. Let us consider the vector fields e1, e2, ..., e7, linearly in-

dependent at each point of M
7
, as a combination of frames

{
∂

∂xi

}
. Let g be the semi-Riemannian

metric defined by g(ei, ej) = 0, ∀ i 6= j, i, j = 1, 2, ..., 7 and g(ek, ek) = 1, ∀ k = 1, 2, 3, 4, 7,

g(em, em) = −1, ∀m = 5, 6. Let η be the 1-form defined by η(·) = g(·, e7). Let φ be the (1, 1)

tensor field defined by φe1 = −e2, φe2 = e1, φe3 = −e4, φe4 = e3, φe5 = −e6, φe6 = e5, φe7 = 0.

Using the linearity of φ and g, we have φ
2
X = −X + η(X)e7, g(φX,φY ) = g(X,Y ) − η(X)η(Y ).

Thus, for e7 = ξ, (φ, ξ, η, g) defines an almost contact metric structure on M . Let ∇ be the Levi-Civita
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connection with respect to the metric g and let us choose the vector fields e1, e2, ..., e7 to be

ei = ex7

7∑

j=1

fij(x1, ..., x6)
∂

∂xj
, det(fij) 6= 0 and e7 = ξ,

where functions fij are defined such that the action of ∇, on the basis {e1, e2, ..., e7}, is given by

∇e1
e1 = ξ, ∇e1

e2 = −
1

2
e2x7ξ, ∇e2

e1 = −x2e
x7e2 +

1

2
e2x7ξ, ∇e2

e2 = x2e
x7e1 + ξ,

∇e3
e4 = x3e

x7e3 −
1

2
e2x7ξ, ∇e3

e3 = −x3e
x7e4 + ξ, ∇e4

e3 =
1

2
e2x7ξ,∇e4

e4 = ξ,

∇e5
e5 = −ξ, ∇e5

e6 =
1

2
e2x7ξ, ∇e6

e5 = x6e
x7e6 −

1

2
e2x7ξ, ∇e6

e6 = −x6e
x7e5 − ξ,

∇ei
ej = 0, ∀ i 6= j, i, j = 1, 2, 3, ..., 6, such that g(φei, ej) = 0.

The non-vanishing brackets are given by, for i = 1, 2, 3, ..., 6, [ei, e7] = −ei and [e1, e2] = x2e
x7e2 −

e2x7ξ, [e3, e4] = x3e
x7e3− e2x7ξ, [e5, e6] = −x6e

x7e6 + e2x7ξ. The mth-component of the Lie brackets

[ei, ej ] is given by, for i, j = 1, 2, ..., 6,

[ei, ej ]m = e2x7

6∑

k=1

(fik
∂

∂xk

(fjm) − fjk
∂

∂xk

(fim)) + e2x7(fi7fjm − fj7fim).

By Koszul’s formula, we have ∇e1
e7 = −e1 + 1

2e2x7e2, ∇e2
e7 = −1

2e2x7e1 − e2, ∇e3
e7 = −e3 +

1
2e2x7e4, ∇e4

e7 = −1
2e2x7e3 − e4, ∇e5

e7 = −e5 + 1
2e2x7e6, ∇e6

e7 = −1
2e2x7e5 − e6. From these

relations, it is easy to see that (φ, ξ, η, g) is a trans-Sasakian structure of type (1
2e2x7 , −1) in M

7
. There-

fore, (M
7
, φ, ξ, η, g) is a trans-Sasakian manifold of type (1

2e2x7 ,−1). Let M be a hypersurface of

(M
7
, φ, ξ, η, g) defined by M = {x ∈ M

7
: x5 = x4, f4i = f5j = 0, f44 6= 0 and f55 6= 0}. Thus,

the tangent space TM is spanned by {Ui}, where U1 = e1, U2 = e2, U3 = e3, U4 = e4 − e5, U5 =

e6, U6 = ξ and the 1-dimensional distribution TM⊥ of rank 1 is spanned by E, where E = e4 − e5. It

follows that TM⊥ ⊂ TM . Then M is a 6-dimensional lightlike hypersurface of M
7
. Also, the transver-

sal bundle N(TM) is spanned by N = 1
2 (e4 + e5) . Using the almost contact structure of M

7
and the

decomposition (3.1), D0 is spanned by
{
F, φF

}
, where F = U1, φF = −U2 and the distributions 〈ξ〉,

φ(TM⊥) and φ(N(TM)) are spanned, respectively, by ξ, φE = U3 + U5 and φN = 1
2(U3 − U5).

Hence, M is a lightlike hypersurface of M
7
.

Now, we consider the distributions on M , D := TM⊥ ⊥ φ(TM⊥) ⊥ D0, D′ := φ(N(TM)). Then,

D is invariant under φ and

TM = D ⊕ D′ ⊥ 〈ξ〉. (3.4)

Let us consider the local lightlike vector fields U := −φN, V := −φE. Then, from (3.4), any

X ∈ Γ(TM) is written as X = RX + QX + η(X)ξ, QX = u(X)U, where R and Q are the

projection morphisms of TM into D and D′, respectively, and u is a differential 1-form locally defined

on M by

u(·) := g(V, ·). (3.5)
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Applying φ to X and (2.1), one obtains φX = φX + u(X)N, where φ is a tensor field of type (1, 1)

defined on M by φX := φRX. Also, we obtain, for any X ∈ Γ(TM),

B(X, ξ) = −αu(X), (3.6)

B(X,U) = C(X,V ), (3.7)

C(X, ξ) = −αv(X) + βθ(X), (3.8)

φ2 X = −X + η(X)ξ + u(X)U, (3.9)

and ∇Xξ = −αφX + β {X − η(X)ξ} . (3.10)

By using (2.1) we derive g(φX,φY ) = g(X,Y ) − η(X)η(Y ) − u(Y )v(X) − u(X)v(Y ), where v is a

differential 1-form locally defined on M by v(·) = g(U, ·). We note that

g(φX, Y ) + g(X,φY ) = −u(X)θ(Y ) − u(Y )θ(X). (3.11)

For the sake of future use, we have the following identities: for any X, Y ∈ Γ(TM),

(∇Xu)Y = −B(X,φY ) − τ(X)u(Y ) − βu(X)η(Y ), (3.12)

(∇Xv)Y = −C(X,φY ) + τ(X)v(Y ) − αη(Y )θ(X) − βη(Y )v(X), (3.13)

(∇Xφ)Y = α {g(X,Y )ξ − η(Y )X} + β
{
g(φX, Y )ξ − η(Y )φX

}

−B(X,Y )U + u(Y )ANX, (3.14)

R(X,Y )ξ = (α2 − β2) {η(Y )X − η(X)Y } + 2αβ {η(Y )φX − η(X)φY }

+(Y.α)φX − (X.α)φY + (X.β) {Y − η(Y )ξ} − (Y.β) {X − η(X)ξ}

+α {u(X)ANY − u(Y )ANX} , (3.15)

R(ξ,X)ξ = (α2 − β2 − ξ.β) {η(X)ξ − X} − α u(X)AN ξ. (3.16)

The Lie derivative of g with respect to the vector field V is given by, for any X, Y ∈ Γ(TM),

(LV g)(X,Y ) = X(u(Y )) + Y (u(X)) + u([X,Y ]) − 2u(∇XY ). (3.17)

The relation (3.17) can be written in terms of B and τ using the relation (3.12) and we have

(LV g)(X,Y ) = −β {η(X)u(Y ) + η(Y )u(X)} − {B(φX, Y ) + B(X,φY )}

−{τ(X)u(Y ) + τ(Y )u(X)} (3.18)

As the geometry of a lightlike hypersurface depends on the chosen screen distribution, it is important

to investigate the relationship between geometric objects induced by two screen distributions. The Lie

derivative LV (3.17) is not independent of the choice of a screen distribution S(TM) and this is proven

as follows. Suppose a screen S(TM) changes to another screen S(TM)′. The following are the trans-

formation equations due to this change (see [10], page 87)

K ′
i =

2n−1∑

j=1

Kj
i (Kj − ǫjcjE),
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N ′ = N −
1

2
{

2n−1∑

i=1

ǫi(ci)
2}E + K,

τ ′(X) = τ(X) + B(X,K),

∇′
XY = ∇XY + B(X,Y ){

1

2
(

2n−1∑

i=1

ǫi(ci)
2)E − K}, (3.19)

where K =
∑2n−1

i=1 ciKi, {Ki} and {K ′
i} are the local orthonormal bases of S(TM) and S(TM)′ with

respective transversal sections N and N ′ for the same null section E. Here ci and Kj
i are smooth func-

tions on U and {ǫ1, ..., ǫ2n−1} is the signature of the basis {K1, ...,K2n−1}. The Lie derivatives LV and

L′
V of the screen distributions S(TM) and S(TM)′, respectively, are related through the relation [22]:

(L′
V g)(X,Y ) = (LV g)(X,Y ) − u(X)B(Y,K) − u(Y )B(X,K).

The Lie derivative LV is unique, that is, LV is independent of S(TM), if and only if, the second funda-

mental form h of M vanishes identically on M .

A section X ∈ Γ(TM) is said to be an η-conformal Killing vector field if

LXg = Ω(g − η ⊗ η), (3.20)

where Ω is a smooth function on U ⊂ M .

Lemma 3.2 Let M be a lightlike hypersurface of an indefinite trans-Sasakian manifold M of type (α, β)

with ξ ∈ TM . Then ξ is an η-conformal Killing vector field on M , that is, Lξg = Ω(g − η ⊗ η), with

Ω = 2β.

Proof: The proof follows by direct calculation. �

Let M be a lightlike hypersurface of an indefinite trans-Sasakian manifold M of type (α, β) with

ξ ∈ TM . Let us consider the {E,N} on U ⊂ M (Theorem 2.1) and using (2.17), we obtain,

(∇XB)(Y,Z) − (∇Y B)(X,Z) = τ(Y )B(X,Z) − τ(X)B(Y,Z) + g(R(X,Y )Z,E). (3.21)

Lemma 3.3 Let M be a lightlike hypersurface of an indefinite trans-Sasakian manifold M of type (α, β)

with ξ ∈ TM . Then the Lie derivative of the second fundamental form B with respect to ξ is given by,

for any X, Y ∈ Γ(TM),

(LξB)(X,Y ) = Y (α)u(X) − X(α)u(Y ) + 4αβη(Y )u(X) + (β − τ(ξ))B(X,Y )

+E(α)g(φY,X) − E(β)g(φX,φY ). (3.22)

Proof: Using (2.18) and (3.10), we obtain, for any X, Y ∈ Γ(TM),

(∇ξB)(X,Y ) = (LξB)(X,Y ) + α {B(φX, Y ) + B(X,φY )} − 2βB(X,Y )

−αβ {η(X)u(Y ) + η(Y )u(X)} . (3.23)
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Likewise, using (2.18), (3.6), (3.10) and (3.12), we have

(∇XB)(ξ, Y ) = −(X.α)u(Y ) + α {B(φX, Y ) + B(X,φY )} − βB(X,Y )

+ατ(X)u(Y ) + αβ {u(X)η(Y ) − η(X)u(Y )} . (3.24)

Subtracting (3.23) and (3.24), we obtain

(∇ξB)(X,Y ) − (∇XB)(ξ, Y ) = (LξB)(X,Y ) − βB(X,Y )

−2αβη(Y )u(X) + X(α)u(Y ) − ατ(X)u(Y ). (3.25)

From (3.21), and after calculations, the left-hand side of (3.25) becomes

(∇ξB)(X,Y ) − (∇XB)(ξ, Y ) = τ(X)B(ξ, Y ) − τ(ξ)B(X,Y ) + g(R(Y,E)ξ,X)

= −ατ(X)u(Y ) − τ(ξ)B(X,Y ) + E(α)g(φY,X) + Y (α)u(X) + 2αβη(Y )u(X)

−E(β) {g(X,Y ) − η(X)η(Y )} . (3.26)

The expressions (3.25) and (3.26) imply (3.22). �

A submanifold M is said to be parallel if its second fundamental form h = B ⊗N satisfies ∇h = 0,

that is, for any X, Y , Z ∈ Γ(TM),

(∇Xh)(Y,Z) = 0. (3.27)

That is, (∇XB)(Y,Z) = −τ(X)B(Y,Z). This means that, in general, the parallelism of h does not

imply the parallelism of B and vice versa.

Lemma 3.4 There exist no lightlike hypersurfaces of indefinite trans-Sasakian space forms (M(c), c 6=

α2 − β2) with ξ ∈ TM and parallel second fundamental form.

Proof: Suppose c 6= α2−β2 and h is parallel. Then, putting X = U , Y = E and Z = U into (3.21) and

using (2.10), one obtains 0 = g(R(U,E)U,E) = −3
4(c − α2 + β2) and we have c = α2 − β2, which is

a contradiction. �

Theorem 3.5 Let M be a parallel lightlike hypersurface of an indefinite trans-Sasakian manifold M of

type (α, β) with ξ ∈ TM . Then, for any X, Y ∈ Γ(TM),

(LV g)(X,Y ) = −
β

α
B(X,Y ) − {τ(X)u(Y ) + τ(Y )u(X)} . (3.28)

Moreover, φ(TM⊥) is a Killing distribution if and only if the local second fundamental form B is

proportional to τ ⊗ u + u ⊗ τ .

Proof: Using (2.18), (3.6), (3.10), (3.12) and (3.22),

−τ(ξ)B(X,Y ) = (∇ξB)(X,Y ) = (Y.α)u(X) − (X.α)u(Y ) − (β + τ(ξ))B(X,Y )

+(E.α)g(φY,X) − (E.β)g(φX,φY ) + 2αβ {η(Y )u(X) − η(X)u(Y )}

−α(LV g)(X,Y ) − α {τ(X)u(Y ) + τ(Y )u(X)} . (3.29)
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Likewise, using (3.18), we have

ατ(Y )u(X) = (∇Y B)(ξ,X) = −Y (α)u(X) − 2αβη(Y )u(X) − α(LV g)(X,Y )

−βB(X,Y ) − ατ(X)u(Y ), (3.30)

and ατ(X)u(Y ) = (∇XB)(Y, ξ) = −X(α)u(Y ) − 2αβη(X)u(Y ) − α(LV g)(X,Y )

−βB(X,Y ) − ατ(Y )u(X). (3.31)

Subtracting (3.30) and (3.31), we have

Y (α)u(X) − X(α)u(Y ) + 2αβ {η(Y )u(X) − η(X)u(Y )} = 0. (3.32)

Substituting (3.32) into (3.29), we obtain

−τ(ξ)B(X,Y ) = −(β + τ(ξ))B(X,Y ) + E(α)g(φY,X) − E(β)g(φX,φY )

−α(LV g)(X,Y ) − α {τ(X)u(Y ) + τ(Y )u(X)} . (3.33)

If α 6= 0, the expression (3.33) leads to

(LV g)(X,Y ) = −
β

α
B(X,Y ) + E(ln |α|)g(φY,X) −

1

α
E(β)g(φX,φY )

−{τ(X)u(Y ) + τ(Y )u(X)} . (3.34)

Since −E(β) = g(R(ξ, V )U,E) = g((∇ξh)(V,U), E) = 0 and E(α) = g(R(U,E)ξ,E) =

g((∇Uh)(E, ξ), E) = 0. Putting these relations into (3.34), we have the relation (3.28). The last

assertion is obvious. �

Let M be a lightlike hypersurface of an indefinite trans-Sasakian space form M(c) with ξ ∈ TM .

By definition Ric(X,Y ) = trace(Z −→ R(X,Y )Z), we have, for any X, Y ∈ Γ(TM),

Ric(X,Y ) =

2n−4∑

i=1

εig(R(Fi,X)Y, Fi) + g(R(ξ,X)Y, ξ) + g(R(E,X)Y,N)

+ g(R(φE,X)Y, φN) + g(R(φN,X)Y, φE), (3.35)

where {Fi}1≤i≤2n−4 is an orthogonal basis of D0 and εi = g(Fi, Fi) 6= 0, since D0 is non-degenerate.

Using (2.6), (2.10), (2.17) and (3.35), one obtains,

Ric(ξ, ξ) = (2n − 1)
{
α2 − β2 − ξ(β)

}
− B(AN ξ, ξ), (3.36)

Ric(X, ξ) = (2n − 1)(α2 − β2)η(X) − 2(n − 1)X(β) − φX(α) − ξ(β)η(X)

−B(ANX, ξ) − αu(X)trAN , ∀ X ∈ Γ(TM), (3.37)

Ric(ξ,X) = (2n − 1)(α2 − β2)η(X) − 2(n − 1)X(β) − φX(α) − ξ(β)η(X)

−B(ANξ,X) − αu(X)trAN , ∀ X ∈ Γ(TM), (3.38)

Ric(Y,Z) = {
(2n + 1)c

4
+

3n − 5

2
(α2 − β2) + ξ(β)}g(Y,Z) − B(ANY,Z)

+B(Y,Z)trAN , ∀ Y, Z ∈ Γ(ker η). (3.39)
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Proposition 3.6 Let M be a lightlike hypersurface of an indefinite trans-Sasakian space form M(c) with

ξ ∈ TM . Then the Ricci tensor Ric is given by, for any X, Y ∈ Γ(TM),

Ric(X,Y ) = {
(2n + 1)c

4
+

3n − 5

2
(α2 − β2) + ξ(β)}g(X,Y )

−{
(2n + 1)c

4
−

n + 3

2
(α2 − β2) − 2(n − 2)ξ(β)}η(X)η(Y )

−2(n − 1) {η(Y )X(β) + η(X)Y (β)} − η(Y )φX(α) − η(X)φY (α)

−B(ANX,Y ) + B(X,Y )trAN , (3.40)

where trace tr is written with respect to g restricted to S(TM).

Proof: The proof follows by direct calculation using (3.36), (3.37), (3.38) and (3.39). �

From (3.40), we have

Ric(X,Y ) − Ric(Y,X) = B(ANX,Y ) − B(ANY,X). (3.41)

This means that the Ricci tensor of a lightlike hypersurface M of an indefinite trans-Sasakian space form

M(c) is not symmetric in general. So, only some privileged conditions on B may enable the Ricci tensor

to be symmetric. It is easy to check that the Ricci tensor (3.40) is symmetric if and only if the shape

operator AN is symmetric with respect to B [15]. Also, the Ricci tensor (3.40) of any totally geodesic

lightlike hypersurface is symmetric.

Next, we study Ricci-semi Symmetric lightlike hypersurfaces of indefinite trans-Sasakian space

forms, tangent to the structure vector field ξ.

A lightlike hypersurface M of an indefinite trans-Sasakian space form M(c) with ξ ∈ TM is said to

be Ricci semi-symmetric if the following condition is satisfied [8],

(R(X1,X).Ric)(X2 , Y ) = 0, ∀X1,X,X2, Y ∈ Γ(TM). (3.42)

The latter condition is equivalent to

−Ric(R(X1,X)X2, Y ) − Ric(X2, R(X1,X)Y ) = 0. (3.43)

By straightforward calculation, we have, for any X, Y ∈ Γ(TM),

R(E,X)Y = θ(R(E,X)Y )E + η(R(E,X)Y )ξ +
2n−4∑

i=1

εig(R(E,X)Y, Fi)Fi

+v(R(E,X)Y )V + u(R(E,X)Y )U, (3.44)

where

θ(R(E,X)Y ) =
c + 3(α2 − β2)

4
{g(X,Y ) − η(X)η(Y )} +

c − α2 + β2

4
{2u(X)v(Y )

+u(Y )v(X)} − E(α)η(Y )v(X) + E(β)η(Y )θ(X) − X(β)η(Y ) − Y (β)η(X)

−N(α)η(X)u(Y ) + η(X)η(Y )
{
α2 − β2 + ξ(β)

}
,
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g(R(E,X)Y, Fi) = −E(α)η(Y )g(φX,Fi) + E(β)η(Y )g(X,Fi) − η(X)u(Y )Fi(α),

η(R(E,X)Y ) = u(Y )X(α) + E(α)g(φX, Y ) − E(β) {g(X,Y ) − η(X)η(Y )}

+2αβη(X)u(Y ) + βB(X,Y ),

u(R(E,X)Y ) = E(β)η(Y )u(X) − V (α)η(X)u(Y ),

v(R(E,X)Y ) = −
c − α2 + β2

4
{2u(X)θ(Y ) + u(Y )θ(X)} − η(Y )X(α) + η(X)Y (α)

+E(α)η(Y )θ(X) + E(β)η(Y )v(X) − U(α)η(X)u(Y ) + B(X,Y )C(E,U).

Taking X1 = X2 = E, we have

R(E,X)E = −E(β)η(X)E + E(α)u(X)ξ − {
1

2
(c − α2 + β2)u(X) − E(α)η(X)}V.

Using this relation, we deduce

Ric(R(E,X)E,Y ) = {
(2n + 1)c

4
+

3n − 5

2
(α2 − β2) + ξ(β)}E(α)u(X)η(Y )

−{
(2n + 1)c

4
+

3n − 5

2
(α2 − β2) + ξ(β)}{

1

2
(c − α2 + β2)u(X) − E(α)η(X)}u(Y )

−{
(2n + 1)c

4
−

n + 3

2
(α2 − β2) − 2(n − 2)ξ(β)}E(α)u(X)η(Y )

+2(n − 1)(E(β))2η(X)η(Y ) − 2(n − 1)E(α)ξ(β)η(Y )u(X)

+2(n − 1){
1

2
(c − α2 + β2)u(X) − E(α)η(X)}V (β)η(Y ) − 2(n − 1)E(α)u(X)Y (β)

−E(β)V (α)η(X)η(Y ) + {
1

2
(c − α2 + β2)u(X) − E(α)η(X)}E(α)η(Y )

−E(α)u(X)φY (α) + E(β)η(X)B(AN E,Y ) − E(α)u(X)B(AN ξ, Y )

+{
1

2
(c − α2 + β2)u(X) − E(α)η(X)}B(AN V, Y ) + E(α)u(X)B(ξ, Y )trAN ,

−{
1

2
(c − α2 + β2)u(X) − E(α)η(X)}B(V, Y )trAN . (3.45)

Also, using B(ANE, ξ) = 0, we have

Ric(E,R(E,X)Y ) = −2(n − 1)E(β)X(α)u(Y ) − 2(n − 1)E(β)E(α)g(φX, Y )

+2(n − 1)(E(β))2 {g(X,Y ) − η(X)η(Y )} − 4(n − 1)αβE(β)η(X)u(Y )

−2(n − 1)E(β)B(X,Y ) + V (α)X(α)u(Y ) + V (α)E(α)g(φX, Y )

−V (α)E(β) {g(X,Y ) − η(X)η(Y )} + 2αβV (α)η(X)u(Y ) + βV (α)B(X,Y )

−

2n−4∑

i=1

εig(R(E,X)Y, Fi)B(ANE,Fi) − v(R(E,X)Y )B(ANE,V )

−u(R(E,X)Y )B(ANE,U). (3.46)

Using (3.45) and (3.46), one obtains

Ric(R(E,X)E,E) = −2(n − 1)E(α)E(β)u(X) + E(α)V (α)u(X), (3.47)

and Ric(E,R(E,X)E) = −2(n − 1)E(α)E(β)u(X) + E(α)V (α)u(X)

−{
1

2
(c − α2 + β2)u(X) − E(α)η(X)}B(AN E,V ). (3.48)
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If M is Ricci semi-symmetric, then, putting the pieces (3.47) and (3.48) together into (3.43) with X1 =

X2 = E, we have

2E(α)V (α)u(X) − {
1

2
(c − α2 + β2)u(X) − E(α)η(X)}B(AN E,V )

−4(n − 1)E(α)E(β)u(X) = 0. (3.49)

Using (3.45), (3.46), (3.47), (3.48) and (3.49), it is easy to show that if Ric(E,V ) 6= 0

E(α) = 0, V (α) = 0, U(α) = 0, Fi(α) = 0 and E(β) = 0. (3.50)

Theorem 3.7 Let M be a Ricci semi-symmetric lightlike hypersurface of an indefinite trans-Sasakian

space form M(c) with ξ ∈ TM and Ric(E,V ) 6= 0. Then c = α2 − β2. Moreover, if c = α2 − β2, then

either M is totally geodesic or C(E,U) = 0.

Proof: Suppose that Ric(E,V ) 6= 0. Using the relation (3.50), the relation (3.49) becomes (c − α2 +

β2)u(X)B(ANE,V ) = 0 which implies, for X = U , that c = α2 − β2. If c = α2 − β2, then, us-

ing (3.50), (3.45) and (3.46) become respectively, Ric(R(E,X)E,Y ) = 0 and Ric(E,R(E,X)Y ) =

−η(Y )X(α) + η(X)Y (α) + B(X,Y )C(E,U). Since M is Ricci semi-symmetric, we have

B(X,Y )C(E,U) = η(Y )X(α) − η(X)Y (α). As the left-hand side of this relation is anti-symmetric,

and since B is symmetric, one obtains B(X,Y )C(E,U) = 0 which completes the proof. �

Corollary 3.8 There exist no Ricci semi-symmetric lightlike hypersurfaces M of indefinite trans-Sasakian

space forms (M(c), c 6= α2 − β2) with ξ ∈ TM and Ric(E,V ) 6= 0.

A lightlike submanifold (M,g) of (M,g) [10] is totally umbilical in M if the local second fundamental

form B of M satisfies, for any X, Y ∈ Γ(TM),

B(X,Y ) = ζg(X,Y ), (3.51)

where ζ is a smooth function on M . Since ∇Xξ = ∇Xξ + B(X, ξ)N , we have B(ξ, ξ) = 0. If M

is a totally umbilical lightlike hypersurface of an indefinite trans-Sasakian manifold M , then h satisfies

(3.51) and we have 0 = B(ξ, ξ) = ζ . Hence, M is totally geodesic.

Proposition 3.9 Let (M,g) be a totally umbilical lightlike hypersurface of an indefinite trans-Sasakian

manifold (M,g) of type (α, β) with ξ ∈ TM . Then M is totally geodesic.

It follows from the Proposition 3.9 that a trans-Sasakian manifold M does not admit any non-totally

geodesic, totally umbilical lightlike hypersurface. From this point of view, Bejancu [1] considered the

concept of totally contact umbilical semi-invariant submanifolds. The notion of totally contact umbilical

submanifolds was first defined by Kon [19]. We now follow the Bejancu [1] definition of totally contact

umbilical submanifolds and state it for totally contact umbilical lightlike hypersurfaces.

A submanifold M is said to be a totally contact umbilical lightlike hypersurface of a semi-Riemannian

manifold M if the second fundamental form h of M satisfies [24],

h(X,Y ) = {g(X,Y ) − η(X)η(Y )}H + η(X)h(Y, ξ) + η(Y )h(X, ξ), (3.52)
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for any X, Y ∈ Γ(TM), where H = λN is a normal vector field on M , λ is a smooth function on

U ⊂ M . From the totally contact umbilical condition (3.52), we have

B(X,Y ) = λ {g(X,Y ) − η(X)η(Y )} − α {η(X)u(Y ) + η(Y )u(X)} . (3.53)

If λ = 0, then the lightlike hypersurface M is said to be totally contact geodesic.

Let M be a lightlike hypersurface of an indefinite trans-Sasakian space form M(c) with ξ ∈ TM .

Suppose that M is parallel. Then, h satisfies (∇Xh)(Y,Z) = 0, for any X, Y , Z ∈ Γ(TM). Using

(3.21), we have 0 = g((∇Xh)(Y,Z), E) = g(R(X,Y )Z,E) which implies, by taking Z = ξ and using

(2.6),

2αβ {η(Y )u(X) − η(X)u(Y )} + Y (α)u(X) − X(α)u(Y ) = 0. (3.54)

This implies X(α) = 0, for any X ∈ Γ(D) by replacing Y = U . If M is totally contact umbilical,

then, ∀X ∈ Γ(TM), (∇XB)(ξ, U) = −X(α) − αλθ(X) − βλv(X) + ατ(X). Since M is parallel,

then (∇XB)(ξ, U) = ατ(X) = −X(α) − αλθ(X) − βλv(X) + ατ(X), that is −X(α) − αλθ(X) −

βλv(X) = 0 which implies ξ(α) = 0 and U(α) = 0. Using (3.54), we get X(α) = 0. Thus,

λ (αθ(X) + βv(X)) = 0, then λ = 0, that is M is totally contact geodesic. Since ξ(α) = 0, by (2.9),

we have α = 0 or β = 0. This means that M is a submanifold of an indefinite cosympletic manifold M

which is not our interest in this paper.

In the sequel, we need the following identities, for X, Y ∈ Γ(TM),

(∇Xη)Y = −αg(φX, Y ) + β {g(X,Y ) − η(X)η(Y )} , (3.55)

and the covariant derivative of (3.53) is given by

(∇XB)(Y,Z) = X(λ) {g(Y,Z) − η(Y )η(Z)} + λ {B(X,Y )θ(Z) + B(X,Z)θ(Y )}

+αλ
{
η(Z)g(φX, Y ) + η(Y )g(φX,Z)

}
− βλ {g(X,Y )η(Z) + g(X,Z)η(Y )}

+2αλη(X)η(Y )η(Z) − (X.α) {η(Y )u(Z) + η(Z)u(Y )} + α2
{
u(Z)g(φX, Y )

+u(Y )g(φX,Z)
}
− αβ {u(Z)g(X,Y ) + u(Y )g(X,Z)} + αβη(Y ) {η(X)u(Z)

+η(Z)u(X)} + α {η(Y )B(X,φZ) + η(Z)B(X,φY )} + ατ(X) {η(Y )u(Z)

+η(Z)u(Y )} + αβη(Z) {u(X)η(Y ) + u(X)η(Y )} . (3.56)

Theorem 3.10 Let M be a totally contact umbilical lightlike hypersurface of an indefinite trans-Sasakian

space form M(c) with ξ ∈ TM . Then, c = −β2 − 3α2 and λ satisfies the partial differential equations

E(λ) + λτ(E) − λ2 = 0, (3.57)

ξ(λ) + λ(β + τ(ξ)) + V (α) + E(β) = 0, (3.58)

and PX(λ) + λτ(PX) + αβ u(PX) = 0, PX 6= ξ, ∀ X ∈ Γ(TM). (3.59)
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Proof: Let M be a totally contact umbilical lightlike hypersurface. From (2.17), we have, for any X,

Y ∈ Γ(TM),

(∇XB)(Y,Z) − (∇Y B)(X,Z) = g(R(X,Y )Z,E) + τ(Y )B(X,Z) − τ(X)B(Y,Z). (3.60)

Using (3.56), equation (3.60) becomes

X(λ) {g(Y,Z) − η(Y )η(Z)} − Y (λ) {g(X,Z) − η(X)η(Z)} + λ {B(X,Z)θ(Y )

−B(Y,Z)θ(X)} + αλ
{
η(Z)g(φX, Y ) + η(Y )g(φX,Z) − η(Z)g(φY,X)

−η(X)g(φY,Z)
}
− βλ {η(Y )g(X,Z) − η(X)g(Y,Z)} − X(α) {η(Y )u(Z)

+η(Z)u(Y )} + Y (α) {η(X)u(Z) + η(Z)u(X)} + α2
{
u(Z)g(φX, Y )

+u(Y )g(φX,Z) − u(Z)g(φY,X) − u(X)g(φY,Z)
}
− αβ {u(Y )g(X,Z)

−u(X)g(Y,Z)} + αβη(Z) {η(Y )u(X) − η(X)u(Y )} + α {η(Y )B(X,φZ)

+η(Z)B(X,φY ) − η(X)B(Y, φZ) − η(Z)B(Y, φX)} + ατ(X) {η(Y )u(Z)

+η(Z)u(Y )} − ατ(Y ) {η(X)u(Z) + η(Z)u(X)} = g(R(X,Y )Z,E)

+τ(Y )B(X,Z) − τ(X)B(Y,Z). (3.61)

Putting X = E in (3.61) and using B(X,V ) = λu(X), one obtains

E(λ) {g(Y,Z) − η(Y )η(Z)} − λB(Y,Z) − αλ {2η(Z)u(Y ) + η(Y )u(Z)}

−E(α) {η(Y )u(Z) + η(Z)u(Y )} − 3α2u(Y )u(Z) + αλη(Z)u(Y )

+ατ(E) {η(Y )u(Z) + η(Z)u(Y )} = g(R(E,Y )Z,E) − τ(E)B(Y,Z). (3.62)

Taking Y = Z = U in (3.62) and using (2.10), we have −3α2 = g(R(E,U)U,E) = 3
4

(
c − α2 + β2

)
,

which implies c = −β2 − 3α2. On the other hand, by taking Y = V and Z = U in (3.62), using the fact

that B(V,U) = λ and (2.10), we have E(λ) + λτ(E) − λ2 = 0. Putting X = ξ into (3.61) and using

(3.10), we have ξ(λ) + λβ + V (α) = g(R(ξ, V )U,E) − ατ(ξ), since g(R(ξ, V )U,E) = −E(β), one

obtains ξ(λ) + λ(β + τ(ξ)) + V (α) + E(β) = 0.

Finally, substituting X = PX, Y = PY and Z = PZ , PX, PY , PZ ∈ Γ(S(TM) − 〈ξ〉), into

(3.61) with c = −β2 − 3α2 and since S(TM) is non-degenerate, we obtain

{PX(λ) + λτ(PX) + αβ u(PX)}PY = {PY (λ) + λτ(PY ) + αβ u(PY )}PX. (3.63)

Now suppose that there exists a vector field X0 on some neighborhood of M such that PX0(λ) +

λτ(PX0) + αβ u(PX0) 6= 0 at some point p in the neighborhood. Then, from (3.63) it follows that

all vectors of the fibre (S(TM)− 〈ξ〉)p :=
(
φ(TM⊥) ⊕ φ(N(TM)) ⊥ D0

)
p
⊂ S(TM)p are collinear

with (PX0)p. This contradicts dim(S(TM) − 〈ξ〉)p > 1, since (S(TM) − 〈ξ〉)p is a non-degenerate

distribution of rank 2n − 2, n ≥ 2. This implies (3.59). �

Corollary 3.11 There exist no totally contact umbilical lightlike hypersurfaces M of indefinite trans-

Sasakian space forms (M(c), c 6= −β2 − 3α2) with ξ ∈ TM .
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Note that the expressions (3.57), (3.58) and (3.59) generalize the ones found in [24] and [25] in case of

totally contact umbilical lighlike hypersurfaces of 1-Sasakian and 1-Kenmostu manifolds, respectively.

From (3.57), (3.58) and (3.59), we have ∇⊥
EH = g(H,E)2N , ∇⊥

ξ H = −βg(H,E)N − (V (α) +

E(β))N and ∇⊥
PXH = −αβu(PX), PX 6= ξ, ∀X ∈ Γ(TM). This means that H is not parallel on M

and consequently, we have

Lemma 3.12 Let M be a totally contact umbilical lightlike hypersurface of an indefinite trans-Sasakian

space form M(c) with ξ ∈ TM . Then, M cannot be an extrinsic sphere.

It is known, in [22], that M is D ⊥ 〈ξ〉-totally geodesic if and only if

A∗
EX = u(ANX)V. (3.64)

If M is a parallel totally contact umbilical lightlike hypersurface, by (3.18) and (3.28), we have

βB(X,Y ) = αβ {η(X)u(Y ) + η(Y )u(X)} + α {B(φX, Y ) + B(X,φY )} . (3.65)

Lemma 3.13 Let (M,g, S(TM)) be a parallel lightlike hypersurface of an indefinite trans-Sasakian

manifold M of type (α, β) with ξ ∈ TM . Then, for any X ∈ Γ(TM), B(X,V ) = 0.

Proof: Taking Y = V in (3.65), we have, for any X ∈ Γ(TM), βB(X,V ) = α{B(φX, V ) +

B(X,φV )} = αB(φX, V ), which implies, for X = φX, βB(φX, V ) = αB(φ2X,V ) = −αB(X,V )+

αu(X)B(U, V ). These lead to B(X,V ) = α2

α2+β2 u(X)B(U, V ) = 0, since, by the using the first one,

B(U, V ) = 0 and this completes the proof. �

Now, say that the screen distribution S(TM) is totally umbilical if on any coordinate neighborhood

U ⊂ M , there exists a smooth function ϕ such that

C(X,PY ) = ϕg(X,PY ), ∀X, Y ∈ Γ(TM|U). (3.66)

If S(TM) is totally umbilical, then, C is symmetric on Γ(S(TM)|U ) and by Theorem 2.3 in [10],

S(TM) is integrable. We also have ANX = ϕPX and C(E,PX) = 0. Using (3.8), we have ϕ =

η(AN ξ) = 0, so S(TM) is totally geodesic.

Theorem 3.14 Let (M,g, S(TM)) be a parallel lightlike hypersurface of an indefinite trans-Sasakian

manifold M of type (α, β) with ξ ∈ TM such that S(TM) is totally umbilical. Then, the following

assertions are equivalent:

(i) M is D ⊥ 〈ξ〉-totally geodesic,

(ii) A∗
EX = 0, ∀ X ∈ Γ(D ⊥ 〈ξ〉),

(iii) φ(TM⊥) is a D ⊥ 〈ξ〉-parallel distribution on M ,

(iv) φ(TM⊥) is a D ⊥ 〈ξ〉-Killing distribution on M .

18



Proof: Suppose that S(TM) is totally umbilical. Then, ∀X, Y ∈ Γ(S(TM)), C(X,Y ) = 0. In

particular, for any X ∈ Γ(φ(TM⊥) ⊥ D0 ⊥ 〈ξ〉), C(X,V ) = u(ANX) = 0. Since C(E,V ) = 0,

for any X0 ∈ Γ(D ⊥ 〈ξ〉), u(ANX0) = 0 and the equivalence of (i) and (ii) follows from (3.64).

The equivalence of (i) and (iv) follows from (3.28), since M is parallel. Now, we want to show the

equivalence of (ii) and (iii). First of all, we have

∇X0
V = −(∇X0

φ)E − φ(∇X0
E) = −βu(X0)ξ + φ(A∗

EX0) − τ(X0)V. (3.67)

Writing the left-hand side of (3.67) as ∇X0
V = ∇X0

V + u(A∗
EX0)N , we deduce

∇X0
V = φ(A∗

EX0) − βu(X0)ξ − u(A∗
EX0)N − τ(X0)V. (3.68)

Suppose A∗
EX0 = 0, ∀ X0 ∈ Γ(D ⊥ 〈ξ〉|U ). Then, the relation (3.68) becomes, ∇X0

V = −τ(X0)V.

Since φ(TM⊥) is a distribution on M of rank 1 and spanned by V , then, for any Y0 ∈ Γ(φ(TM⊥)),

∇X0
Y0 = (X0(v(Y0)) − v(Y0)τ(X0))V ∈ Γ(φ(TM⊥)), since Y0 = v(Y0)V . We have, φ(TM⊥) is

D ⊥ 〈ξ〉-parallel. Conversely, suppose φ(TM⊥) is D ⊥ 〈ξ〉-parallel. Then, for any X0 ∈ Γ(D ⊥ 〈ξ〉)

and Y0 = v(Y0)V ∈ Γ(φ(TM⊥)|U ), ∇X0
Y0 ∈ Γ(φ(TM⊥)|U). In particular, we have ∇X0

V ∈

Γ(φ(TM⊥)|U). Since φ(TM⊥) is spanned by V , there exists a smooth function ε 6= 0 on M such that

∇X0
V = ε V . Using (3.68), we have ε = g(φ(A∗

EX0), U) − τ(X0) = −g(A∗
EX0, N) − τ(X0) =

−τ(X0). Since ∇X0
V = −τ(X0)V and u|D⊥〈ξ〉 = 0, (3.68) leads to φ(A∗

EX0) = u(A∗
EX0)N. which

implies, by applying φ and Lemma 3.13, that A∗
EX0 = B(X0, V )U = 0. This completes the proof. �

Theorem 3.14 can be extended by using Theorem 2.2 [10] in order to get more information about the

geometry of M . The totally umbilical distribution S(TM) − 〈ξ〉 is not totally geodesic.

Theorem 3.15 Let (M,g, S(TM)) be a parallel lightlike hypersurface of an indefinite trans-Sasakian

space form M(c) with ξ ∈ TM . If M is Einstein on the distribution D⊕D′ and AN has no components

in 〈ξ〉, then the distribution S(TM) − 〈ξ〉 is totally umbilical.

Proof: Let M be a parallel lightlike hypersurface of M(c) with ξ ∈ TM . Then, c = α2 − β2. If M is

Einstein on D⊕D′, the Ricci tensor Ric satisfies, for any X, Y ∈ Γ(D⊕D′), Ric(X,Y ) = kg(X,Y ),

where k = {8n−9
4 (α2 − β2) + ξ(β)} − B(ANV,U) + B(V,U)trAN . Since Ric is symmetric, using

(3.41), we have B(ANX,Y ) = B(X,ANY ). By Lemma 3.13, B(ANV,U) = B(V,ANU) = 0 and

B(V,U) = 0 and k = {8n−9
4 (α2 − β2) + ξ(β)}. Using (3.40), −B(ANX,Y ) + B(X,Y )trAN = 0,

which leads to B(X,Y )trAN − B(ANX,Y ) = 0, that is, g((trAN )X − ANX,Y ) = 0 and we have

(trAN )X − ANX = θ(X)(trAN )E − η(ANX)ξ. Since g(ANX, ξ) = 0, (trAN )X − ANX =

θ(X)(trAN )E, that is, ANX = (trAN )(X − θ(X)E) = (trAN )PX and S(TM) − 〈ξ〉 is totally

umbilical. �

4 Screen integrable lightlike hypersurfaces of indefinite trans-Sasakian manifolds

Let M be a lightlike hypersurface of an indefinite trans-Sasakian space form M(c) with ξ ∈ TM .

From the differential geometry of lightlike hypersurfaces, we recall the following desirable property for
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lightlike geometry. It is known that lightlike submanifolds whose screen distribution is integrable have

interesting properties. For any X, Y ∈ Γ(TM),

u([X,Y ]) = B(X,φY ) − B(φX, Y ) + β {η(Y )u(X) − η(X)u(Y )} . (4.1)

Since u(X) = 0, ∀X ∈ Γ(D ⊥ 〈ξ〉), then, the relation (4.1) becomes, X, Y ∈ Γ(D ⊥ 〈ξ〉),

u([X,Y ]) = B(X,φY ) − B(φX, Y ). So, it is easy to check that the distribution D ⊥ 〈ξ〉 is integrable

if and only if B(X,φY ) = B(φX, Y ).

From (3.12) and (4.1), the differential of the 1-form u is given by, for any X, Y ∈ Γ(TM),

2du(X,Y ) = (∇Xu)Y − (∇Y u)X = −u([X,Y ]) + τ(Y )u(X) − τ(X)u(Y ), (4.2)

and this relation leads to the following result.

Theorem 4.1 Let (M,g, S(TM)) be a lightlike hypersurface of an indefinite trans-Sasakian manifold

M of type (α, β) with ξ ∈ TM . Then, the distribution D ⊥ 〈ξ〉 is integrable if and only if the 1-form u

(3.5) is closed on D ⊥ 〈ξ〉, that is, du(X,Y ) = 0, ∀X, Y ∈ Γ(D ⊥ 〈ξ〉).

Proposition 4.2 Let (M,g, S(TM)) be a lightlike hypersurface of an indefinite trans-Sasakian manifold

M of type (α, β) with ξ ∈ TM such that the distribution D ⊥ 〈ξ〉 is integrable. Then, M is D ⊥ 〈ξ〉-

totally geodesic if and only if φ(TM⊥) is a D ⊥ 〈ξ〉-Killing distribution.

Proof: Since D ⊥ 〈ξ〉 is integrable, using (3.18), one obtains, for any X, Y ∈ Γ(D ⊥ 〈ξ〉), (LV g)(X,Y ) =

−α{B(X,φY ) + B(φX, Y )} = −2αB(X,φY ). Using (3.6) and the fact that φ(D ⊥ 〈ξ〉) = D, we

complete the proof. �

Proposition 4.3 Let (M,g, S(TM)) be a totally contact umbilical lightlike hypersurface of an indefinite

trans-Sasakian manifold M of type (α, β) with ξ ∈ TM . Then, the distribution D ⊥ 〈ξ〉 is integrable if

and only if M is totally contact geodesic.

Proof: Using (3.11), (4.1) and the fact that M is totally contact umbilical, we have, for any X, Y ∈

Γ(D ⊥ 〈ξ〉), u([X,Y ]) = B(X,φY ) − B(φX, Y ) = λ {g(X,φY ) − g(φX, Y )} = 2λg(X,φY ). If

D ⊥ 〈ξ〉 is integrable, then, 2λg(X,φY ) = 0 which implies, for X = φFi and Y = Fi, that λ = 0,

since g(Fi, Fi) 6= 0. The converse is obvious. �

Let us assume that the screen distribution S(TM) of M is integrable and let M ′ be a leaf of S(TM).

Then, using (2.14) and (2.15), we obtain, for any X, Y ∈ Γ(TM ′),

∇XY = ∇∗
XY + C(X,Y )E + B(X,Y )N = ∇′

XY + h′(X,Y ), (4.3)

where ∇′ and h′ are the Levi-Civita connection and the second fundamental form of M ′ in M . Thus, for

any X, Y ∈ Γ(TM ′)

h′(X,Y ) = C(X,Y )E + B(X,Y )N. (4.4)
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In the sequel, we need the following identities, for any X ∈ Γ(TM ′),

∇′
Xξ = −αφX + β {PX − η(X)ξ} + αv(X)E, (4.5)

∇′
XU = −βv(X)ξ − v(ANX)E − v(A∗

EX)N + φ(ANX) + τ(X)U, (4.6)

∇′
XV = −βu(X)ξ − u(ANX)E − u(A∗

EX)N + φ(A∗
EX) − τ(X)V. (4.7)

It is well known that the second fundamental form and the shape operators of a non-degenerate hyper-

surface (in general, submanifold) are related by means of the metric tensor field. Contrary to this, we see

from Section 2 that in the case of lightlike hypersurfaces, the second fundamental forms on M and their

screen distribution S(TM) are related to their respective shape operators AN and A∗
E . As the shape op-

erator is an information tool for studying the geometry of submanifolds, their study turns out to be very

important. For instance, in [11] a class of lightlike hypersurfaces was considered, with shape operators

the same as the ones of their screen distribution up to a conformal non zero smooth factor in F(M). That

work gave a way to generate, under some geometric conditions, an integrable canonical screen (see [11]

for more details).

Next, we study these operators and give their implications in a lightlike hypersurface of indefinite

trans-Sasakian manifold (M,g) of type (α, β) with ξ ∈ TM . Let Ŵ be an element of TM⊥ ⊕N(TM)

which is a non-degenerate distribution of rank 2. Then there exist non zero smooth functions µ and ν

such that

Ŵ = µ E + ν N. (4.8)

It is easy to check that µ = g(Ŵ ,N) and ν = g(Ŵ ,E). The Lie derivative LcW
g is given by,

(LcW
g)(X,Y ) = −2µB(X,Y ) − ν {C(X,Y ) + C(Y,X)}

+ν {τ(X)θ(Y ) + τ(Y )θ(X)} + X(ν)θ(Y ) + Y (ν)θ(X), ∀X, Y ∈ Γ(TM). (4.9)

Let AcW
be a tensor field of type (1, 1) locally defined, in terms of A∗

E and AN , by

AcW
X = µ A∗

EX + ν ANX, ∀X ∈ Γ(TM). (4.10)

The action of ∇ on the normal bundle TM⊥ ⊕ N(TM) is defined as, for any X, Y ∈ Γ(TM),

g(AcW
X,PY ) = g(µA∗

EX + νANX,PY ) = −g(∇XŴ , PY ), ∀X, Y ∈ Γ(TM). (4.11)

From (4.11), we deduce that

∇XŴ = −AcW
X + ∇∗⊥

X Ŵ , (4.12)

where ∇∗⊥
X Ŵ = {X(µ) − µτ(X)}E + {X(ν) + ντ(X)}N.

Let (M,g, S(TM)) be a screen integrable lightlike hypersurface of an indefinite trans-Sasakian man-

ifold (M,g) of type (α, β) with ξ ∈ TM . Then, (4.9) becomes, for any X, Y ∈ Γ(TM),

(LcW
g)(X,Y ) = −2µB(X,Y ) − 2ν C(X,Y ) + ν {τ(X)θ(Y ) + τ(Y )θ(X)}

+X(ν)θ(Y ) + Y (ν)θ(X). (4.13)
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Let M ′ be a leaf of S(TM). Then, on M ′, the relation (4.13) becomes,

(LcW
g)(X,Y ) = −2µB(X,Y ) − 2ν C(X,Y ), ∀X, Y ∈ Γ(TM ′). (4.14)

From (4.6) and (4.7), we have the following combination, for any X ∈ Γ(TM ′),

µ∇′
XV + ν∇′

XU = −β{µ u(X) + ν v(X)}ξ − v(AcW
X)E − u(AcW

X)N

+φ(AcW
X) − µ τ(X)V + ν τ(X)U. (4.15)

Theorem 4.4 Let (M,g, S(TM)) be a screen integrable lightlike hypersurface of an indefinite trans-

Sasakian manifold (M,g) of type (α, β) with ξ ∈ TM and let M ′ be a leaf of S(TM). Then, the vector

fields V and U are parallel with respect to the Levi-Civita connection ∇′ on M ′ if and only if, for any

X ∈ Γ(TM ′),

AcW
X = u(AcW

X)U + v(AcW
X)V,

and τ and µ u + ν v vanish on M ′.

Proof: Suppose V and U are parallel with respect to the Levi-Civita connection ∇′ on M ′. Then, for

any X ∈ Γ(TM ′), ∇′
XV = 0 and ∇′

XU = 0. Using (4.6) and (4.7), we have,

0 = µ∇′
XV + ν∇′

XU = −β{µ u(X) + ν v(X)}ξ − v(AcW
X)E − u(AcW

X)N

+φ(AcW
X) − µ τ(X)V + ν τ(X)U, (4.16)

which leads, by using (3.7), to

φ(AcW
X) = β{µ u(X) + ν v(X)}ξ + v(AcW

X)E + u(AcW
X)N

+µ τ(X)V − ν τ(X)U. (4.17)

Since φ(AcW
X) = φ(AcW

X) + u(AcW
X)N , we obtain

φ(AcW
X) = β{µ u(X) + ν v(X)}ξ + v(AcW

X)E + µ τ(X)V − ν τ(X)U. (4.18)

Apply φ to (4.18) and using (3.9) and the fact that φU = 0, we obtain

AcW
X = η(AcW

X)ξ + u(AcW
X)U + v(AcW

X)V − µ τ(X)E

= −α{µ u(X) + ν v(X)}ξ + u(AcW
X)U + v(AcW

X)V − µ τ(X)E. (4.19)

Putting (4.19) into (4.15) and using (3.7), one obtains, −β{µ u(X) + ν v(X)}ξ + ν τ(X)U = 0, which

is equivalent to µ u(X) + ν v(X) = 0 and τ(X) = 0 and (4.19) is reduced to

AcW
X = u(AcW

X)U + v(AcW
X)V. (4.20)

The converse is obvious, using (4.15). �
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Corollary 4.5 Let (M,g, S(TM)) be a screen integrable lightlike hypersurface of an indefinite trans-

Sasakian manifold (M,g) of type (α, β) with ξ ∈ TM and let M ′ be a leaf of S(TM) such that U and

V are parallel with respect to the Levi-Civita connection ∇′ on M ′. Then, the type number t′(x) of M ′

(with x ∈ M ′) satisfies t′(x) ≤ 2.

Proof: The proof follows from Theorem 4.4. �

Next, we deal with the geometry of the normal bundle TM⊥ ⊕ N(TM) and we show there exists a

close relationship between its geometry and the geometries of φ(TM⊥)⊕φ(N(TM)) and of any leaf of

an integrable distribution. Denote by H ′ the mean curvature vector of M ′, a leaf of an integrable screen

distribution S(TM). As N(TM) ⊕ TM⊥ is the normal bundle of M ′, there exist smooth functions δ

and ρ such that H ′ = δE + ρN . If M ′ is totally contact umbilical immersed in M , we have, for any X,

Y ∈ Γ(TM ′),

h′(X,Y ) = (g(X,Y ) − η(X)η(Y ))H ′ + η(X)h′(Y, ξ) + η(Y )h′(X, ξ), (4.21)

which implies, using (4.4), B = ρ{g−η⊗η}−α{η⊗u+u⊗η} and C = δ{g−η⊗η}−α{η⊗v+v⊗η}

along M ′, and by putting these relations together into (4.22), one obtains,

(LcW
g)(X,Y ) = −2(µρ + νδ){g(X,Y ) − η(X)η(Y )} + 2αη(X){µ u(Y ) + ν v(Y )}

+2αη(Y ){µ u(X) + ν v(X)}, ∀X, Y ∈ Γ(TM ′). (4.22)

Theorem 4.6 Let (M,g, S(TM)) be a screen integrable lightlike hypersurface of an indefinite trans-

Sasakian manifold M of type (α, β) with ξ ∈ TM . Suppose any leaf M ′ of S(TM) is totally contact

umbilical immersed in M as a non-degenerate submanifold. Then,

(i) TM⊥ ⊕ N(TM) is an η-conformal Killing distribution on M ′ if and only if µ u + ν v vanishes

identically on M ′.

(ii) Moreover, if the vector fields V and U are parallel with respect to the Levi-Civita connection ∇′

on M ′, TM⊥ ⊕ N(TM) is an η-conformal Killing distribution on M ′.

Proof: The proof of (i) and (ii) follows from (4.22) and Theorem 4.4. �

Note that if a leaf M ′ of an integrable screen distribution S(TM) is η-totally umbilical immersed

in M , then, the section Ŵ is an η-conformal Killing vector field on M ′, that is, TM⊥ ⊕ N(TM) is an

η-conformal Killing distribution on M ′.

Let W be an element of φ(TM⊥) ⊕ φ(N(TM)), a non-degenerate vector subbundle of S(TM) of

rank 2. Then, there exist non-zero functions a and b such that

W = aV + bU. (4.23)

We have a = v(W ) and b = u(W ). Let ω be a differential 1-form locally defined by ω(·) = g(W, ·).

Using (3.12) and (3.13), the covariant derivative of ω and the Lie derivative of g with respect to the vector
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field W are given, respectively, by

(∇Xω)Y = −v(W )B(X,φY ) − u(W )C(X,φY ) − βω(X)η(Y )

−αu(W )η(Y )θ(X), (4.24)

(LW g)(X,Y ) = X(ω(Y )) + Y (ω(X)) + ω([X,Y ]) − 2ω(∇XY ), (4.25)

for any X, Y ∈ Γ(TM). Referring to (3.2), for any X ∈ Γ(TM), Y ∈ Γ(D0 ⊥ 〈ξ〉), we have

∇XY = ∇̃XY + h̃(X,Y ), (4.26)

where ∇̃ is a linear connection on the bundle D0 ⊥ 〈ξ〉 and h̃ : Γ(TM) × Γ(D0 ⊥ 〈ξ〉) −→

Γ(φ(TM⊥) ⊕ φ(N(TM)) ⊥ TM⊥) is F(M)-bilinear. Let U ⊂ M be a coordinate neighbourhood as

fixed in Theorem 2.1. Then, using (3.2), (4.26) can be rewritten (locally) as,

∇XY = ∇̃XY + C(X,Y )E + C(X,φY )V + B(X,φY )U, (4.27)

for any X, Y ∈ Γ((D0 ⊥ 〈ξ〉)|U ) and the local expression of h̃ is

h̃(X,Y ) = C(X,Y )E + C(X,φY )V + B(X,φY )U. (4.28)

Using this relation, we obtain the following result.

Theorem 4.7 Let (M, g, S(TM)) be a lightlike hypersurface of an indefinite trans-Sasakian manifold

M of type (α, β) with ξ ∈ TM . Then, the distribution D0 ⊥ 〈ξ〉 is integrable if and only if, for any X,

Y ∈ Γ(D0 ⊥ 〈ξ〉), C(φX, Y ) = C(X,φY ), B(φX, Y ) = B(X,φY ) and C(X,Y ) = C(Y,X).

Proof: The proof follows from a direct calculation, using (4.27). �

Note that Theorem 4.7 remains valid when the distribution D0 ⊥ 〈ξ〉 is replaced by D0. Also,

looking at (4.28) and using the above theorem, we deduce that h̃ is symmetric on D0 ⊥ 〈ξ〉 if and only

if D0 ⊥ 〈ξ〉 is integrable. Moreover, the integrability of D0 ⊥ 〈ξ〉 implies that ∇̃ is a linear symmetric

connection on the integral manifolds.

By direct calculation, the differential of the 1-form ω is given by

2dω(X,Y ) = (∇Xω)Y − (∇Y ω)X = −ω([X,Y ]), ∀X, Y ∈ Γ(TM). (4.29)

This means that the integrability condition on D0 ⊥ 〈ξ〉 is related to the 1-form ω, that is, the distribution

D0 ⊥ 〈ξ〉 is integrable if and only if ω is closed along D0 ⊥ 〈ξ〉, that is, dω(X,Y ) = 0, ∀X, Y ∈

Γ(D0 ⊥ 〈ξ〉).

If D0 ⊥ 〈ξ〉 is integrable, by Theorem 4.7 and (3.9), we have, for any X, Y ∈ Γ(D0 ⊥ 〈ξ〉),

B(φX,φY ) = −B(X,Y ) and C(φX,φY ) = −C(X,Y ). (4.30)

Let us define the unsymmetrized second fundamental form of D0 ⊥ 〈ξ〉, AD0⊥〈ξ〉 by

A
D0⊥〈ξ〉
X Y = p1(∇X0

Y0), ∀X, Y ∈ Γ(TM), (4.31)
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where p1 : TM −→ φ(TM⊥) ⊕ φ(N(TM)) is the canonical projection on φ(TM⊥) ⊕ φ(N(TM))

and X0, Y0 are the projections of X and Y onto D0 ⊥ 〈ξ〉. Then, using (4.26), since p1(∇̃X0
Y0) = 0,

we obtain A
D0⊥〈ξ〉
X Y = h̃(X0, Y0), and the symmetric second fundamental form BD0⊥〈ξ〉 is given by

BD0⊥〈ξ〉(X,Y ) =
1

2

{
h̃(X0, Y0) + h̃(Y0,X0)

}
, ∀X, Y ∈ Γ(TM). (4.32)

Furthermore, the mean curvature vector of the distribution D0 ⊥ 〈ξ〉, D0 ⊥ 〈ξ〉, being integrable or not

integrable, is defined as

λD0⊥〈ξ〉 =
1

rank(D0 ⊥ 〈ξ〉)
tr(BD0⊥〈ξ〉), (4.33)

and D0 ⊥ 〈ξ〉 is called minimal (respectively, totally geodesic) if λD0⊥〈ξ〉 (respectively, BD0⊥〈ξ〉) van-

ishes.

Proposition 4.8 Let (M, g, S(TM)) be a lightlike hypersurface of an indefinite trans-Sasakian mani-

fold M of type (α, β) with ξ ∈ TM . Suppose the distribution D0 ⊥ 〈ξ〉 is integrable. Then, D0 ⊥ 〈ξ〉

is minimal with respect to the induced symmetric connection ∇ on M and all its integral manifolds are

minimal submanifolds of M with respect to ∇.

Proof: Suppose that D0 ⊥ 〈ξ〉 is integrable. Then, h̃ is symmetric and the mean curvature vector of

D0 ⊥ 〈ξ〉 is

λD0⊥〈ξ〉 =
1

rank(D0 ⊥ 〈ξ〉)
tr(BD0⊥〈ξ〉) =

1

2n − 3
tr(h̃).

We consider an adapted frame in D0 ⊥ 〈ξ〉, {Xi, φXi, ξ} with i = 1, 2, ..., n − 2, using (4.30) and

h̃(ξ, ξ) = 0 we have,

tr(h̃) =

n−2∑

i=1

εi

(
h̃(Xi,Xi) + h̃(φXi, φXi)

)
+ h̃(ξ, ξ)

=

n−2∑

i=1

εi (C(Xi,Xi)E + C(Xi, φXi)V + B(Xi, φXi)U + C(φXi, φXi)E

+C(φXi, φ
2Xi)V + B(φXi, φ

2Xi)U
)

= 0.

This completes the proof. �

Suppose that the distribution D0 ⊥ 〈ξ〉 is integrable and let M̃ ′ be a leaf of D0 ⊥ 〈ξ〉. Then, using

the first equation of (2.14) and (4.26), we have, for any X, Y ∈ Γ(TM̃ ′),

∇XY = ∇̃XY + h̃(X,Y ) + B(X,Y )N = ∇̃′
XY + h̃′(X,Y ), (4.34)

where ∇̃′ and h̃′ are the Levi-Civita connection and second fundamental form of M̃ ′ in M . Thus, for

any X, Y ∈ Γ(TM̃ ′),

h̃′(X,Y ) = h̃(X,Y ) + B(X,Y )N. (4.35)

Here, the second fundamental form h̃′ coincides with BD0⊥〈ξ〉 defined in (4.32). h̃′ can also be seen as a

restriction of h′ defined in (4.3) by D0 ⊥ 〈ξ〉.
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Proposition 4.9 Let (M, g, S(TM)) be a lightlike hypersurface of an indefinite trans-Sasakian mani-

fold M of type (α, β) with ξ ∈ TM . Suppose the distribution D0 ⊥ 〈ξ〉 is integrable and let M̃ ′ be a

leaf of D0 ⊥ 〈ξ〉. Then, the trace of the second fundamental form h̃′ of M̃ ′ vanishes, that is, tr(h̃′) = 0.

Proof: The proof follows from Proposition 4.8 and (4.35). �

The result of this proposition means that all integral manifolds of D0 ⊥ 〈ξ〉 are minimal submanifolds

of M and D0 ⊥ 〈ξ〉 is minimal. The result also is similar to the one found in [5] in case of lightlike

hypersurfaces in S-manifolds.

The non-zero functions µ, ν, a and b of (4.8) and (4.23), respectively, are related as follows. Since

−φŴ = µ V + ν U ∈ Γ(φ(TM⊥) ⊕ φ(N(TM))), then there exists a non-zero smooth function γ on

M such that −φŴ = µ V + ν U = γW which implies that µ = γ a and ν = γ b. The Lie derivatives

LW (4.25) is rewritten as,

(LW g)(X,Y ) = −
µ

γ
{B(X,φY ) + B(φX, Y )} −

ν

γ
{C(X,φY ) + C(Y, φX)}

−β {ω(X)η(Y ) + ω(Y )η(X)} −
αν

γ
{η(X)θ(Y ) + η(Y )θ(X)} , (4.36)

for any X, Y ∈ Γ(TM). If the distribution D0 ⊥ 〈ξ〉 is integrable, using Theorem 4.7, the Lie deriva-

tives LcW
(4.13) and LW (4.36) are related with, for any X, Y ∈ Γ(D0 ⊥ 〈ξ〉),

(LcW
g)(X,Y ) = −2µB(X,Y ) − 2νC(X,Y ),

and (LW g)(X,Y ) = −
2µ

γ
B(X,φY ) −

2ν

γ
C(X,φY ). (4.37)

Theorem 4.10 Let (M, g, S(TM)) be a lightlike hypersurface of an indefinite trans-Sasakian manifold

M of type (α, β) with ξ ∈ TM . Suppose the distribution D0 ⊥ 〈ξ〉 is integrable. Let M̃ ′ be a leaf of

D0 ⊥ 〈ξ〉. Then, the following assertions are equivalent.

(i) M̃ ′ is totally geodesic in M ,

(ii) φ(TM⊥) ⊕ φ(N(TM)) is a Killing distribution on M̃ ′,

(iii) TM⊥ ⊕ N(TM) is a Killing distribution on M̃ ′.

Proof: The proof follows by direct calculation, using (4.35) and (4.37). �

Note that if a leaf M̃ ′ of an integrable distribution D0 ⊥ 〈ξ〉 is totally contact geodesic, then, by

relation (4.22) and (4.36) and using (3.11), we have, for any X, Y ∈ Γ(TM̃ ′),

(LcW
g)(X,Y ) = −2(µρ + νδ){g(X,Y ) − η(X)η(Y )} and (LW g)(X,Y ) = 0,

which imply that the section Ŵ is an η-conformal Killing vector field and W is a Killing vector field

on M̃ ′. This means that the concept of η-conformal Killing on a totally contact geodesic leaf M̃ ′ of an

integrable distribution D0 ⊥ 〈ξ〉 is not invariant under φ.

It is well known that the interrelation between the second fundamental forms of the lightlike M

and its screen distribution and their respective shape operators indicates that the lightlike geometry de-

pends on the choice of a screen distribution. Therefore, it is important to investigate the relationship
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between some geometric objects induced, studied above, with the change of the screen distributions.

We know that the local second fundamental form B of M on U is independent of the vector bundles

(S(TM), S(TM⊥)) and N(TM). This means that all results of this paper, which depend only on B,

are stable with respect to any change of those vector bundles. We discuss now the effect of the change

of screen distribution on the results which also depend on other geometric objects. Denote by κ the dual

1-form of K (defined in (3.19)), the characteristic vector field of the screen change, with respect to the

induced metric g of M , that is, κ(·) = g(X, ·). Let P and P ′ be projections of TM on S(TM) and

S(TM)′, respectively, with respect to the orthogonal decomposition of TM . Any vector field X on

M can be written as X = PX + θ(X)E = P ′X + θ′(X)E, where θ′(X) = θ(X) + κ(X). Then,

we have, P ′X = PX − κ(X)E and C ′(X,P ′Y ) = C ′(X,PY ). The relationship between the local

second fundamental forms C and C ′ of the screen distributions S(TM) and S(TM)′, respectively, is

given using (3.19) by

C ′(X,PY ) = C(X,PY ) −
1

2
κ(∇XPY + B(X,Y )K), ∀X, Y ∈ Γ(TM). (4.38)

All equations above, depending only on the local second fundamental form C (making equations non

unique), are independent of S(TM) if and only if ω(∇XPY +B(X,Y )K) = 0. Also, equations (4.25)

and (4.9) are not unique as they depend on C , θ and τ which depend on the choice of a screen vector

bundle. The Lie derivatives L(·) and L′
(·) of the screen distributions S(TM) and S(TM)′, respectively,

are related through the relations:

(L′
W ′g)(X,Y ) = (LW g)(X,Y ) + (

µ

γ
−

µ′

γ′
){B(X,φY ) + B(φX, Y )}

+(
ν

γ
−

ν ′

γ′
){C(X,φY ) + C(φX, Y )} +

ν ′

2γ′
κ(∇{XPφY } + (B(X,φY ) + B(Y, φX)K)

+βη(X(ω−ω′)(Y )) +
αν

γ
θ(Xη(Y )) −

αν ′

γ′
(θ + κ)(Xη(Y )),

(L′
cW ′

g)(X,Y ) = (LcW
g)(X,Y ) + 2(µ − µ′)B(X,Y ) + (ν ′ − ν)θ(Xτ(Y ))

+θ(X)Y (ν ′ − ν) + θ(Y )X(ν ′ − ν) + ν ′κ(Xτ(Y )) + (ν − ν ′) {C(X,Y ) + C(Y,X)}

+
1

2
ν ′κ(∇{XPY } + 2B(X,Y )K) + ν ′(θ + κ)X(Y ) + X(ν ′)κ(Y ) + Y (ν ′)κ(X),

where fX(Y ) = f(X)B(Y,K) + f(Y )B(X,K), ∇{XPY } = ∇XPY + ∇Y PX and Xf(Y ) =

Xf(Y ) + Y f(X), f denoting a 1-form.

The covariant derivative of h depends on ∇, N and τ which depend on the choice of the screen

vector bundle. The covariant derivatives ∇ of h = B ⊗ N and ∇′ of h′ = B ⊗ N ′ in the screen

distributions S(TM) and S(TM)′, respectively, are related as follows, for any X, Y , Z ∈ Γ(TM),

g((∇′
Xh′)(Y,Z), E) = g((∇Xh)(Y,Z), E) + L(X,Y )Z, where L(X,Y )Z = B(X,Y )B(Z,K)+

B(X,Z)B(Y,K) + B(Y,Z)B(X,K). It is easy to see that the parallelism of h is independent of the

screen distribution S(TM), i.e., ∇′h′ ≡ ∇h, if and only if B = 0.

Now we discuss the stability of the result of Proposition 4.8 with respect to the change of screen

distribution. From the last equation of (3.19), we have, for any X, Y ∈ Γ(TM), ∇′
XY = ∇XY +
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B(X,Y )(N − N ′). From this relation and (4.5), we have, for any X ∈ Γ(TM) and Y ∈ Γ(D0 ⊥ 〈ξ〉),

∇′
XY = ∇̃XY + h̃(X,Y ) + B(X,Y )(N − N ′), and by denoting by k′ the normal part of ∇′

XY with

respect to D0 ⊥ 〈ξ〉, we obtain

k′(X,Y ) = h̃(X,Y ) + B(X,Y )(N − N ′).

Let {Xi, φXi, ξ}1≤i≤n−2 be an adapted frame of D0 ⊥ 〈ξ〉. The trace of k′, tr(k′), is given by

tr(k′) = tr(h̃) + {
∑n−2

i=1 εi(B(Xi,Xi) + B(φXi, φXi)) + B(ξ, ξ)}(N − N ′). Under the same hy-

potheses of Proposition 4.8 and (4.30), we get tr(k′) = 0.
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[15] R. Günes, B. Sahin, E. Kilic, On lightlike hypersurfaces of a semi-Riemannian space form. Turkish

J. Math. 27 (2003), 283-297.

[16] D. Janssens and L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J., 4

(1981), 1-27.

[17] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J., 24 (1972), 93-

103.

[18] J.-S Kim, R. Prasad and M. m. Tripathi, On Generalized Ricci-reccurent trans-Sasakian manifolds,

J. Korean Math. Soc., 39 (2002), 6, 953-961.

[19] M. Kon, Remarks on anti-invariant submanifold of a Sasakian manifold, Tensor N. S. 30 (1976),

239-246.

[20] D. N. Kupeli, Singular semi-invariant Geometry, vol. 366 of Mathematics and Applications, Kluwer

Academic Publishers, Dordrecht, The Netherlands, 1996.

[21] J. C. Marrero, The local structure of trans-Sasakian manifolds, Ann. Mat. Pura Appl. 162 (1992),

no. 4, 77-86.

[22] F. Massamba, Lightlike hypersurfaces of indefinite Sasakian manifolds with parallel symmetric

bilinear forms, Differ. Geom. Dyn. Syst., 10 (2008), 226-234.

[23] F. Massamba, On weakly Ricci symmetric lightlike hypersurfaces of indefinite Sasakian manifolds,

SUT J. Math., 44, No 2 (2008), 181-201.

[24] F. Massamba, Totally contact umbilical lightlike hypersurfaces of indefinite Sasakian manifolds,

Kodai Math. J., 31, No 3 (2008), 338-358.

[25] F. Massamba, On semi-parallel lightlike hypersurfaces of indefinite Kenmotsu manifolds, J. Geom,

95 (2009), 73-89.

[26] F. Massamba, On lightlike geometry in indefinite Kenmotsu manifolds, to appear in Slovaca Math-

ematica.

[27] F. Massamba, Screen integrable lightlike hypersurfaces of indefinite Sasakian manifolds, Mediterr.

J. Math, 6 (2009), 27-46.

[28] J. A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen. 32 (1985), no

3-4, 187-193.

[29] S. Sasaki, On differentiable manifolds with certain structures which are closely related to almost
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