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manifolds. Then, we introduce a general notion of contact Cauchy-Riemann (CR) light-
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1. Introduction

The geometry of lightlike submanifolds of indefinite Kähler manifolds was presented in

a book [1, Chapter 6]. However, a general notion of lightlike submanifolds of indefinite

Sasakian manifolds was not introduced yet. A significant use of the contact geometry in

differential equations, optics, and phase spaces of a dynamical system (see Arnol’d [2],

Maclane [3], Nazaikinskii et al. [4] and many more references therein) and only very

limited specific information [5–7] on its lightlike case motivated the present authors to

work on the geometry of lightlike submanifolds of indefinite Sasakian manifolds.

This paper has three objectives. First, we study invariant [8] lightlike submanifolds M
of indefinite Sasakian manifolds M and prove that the geometry of a codimension-two

invariant M has close relation with the nondegenerate geometry of a leaf of its integrable

screen (Theorem 2.2). Also, we show that if a totally umbilical M is tangent to the char-

acteristic vector field V , then M is totally geodesic and invariant in M (Theorem 2.5).

Second, we introduce the general notion of contact Cauchy-Riemann (CR)-lightlike
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submanifolds, a first attempt towards the general theory of lightlike submanifolds of

Sasakian manifolds, and study its properties. We study the integrability conditions of

their distributions, investigate the geometry of leaves of the distributions involved in the

induced contact CR-structure on M, and find geometric conditions for an irrotational

[9] contact CR-submanifold M to be a product manifold. It is important to mention

that contrary to the Riemannian case [8], but, similar to the Duggal-Bejancu’s concept

of lightlike CR-submanifolds of Kählerian manifolds [1], the contact CR-lightlike sub-

manifolds are always nontrivial, that is, they do not include the invariant and the real

subcases.

Therefore, as a third objective, we introduce a new class called contact screen Cauchy-

Riemann (SCR)-lightlike submanifolds, which includes invariant and screen real subman-

ifolds and study their properties. Finally, we prove characterization theorems on the exis-

tence of minimal submanifolds of all the classes studied. We follow [1] for the notations

and formulas used in this paper.

A submanifold Mm immersed in a semi-Riemannian manifold (M
m+k

,g) is called a

lightlike submanifold if it admits a degenerate metric g induced from g whose radical

distribution Rad(TM) is of rank r, where 1≤ r ≤m. Rad(TM)= TM∩TM⊥, where

TM⊥ =
⋃

x∈M

{

u∈ TxM : g(u,v)= 0, ∀v ∈ TxM
}

. (1.1)

Let S(TM) be a screen distribution which is a semi-Riemannian complementary distribu-

tion of Rad(TM) in TM, that is, TM = Rad(TM)⊥ S(TM).

We consider a screen transversal vector bundle S(TM⊥), which is a semi-Riemannian

complementary vector bundle of Rad(TM) in TM⊥. Since, for any local basis {ξi} of

Rad(TM), there exists a local frame {Ni} of sections with values in the orthogonal com-

plement of S(TM⊥) in [S(TM)]⊥ such that g(ξi,N j) = δi j and g(Ni,N j) = 0, it follows

that there exists a lightlike transversal vector bundle l tr(TM) locally spanned by {Ni} [1,

page 144]. Let tr(TM) be complementary (but not orthogonal) vector bundle to TM in

TM|M . Then

tr(TM)= l tr(TM)⊥ S
(

TM⊥
)

,

TM|M = S(TM)⊥
[

Rad(TM)⊕ l tr(TM)
]

⊥ S
(

TM⊥
)

.
(1.2)

Although S(TM) is not unique, it is canonically isomorphic to the factor vector bundle

TM/RadTM [9]. The following result is important to this paper.

Proposition 1.1 [1]. The lightlike second fundamental forms of a lightlike submanifold M
do not depend on S(TM), S(TM⊥), and l tr(TM).
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Throughout this paper, we will discuss the dependence (or otherwise) of the results

on induced object(s) and refer to [1] for their transformation equations. We say that a

submanifold (M,g,S(TM),S(TM⊥)) of M is

(1) r-lightlike if r < min{m,k};
(2) coisotropic if r = k < m, S(TM⊥)= {0};

(3) isotropic if r =m< k, S(TM)= {0};

(4) totally lightlike if r =m= k, S(TM)= {0} = S(TM⊥).

The Gauss and Weingarten equations are

∇XY =∇XY +h(X ,Y), ∀X ,Y ∈ Γ(TM), (1.3)

∇XV =−AVX +∇t
XV , ∀X ∈ Γ(TM), V ∈ Γ

(

tr(TM)
)

, (1.4)

where {∇XY ,AVX} and {h(X ,Y),∇t
XV} belong to Γ(TM) and Γ(tr(TM)), respectively.

∇ and ∇t are linear connections on M and on the vector bundle tr(TM), respectively.

Moreover, we have

∇XY =∇XY +hl(X ,Y) +hs(X ,Y), ∀X ,Y ∈ Γ(TM), (1.5)

∇XN =−ANX +∇l
X(N) +Ds(X ,N), N ∈ Γ

(

l tr(TM)
)

, (1.6)

∇XW =−AWX +∇s
X(W) +Dl(X ,W), W ∈ Γ

(

S
(

TM⊥
))

. (1.7)

Denote the projection of TM on S(TM) by P. Then, by using (1.3), (1.5)–(1.7), and a

metric connection∇, we obtain

g
(

hs(X ,Y),W
)

+ g
(

Y ,Dl(X ,W)
)

= g
(

AWX ,Y
)

, (1.8)

g
(

Ds(X ,N),W
)

= g
(

N ,AWX
)

. (1.9)

From the decomposition of tangent bundle of lightlike submanifold, we have

∇XPY =∇
∗
XPY +h∗(X ,PY), (1.10)

∇Xξ =−A
∗
ξ X +∇∗

t
Xξ, (1.11)

for X ,Y ∈ Γ(TM) and ξ ∈ Γ(RadTM). By using the above equations, we obtain

g
(

hl(X ,PY),ξ
)

= g
(

A∗ξ X ,PY), (1.12)

g
(

h∗(X ,PY),N
)

= g
(

ANX ,PY
)

, (1.13)

g
(

hl(X ,ξ),ξ
)

= 0, A∗ξ ξ = 0. (1.14)

In general, the induced connection ∇ on M is not a metric connection. Since ∇ is a

metric connection, by using (1.5) we get

(

∇Xg
)

(Y ,Z)= g
(

hl(X ,Y),Z
)

+ g
(

hl(X ,Z),Y
)

. (1.15)

However, it is important to note that∇⋆ is a metric connection on S(TM).
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2. Invariant submanifolds

An odd-dimensional semi-Riemannian manifold (M,g) is called contact metric manifold

[10] if there are a (1,1) tensor field φ, a vector field V , called characteristic vector field, and

a 1-form η such that

g(φX ,φY)= g(X ,Y)− ǫη(X)η(Y), g(V ,V)= ǫ,

φ2(X)=−X +η(X)V , g(X ,V)= ǫη(X),

dη(X ,Y)= g(X ,φY), ∀X ,Y ∈ Γ(TM), ǫ =±1.

(2.1)

It follows that φV = 0, η ◦φ= 0, η(V)= ǫ. Then (φ,V ,η,g) is called contact metric struc-

ture of M. Also, M has a normal contact structure if Nφ + dη⊗V = 0, where Nφ is the

Nijenhuis tensor field [8]. A normal contact metric M is called an indefinite Sasakian

manifold [11, 12] for which we have

∇XV = φX , (2.2)
(

∇Xφ
)

Y =−g(X ,Y)V + ǫη(Y)X. (2.3)

Let (M,g,S(TM),S(TM⊥)) be a lightlike submanifold of (M,g). For any vector field X
tangent to M, we put

φX = PX +FX , (2.4)

where PX and FX are the tangential and the transversal parts of φX , respectively.

Moreover, P is skew-symmetric on S(TM).

It is known [5] that if M is tangent to the structure vector field V , then, V belongs to

S(TM). Using this, we say that M is invariant in M if M is tangent to the structure vector

field V and

φX = PX , that is, φX ∈ Γ(TM), ∀X ∈ Γ(TM). (2.5)

From (2.2), (2.3), (2.5), and (1.5), we get

hl(X ,V)= 0, hs(X ,V)= 0, ∇XV = PX , (2.6)

h(X ,φY)= φh(X ,Y)= h(φX ,Y), ∀X ,Y ∈ Γ(TM). (2.7)

Proposition 2.1. Let (M,g,S(TM),S(TM⊥)) be an invariant lightlike submanifold of an

indefinite Sasakian manifold M. If the second fundamental forms hl and hs of M are parallel,

then M is totally geodesic.

Proof. Let us suppose that hl is parallel, then we have

(

∇t
Xh

l
)

(Y ,V)=∇Xh
l(Y ,V)−hl

(

∇XY ,V
)

−hl
(

Y ,∇XV
)

= 0. (2.8)

Thus, using (2.6) and (2.2), we have hl(Y ,PX) = 0. Similarly, we have hs(Y ,PX) = 0,

which completes the proof. �
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Theorem 2.2. Let (M,g,S(TM),S(TM⊥)) be an invariant lightlike submanifold of codi-

mension two of an indefinite Sasakian manifold M. Then, RadTM defines a totally geodesic

foliation on M. Moreover, M =M1×M2 is a lightlike product manifold if and only if h∗ = 0,

where M1 is a leaf of the radical distribution and M2 is a semi-Riemannian manifold.

Proof. Since rank(RadTM) = 2, for all X ,Y ∈ Γ(RadTM) one can write ξ and φξ as a

linear combination, that is, X = A1ξ +B1φξ, Y = A2ξ +B2φξ. Thus by direct calculations,

using (1.5) we obtain

g
(

∇XY ,PZ
)

=−A2A1g
(

ξ,hl(ξ,PZ)
)

−A2B1g
(

hl(φξ,PZ),ξ
)

−B2A1g
(

φξ,hl(ξ,PZ)
)

−B2B1g
(

hl(φξ,PZ),φξ
)

.
(2.9)

Now, by using (1.14) and (2.7), we derive g(∇XY ,PZ)= 0. This shows that RadTM de-

fines a totally geodesic foliation. Then, the proof of theorem follows from [1, Theorem

2.6, page 162]. �

Theorem 2.3. Let (M,g,S(TM),S(TM⊥)) be an invariant lightlike submanifold of codi-

mension two of an indefinite Sasakian manifold M. Suppose (M′,g′) is a nondegenerate

submanifold of M such that M′ is a leaf of integrable S(TM). Then M is totally geodesic,

with an induced metric connection if M′ being so immersed as a submanifold of M.

Proof. Since dim(RadTM)= dim(l tr(TM))= 2, hl(X ,Y)= A1N +B1φN , where A1 and

B1 are functions on M. Thus hl(X ,ξ) = 0 if and only if g(hl(X ,ξ),ξ) = 0 and g(hl(X ,ξ),

φξ)= 0, for all X ∈ Γ(TM) and ξ ∈ Γ(RadTM). From (1.14), we have g(hl(X ,ξ),ξ)= 0.

Using (2.7), we get g(hl(X ,ξ),φξ)=−g(hl(φX ,ξ),ξ)= 0. Similarly, hl(X ,φξ)= 0. For M′,

we write

∇XY =∇
′
XY +h′(X ,Y), ∀X ,Y ∈ Γ(TM′), (2.10)

where ∇′ is a metric connection on M′ and h′ is the second fundamental form of M′.

Thus, h′(X ,Y) = h∗(X ,Y) + hl(X ,Y), for all X ,Y ∈ Γ(TM′). Also, g(X ,Y) = g′(X ,Y),

for all X ,Y ∈ Γ(TM), which completes the proof. �

Definition 2.4 [13]. A lightlike submanifold (M,g) of a semi-Riemannian manifold (M,g)

is totally umbilical in M if there is a smooth transversal vector field H ∈ Γ(tr(TM)) on

M, called the transversal curvature vector field of M, such that for all X ,Y ∈ Γ(TM),

h(X ,Y)=Hg(X ,Y). (2.11)

Using (1.5) and (2.11), it is easy to see that M is totally umbilical if and only if on

each coordinate neighborhood �, there exist smooth vector fields �l ∈ Γ(l tr(TM)) and

�s ∈ Γ(S(TM⊥)) such that

hl(X ,Y)=�
lg(X ,Y), Dl(X ,W)= 0

hs(X ,Y)=�
sg(X ,Y), ∀X ,Y ∈ Γ(TM), W ∈ Γ

(

S
(

TM⊥
))

.
(2.12)
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Theorem 2.5. Let (M,g,S(TM),S(TM⊥)) be a lightlike submanifold, tangent to the struc-

ture vector field V , of an indefinite Sasakian manifold (M,g). If M is totally umbilical, then

M is totally geodesic and invariant.

Proof. Using (2.2), (1.5), (2.4), and the transversal parts, we get

hs(X ,V) +hl(X ,V)= FX , ∀X ∈ Γ(TM). (2.13)

φV = 0 implies that PV = 0 and FV = 0. Thus from (2.13), we have hl(V ,V) = 0 and

hs(V ,V)= 0. M is totally umbilical, V is nonnull, and (2.12) implies that hl = 0 and hs =
0, so M is totally geodesic. Also, FX = hl(X ,V) +hs(X ,V)= 0 implies that M invariant in

M, which completes the proof. �

Remark 2.6. As per Proposition 1.1, Definition 2.4 does not depend on S(TM) and

S(TM⊥), but it depends on the transformation equations (2.60) in [1, page 165], with

respect to the screen second fundamental forms hs.

3. Contact CR-lightlike submanifolds

In this section, we follow Yano-Kon [8, page 353] definition of contact CR-submanifolds

and state the following definition for a contact CR-lightlike submanifold.

Definition 3.1. Let (M,g,S(TM),S(TM⊥)) be a lightlike submanifold, tangent to the

structure vector field V , immersed in an indefinite Sasakian manifold (M,g). Say that

M is a contact CR-lightlike submanifold of M if the following conditions are satisfied:

(A) RadTM is a distribution on M such that RadTM∩φ(RadTM)= {0};

(B) there exist vector bundles D0 and D′ over M such that

S(TM)=
{

φ(RadTM)⊕D′
}

⊥Do ⊥ {V},

φDo =Do, φ(D′)= L1 ⊥ l tr(TM),
(3.1)

where D0 is nondegenerate and L1 is a vector subbundle of S(TM⊥).

Thus, one has the following decomposition:

TM =D⊕{V}⊕D′, D = RadTM ⊥ φ(RadTM)⊥Do. (3.2)

A contact CR-lightlike submanifold is proper if Do = {0} and L1 = {0}. It follows that any

contact CR-lightlike three-dimensional submanifold is 1-lightlike.

Example 3.2. Let M be a lightlike hypersurface of M. For ξ ∈ Γ(RadTM), we have

g(φξ,ξ)= 0. Hence, φξ ∈ Γ(TM). Thus, we get a rank-1 distribution φ(TM⊥) on M such

that φ(TM⊥)∩TM⊥ = {0}. This enables us to choose a screen S(TM) such that it con-

tains φ(TM⊥) as a vector subbundle. Consider N ∈ Γ(l tr(TM)) to obtain g(φN ,ξ) =

−g(N ,φξ)= 0 and g(φN ,N)= 0. Thus, φN ∈ Γ(STM). Taking D′ = φ(tr(TM)), we ob-

tain S(TM)= {φ(TM⊥)⊕D′} ⊥Do, where Do is a nondegenerate distribution. Moreover

φ(D′)= tr(TM). Hence, M is a contact CR-lightlike hypersurface.



K. L. Duggal and B. Sahin 7

Henceforth, (R2m+1
q ,φo,V ,η,g) will denote the manifold R2m+1

q with its usual Sasakian

structure given by

η =
1

2

(

dz−
m
∑

i=1

yidxi
)

, V = 2∂z,

g = η⊗η+
1

4

(

−

q/2
∑

i=1

dxi⊗dxi +dyi⊗dyi +
m
∑

i=q+1

dxi⊗dxi +dyi⊗dyi
)

,

φo

( m
∑

i=1

(

Xi∂x
i +Yi∂y

i
)

+Z∂z

)

=

m
∑

i=1

(

Yi∂x
i−Xi∂y

i
)

+
m
∑

i=1

Yiy
i∂z,

(3.3)

where (xi; yi;z) are the Cartesian coordinates. The above construction will help in under-

standing how the contact structure is recovered in the next three examples.

Example 3.3. Let M = (R9
2,g) be a semi-Euclidean space, where g is of signature (−,+,+,

+,−,+,+,+,+) with respect to canonical basis

{

∂x1,∂x2,∂x3,∂x4,∂y1,∂y2,∂y3,∂y4,∂z
}

. (3.4)

Suppose M is a submanifold of R9
2 defined by

x1 = y4, x2 =
√

1− (y2)2, y2 = ±1. (3.5)

It is easy to see that a local frame of TM is given by

Z1 = 2
(

∂x1 + ∂y4 + y1∂z
)

, Z2 = 2
(

∂x4− ∂y1 + y4∂z
)

,

Z3 = ∂x3 + y3∂z, Z4 = ∂y3, Z5 =−
y2

x2
∂x2 + ∂y2−

(

y2
)2

x2
∂z,

Z6 = ∂x4 + ∂y1 + y4∂z, Z7 =V = 2∂z.

(3.6)

Hence, RadTM = span{Z1}, φo RadTM = span{Z2}, and RadTM ∩ φo RadTM = {0}.

Thus (A) holds. Next, φo(Z3) = −Z4 implies that D0 = {Z3,Z4} is invariant with respect

to φo. By direct calculations, we get

S
(

TM⊥
)

= span

{

W = ∂x2 +
y2

x2
∂y2 + y2∂z

}

such that φo(W)=−Z5 (3.7)

and l tr(TM) is spanned by N =−∂x1 + ∂y4− y1∂z such that φo(N)= Z6. Hence, M is a

contact CR-lightlike submanifold.

Proposition 3.4. There exist no isotropic or totally lightlike contact CR-lightlike submani-

folds.

Proof. If M is isotropic or totally lightlike, then S(TM)= {0}. Hence, conditions (A) and

(B) of Definition 3.1 are not satisfied. �

Proposition 3.5. Let M be a contact CR-lightlike submanifold of an indefinite Sasakian

manifold M. Then, D and D′⊕D are not integrable.
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Proof. Suppose D is integrable. Then g([X ,Y],V)= 0, for X ,Y ∈ Γ(D). Also from (1.7),

we derive g([X ,Y],V) = g(∇XY ,V)− g(∇YX ,V). Then, ∇ being a metric connection

and using (2.2), we have g([X ,Y],V) = −g(Y ,φX) + g(φY ,X). Hence, g([X ,Y],V) =

2g(φY ,X). Since by Proposition 3.4, M is proper and Do is nondegenerate, we can choose

nonnull vector fields X ,Y ∈ Γ(D) such that g(Y ,φX) = 0, which is a contradiction, so D
is not integrable. Similarly, D′⊕D is not integrable, which completes the proof. �

Denote the orthogonal complement subbundle to the vector subbundle L1 in S(TM⊥)

by L⊥1 . For a contact CR-lightlike submanifold M, we put

φX = f X +ωX , ∀X ∈ Γ(TM), (3.8)

where f X ∈ Γ(D) and ωX ∈ Γ(L1 ⊥ l tr(TM)). Similarly, we have

φW = BW +CW , ∀W ∈ Γ
(

S
(

TM⊥
))

, (3.9)

where BW ∈ Γ(φL1) and CW ∈ Γ(L⊥1 ).

Proposition 3.6. Let M be a contact CR-lightlike submanifold of an indefinite Sasakian

manifold M. Then, D⊕{V} is integrable if and only if

h(X ,φY)= h(φX ,Y), ∀X ,Y ∈ Γ
(

D⊕{V}
)

. (3.10)

Proof. From (1.5), (3.8), (3.9), (2.3), and transversal parts, we obtainω(∇XY)=−Chs(X ,

Y) +h(X ,φY), for all X ,Y ∈ Γ(D⊕{V}). Consequently, ω[X ,Y]= h(X ,φY)−h(φX ,Y),

for all X ,Y ∈ Γ(D⊕{V}), which completes the proof. �

Proposition 3.7. Let M be a contact CR-lightlike submanifold of an indefinite Sasakian

manifold M. Then D⊕{V} is a totally geodesic foliation if and only if

hl(X ,φY)= 0, hs(X ,Y) has no components in L1. (3.11)

Proof. By Definition 3.1,D⊕{V} defines a totally geodesic foliation if and only if g(∇XY ,

φξ)= g(∇XY ,W)= 0 forX ,Y ∈ Γ(D⊕{V}) andW ∈ Γ(φL1). Then, from (1.5), we have

g(∇XY ,φξ)=−g(φ∇XY ,ξ). Using (2.3) and (1.5), we get

g
(

∇XY ,φξ
)

=−g
(

hl(X ,φY),ξ
)

. (3.12)

In a similar way, we derive

g
(

∇XφY ,W
)

=−g
(

hs(X ,Y),φW
)

. (3.13)

Thus, from (3.12) and (3.13), we obtain (3.11), which completes the proof. �

Proposition 3.8. Let M be a contact CR-lightlike submanifold of an indefinite Sasakian

manifold M. Then, D′ is a totally geodesic foliation if and only if ANZ has no components in

φL1 ⊥ φ(RadTM) and AφWZ has no components in Do ⊥ RadTM for Z,W ∈ Γ(D′).
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Proof. We note that D′ defines a totally geodesic foliation if and only if

g
(

∇ZW ,N
)

= g
(

∇ZW ,φN
)

= g
(

∇ZW ,X
)

= g
(

∇ZW ,V
)

= 0, (3.14)

Z,W ∈ Γ(D′), N ∈ Γ(l tr(TM)), and X ∈ Γ(Do). From (2.2) and (1.6), we get

g
(

∇ZW ,V
)

= 0. (3.15)

On the other hand,∇ is a metric connection and (1.5) implies that

g
(

∇ZW ,N
)

= g
(

W ,ANZ
)

. (3.16)

By using (2.2), (2.3), (1.8), and (3.2), we obtain

g
(

∇ZW ,φN
)

= g
(

AφWZ,N
)

. (3.17)

In a similar way, we have

g
(

∇ZW ,φX
)

= g
(

AφWZ,X
)

. (3.18)

Thus the proof follows from (3.15)–(3.18). �

Recall from Kupeli [9] that a lightlike submanifold M of a semi-Riemannian manifold

is said to be an irrotational submanifold if ∇Xξ ∈ Γ(TM), for all X ∈ Γ(TM) and ξ ∈
Γ(RadTM). From (1.5), we conclude that M is an irrotational lightlike submanifold if

and only if the following are satisfied:

hs(X ,ξ)= 0, hl(X ,ξ)= 0. (3.19)

Also, we say that M is a contact CR-lightlike product if D⊕ {V} and D′ define totally

geodesic foliations in M. This concept is consistent with the classical definition of product

manifolds.

Theorem 3.9. Let M be an irrotational contact CR-lightlike submanifold of an indefinite

Sasakian manifold M. Then, M is contact CR-lightlike product if the following conditions

are satisfied:

(1) ∇XU ∈ Γ(S(TM⊥)), for all X ∈ Γ(TM) and U ∈ Γ(tr(TM));

(2) A∗ξ Y has no components in Do⊕φ(l tr(TM)), Y ∈ Γ(D).

Proof. If (1) holds, then from (1.6) and (1.7), we haveANX=0,AWX=0, andDl(X ,W)=

0, for X ∈ Γ(TM), W ∈ Γ(S(TM⊥)). These equations imply that D′ defines a totally ge-

odesic foliation. Moreover, from (1.8), we get g(hs(X ,Y),W) = −g(Y ,Dl(X ,W)) = 0.

Hence, hs(X ,Y) has no components in L1. Finally, from (1.12) and M being irrotational,

we have g(hl(X ,φY),ξ) = −g(φY ,A∗ξ X) for X ∈ Γ(TM) and Y ∈ Γ(D). Hence, if (2)

holds, then hl(X ,φY)= 0. Thus, considering Propositions 3.7 and 3.8, we conclude that

M is a contact CR-light like product, which completes the proof. �
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Definition 3.10 [8, page 374]. If the second fundamental form h of a submanifold, tangent

to the structure vector field V , of an indefinite Sasakian manifold M is of the form

h(X ,Y)=
[

g(X ,Y)−η(X)η(Y)
]

α+η(X)h(Y ,V) +η(Y)h(X ,V), (3.20)

for any X ,Y ∈ Γ(TM), where α is a vector field transversal to M, then M is called totally

contact umbilical and totally contact geodesic if α= 0.

The above definition also holds for a lightlike submanifold M. For a totally contact

umbilical M, we have

hl(X ,Y)=
[

g(X ,Y)−η(X)η(Y)
]

αL +η(X)hl(Y ,V) +η(Y)hl(X ,V),

hs(X ,Y)=
[

g(X ,Y)−η(X)η(Y)
]

αS +η(X)hs(Y ,V) +η(Y)hs(X ,V),
(3.21)

where αS ∈ Γ(S(TM⊥)) and αL ∈ Γ(l tr(TM)).

Lemma 3.11. Let M be a totally contact umbilical proper contact CR-lightlike submanifold

of an indefinite Sasakian manifold M. Then αL = 0.

Proof. Let M be a totally contact umbilical proper contact CR-lightlike submanifold.

Then, by direct calculations,using (1.5), (1.7), (2.3), and taking the tangential parts, we

have

AφZZ + f∇ZZ +φhl(Z,Z) +Bhs(Z,Z)= g(Z,Z)V (3.22)

for Z ∈ Γ(φL1). Hence, we obtain g(AφZZ,φξ) + g(hl(Z,Z),ξ) = 0. Using (1.8), we get

g(hs(Z,φξ),φZ) + g(hl(Z,Z),ξ) = 0. Thus from (3.21), we derive −g(Z,Z)g(αL,ξ) = 0.

Since φL1 is nondegenerate, we get αL = 0, which completes the proof. �

Theorem 3.12. Let M be a totally contact umbilical proper contact CR-lightlike subman-

ifold of an indefinite Sasakian manifold M. Then either M is totally contact geodesic or

dim(φL1)= 1.

Proof. Assume M proper is totally contact umbilical. From (2.3), (1.5), (3.9), and (3.11),

we get ω∇XX +Chs(X ,X)= 0 for X ∈ Γ(Do). Hence,

hs(X ,X)∈ Γ
(

L1

)

. (3.23)

Now from (3.22) and (1.8), we have g(hs(Z,Z),φW)=g(hs(Z,W),φZ) forZ,W∈ Γ(φL1).

Since M is totally contact umbilical, we obtain

g(Z,Z)g
(

αS,φW
)

= g(Z,W)g
(

αS,φZ
)

. (3.24)

Interchanging role Z and W and subtracting, we derive

g
(

αS,φZ
)

=
g(Z,W)2

g(Z,Z)g(W ,W)
g
(

αS,φZ
)

. (3.25)

Considering (3.23), (3.25) has solutions if either (a) dim(L1)= 1, or (b) αS = 0. Thus the

proof follows from Lemma 3.11. �
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It is known [14] that CR-submanifolds of Riemannian manifolds were designed as a

generalization of both invariant and totally real submanifolds. Therefore, it is important

to know whether contact CR-lightlike submanifolds admit invariant submanifolds (dis-

cussed in Section 2) and, also, are there any real submanifolds. To investigate this, we

need the following definition.

Definition 3.13. Say that a lightlike submanifold M, of an indefinite Sasakian manifold

M, is screen real submanifold if Rad(TM) and S(TM) are, respectively, invariant and

anti-invariant with respect to φ.

The above definition is the lightlike version (see [15]) of the totally real submanifolds

of an almost Hermitian (or contact) manifold [8].

Proposition 3.14. Contact CR-lightlike submanifolds are nontrivial.

Proof. Suppose M is an invariant lightlike submanifold of an indefinite Sasakian mani-

fold. Then we can easily see that radical distribution is invariant. Thus condition (A) of

the Definition 2.4 is not satisfied. Similarly, one can prove that the screen real lightlike

case is not possible. �

4. Contact SCR-lightlike submanifolds

We know from Proposition 3.14 that contact CR-lightlike submanifolds exclude the in-

variant and the screen real subcases, and therefore, do not serve the central purpose of

introducing a CR-structure. To include these two subcases, we introduce a new class,

called contact screen Cauchy-Riemann (SCR)-lightlike submanifold as follows.

Definition 4.1. Let (M,g,S(TM),S(TM⊥)) be a lightlike submanifold, tangent to the

structure vector field V , of an indefinite Sasakian manifold M. Say that M is a contact

SCR-lightlike submanifold of M if the following conditions are satisfied.

(1) There exist real nonnull distributions D and D⊥ such that

S(TM)=D⊕D⊥ ⊥ {V}, φ
(

D⊥
)

⊂
(

S
(

TM⊥
))

, D∩D⊥ = {0}, (4.1)

where D⊥ is orthogonally complementary to D ⊥ {V} in S(TM).

(2) The distributions D and Rad(TM) are invariant with respect to φ.

It follows that l tr(TM) is also invariant with respect to φ. Hence we have

TM =D⊕D⊥ ⊥ {V}, D =D ⊥ Rad(TM). (4.2)

Denote the orthogonal complement to φ(D⊥) in S(TM⊥) by µ. We say that M is a proper

contact SCR-lightlike submanifold of M if D = {0} and D⊥ = {0}. Note the following

features of a contact SCR-lightlike submanifold:

(1) condition (2) implies that dim(RadTM)= r = 2p ≥ 2;

(2) for properM, (2) implies that dim(D)= 2s≥ 2, dim(D⊥)≥ 1. Thus, dim(M)≥ 5,

dim(M)≥ 9.
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For any X ∈ Γ(TM) and any W ∈ Γ(S(TM⊥)), we put

φX = P′X +F′X , φW = B′W +C′W , (4.3)

where P′X ∈ Γ(D), F′X ∈ Γ(φD⊥), B′W ∈ Γ(D⊥), and C′V ∈ Γ(µ).

Example 4.2. Let M be a submanifold of R9
2 defined by

x1 = x2, y1 = y2, x4 =

√

1−
(

y4
)2

, y4 = ±1. (4.4)

It is easy to see that a local frame of TM is given by

Z1 = ∂x1 + ∂x2 +
(

y1 + y2
)

∂z, Z2 = ∂y1 + ∂y2,

Z3 = ∂x3 + y3∂z, Z4 = ∂y3,

Z5 =−y
4∂x4 + x4∂y4− (y4)2∂z, V = 2∂z.

(4.5)

Hence, RadTM = Span{Z1,Z2} and φo(Z1) = −Z2. Thus, RadTM is invariant with re-

spect to φo. Also, φo(Z3)=−Z4 implies that D = Span{Z3,Z4}. By direct calculations, we

get S(TM⊥)= span{W = x4∂x4 + y4∂y4 + x4y4∂z} such that φo(W)=−Z5, and lightlike

transversal bundle l tr(TM) is spanned by

N1 = 2
(

− ∂x1 + ∂x2 +
(

− y1 + y2
)

∂z
)

, N2 = 2
(

− ∂y1 + ∂y2

)

. (4.6)

It follows that φo(N2)=N1. Thus, l tr(TM) is also invariant. Hence, M is a contact SCR-

lightlike submanifold.

The following results can be easily proved by direct use of Definition 4.1.

(1) A contact SCR-lightlike submanifold of M is invariant (resp., screen real) if and

only if D⊥ = {0} (resp., D = {0}).

(2) Any contact SCR-coisotropic, isotropic, and totally lightlike submanifold of M is

an invariant lightlike submanifold. Consequently, there exist no proper contact

SCR or screen real coisotropic or isotropic or totally lightlike submanifold of M.

Theorem 4.3. Let M be a contact SCR-lightlike submanifold of an indefinite Sasakian man-

ifold M. Then the induced connection ∇ is a metric connection if and only if the following

two conditions hold:

(1) hs(X ,ξ) has no components in φ(D⊥),

(2) A∗ξ X has no components in D, for all X ∈ Γ(TM), ξ ∈ Γ(RadTM).

Proof. Equation (2.3) implies that∇Xφξ = φ∇Xξ and from (1.5), (1.11), (4.2), we get

∇Xφξ = B′hs(X ,ξ) +φ∇∗tXξ −P′A∗ξ X. (4.7)

We know that the induced connection is a metric connection if and only if RadTM is

parallel with respect to ∇. Suppose that RadTM is parallel. Then from (4.7), we have

B′hs(X ,ξ) = 0 and P′A∗ξ X = 0. Hence hs(X ,ξ) has no components in φ(D⊥) and A∗ξ X
has no components in D. Conversely, assume that (1) and (2) are satisfied, then from
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(4.7), we get∇Xφξ ∈ Γ(RadTM). Thus, RadTM is parallel and∇ is a metric connection,

which completes the proof. �

Proposition 4.4. There exists a Levi-Civita connection on an irrotational screen real light-

like submanifold of an indefinite Sasakian manifold.

Proof. From (1.5), we have g(hl(X ,Y),ξ) = g(∇XY ,ξ), for all X ,Y ∈ Γ(TM). By using

(2.3), we get

g
(

hl(X ,Y),ξ
)

= g
(

φ∇XY ,φξ
)

= g
(

−
(

∇Xφ
)

Y +∇XφY ,φξ
)

. (4.8)

From (2.3), we obtain g(hl(X ,Y),ξ)= g(∇XφY ,φξ). Since ∇ is a metric connection, we

have g(hl(X ,Y),ξ)=−g(φY ,∇Xφξ). Using (1.5), we obtain g(hl(X ,Y),ξ)=−g(φY ,hs(X ,

φξ)). M being irrotational implies that g(hl(X ,Y),ξ)= 0, that is, hl = 0. Then the proof

follows from (1.15). �

From (2.3), (1.5), and (4.3), we have the following:

(

∇XP
′
)

Y =AF′YX +B′hs(X ,Y)− g(X ,Y)V +η(Y)X , (4.9)
(

∇XF
′
)

Y = C′hs(X ,Y)−hs(X ,P′Y), (4.10)

φhl(X ,Y)= hl(X ,P′Y) +Dl(X ,F′Y), ∀X ,Y ∈ Γ(TM). (4.11)

The following results are similar to those proved in Propositions 3.5 and 3.6.

Proposition 4.5. Let M be a contact SCR-lightlike submanifold of an indefinite Sasakian

manifold M. Then

(1) the distribution D⊥ is integrable if and only if

AφXY = AφYX , ∀X ,Y ∈ Γ
(

D⊥
)

; (4.12)

(2) the distribution D⊕{V} is integrable if and only if

hs(X ,P′Y)= hs(P′X ,Y), ∀X ,Y ∈ Γ(D); (4.13)

(3) the distribution D is not integrable.

Theorem 4.6. Let M be a contact SCR-lightlike submanifold of an indefinite Sasakian man-

ifold M. Then D⊕{V} defines a totally geodesic foliation in M if and only if hs(X ,φY) has

no components in φ(D⊥), for X ,Y ∈ Γ(D⊕{V}).

Proof. From (1.5), we have g(∇XY ,Z) = g(∇XY ,Z) for X ,Y ∈ Γ(D ⊕ {V}) and Z ∈
Γ(D⊥). Using (2.3), we get g(∇XY ,Z) = g(∇XφY ,φZ). Hence we derive g(∇XY ,Z) =

g(hs(X ,

φY),φZ), which proves our assertion. �

Theorem 4.7. Let M be a contact SCR-lightlike submanifold of an indefinite Sasakian man-

ifold M. Then the following assertions are equivalent:

(i) D⊥ defines a totally geodesic foliation on M;

(ii) AφXY has no components in D;
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(iii) B′hs(X ,φZ) = 0 and B′Ds(X ,φN) = 0, for all X ,Y ∈ Γ(D⊥), Z ∈ Γ(D), and N ∈

Γ(l tr(TM)).

Proof. (i)⇒(ii). SupposeD⊥ defines a totally geodesic foliation inM. Then,∇XY∈Γ(D⊥).

From (1.5) and (2.3), we have g(∇XY ,Z) = g(∇XφY ,φZ) for X ,Y ∈ Γ(D⊥), and Z ∈
Γ(D). Using (1.7), we obtain

g
(

∇XY ,Z
)

=−g
(

AφYX ,φZ
)

. (4.14)

In a similar way, we get

g
(

∇XY ,N
)

=−g
(

AφYX ,φN
)

, ∀N ∈ Γ
(

l tr(TM)
)

. (4.15)

Thus (i)⇒(ii) follows from (4.14) and (4.15).

(ii)⇒(iii) follows from (4.14), (4.15), (1.8), and (1.9).

(iii)⇒(i). By definition of contact SCR-lightlike submanifold, D⊥ defines a totally ge-

odesic foliation in M if and only if g(∇XY ,Z)= g(∇XY ,V)= g(∇XY ,N)= 0 for X ,Y ∈
Γ(D⊥), Z ∈ Γ(D), and N ∈ Γ(l tr(TM)). From (1.5) and (2.2), we obtain g(∇XY ,V)= 0.

Follow a similar method to (4.14) and (4.15), we get g(∇XY ,Z)=−g(hs(X ,φZ),φY) and

g(∇XY ,N)=−g(Ds(X ,φN),φY). By assumption, B′hs(X ,φZ)= 0 and B′Ds(X ,φN)= 0.

Hence we obtain g(∇XY ,Z)= 0 and g(∇XY ,N)= 0, which proves the assertion. �

Lemma 4.8. Let M be a contact SCR-lightlike submanifold of an indefinite Sasakian mani-

fold M. Then

hl(X ,V)= 0, ∀X ∈ Γ(TM), (4.16)

∇XV = φX , hs(X ,V)= 0, ∀X ∈ Γ(D), (4.17)

∇XV = 0, hs(X ,V)= φX , ∀X ∈ Γ
(

D⊥
)

. (4.18)

Proof. Using (2.2) and (1.5), we get ∇XV + hl(X ,V) + hs(X ,V) = φX for X ∈ Γ(TM).

Then, considering (4.2), we get (4.16)–(4.18). �

Theorem 4.9. Any totally contact umbilical proper contact SCR-lightlike submanifold M of

M admits a metric connection.

Proof. From (4.11), we obtain hl(X ,φY)= hl(φY ,X), for all X ,Y ∈ Γ(D). Using this and

(3.20), we get g(X ,φY)αL = g(φX ,Y)αL. Thus, g(X ,φY)αL = 0, since D is nondegener-

ate and αL = 0. Thus, hl(X ,Y) = η(X)hl(Y ,V) + η(Y)hl(X ,V) for X ,Y ∈ Γ(TM). From

Lemma 4.8, if X ,Y ∈ Γ(D ⊥D), then, we obtain hl(X ,Y)= 0. If X ∈ Γ(TM) and Y = V ,

then from (4.16), we get hl(X ,V) = 0. Thus hl = 0 on M. Finally, our assertion follows

from (1.15). �

Theorem 4.10. Let M be a totally contact umbilical contact SCR-lightlike submanifold of

M. If dim(D⊥) > 1, then M is contact totally geodesic.

Proof. The proof is similar to the proof of Theorem 3.12. �
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A plane section p in TxM of a Sasakian manifold M is called a φ-section if it is spanned

by a unit vector X orthogonal to V and φX , where X is a nonnull vector field on M.

The sectional curvature K(p) with respect to p determined by X is called a φ-sectional

curvature. If M has a φ-sectional curvature c which does not depend on the φ-section at

each point, then c is constant in M. Then, M is called an indefinite Sasakian space form,

denoted by M(c). The curvature tensor R of M(c) is given by [7]

R(X ,Y)Z =
(c+ 3)

4

{

g(Y ,Z)X − g(X ,Z)Y
}

+
(c− 1)

4

{

ǫη(X)η(Z)Y − ǫη(Y)η(Z)X + g(X ,Z)η(Y)V

− g(Y ,Z)η(X)V + g(φY ,Z)φX + g(φZ,X)φY − 2g(φX ,Y)φZ
}

(4.19)

for any X , Y , and Z vector fields on M.

Theorem 4.11. There exist no totally contact umbilical proper contact SCR-lightlike sub-

manifolds in M(c) with c = −3.

Proof. Suppose M is totally contact umbilical proper SCR-lightlike submanifold of M.

From Gauss equation (3.1) in [1, page 171] and (4.19), we get

1

2
(1− c)g(X ,X)g(Z,Z)= g

((

∇Xh
s
)

(φX ,Z),φZ
)

,

−g
((

∇φXh
s
)

(X ,Z),φZ
)

, ∀X ∈ Γ(D), Z ∈ Γ
(

D⊥
)

,

(4.20)

where (∇Xhs)(φX ,Z) = ∇s
Xh

s(φX ,Z)− hs(∇XφX ,Z)− hs(φX ,∇XZ). Since M is totally

contact umbilical, we have hs(φX ,Z)= 0, and from (3.21), we get

−hs
(

∇XφX ,Z
)

=−g
(

∇XφX ,Z
)

αS− g
(

∇XφX ,V
)

φZ. (4.21)

Using (1.5) and (2.2), we obtain

−hs
(

∇XφX ,Z
)

=−g
(

∇XφX ,Z
)

αS + g(X ,X)φZ. (4.22)

In a similar way, we get

−hs
(

φX ,∇XZ
)

=−g
(

φX ,∇XZ
)

αS. (4.23)

Thus from (4.22) and (4.23), we have

(

∇Xh
s
)(

φX ,Z
)

=−g
(

∇XφX ,Z
)

αS + g(X ,X)φZ− g
(

φX ,∇XZ
)

αS. (4.24)

On the other hand, since g(φX ,Z)= 0, taking the covariant derivative with respect to X ,

we obtain g(∇XφX ,Z)=−g(φX ,∇XZ). Hence we get

(

∇Xh
s
)

(φX ,Z)= g(X ,X)φZ. (4.25)



16 International Journal of Mathematics and Mathematical Sciences

In a similar way, we have

(

∇φXh
s
)

(X ,Z)=−g(X ,X)φZ. (4.26)

Thus from (4.25), (4.26), and (4.20), we obtain

1

2
(1− c)g(X ,X)g(Z,Z)= 2g(X ,X)g(Z,Z). (4.27)

Hence, we have (3 + c)g(X ,X)g(Z,Z) = 0. Since D and D⊥ are nondegenerate, we can

choose nonnull vector fields X and Z, so c =−3, which proves theorem. �

5. Minimal lightlike submanifolds

Recall a general notion of minimal lightlike submanifold M, introduced by Bejan and

Duggal [16], as follows.

Definition 5.1. Say that a lightlike submanifold (M,g,S(TM)) isometrically immersed in

a semi-Riemannian manifold (M,g) is minimal if

(i) hs = 0 on Rad(TM);

(ii) traceh= 0, where trace is written with respect to g restricted to S(TM).

In the second case, the condition (i) is trivial. Moreover, it has been shown in [16] that

the above definition is independent of S(TM) and S(TM⊥), but it depends on the choice

of the transversal bundle tr(TM).

As in the semi-Riemannian case, any lightlike totally geodesic M is minimal. Thus,

from Theorem 2.5, any totally umbilical lightlike submanifold, with structure vector field

tangent to submanifold, is minimal. Furthermore, from Theorems 3.12 and 4.10 of this

paper, it follows that totally contact umbilical contact CR-lightlike submanifold with

(dim(φL1) > 1) and totally contact umbilical contact SCR-lightlike submanifolds with

(dim(D⊥ > 1)) are minimal.

Example 5.2. Let M = (R11
4 ,g) be a semi-Euclidean space, where g is of signature (−,−,

+,+,+,−,−,+,+,+,+) with respect to canonical basis

{

∂x1,∂x2,∂x3,∂x4,∂x5,∂y1,∂y2,∂y3,∂y4,∂y5,∂z
}

. (5.1)

Suppose M is a submanifold of R11
4 given by

x1 = u1, y1 =−u5,

x2 = coshu2 coshu3, y2 = coshu2 sinhu3,

x3 = sinhu2 coshu3, y3 = sinhu2 sinhu3,

x4 = u4, y4 =−u6,

x5 = u1 cosθ +u5 sinθ, y5 = u1 sinθ−u5 cosθ, z = u7.

(5.2)
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Then it is easy to see that a local frame of TM is given by

Z1 = ∂x1 + cosθ∂x5 + sinθ∂y5 +
(

y1 + y5 cosθ
)

∂z,

Z2 = sinθ∂x5− ∂y1− cosθ∂y5 + y5 sinθ∂z,

Z3 = sinhu2 coshu3∂x2 + coshu2 coshu3∂x3 + sinhu2 sinhu3∂y2

+ coshu2 sinhu3∂y3 +
(

y2 sinhu2 coshu3 + y3 coshu2 coshu3
)

∂z,

Z4 = coshu2 sinhu3∂x2 + sinhu2 sinhu3∂x3 + coshu2 coshu3∂y2

+ sinhu2 coshu3∂y3 +
(

y2 sinhu3 coshu2 + y3 sinhu2 sinhu3
)

∂z,

Z5 = ∂x4 + y4∂z, Z6 =−∂y
4, Z7 = 2∂z.

(5.3)

We see that M is a 2-lightlike submanifold with RadTM = span{Z1,Z2} and φoZ1 =

Z2. Thus, RadTM is invariant with respect to φo. Since φo(Z5)= Z6, D = {Z5,Z6} is also

invariant. Moreover, since φoZ3 and φoZ4 are perpendicular to TM and they are nonnull,

we can choose S(TM⊥)= Span{φoZ3,φoZ4}. Furthermore, the lightlike transversal bun-

dle l tr(TM) spanned by

N1 = 2
(

− ∂x1 + cosθ∂x5 + sinθ∂y5 +
(

− y1 + y5 cosθ
)

∂z
)

,

N2 = 2
(

sinθ∂x5 + ∂y1− cosθ∂y5 + y5 sinθ∂z
) (5.4)

is also invariant. Thus we conclude that M is a contact SCR-lightlike submanifold of R11
4 .

Then a quasiorthonormal basis of M along M is given by

ξ1 = Z1, ξ2 = Z2, e1 =
2

√

cosh2u3 + sinh2u3

Z3,

e2 =
2

√

cosh2u3 + sinh2u3

Z4, e3 = 2Z5, e4 = 2Z6, Z = Z7,

W1 =
2

√

cosh2u3 + sinh2u3

φoZ3, W2 =
2

√

cosh2u3 + sinh2u3

φoZ4,N1,N2,

(5.5)

where ε1 = g(e1,e1) = 1, ε2 = g(e2,e2) = −1, and g is the degenerate metric on M. By

direct calculations and using Gauss formula (1.5), we get

hs
(

X ,ξ1

)

= hs
(

X ,ξ2

)

= hs
(

X ,e3

)

= hs
(

X ,e4

)

= 0, hl = 0, ∀X ∈ Γ(TM),

hs
(

e1,e1

)

=
1

cosh2u3 + sinh2u3
W2, hs

(

e2,e2

)

=
1

cosh2u3 + sinh2u3
W2.

(5.6)

Therefore,

tracehg|S(TM) = ε1h
s
(

e1,e1

)

+ ε2h
s
(

e2,e2

)

= hs
(

e1,e1

)

−hs
(

e2,e2

)

= 0. (5.7)

Thus, M is a minimal contact SCR-lightlike submanifold of R11
4 .
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Now we prove characterization results for minimal lightlike submanifolds of all the

cases discussed in this paper.

Theorem 5.3. Let M be a contact SCR-lightlike submanifold of an indefinite Sasakian man-

ifold M. Then M is minimal if and only if

traceAW j |S(TM) = 0, A∗ξk = 0 on D⊥, Dl(X ,W)= 0 (5.8)

for X ∈ Γ(RadTM) and W ∈ Γ(S(TM⊥)).

Proof. Since ∇VV = φV = 0, from (1.5) we get hl(V ,V) = hs(V ,V) = 0. Now take an

orthonormal frame {e1, . . . ,em−r} such that {e1, . . . ,e2a} are tangent to D and {e2a+1, . . . ,
em−2r} are tangent to D⊥. First from [16], we know that hl = 0 on Rad(TM). Now, from

(4.11), for Y ,Z ∈ Γ(D), we have

hl(φY ,Z)= φhl(Y ,Z). (5.9)

Hence, we obtain hl(φZ,φY) = −hl(Y ,Z). Thus
∑2a

i=1h
l(ei,ei) = 0. Since traceh|S(TM) =

∑m−2r
i=1 εi(hl(ei,ei) +hs(ei,ei)), M is minimal if and only if

2a
∑

i=1

εih
s
(

ei,ei
)

+
m−2r
∑

2a+1

εi
(

hl
(

ei,ei
)

+hs
(

ei,ei
))

= 0. (5.10)

On the other hand, we have

traceh|S(TM) =

2a
∑

i=1

1

n− 2r

n−2r
∑

j=1

εig
(

hs
(

ei,ei
)

,W j
)

W j

+
1

n− 2r

n−2r
∑

j=1

m−2r
∑

i=2a+1

εig
(

hs
(

ei,ei
)

,W j
)

W j

+
2r
∑

k=1

1

2r

m−2r
∑

i=2a+1

εig
(

hl
(

ei,ei
)

,ξk
)

Nk.

(5.11)

Using (1.8) and (1.12), we get

traceh|S(TM) =

2a
∑

i=1

1

n− 2r

n−2r
∑

j=1

εig
(

AW j ei,ei
)

W j

+
1

n− 2r

n−2r
∑

j=1

m−2r
∑

i=2a+1

εig
(

AW j ei,ei
)

W j

+
2r
∑

k=1

1

2r

m−2r
∑

i=2a+1

εig
(

A∗ξkei,ei
)

Nk.

(5.12)
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On the other hand, from (1.8) we obtain

g
(

hs(X ,Y),W
)

= g
(

Y ,Dl(X ,W)
)

, ∀X ,Y ∈ Γ(RadTM), ∀W ∈ Γ(S(TM⊥)). (5.13)

Thus our assertion follows from (5.12) and (5.13). �

Theorem 5.4. Let M be an irrotational screen real lightlike submanifold of an indefinite

Sasakian manifold M. Then M is minimal if and only if

traceAWa = 0 on S(TM). (5.14)

Proof. Proposition 4.4 implies that hl = 0. Thus M is minimal if and only if hs = 0 on

RadTM and tracehs|S(TM) = 0. Then, the proof follows from Theorem 5.3. �

Theorem 5.5. Let M be an invariant lightlike submanifold of an indefinite Sasakian man-

ifold M. Then M is minimal in M if and only if Dl(X ,W) = 0 for X ∈ Γ(RadTM) and

W ∈ Γ(S(TM)).

Proof. If M is invariant, then φRadTM = RadTM and φS(TM) = S(TM), hence φ(l tr
(TM))= l trTM and φS(TM⊥)= STM⊥. Then using (2.5), (1.5), and taking transversal

part, we obtain

h(φX ,Y)= φh(X ,Y) (5.15)

for X ,Y ∈ Γ(TM). Hence we get h(φX ,φY)=−h(X ,Y). Thus

traceh|S(TM) =

m−2r
∑

i=1

εi
{

h
(

ei,ei
)

+h
(

φei,φei
)}

=

m−2r
∑

i=1

εi
{

h
(

ei,ei
)

−h
(

ei,ei
)}

= 0.

(5.16)

From (1.8), we get g(hs(X ,Y),W) = g(Dl(X ,W),Y) for X ,Y ∈ Γ(RadTM) and W ∈

Γ(S(TM⊥)). The proof follows from Definition 5.1 and hl = 0 on RadTM. �

Theorem 5.6. Let M be an irrotational contact CR-lightlike submanifold of an indefinite

Sasakian manifold M. Then M is minimal in M if and only if

(1) A∗ξ φξ and ANφN have no components in D′,
(2) Ds(φN ,N) has no components in L⊥1 ,

(3) traceAWa|D0⊥φL1 = 0, traceA∗ξk |D0⊥φL1 = 0,

for N ∈ Γ(l tr(TM)) and ξ ∈ Γ(RadTM), where D′ = φ(l tr(TM))⊥ φ(L1).

Proof. Suppose M is irrotational. From (1.5) and (2.3), we have g(hl(φξ,φξ),ξ1) =

−g(∇φξξ,φξ1). Then using (1.11) and (1.5), we obtain

g
(

hl(φξ,φξ),ξ1

)

= g
(

A∗ξ φξ,φξ1

)

, ∀ξ,ξ1 ∈ Γ(RadTM). (5.17)

In a similar way, from (1.5), (2.3), (1.11), and (4.3), we get

g
(

hs(φξ,φξ),W
)

= g
(

A∗ξ φξ,BW
)

, ∀ξ ∈ Γ(RadTM), W ∈ Γ(S(TM⊥)). (5.18)
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Now, using (1.7), (1.5), and (4.3), we derive

h(φN ,φN)=−ωANφN +CDs(φN ,N), ∀N ∈ Γ
(

l tr(TM)
)

. (5.19)

Then the proof follows from (5.17)–(5.19) and Theorem 5.3. �

6. Concluding remarks

(a) It is well known that the second fundamental forms and their shape operators of a

nondegenerate submanifold are related by means of the metric tensor field. Contrary to

this, we see from (1.5)–(1.9) that in case of lightlike submanifolds, there are interrela-

tions between these geometric objects and those of their screen distributions. Thus, the

geometry of lightlike submanifolds depends on the triplet (S(TM),S(TM⊥), l tr(TM)).

However, it is important to highlight that as per Proposition 1.1 of this paper, our results

are stable with respect to any change in the above triplet. Moreover, we have verified that

the conclusions of all our results will not change with the change of any induced object

on M.

(b) Note that there does not exist any inclusion relation between contact CR-lightlike

and contact SCR-lightlike submanifolds. Indeed, contact CR-lightlike submanifolds are

always nontrivial. Also, contrary to the case of contact CR-lightlike hypersurfaces, there

do not exist any contact SCR-lightlike hypersurfaces. We, therefore, state the following

problem.

Find a class of lightlike submanifolds, of an indefinite Sasakian manifold, which is an

umbrella of contact CR and contact SCR-lightlike submanifolds.

The above problem is motivated from the fact that CR-submanifolds were designed as

an umbrella of all types of submanifolds of a Riemannian manifold. We are working on a

followup paper to address the above-stated problem.

For a similar study on all possible CR-lightlike submanifolds of Kählerian manifolds,

see Duggal and Sahin [15, 17].
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