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Abstract

The Lorentzian space form with the positive curvature is called de Sitter space which
is an important subject in the theory of relativity. In this paper we consider spacelike
curves in de Sitter 3-space. We define the notion of lightlike surfaces of spacelike curves
in de Sitter 3-space. We investigate the geometric meanings of the singularities of such
surfaces.

1 Introduction

The Lorentzian space form with the positive curvature is called de Sitter space. It is an
important subject in the theory of relativity and the astrophysics. De Sitter 4-space is know as
a vacuum solution of the Einstein equation. In this paper, we consider, however, spacelike curves
in de Sitter 3-space as the most elementary case for the study of higher codimensional spacelike
submanifolds in non-flat Lorentzian space forms. For spacelike curves in Minkowski 3-space (i.e.,
the flat Lorentzian space form) and curves in hyperbolic 3-space have been studied in [4, 5]. In
this paper we consider a spacelike curve in de Sitter 3-space and the lightlike surface associated
to the curve. The lightlike surface is a line bundle along a spacelike curve whose fibres are
lightlike lines which is also characterized that each tangent plane at a regular point is lightlike.
The singular point of the lightlike surface corresponds to the point of the spacelike curve which
has degenerate contact with a lightcone. We can also consider the contact of spacelike curves
with a hyperboloid or an ellipsoid in de Sitter space. However the most interesting case is
the study on the contact of spacelike curves with lightcones. Moreover, from the point of
view of physics, lightlike surfaces are of importance because they are models of different types
of horizons studied in relativity theory [1, 3, 7]. Therefore we stick to lightlike surfaces in
this paper. The mail results are Theorems 2.1 and 6.3. These results give a classification
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of the singularities of lightlike surfaces for generic spacelike curves in de Sitter 3-space and a
geometric characterization of the singularities. Eventually we find a new Lorentzian invariant
o for spacelike curves which describe the contact with ligtcones.

All maps considered here are of class C'* unless otherwise stated.

2 Basic concepts and the main result

We now introduce some basic notions on Minkowski 4-space and spacelike curves. For basic
results, see [8]. Let R* = {(zy, ®q, 23, 24)|71, 72, 23,74 € R} be a 4-dimensional vector space.
For any vectors = (21, T2, 3, 74), Y = (Y1, Y2, Y3, vy4) in RY, the pseudo scalar product of x
and y is defined to be (x,y) = —x1y1 + Tays + 23y3 + z4ys. We call (R*(,)) a Minkowski
4-space. We write R{ instead of (R*, (,)). We say that a non-zero vector = € R{ is spacelike,
lightlike or timelike if (x, ) > 0, (x,x) = 0 or (x,x) < 0 respectively. We define the signature
of a vector x:
1 x is spacelike

sign(x) =<0  x is lightlike

—1 a is timelike.

The norm of the vector & € Rf is defined by ||| = /|(z, x)|. For a vector v € R} and a real
number ¢, we define a hyperplane with pseudo normal v by HP(v,c) = {x € R} | (x,v) = ¢ }.
We call HP(v,c) a spacelike hyperplane, a timelike hyperplane or a lightlike hyperplane if v is
timelike, spacelike or lightlike respectively. We also define de Sitter 3-space by

S} ={x e Ri|(z,x) =1}
For any x = (3317162-353, 374)»?/ = (Z/1>y2, Y3, y4), z = (21, 22, 23, Z4) € R47WG define a vector

—€1 €z €3 €4

X1 T2 X3 T4
TANYNz= ,

Y Y2 Y3 UYa

21 22 23 24

where (€1, s, €3, €,) is the canonical basis of R} and x; = (2%, 2%, 2%, ¥%). We can easily show
that (@, (x Ay A z)) = det(a, z,y, 2).

We now describe the explicit differential geometry on spacelike curves in S3. Let v : I — S3
be a regular curve. We say that a regular curve = is spacelike if () is spacelike at any ¢ € I,
where 4 = d~/dt. Since = is a spacelike regular curve, we can reparametrise v by the arc-
length s = s(t). Hence, we may assume that «(s) is a unit speed curve. So we have the tangent
vector t(s) = v/(s) with ||¢(s)]] = 1. In the case when (t'(s),t'(s)) # 1, we have a unit vector

t'(s) —v(s)

[£'(s) =~(s)|

orthonormal frame {~(s),t(s),n(s),e(s)} of R} along ~. By the standard arguments, we can

n(s) = . Moreover, define e(s) = v(s) A t(s) A n(s), then we have a pseudo



show the following Frenet-Serret type formulae: Under the assumption that (¢'(s),t'(s)) # 1,

where §(7(s)) = —sign(n(s)), ry(s) = #'(s) +~(s) | and

We now define a surface in de Sitter 3-space associated to a spacelike curve. Let v : [ — S3
be a unit speed spacelike curve. We define LS, : I x R — 5% by

LS (s,u) = ~(s) +u(n(s) + e(s)).

We call LS?(s,u) the lightlike surface of v. We also define the following model surfaces: For
any vy € S}, LC?*(vg) = {u € S} | (u,vy) — 1 = 0} is called a lightcone. The main purpose
in this paper is to study the Lorentzian geometric meanings of the singularities of the lightlike
surface. We define a new invariant o of a spacelike curve in S? by

o(s) = Kg/(s) F kg(s)74(5).

On the other hand, Let F' : S} — R be a submersion and v : I — S} be a spacelike
curve. We say that v and F~1(0) have k-point contact for t = t, if the function g(t) = F o~y(t)
satisfies g(to) = ¢'(to) = --- = g% V(o) = 0, g (ty) # 0. We also say that v and F~1(0) have
at least k-point contact for t =ty if the function g(t) = F o ~(t) satisfies g(to) = ¢'(tp) = -+ =
g% 1(ty) = 0. The main result in this paper is as follows.

Theorem 2.1 Let v : I — S} be a unit speed spacelike curve with (t'(s),t'(s)) # 1. For
vg = LST(so0,u0) and the lightcone LC?*(vo) = {u € S} | (u,vo) — 1 = 0}, we have the
followings:

(1) v and LC?*(vg) have at least 2-point contact for sg.

(2) v and LC?*(vy) have 3-point contact for sy if and only if

1
Y(50))#4(s0)

vo = Y(S0) — 5 (n(so) £ e(so)) and o(sg) # 0.

Under this condition, the germ of Image LSj at LSvi(so,uo) s diffeomorphic to the cuspidal
edge C' x R.
(3) v and LC?*(vy) have 4-point contact for sy if and only if
1

Y(50))#g(s0)

vo = ¥(80) — 5 (n(so) e(sg)), o(so) =0 and o'(sp) # 0

Under this condition, the germ of Image LSj at LSWi(sO, wg) s diffeomorphic to the swallowtail
SW.



Here, C' x R = {(5U1,332)|:C12 = :I:23} x R is the cuspidal edge and
SW = {(21, 22, w3) w1 = 3u” + u’v, 5 = 4u° + 2uv, 3 = v}

is the swallowtail (cf., Fig. 1).

cuspdialedge swallowtail
Fig.1.

We remark that the above theorem gives a classification of the singularities of the lightlike
surface of a generic spacelike curve in de Sitter 3-space (cf., Theorem 6.3).

3 Extended spacelike height functions

In this section we consider a family of Lorentzian invariant functions on a spacelike curve in de
Sitter 3-space in order to describe the lightlike surface of the spacelike curve. Let ~ : I — S}
be a unit speed spacelike curve with (t'(s),t'(s)) # 1. We now define a family of functions

ﬁ:[xSf—ﬂR

by H(s,v) = (v(s),v) — 1. We call H a extended spacelike height function of v. We denote

that h,(s) = H(s,v).

Proposition 3.1 For a unit speed spacelike curve v : I — S} with (t'(s),t'(s)) # 1, we have
the followings:

(1) hyo(s) = 0 if and only if there exist \,pu,v € R with \* — §(~(s))u® + d(v(s))v? = 0 such
that v = ~y(s) + At(s) + un(s) + ve(s).

(2) E”(S) = E;(s) = 9//@']‘ and only if if there exists p € R such that v = ~(s) + un(s) £ pe(s).
(3) hy(s) = hy(s) = h,(s) =0 if and only if if
1 1
T S T S
(4) hy(s) = T, (s) = ho(s) = h, (s) = 0 if and only if if
1 1

=) S r ) ) T )y o) o) =0

(5) Tun(s) = To(s) = T (s) = o (s) = B (s) = 0 if and only if if
1 1

) ) ol8) = 0 and o(s) = 0.



Proof. (1) Since v € 5%, there exist w, A\, pr, v € R with w? + A\ — §(v(s))p® + 6(y(s))v?* =1
such that v = M(s) + un(s) + ve(s). It follows h,(s) = (y(s),v) — 1 = 0 that we have w = 1,
so that v = v(s) + At(s) + un(s) + ve(s). The converse direction also holds.

(2) Since E;(s) = (t(s),v) = 0, we have A = 0. It follows from the fact —d(v(s))u® +
§(~(s))v? = 0 that v = 4. Therefore, we have v = v(s) + un(s) & pe(s).

(3) Since Eg(s) = (—v(s) + Ky(s)n(s),v) = 0, we have p = —m, so that
1 1
T e T SR

(4) Since F, (s) = nol8) £ r(s) = 0. It
follows that o(s) = 0.

gl
Kg(s)

(=1 + 1y (5))E(s) + g (5)1(5) + g (5)74(5)e(5), V),

(5) We have By (s) = (1 — 5, 2(5))7(s) + 3rg()r5g ()t + (—ig(s) + 1, (5) + 1g(s) +
kg (5)72(5))mls) + (1 ()7,(5) + g ()7, (5) (), v} = 0, 50 that
) ) F (81 6) F )y () =0
This is equivalent to the condition that o’(s) = 0. O

4 Singularities of lightlike surfaces

In this section we study the geometric properties of the lightlike surface of a spacelike curve in
de Sitter 3-space. By the propositions in the last section, we can recognize the functions «,(s)
and o(s) have special meanings. Here, we consider the case when the lightlike surface has the
most degenerate singularities. We have the following proposition.

Proposition 4.1 For a unit speed spacelike curve v : I — S} with (t'(s),t'(s)) # 1, we have
the followings:

1) The singularities of LS is the set {(s,u) | u = -1 serT

(1) g 1f 5 {(s,u) | @(5)6(’7(5)) }

2) If LST(s, ———=——) = v is a contact vector, then v(s) € LC*(ul) for any s € I
(2) If ’y( /@g(s)é('y(s))) 0 v(s) (ug) f Y

and o(s) = 0. Moreover, Image LS C LC?(uy).

Proof. By straightforward calculations, we have

OLSE

5 = (LHurg(s)o(y(s)t(s) + ury(s)(e(s) £ n(s))
OLST

5 n(s) + e(s).

The above two vectors are linearly dependent if and only if 1+uk,(s)d(7(s)) = 0. This completes
the proof of the assertion (1).
For a smooth function p: I — R, we define a mapping f, : I — R by

fuls) =~(s) + pls)n(s) £ p(s)e(s).

5



Suppose that f,(s) = vy is a constant. Then we have

dfu(s)

g = (FLn(s)ng(s)d(v(s)))t(s)
+ (1 (s) £ u(s)g(s))n(s) + (u(s)7g(s) £ '(s))e(s)
=0
Since the singularities are u(s) = —m, wo(s) = %. Substituting this relation
into the previous equality, we have ¢(s) = 0. Under this condition LS5 (s, —m) =

~(s) — mn(s) T me(s) = 'Ua—L is constant, so that the relation

) = S S —;ns e(s =
((5)08) = (1(5).719) — s ) % ) = 1

holds. Moreover, we also have

(LS5 (s,u),vp (s)) = (v(s) +uln(s) £ e(s),¥(s) —

5 Unfoldings of functions of one-variables

In this section we use some general results on the singularity theory for families of function
germs. Detailed descriptions are found in the book[2]. Let F' : (R x R", (sg,z9)) — R be a
function germ. We call F' an r-parameter unfolding of f, where f(s) = F,,(s, o). We say that
f has Ag-singularity at sq if f®)(sg) = 0forall 1 < p <k, and f*+1)(s5) # 0. We also say that
f has As-singularity at sq if fP)(sg) = 0 for all 1 < p < k. Let F be an unfolding of f and

f(s) has Ag-singularity (k = 1) at so. We denote the (k — 1)-jet of the partial derivative ngi

s0 by j*~ 1)((% (s,20))(s0) = Zk Lyt fori=1,...,r. Then F is called a versal unfolding if
the k x r matrix of coefficients (a;, @;;) has rank k: (k < r), where ag; = gx (S0, o).
We now introduce an important set concerning the unfolding. The discriminant set of F is
the set
oF

v =0 at (s,2)}.

D = {x € R"| there exists s with F' =
Then we have the following well-known result (cf., [4]).

Theorem 5.1 Let F': (R x R", (sg,x0)) — R be an r-parameter unfolding of f(s) which has
the Ay singularity at sg. Suppose that F' is an versal unfolding.

(a) If k =1, then D is locally diffeomorphic to {0} x R™~*.

(b) If k =2, then Dp is locally diffeomorphic to C' x R™2.

(c) If k = 3, then D is locally diffeomorphic to SW x R"™3. We also say that a point
xo € R” is a fold point of a map germ f: (R",xq) — (R", f(xo)) if there exist diffeomorphism
germs ¢ : (R, x9) — (R",0) and ¥ : (R", f(xg)) — (R",0) such that ¢ o ¢p(xq,...,2,) =
(1, ..., 21, 22).



By Proposition 2.1, the discriminant set of the extended height function H (s, v) is given as
follows:

D7 =1{v(s) +u(n(s) £ e(s)) |sel, uecR}

We consider a unit speed spacelike curve vy : I — S} with (t'(s),#'(s)) # 1 and the extended
height function H of . Then we have the following proposition.

Proposition 5.2 Suppose that v € Dz and ho(s) = H(s,v). If h, has Ag-singularity at s
(k=1,2,3), then H is a versal unfolding of h,,.

Proof. We denote that
Y(s) = (x1(s), x2(s), x3(5), £4(8)) and v = (vq, V2, v3, V1 — V),

where v = v12 + v52 + v32. Under this notation we have

H(s,v) = —z1(s)v1 + 22(8)ve + 23(8)vg + 24(8)V1 — v — 1.

Thus we have

OH
a—vl(s,v) = —x(s) + 1U1_ l/m(s)
g—Z(s,v) z;i(s) F 1%_ ym(s)(i =2,3)
We also have o
8 8H / U1 ,
%8_1;1(8’”) —z1'(s) F T, (s)
0 0H , v; ,
%8_%(8’”) =z (s) £ 14 (s)(i=2,3)
and p—
a aH i Ul "
@a—vl(s, v)=—1"(s) £ — Vx4 (s)
9% OH s w
st gy (5:0) =) F 1“_ =,"(s)(i = 2.3)

THerefore the 2-jet of g—vﬁi(s, v)(i =1,2,3) at s is given by

OF (O VOO 180
Y= 50, 2 0s Ov; 50, WS = S0 6 0s? Jv;

v, (50, v)(s — 50)2

= CMOJ' + 50&17,'(8 — S()) + 604272'(8 — 80)2.

It is enough to show that the rank of the matrix A is 3, where

Qo1 OGp2 Gpg3
A= Q11 G122 013

Qg1 Qg9 Q23



We denote that

then we have

det A = —(A(1,2,3) F \/101_—”14(4,2,3)3F S A1L4.3)F ¢f}?’_—/‘“’2’4)>

I
H_
—
g
\'@
o
-t
o
H_
—_
|
S
8
!
—~
N
8
()
—~
V)
~—
&
w
—~
V)
~—
&
Ny
»
~—
~_—

Therefore we have

1 1 1
det A==+ —_—

5(~(s))

1—v

£0

This completes the proof.

Proof of Theorem 2.2. Let v : I — S? be a unit speed spacelike curve with ('(s),#(s)) # 1.
For vy = LSE(so,up), we define a function H : S§ — R by H(u) = (u,v5) — 1. Then we
have Evoi(s) = H(~(s)). Since LC%(vT) = H~'(0) and 0 is a regular value of H, EU(:)I: has the
Ap-singularity at s if and only if v and LC’Q('U?JE) have £+ 1-point contact for sg. It follows from
Proposition 3.1, Theorem 5.1 and Proposition 5.2 that the proof of Theorem 2.2 is completed.

|

6 (eneric properties of spacelike curves

In this section we consider generic properties of spacelike curves in S3. The main tool is a
kind of transversality theorems. Let Emby, (1, S;) be the space of spacelike embeddings v :

8



I — S? with (¢, ') # 1 equipped with Whitney C*°-topology. We also consider the function
H : S} x S} — R defined by H(u,v) = (u,v) — 1. We claim that H, is a submersion for any
v € S}, where H,(u) = H(u,v). For any v € Emb,, (I, S}), we have H = H o (y x idgs). We
also have the (-jet extension
GYH - 1 x S} — JYI,R)

defined by jYH(s,v) = j’h,(s). We consider the trivialisation J*(I,R) = I x R x J¢(1,1). For
any submanifold @ C J%(1,1), we denote that Q=1x {0} x @. Then we have the following
proposition as a corollary of Lemma 6 in Wassermann[9)].

Proposition 6.1 Let Q be a submanifold of J*(1,1). Then the set
Ty = {~ € Emb,, (I, S}?) | jH is transversal to Q }
is a residual subset of Emby, (I,S?). If Q is a closed subset, then Ty is open.

Let f: (R,0) — (R,0) be a function germ which has an Aj-singularity at 0. It is well-
known that there exists a diffeomorphism germ ¢ : (R,0) — (IR, 0) such that fo¢(s) = £sF+L.
This is the classification of Aj-singularities. For any z = j£(0) € J%(1,1), we have the orbit
L‘(z) given by the action of the Lie group of -jets of diffeomorphism germs. If f has an A-
singularity, then the codimension of the orbit is k. There is another characterisation of versal
unfoldings as follows(cf., [6]):

Proposition 6.2 Let F: (R x R",0) — (R, 0) be an r-parameter unfolding of f : (R,0) —
(R,0) which has an Ay-singularity at 0. Then F is a versal unfolding if and only if j{F is
transversal to the orbit L¢(j¢f(0)) for £ >k + 1.

Here, j{F : (RxR",0) — J*(R,R) is the (-jet extension of F' given by jiF(s,x) = j°F,(s).

The generic classification theorem is given as follows:

Theorem 6.3 There exists an open and dense subset O C Embyg, (I, S}) such that for any
v € O, the lightlike surface LSf of v is locally diffeomorphic to the cuspidal edge or the
swallowtail at any singular point.

Proof. For { > 4, we consider the decomposition of the jet space J*(1,1) into L(1) orbits. We
now define a semi-algebraic set by

= {z=j°f(0) € J1,1) | f has an Ass-singularity }.

Then the codimension of X is 4. Therefore, the codimension of Sy = I x {0} x X¢ is 5. We
have the orbit decomposition of J*(1,1) — X* into

J(,1) -2 =LfuLfuLiu L,

where Lf is the orbit through an Aj-singularity. Thus, the codimension of /Lz is k+ 1. We
consider the (-jet extension jiH of the extended spacelike height function H. By Proposition
6.1, there exists an open and dense subset @ C Emb (I, S?) such that jYH is transversal to Z{
(k=0,1,2,3) and the orbit decomposition of S, This means that jH (I x S3) N X = () and
H is a versal unfolding of h at any point (sg,vp). By Theorem 5.1, the discriminant set of H

(i.e., the lightlike surface of ) is locally diffeomorphic to the cuspidal edge or the swallow tail
if the point is singular. O
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