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Lightning Induced Disturbances in Buried
Cables—Part I: Theory
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V. A. Rakov, Fellow, IEEE, and M. A. Uman, Fellow, IEEE

Abstract—In this paper, we present a review of theoretical meth-
ods to compute lightning induced currents and voltages on buried
cables. The evaluation of such induced disturbances requires the
calculation of the electric field produced by lightning along the ca-
ble path. We show that the Cooray’s simplified formula is capable
of predicting accurately the horizontal electric field penetrating
the ground, at distances as close as 100 m. Regarding the param-
eters of the buried cable, a comparison of several approximations
of the ground impedance is presented. We show that the Pollaczek
expression corresponds to the Sunde general expression, when the
displacement current is neglected. The analysis shows also that all
the proposed approximations provide very similar results for the
considered range of frequencies (up to 30 MHz). Most of the ap-
proximate formulas neglect the contribution of the displacement
current and, therefore, predict values for the ground impedance
which tend to infinity at higher frequencies. This corresponds in
the time domain to a singularity of the ground transient resistance
at t = 0. By analogy to the Sunde approximation for the ground
impedance of overhead lines, we propose a logarithmic approxi-
mation for the ground impedance of a buried cable. In addition,
unlike most of the considered approximations, the proposed for-
mula has an asymptotic behavior at high frequencies; therefore,
the corresponding transient ground resistance in the time domain
has no singularity at t = 0. It is also demonstrated that within the
frequency range of interest, the wire impedance can be neglected,
due to its small contribution to the overall longitudinal impedance
of the line. The ground admittance, however, can play an impor-
tant role at high frequencies (1 MHz or so) especially in the case
of poor ground conductivity. The ground admittance needs to be
taken into account in the calculation of lightning induced currents
and voltages on buried cables. This is in contrast with the case
of overhead lines in which its contribution is generally negligible,
even in the MHz range.

We also investigate the time-domain representation of field-to-
transmission line coupling equations. The coupling model includes
the effect of ground admittance which appears in terms of an
additional convolution integral. An analytical expression for the
ground transient resistance in the time domain is also proposed
which is shown to be sufficiently accurate and nonsingular. Fi-
nally, we present a time domain solution of field-to-buried cable
coupling equations using the point-centered finite difference time
domain (FDTD) method, and a frequency domain solution using
Green’s functions. In our companion paper (Part II), we compare
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both solutions to experimental waveforms obtained using triggered
lightning.

Index Terms—Buried cables, electromagnetic coupling,
lightning-induced voltages, modeling.

I. INTRODUCTION

S ENSITIVE electronic components have been increasingly
used lately both in power and communication systems.

These components, compared to the electromechanical ones
used in the past, may suffer logic upset or damage at signif-
icantly lower levels of induced electromagnetic interferences.
As a result, the evaluation of lightning induced disturbances
on buried cables has recently attracted considerable attention
(e.g., [1], [2]). Typical examples are submarine fiberoptic ca-
bles and buried telecommunication cables which include re-
peater power supply cables. Concerning submarine cables, long
buried sections (up to 20 km) are running from the shore to the
supply units and are exposed to lightning threat.

The aim of this paper is to present efficient calculation meth-
ods to estimate lightning induced disturbances on buried cables
in both time and frequency domains.

The paper is organized as follows: In Section II, we will
consider the general expressions for the field penetrating in
the ground [3] and we will discuss the approximate formula
for the electric field below the ground surface recently pro-
posed by Cooray [4]. In Sections III and IV, we will analyze
the field-to-buried transmission line coupling equations in the
frequency domains. In particular, we will discuss expressions
proposed by different authors to describe the so-called ground
impedance. The relative importance of line parameters for the
case of buried cable is then analyzed in Section V. Time do-
main and frequency domain solutions of field-to-transmission
line coupling equations will be presented in Sections VI and
VII. Finally, a conclusion and recommendations will be given
in Section VIII.

II. LIGHTNING RETURN STROKE ELECTRIC FIELD

IN THE GROUND

The determination of lightning induced currents and volt-
ages in buried cables requires the knowledge of lightning return
stroke electromagnetic field below the ground surface. Consid-
ering the lightning channel as a vertical antenna and the ground
as a uniform half-space characterized by constant conductivity
σg and relative permittivity εrg , the general expressions in the
frequency domain for the vertical dEz and horizontal dEr elec-
tric fields radiated by an elementary dipole located at height z′

0018-9375/$20.00 © 2005 IEEE
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Fig. 1. Geometry for the calculation of electromagnetic field below the ground
surface radiated by a vertical lightning channel.

above ground at a distance r and at a depth d are given by the
following equations (see Fig. 1 for the relevant geometry) [3].

dEr (r, d, z′) =
jωµ0I(z′)dz′

4π

∂2V (r, d, z′)
∂r∂z

(1)

dEz (r, d, z′) =
jωµ0I(z′)dz′

4π

×
{(

∂2

∂z2
+ k2

g

)
V (r, d, z′)

}
(2)

in which

V (r, d, z′) =
∫ ∞

0

exp(γgd − γ0z
′)J0(λr)λ dλ

k2
g γ0 + k2

0γg
(3)

where k0 and kg are propagation constants in the air and in the
ground, given respectively by

k2
0 = ω2µ0ε0, k2

g = ω2µ0ε0εrg + jωµ0σg (4)

γ2
0 = λ2 − k2

0, γ2
g = λ2 − k2

g . (5)

Equation (3) is the so-called Sommerfeld integral which re-
quires time-consuming algorithms (e.g., [5], [6]) for its numer-
ical evaluation.

To obtain the incident electric field in the time domain, the
integration of (1) and (2) along the lightning channel followed
by an inverse Fourier transformation is also required. Therefore,
the direct use of (1) and (2) can be very costly in terms of com-
putation time, particularly in view of the fact that for coupling
calculations, the fields are to be determined not at a single point
but along the whole buried cable.

Simplified expressions for the determination of the electric
fields below the ground surface produced by a vertical lightning
channel, as a function of the electric field at the air-soil interface,
has been recently proposed in [4] by Cooray. The expressions
proposed by Cooray for the vertical and horizontal components
of the electric field in the frequency domain are given by

Ez (jω, r, d) = Ez (jω, r, 0)
ε0 exp(−kgd)
σg + jωε0εrg

(6)

Er (jω, r, d) = Er (jω, r, 0) exp(−kgd). (7)

In time domain, (6) and (7) read, respectively,

Ez (t, r, d) =
∫ t

0

Ez (t − τ, r, 0)Ψ(τ) dτ (8)

Er (t, r, d) =
∫ t

0

Er (t − τ, r, 0)Y (τ) dτ (9)

where Ψ(t) and Y(t) are the inverse Fourier transforms of
(ε0 exp(−kgd))/(σg + jωε0εrg ) and exp(−kgd), respectively,
and they are given by1 [4]

Ψ(t) =
∫ t

0

Ψ1(t − τ)Y (τ) dτ (10)

Ψ1(t) =
1

εrg
exp(−at) (11)

Y (t) =
exp(−at/2)atz

2
√

t2 − t2z
I1

(
a
√

t2 − t2z
2

)
u(t − tz )

+ exp(−atz /2)δ(t − tz ) (12)

in which

a =
σg

ε0εrg
and tz = d

√
µ0ε0εrg .

At the air–soil interface, when d = 0, (12) reduces to
Y (t)|d=0 = δ(t), assuring the continuity of the horizontal elec-
tric field at the air-soil interface.

In (8) and (9), the vertical and horizontal electric field com-
ponents at ground surface Ez (t, r, 0) and Er (t, r, 0) can be
calculated with reasonable accuracy assuming a perfectly con-
ducting ground for the vertical electric field component [7], and
the Cooray–Rubinstein approximation for the horizontal com-
ponent [8], [9].

Fig. 2 presents a comparison between the horizontal electric
field calculated using Cooray’s simplified expressions and the
nearly exact numerical solutions of (1) published by Zeddam
in [10]. The results are for an observation point located 100 m
from the stroke location at two different depths, namely 1 m
and 10 m, for two values for ground conductivity (0.01 S/m and
0.001 S/m). As seen in Fig. 2, the simplified approach proposed
by Cooray yields satisfactory results.

III. COUPLING OF AN EXTERNAL ELECTROMAGNETIC FIELD TO

A BURIED CABLE

Consider a horizontal buried cable of length L (cylindrical
conductor with an insulated jacket) located along the x-axis
at depth d. Assuming that the vertical component of electric
field can be neglected below the ground surface [8], voltages
and currents along the cable induced by a nearby lightning
can be calculated using the field-to-transmission line equations
expressed in the frequency domain [2], [10], [11],

dV (x)
dx

+ Z ′I(x) = Ee
x(x, z = −d) (13)

1Note that (11) and (12), slightly different from the original equations (20)
and (21) in [4], are the correct expressions for Ψ1(t) and Y(t).
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Fig. 2. Comparison between the horizontal electric field calculated at two
different depths (1 m and 10 m) and for two different ground conductivities
(0.01 S/m and 0.001 S/m) using the Cooray formula (9) (solid line) and the
nearly exact numerical solutions of (1) (circles), taken from [10]. Observation
point is 100 m from the stroke location. Lighting return stroke current peak is
15 kA.

Fig. 3. Differential equivalent coupling circuit for a buried cable illuminated
by an external field.

Fig. 4. Geometry of the buried cable (cylindrical conductor of radius a with
an insulating jacket).

dI(x)
dx

+ Y ′V (x) = 0 (14)

where the longitudinal impedance is

Z ′ = jωL′ + Z ′
w + Z ′

g (15)

and the transversal admittance is:

Y ′ =
(G′ + jωC ′) · Y ′

g

(G′ + jωC ′) + Y ′
g

(16)

in which (see Figs. 3 and 4)
— L′ and C ′ are respectively the per-unit-length longitudinal

inductance and transverse capacitance of the cable

L′ =
µo

2π
ln

(
b

a

)
(17)

C ′ =
2πε0εri

ln(b/a)
(18)

— G′ is the per-unit-length transverse conductance of the
cable

G′ =
σi

ε0εri
C ′ (19)

— Z ′
w is the per-unit-length internal impedance of the con-

ductor (wire). Assuming an axial symmetry for the current,
the following expression can be adopted [12]:

Z ′
w =

γw I0(γw a)
2πaσw I1(γw a)

(20)
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where γw =
√

jωµ0(σw + jωε0εrw ) is the propagation
constant in the wire and the εrw relative permittivity of
the wire.

— Z ′
g and Y ′

g are the per-unit-length ground impedance and
ground admittance, respectively. These two quantities are
related through the following expression [13]:

Y ′
g
∼=

γ2
g

Z ′
g

(21)

where γg is the propagation constant in the ground, which
can be expressed as γg =

√
jωµ0(σg + jωε0εrg ), and

equations for Z ′
g are discussed in Section IV.

IV. GROUND IMPEDANCE EXPRESSIONS

A. Pollaczek and Sunde’s Expressions

The best known model for the ground impedance was pro-
posed by Pollaczek [14] in 1926

Z ′
g =

jωµ0

2π

[
K0

(
b

p

)
− K0

(
2d

p

)
+ J

]
(22)

where

J =
∫ +∞

−∞

exp
[
−2d

√
β2 + 1

p2

]
|β| +

√
β2 + 1

p2

exp(jωb) dβ

is the so-called Pollaczek Integral, in which K0 is the modified
Bessel function of second class and zero order, p is the complex
depth of the skin effect layer p = 1/

√
jωµ0σg , and d is the

depth of the cable.
Sunde [15] proposed an expression for the mutual inductance

of two buried cables located at the same depth d and separated
by a distance y, which is given by

jωL′ =
jωµ0

2π

[
K0(γgy) − K0(γg

√
y2 + 4d2)

+ 2
∫ ∞

0

exp(−2du) cos uy

α + u
du

]
(23)

where α =
√

u2 + γ2
g .

The ground impedance of a single buried cable can be ob-
tained using (23), by replacing y with b, the cable radius. This
yields

Z ′
g =

jωµ0

2π

[
K0(γg b) − K0(γg

√
b2 + 4d2)

+ 2
∫ ∞

0

exp(−2du) cos ub

α + u
du

]
. (24)

Comparing (22) with (24), one can see that the Pol-
laczek’s expression (22) corresponds to Sunde’s expression
(24), when the displacement current is neglected. Indeed, if
γg =

√
jωµ0(σg + jωε0εrg ) is replaced by γg

∼=
√

jωµ0σg ,
(24) reduces to (22).

B. Other Expressions for the Ground Impedance Found in the
Literature

Vance formula [11]: Vance developed the following formula
for the ground impedance considering the ground as a lossy
cylindrical dielectric surrounding the cable

Z ′
g =

ωµ0

2πbγg

H
(1)
0 (jγg b)

H
(1)
1 (jγg b)

(25)

where H
(1)
0 and H

(1)
1 are Hankel functions.

Semlyen and Wedepohl formula. The following expression
for the ground impedance was reported in [16]

Z ′
g =

jωµ0

2π
ln

(
b +

1
mb

)
(26)

where m =
√

jωµ0σg is the propagation constant of the
ground, neglecting the displacement current.

Saad–Gaba–Giroux formula. Approximating the Pollaczek
integral, Saad, Gaba and Giroux [17] obtained the following
expression:

Z ′
g =

ρm2

2π

(
K0(mb) +

2
4 + m2b2

· exp(−2du)
)

(27)

where m is the same as in (26), K0 is the same as in (22) and ρ
is the ground resistivity.

Bridges formula: Starting from the rigorous scattering so-
lution for a buried cable, Bridges [18] derived a frequency
domain integral equation for cable current and a general ex-
pression for the ground impedance. Using the transmission
line approximation and neglecting the displacement current,
Bridges [18] derived the following approximate formula for the
ground impedance:

Z ′
g = −jωµ0

2π
ln

(
γg

Γ
2

b

)
(28)

where Γ = 1.7811 . . . and γg
∼=

√
jωµ0σg .

C. Proposed Logarithmic Approximation

The Sunde’s general formula (24) being expressed in terms of
Bessel functions and infinite integrals, we propose the following
logarithmic approximation for the ground impedance:

Z ′
g =

jωµ0

2π
ln

(
1 + γg b

γg b

)
. (29)

This expression is proposed by analogy with overhead lines,
where it has been shown [7] that the Sunde’s logarithmic
approximation is in excellent agreement with the general ex-
pression for the ground impedance.

Fig. 5 presents a comparison between the various proposed
approximations for a cable of 2.4 cm diameter, buried 1 m below
the ground surface. Two different values for ground conductivity
have been considered, namely, σg = 0.01 S/m and σg = 0.001
S/m. The ground relative permittivity is assumed to be εrg = 10.

It can be seen that for the considered frequency range,
1 kHz–30 MHz, all the considered expressions for the ground
impedance provide similar results. Therefore, for the analysis
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Fig. 5. Comparison between different closed form approximations for ground
impedances and Sunde’s general formula (24), for a buried cable having an
external radius b = 1.2 cm placed at a depth d = 1 m. (a) σg = 0.01 S/m,
εr g = 10. (b) σg = 0.001 S/m, εr g = 10.

of lightning induced disturbances, which are characterized by
significant frequency components not exceeding 10 MHz or so,
any of the above approximate formulas can be employed. How-
ever, the use of the logarithmic formula (29) is suggested for the
following reasons:

— It is in excellent agreement with the general Sunde’s ex-
pression.

— Its implementation is very simple and does not require any
numerical treatment.

— Finally, unlike most of the considered approximations, it
has an asymptotic behaviour at high frequencies. Hence,
the corresponding transient ground resistance in time do-
main has no singularity at t = 0 [7], [19]. Indeed, it is easy
to show (see similar developments for overhead lines in

[7] and [19]) that

lim
ω→∞

Z ′
g =

1
2πb

√
µ0

ε0εrg
(30)

and, therefore, the early-time response of the transient
ground resistance, defined as ξ′g = F−1{Z ′

g /jω}, is given
by the initial value theorem

ξ′g (t = 0) = lim
ω→∞

jω
Z ′

g

jω
=

1
2πb

√
µ0

ε0εrg
. (31)

V. RELATIVE IMPORTANCE OF LINE PARAMETERS

A. Longitudinal Parameters

Fig. 6 presents a comparison among longitudinal parame-
ters of a buried cable, namely the ground impedance, the wire
impedance, and the inductive impedance ωL′.

The results are obtained for a cable having the following geo-
metrical parameters: a = 1 cm, b = 1.2 cm, relative permittivity
of the insulating jacket εri = 3, cable depth d = 1 m.

Two different values for ground conductivity were consid-
ered, namely 0.01 S/m in Fig. 6(a) and 0.001 S/m in Fig. 6(b).
The ground permittivity is fixed at εrg = 10. The results show
that, within the frequency range 1 kHz–30 MHz, the major con-
tribution to the longitudinal impedance comes from the ground
impedance. Further, the wire impedance is much smaller than
the ground impedance and hence can be neglected.

B. Transverse Parameters

If one neglects the transverse conductance, the transverse
admittance per-unit-length becomes

Y ′ =
jωC ′ · Y ′

g

jωC ′ + Y ′
g

. (32)

The expression for the transverse admittance can be written
in a more convenient form as follows:

Y ′ = jωC ′ + Y ′
add, where Y ′

add = − (jωC ′)2

jωC ′ + Y ′
g

. (33)

Fig. 7 presents a comparison between 1/|Y ′
g | and 1/ωC ′ as

a function of frequency, for two values of ground conductivity.
It can be seen that at low frequencies, the major contribution
to the transverse admittance comes from the capacitance. On
the contrary, at higher frequencies the ground admittance con-
tribution becomes more significant. For a ground conductivity
of 0.001 S/m, for example, the effect of ground admittance
becomes dominant at frequencies above 100 kHz. This is in
contrast with typical overhead lines in which the effect of the
ground admittance can be neglected for the frequency range of
interest [20].

VI. TIME-DOMAIN ANALYSIS OF FIELD-TO-BURIED CABLE

COUPLING EQUATIONS

A time domain representation of field-to-transmission line
coupling equations is sometimes preferable because it allows
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Fig. 6. Comparison of the magnitudes of the components of the longitudinal
impedance of a buried cable having the following parameters: a = 1 cm, b =
1.2 cm, εr i = 3, εr g = 10. (a) σg = 0.01 S/m. (b) σg = 0.001 S/m.

handling in a straightforward manner nonlinear phenomena such
as the presence of nonlinear protective devices at the line termi-
nals [20]. On the other hand, frequency dependent parameters,
such as the ground impedance and ground admittance, need to
be represented using convolution integrals, which require time
consuming algorithms.

The field-to-transmission line coupling equations (13) and
(14) can be converted into the time domain to obtain the follow-
ing expressions:

∂v(x, t)
∂x

+ L′ ∂i(x, t)
∂t

+ ξ′g (t) ⊗
∂i(x, t)

∂t
= Ee

x(x,−d, t)

(34)

∂i(x, t)
∂x

+ C ′ ∂v(x, t)
∂t

+ η′
g (t) ⊗

∂i(x, t)
∂t

= 0 (35)

Fig. 7. Comparison between the components of the transverse admittance
of a buried cable having the following parameters: a = 1 cm, b = 1.2 cm,
εr i = 3, εr g = 10. (a) σg = 0.01 S/m. (b) σg = 0.001 S/m.

where:
ξ′g (t) transient ground resistance defined as the inverse

Fourier transform of (Z ′
g /jω);

⊗ convolution product;
η′

g (t) transient ground conductance defined as the inverse
Fourier transform of (Y ′

add)/(jω), where Y ′
add is de-

fined by (33).

A. Transient Ground Resistance and Conductance in
the Time Domain

The general expression for the ground impedance in the fre-
quency domain (24) does not have an analytical inverse Fourier
transform. Thus, elements of the transient ground resistance
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Fig. 8. Transient ground resistance of a conductor located 1 m below the earth
surface. Ground electrical parameters: σg = 0.01 S/m, εr g = 10. Comparison
between the inverse Fourier transform of (29) (F −1{Z ′

g /jω}) and the proposed
expression (37).

in the time domain are, in general, to be determined using a
numerical inverse Fourier transform algorithm.

For the case of an overhead wire located at a height h above
ground, however, the following analytical expressions are shown
to be reasonable approximations to the numerical values ob-
tained using an inverse FFT [19].

ξ′
overhead
g (t) ∼= min

{
1

2πh

√
µ0

ε0εrg
,

µ0

πτg

[
1

2
√

π

√
τg

t

+
1
4

exp
(τg

t

)
erfc

(√
τg

t

)
− 1

4

]}
(36)

where τg = h2µ0σg , and erfc is the complementary error func-
tion.

Again, by analogy with overhead lines, we can replace h in
(36) by b and adapt the above analytical approximation to the
case of an underground cable

ξ′g (t) ∼= min
{

1
2πb

√
µ0

ε0εrg
,

µ0

πτg

[
1

2
√

π

√
τg

t

+
1
4

exp
(τg

t

)
erfc

(√
τg

t

)
− 1

4

]}
(37)

where τg = b2µ0σg .
Fig. 8 presents a comparison between the numerical inverse

Fourier transform of (29) (F−1{Z ′
g /jω}) and the proposed ex-

pression (37). It can be seen that (37) is in excellent agreement
with the numerical inverse Fourier transform of (29).

The time-domain ground transient conductance is defined as

η′
g (t) = F−1

{
Y ′

add

jω

}
. (38)

To the best of our knowledge, analytical expressions for the
inverse Fourier transform are not available for the ground tran-
sient conductance. Thus, the ground transient conductance has

Fig. 9. The inverse Fourier transform of Y ′
add/jω in the early-time region.

to be determined using a numerical inverse Fourier transform.
It is worth noting that using the logarithmic approximation (29)
for the computation of ground admittance, the ground transient
conductance tends to an asymptotic value when t tends to zero.
Indeed, using the same approach as for the transient ground re-
sistance, an asymptotical value of the Y ′

add can be calculated in
frequency domain:

lim
ω→∞

Y ′
add = − 2π(ε0εri)2µ0

b(ε0εrgµ0)3/2
(
ln b

a

)2 (39)

and applying the initial value theorem, we get

η′
g (t = 0) = lim

ω→∞
jω

Y ′
add

jω
= − 2π(ε0εri)2µ0

b(ε0εrgµ0)3/2
(
ln b

a

)2 . (40)

Fig. 9 presents η′
g (t) in the early-time region obtained by

inverse Fourier transformation of Y ′
add/jω, for an underground

cable with the following characteristics: b = 1.2 cm, a = 1 cm,
and εri = 5. It can be seen that the transient ground conductance
at t = 0 tends to an initial value of about −30 S/m, which
corresponds to the value predicted by (40) for the considered
parameters.

The finite-difference time-domain (FDTD) solutions of the
coupling equations are presented in the Appendix.

VII. FREQUENCY-DOMAIN SOLUTIONS

One method to solve the field-to-transmission line equations
(13) and (14) in the frequency domain is to use the expressions
for the line voltage and current for a point voltage source and
current source, respectively, that is, the Green’s functions. For
an arbitrary incident field exciting the cable (vertical electric
field component underground is neglected), the solutions for
the cable current and voltage at an arbitrary position x on the
cable can be written as the following integrals of the Green’s
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functions [13]:

I(x) =
∫ L

0

GI (x, xs)V ′
s dxs (41)

V (x) =
∫ L

0

GV (x, xs)V ′
s dxs (42)

where GI and GV represent the Green’s functions for the cable
current and voltage, respectively, which are given by [13]

GI (x, xs)

=




e−γ L

2Zc (1−ρ1ρ2e−2γ L )

[
e−γ (xs −L) − ρ2e

γ (xs −L)
]

· (eγx − ρ1e
−γx) , for x < xs

e−γ L

2Zc (1−ρ1ρ2e2γ L )

[
e−γ (x−L) − ρ2e

γ (x−L)
]

· (eγxs − ρ1e
−γxs ) , for x < xs

(43)

GV (x, xs)

=




−e−γ L

2(1−ρ1ρ2e−2γ L )

[
e−γ (xs −L) − ρ2e

γ (xs −L)
]

· (eγx + ρ1e
−γx) , for x < xs

e−γ L

2(1−ρ1ρ2e−2γ L )

[
e−γ (x−L) + ρ2e

γ (x−L)
]

· (eγxs − ρ1e
−γxs ) , for x < xs

(44)

where γ =
√

Z ′Y ′ is the line complex propagation constant
along the cable and Zc =

√
Z ′/Y ′ is the cable characteristic

impedance.
A frequency domain solution is particularly useful when one

is interested in calculating the inner response of a shielded cable,
which involves the cable transfer function, a highly frequency
dependent quantity.

VIII. SUMMARY AND CONCLUSIONS

A review of theoretical methods to compute lightning induced
currents and voltages on buried cables has been presented. The
evaluation of such induced disturbances requires the calculation
of the electric field produced by lightning along the cable path.

In Section II of the paper, we have shown that the Cooray’s
simplified formula is capable of predicting accurately the hori-
zontal electric field penetrating the ground, at distances as close
as 100 m.

Regarding the parameters of the buried cables, a comparison
of several approximations of the ground impedance has been
presented and discussed. We have shown that Pollaczek’s ex-
pression corresponds to Sunde’s general expression, when the
displacement current is neglected. The analysis has also shown
that all the proposed approximations provide very similar results
for the considered range of frequencies (1 kHz–30 MHz). Most
of the approximate formulas neglect the contribution of the dis-
placement current, and therefore predict values for the ground
impedance which tend to infinity at higher frequencies. This
corresponds in the time domain to a singularity of the ground
transient resistance at t = 0. By analogy to the Sunde’s approx-
imation for the ground impedance of overhead lines, we have
proposed a logarithmic approximation for the ground impedance
of a buried cable. In addition, unlike most of the considered ap-
proximations, it has an asymptotic behavior at high frequencies;

TABLE I
SUMMARY OF THE RECOMMENDED METHODS FOR THE CALCULATION OF

LIGHTNING INDUCED VOLTAGES ON A BURIED CABLE

therefore, the corresponding transient ground resistance in the
time domain has no singularity at t = 0.

It is also demonstrated that within the frequency range of
interest, the wire impedance can be neglected due to its small
contribution to the overall longitudinal impedance of the line.
The ground admittance, however, can play an important role at
high frequencies (1 MHz or so), especially in the case of poor
ground conductivity. The ground admittance needs to be taken
into account in calculations of lightning induced currents and
voltages on buried cables. This is in contrast with the case of
overhead lines in which its contribution is generally negligible
even in the megahertz range.

We have also investigated the time-domain representation
of field-to-transmission line coupling equations. The coupling
model includes the effect of ground admittance which appears
in terms of an additional convolution integral. An analytical
expression for the ground transient resistance in the time do-
main has also been proposed which is shown to be sufficiently
accurate and nonsingular.

Finally, we presented a time-domain solution of field-to-
buried cable coupling equations using the point centered FDTD
method, and a frequency-domain solution using Green’s func-
tions. In our companion paper (Part II), we will compare both
solutions to experimental waveforms obtained using triggered
lightning.

Table I presents a summary of the approximate methods dis-
cussed in the paper that we recommend for the determination of
the electric field and transmission line parameters in calculating
lightning induced currents and voltages on buried cables.

APPENDIX

FDTD SOLUTIONS OF THE COUPLING EQUATIONS

The coupling equations written in the time domain, taking
into account the transient ground resistance and conductance,
are reproduced here for convenience:

∂v(x, t)
∂x

+ R′i(x, t) + L′ ∂i(x, t)
∂t

+
∫ t

0

ξ′g (t − τ)
∂i(x, τ)

∂τ
dτ = Es

x(x,−d, t) (A1)
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Fig. 10. FDTD 1st order integration scheme. (a) Schematic representation of
the spatial discretization along the cable. (b) Time and spatial discretization.

∂i(x, t)
∂x

+ G′v(x, t) + C ′ ∂v(x, t)
∂t

+
∫ t

0

η′
g (t − τ)

∂v(x, τ)
∂τ

dτ = 0. (A2)

To solve the transmission line coupling equations in the time
domain, we use the finite difference time domain (FDTD) tech-
nique (e.g., [21]). In the following, the FDTD 1st order point
centered integration scheme (see Fig. 10), applied to the case of
a buried cable, is presented.

The point-centered FDTD representation of (A1) for the node
((k − 1/2)∆x, n∆t) is given by

∂

∂x
v((k − 1/2)∆x, n∆t) + R′i((k − 1/2)∆x, n∆t)

+ L′ ∂i((k − 1/2)∆x, n∆t)
∂t

+
∫ n∆t

0

ξ′g (n∆t − τ)
i((k − 1/2)∆x, n∆t)

∂t
dτ

= Es
x((k − 1/2)∆x,−d, n∆t). (A3)

Using the following notations,

vn
k = v((k − 1)∆x, n∆t)

ink = i((k − 1/2)∆x, (n + 1/2)∆t)

ξn = ξ′g (n∆t)

En
k = E((k − 1/2)∆x,−d, n∆t).

(A3) can be written more compactly in the following form:

vn
k+1 − vn

k

∆x
+ R′ i

n
k + in−1

k

2
+ L′ i

n
k − in−1

k

∆t
+ V sn

k = En
k

(A4)

with

V s[(k − 1/2)∆x, n∆t] = V sn
k

=
∫ n∆t

0

ξ′g [n∆t − τ ]
∂i[(k − 1/2)∆x, τ ]

∂τ
dτ.

Using the trapezoidal method for solving the integral, V sn
k can

be written as

V sn
k =

1
2

n−1∑
m=0

{
ξn−m−1

(
im+1
k − imk

)
+ ξn−m

(
imk − im−1

k

)}
.

(A5)

Rearranging (A5), we get

V sn
k =

1
2
ξn

(
i0k − i−1

k

)
+

n−1∑
m=1

ξn−m
(
imk − im−1

k

)

+
1
2
ξ0

(
ink − in−1

k

)
. (A6)

Introducing (A6) in (A4), we obtain

vn
k+1 − vn

k

∆x
+ R′ i

n
k + in−1

k

2
+ L′ i

n
k − in−1

k

∆t

+
1
2
ξ0

(
ink − in−1

k

)
+

n−1∑
m=1

ξn−m
(
imk − ij−m

k

)
= En

k .

(A7)

The induced current can be expressed as

ink =
1(

L ′

∆t + R ′

2 + ξ0

2

)

En

k −
vn

k+1 − vn
k

∆x

+
(

L′

∆t
− R′

2
+

ξ0

2

)
in−1
k −

n−1∑
j=1

ξn−j
(
ijk − ij−1

k

)
 . (A8)

Now, let us consider the point centered FDTD representation of
(A2) for the node ((k − 1)∆x, (n − 1/2)∆t):

in−1
k − in−1

k−1

∆x
+ G′ v

n
k + vn−1

k

2
+ C ′ v

n
k − vn−1

k

∆t

+
n∑

j=1

ηn−j
[
vj

k − vj−1
k

]
= 0. (A9)

After the similar mathematical developments as for (A4), we
obtain:

vn
k =

1(
C ′

∆t + G ′

2 + η0

2

)

− in−1

k − in−1
k−1

∆x

+
(

C ′

∆t
− G′

2
+

η0

2

)
vn−1

k −
n−1∑
j=1

ηn−j
[
vj

k − vj−1
k

] . (A10)

The boundary conditions for the case of resistive terminations
R0 and RL (Fig. 11) are given by
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Fig. 11. Schematic representation of the spatial discretization along the cable
with resistive terminations.

For x = 0

in0 =
−vn

1

R0
(A11)

the current in0 can be determined using a linear extrapolation:

in0 =
3in1 − in2

2
. (A12)

Now, let us write (A8) for the spatial node 1

in1 =
1(

L ′

∆t + R ′

2 + ξ0

2

)

En

1 − vn
2 − vn

1

∆x

+
(

L′

∆t
− R′

2
+

ξ0

2

)
in−1
1 −

n−1∑
j=1

ξn−j
(
ij1 − ij−1

1

)
 . (A13)

Combining (A11) and (A12)

vn
1 = −R0

3in1 − in2
2

. (A14)

Introducing (A14) in (A13), we get

in1 =
1(

L ′

∆t + R ′

2 + ξ0

2 + 3R0
2∆x

)

En

1 − vn
2

∆x
+

R0

2∆x
in2

+
(

L′

∆t
− R′

2
+

ξ0

2

)
in−1
1 −

n−1∑
j=1

ξn−j
(
ij1 − ij−1

1

)
 . (A15)

For x = L

inN seg+1 =
vn

N seg+1

RL
(A16)

the current inN seg+1 can be determined using a linear extrapola-
tion:

inN seg+1 =
3inN seg − inN seg−1

2
. (A17)

Using the expression (A8) written for the spatial node Nseg

inN seg =
1(

L ′

∆t + R ′

2 + ξ0

2

)

En

N seg −
vn

N seg+1 − vn
N seg

∆x

+
(

L′

∆t
− R′

2
+

ξ0

2

)
in−1
N seg

−
n−1∑
j=1

ξn−j
(
ijN seg − ij−1

N seg

)
 . (A18)

Combining (A16) and (A17) yields

vn
N seg+1 = RL

3inN seg − inN seg−1

2
(A19)

Introducing (A19) into (A18) yields the sought expression

inN seg =
1(

L ′

∆t + R ′

2 + ξ0

2 + 3RL

2∆x

)

En

N seg +
RL

2∆x
inN seg−1

+
vn

N seg

∆x
+

(
L′

∆t
− R′

2
+

ξ0

2

)
in−1
N seg

−
n−1∑
j=1

ξn−j
(
ijN seg − ij−1

N seg

)
 . (A20)
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