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Abstract

Convolutional neural networks have recently achieved

great success in image super-resolution (SR). However, we

notice an interesting phenomenon that these SR models are

getting bigger, deeper, and more complex. Extensive mod-

els promote the development of SR, but the effectiveness,

reproducibility and practical application prospects of these

new models need further verification. In this paper, we

propose a lightweight and accurate SR framework, named

Super-Resolution Recursive Fractal Network (SRRFN). SR-

RFN introduces a flexible and diverse fractal module, which

enables it to construct infinitely possible topological sub-

structure through a simple component. We also introduce

the recursive learning mechanism to maximize the use of

model parameters. Extensive experiments show that our

SRRFN achieves favorable performance against state-of-

the-art methods with fewer parameters and less execution

time. All code is available at https://github.com/

MIVRC/SRRFN-PyTorch.

1. Introduction

Single image super-resolution (SISR) aims to recon-

struct a high-resolution (HR) image from its degraded low-

resolution (LR) one, which is receiving increasing attention

in academia and industry. However, it is still considered as

a highly ill-posed problem since the mapping between LR

and HR images has multiple solutions.

Recently, convolutional neural networks (CNNs) have

shown superior performance in various computer vision

tasks, and have greatly promoted the development of SISR.

CNN-based SR solutions have become mainstream in the

past five years. Among them, Dong et al. propose the SR-

CNN [6], which is the first SR model that introduces the

Figure 1. A classical fractal structure: Fractal Tree.

CNN to learn the nonlinear LR-to-HR mapping function.

SRCNN uses the preprocessed LR image as input, which is

upscaled to HR space by some upsampling operators such

as Bicubic. However, it will increase the computational

complexity and produce visible artifacts. To solve this is-

sue, FSRCNN [7] introduces the deconvolutional layer, and

ESPCN [34] proposes an efficient sub-pixel convolutional

layer to directly learn the mapping between unprocessed

LR and HR images. After that, CNN-based SR methods are

blooming and constantly refreshing the best results. Kim

et al. propose the VDSR [18] and DRCN [19] by using

deeper network, residual learning, skip-connections, or re-

cursive mechanism. LapSRN [20] introduces the Laplacian

pyramid structure to progressively reconstruct the sub-band

residuals of HR images. In addition, SRResNet [23] intro-

duces residual blocks [12] and EDSR [26] removes batch

normalization layers to constructs an intensely wide and

deep model. Recently, some models have been proposed to

handle SISR via new feature extraction blocks, e.g., Zhang

et al. propose the RDN [51] and RCAN [50] by embedding

residual learning into the dense block or introducing chan-

nel attention mechanism into the residual block, and Li et al.



propose the MSRN [24] by introducing multi-scale residual

blocks. All the aforementioned SR models achieve superior

performance in terms of PSNR and SSIM [40]. However,

SISR has not been completely solved. After investigating

plenty of existing SR models, we generalize the following

questions and try to answer or solve them in this paper.

(1). The deeper, the better? SRCNN [6] is a 3 layer

network, VDSR [18] is a 20 layer network, EDSR [26] is a

65+ layer network, RDN [51] is a 145+ layer network, and

RCAN [50] has more than 800 layers. Since VDSR [18]

gives the conclusion of “The Deeper, the Better”, CNN-

based SR models have become deeper and deeper. There

is no doubt that increasing the depth of the model is the

easiest way to improve the model performance. However,

increasing the depth of the network will increase model pa-

rameters, execution time, storage space, and memory. In ad-

dition, according to our investigation, we found that blindly

increasing the depth of the network is not the most sensible

way. Each network has its performance bottleneck. When

the model reaches the performance bottleneck, it is not prof-

itable to continue to increase the network depth. In other

words, if we can make full use of model parameters, the

performance of a 100 layer network is almost the same as

a 400 layer network. Therefore, we draw a conclusion that

making full use of model parameters is more useful than

blindly increasing the depth of the model.

(2). Is the channel attention mechanism necessary for

SISR? The position attention mechanism [39] and channel

attention mechanism [13] (CAM) are the most widely used

attention mechanisms in recent years. Among them, the

CAM has been widely used in SR and other computer vision

tasks [39, 13, 33], e.g., Mei et al. proposes the SrSENet [32]

by introducing SEBlock [13] into the SR model, Zhang et

al. introduces the CAM [13] into the residual block to con-

struct the residual channel attention block (RCAB [50]),

and Dai et al. proposes a second-order channel attention

module (SOCAM [4]) for more powerful feature expres-

sion. However, does this mean that the CAM is useful? Of

course, CAM will bring a slight performance improvement,

but the increase in execution time and memory consumption

is huge. Taking RCAN [50] as an example, we investigate

the impact of CAM on its performance. As shown in Table

1, RIRN is a new model obtained by removing the CAM in

RCAN. We can clearly see that the performance of RIRN is

dropped by 0.06dB after removing the CAM. However, the

execution time is three times faster than RCAN. And this

gap will further increase as the input image size increases.

Since the improvement is negligible while the cost is huge,

we think that the CAM is not necessary for SISR.

(3). Does the previous works on simulating degra-

dation models still meaningful? All the aforementioned

models have achieved excellent results in simulating de-

graded (e.g. Bicubic downsampling) LR images. However,

Method RIRN(×2) RCAN(×2) [50]

Scale PSNR/SSIM Time (s) PSNR/SSIM Time (s)

Set5 38.24/0.9613 0.21s 38.26/0.9615 0.60s

Set14 33.91/0.9206 0.33s 33.98/0.9210 1.11s

BSD100 32.37/0.9021 0.24s 32.39/0.9024 0.75s

Urban100 33.10/0.9370 1.04s 33.24/0.9377 3.78s

Manga109 39.31/0.9784 1.22s 39.37/0.9785 4.55s

Average 35.39/0.9399 0.61s 35.45/0.9402 2.16s

Table 1. The performance comparison with and without the CAM.

the effect of these models on real images is still not satisfac-

tory. Recently, some new models [8, 42, 43, 48] have been

proposed to solve real images SR. We investigate related re-

search and found that these methods often use real images

as training dataset or introduce specific learning strategies.

Conversely, previous works [6, 26, 51, 50] focus on the de-

sign of the network structure, and these structures are often

universal. This means that applying real training datasets

and related learning strategies to these models will enable

them to achieve superior results on real images. Therefore,

we believe that efficient network architecture is also crucial.

(4). How to design a network with infinite possibili-

ties? More and more well designed network are proposed

to solve SISR. However, most of them are sensitive to the

subtle network architecture changes and some of them are

difficult to reach the level of the original paper. Thence,

it is important to build a new network by reusing existing

modules that have already been validated. Fractal structures

have peculiar structures that can produce infinitely possible

results via their self-similarity and infinitely fine structure.

Therefore, we aim to use the fractal structure to simplify the

model design and provide a more robust model.

To address the above problems, we propose the Super-

Resolution Recursive Fractal Network (SRRFN). which

achieves superior results with fewer parameters (1/4 of

RCAN [50]) and less execution time (1/3 of RCAN [50]).

SRRFN removes all unnecessary, time-consuming modules

and introduces a new fractal module (FM). The fractal mod-

ule can generate an unlimited number of topological struc-

tures based on a simple component through its unique char-

acteristics. These topologies subnets enable the network to

detect rich image features while increasing the fault toler-

ance of the model. To further improve model performance,

we also introduce the recursive strategy to maximize the use

of model parameters. In summary, our contributions are:

(i). We propose a fractal module (FM) to simplify the

model design, which can generate an infinite number of new

structures via a simple component.

(ii). We develop a Super Resolution Recursive Fractal

Network, which introduces the fractal module and recursive

learning mechanism to maximize the model performance.

(iii). SRRFN achieves superiors results with fewer pa-

rameters and faster execution time. Especially, it achieve

state-of-the-art results in BD and DN degrade models.



Figure 2. The architecture of our proposed Super-Resolution Recursive Fractal Network (SRRFN). All FMs are weight sharing.

2. Related Work

2.1. Fractal Structure

The fractal structure was proposed by B.B.Mandelbrot

in 1973, which is usually defined as “a rough or fragmen-

tary geometry, it can be divided into several parts, and each

part is (at least approximately) an overall reduced shape”. It

has the following characteristics: (a). self-similarity (b). in-

finitely fine structure (c). can be defined by a simple method

and generated by recursion and iteration. Furthermore, frac-

tal structures are ubiquitous in nature, such as snowflakes,

coastlines, leaves, and human organs. Figure 1 is a frac-

tal tree, and each trunk can be viewed as a new tree with

similarity to the original tree. This structure enables the

creation of an infinite network structure with simple com-

ponents. At the same time, this structure has been proven

to be more fault tolerant, stable, and robust. Therefore, the

fractal structure will be the focus of our research.

2.2. Recursive Network

Recursive neural networks are often applied to tempo-

ral and sequential data, which have shown superior per-

formance in various computer vision tasks [5, 11, 17, 29].

However, these models are limited on single static image

task. To address this drawback, the feedback mechanism

is often applied to the recursive network for better learn-

ing, which allows the network to carry a notion of output

to correct previous states. In SISR, Kim et al. propose

a deeply-recursive convolutional network (DRCN [19], up

to 16 recursions) for image reconstruction. Tai et al. pro-

pose a Deep Recursive Residual Network (DRRN [35]) that

introduces local and global residual learning into recursive

network. Li et al. propose an image super-resolution feed-

back network (SRFBN [25]) to refine low-level represen-

tations with high-level information and can create the final

HR image step by step. However, the recursive-supervision

and curriculum learning strategy used in the aforementioned

models do not bring significant benefits, but complicate the

training process. In this work, we aim to design a simple

but efficient recursive network for SISR.

3. SRRFN

As shown in Figure 2, the Super-Resolution Recursive

Fractal Network (SRRFN) includes two convolutional lay-

ers, a recursive fractal module (RFM), and an upsampling

module. The convolutional layer at the head and tail of the

network is used to change the image feature dimension. The

recursive fractal module (RFM) is composed of a series of

fractal modules (FMs). It is worth noting that these FMs

are weight sharing and they are essentially the same mod-

ule. Inspired by the feedback mechanism, we use the output

of the current FM as the input of the next FM. We also intro-

duce residual learning in the recursive structure to achieve

recursive residual learning.

Define ILR and ISR as the input and output of SRRFN.

L
′

in, L
′

out, and Lsr denote the input of RFM, the output of

RFM, and the output of upsampling module, respectively.

Like previous studies, we use a 3×3 convolutional layer to

upgrade images to a higher dimension

L
′

in = Fin(ILR), (1)

where Fin(·) is the corresponding operation that converts

images from RGB space to higher dimensional space and

L
′

in serves as the input of RFM for feature extraction

L
′

out = FRFM (L
′

in), (2)

where FRFM (·) denotes the recursive fractal module

(RFM), which can extract abundant image features from the

LR image. Then, all extracted image features are sent to the

upsampling module for SR image reconstruction

Lsr = FUP (L
′

out), (3)

where FUP (·) represents the upsampling module, which

uses sub-pixel convolutional layer to learn an array of up-

scaling filters to upscale image feature maps L
′

out into the

SR output. Finally, a 3×3 conventional layer is applied to

Lsr to convert it to RGB space and get the final SR image.

ISR = Fout(Lsr). (4)

During training, SRRFN is optimized with L1 loss function.

Given a training dataset
{

IiLR, I
i
HR

}N

i=1
, we solve

θ̂ = arg min
θ

1

N

N
∑

i=1

∥

∥Fθ(I
i
LR)− IiHR

∥

∥

1
, (5)

where θ denotes the parameter set of our model and F (·)
represents our SRRFN. Each module of the network will be

described in the following sections and the training process

will be introduced in the Sec.4.



Figure 3. The architecture of our proposed Fractal Modul (FM).

3.1. Fractal Module (FM)

As described in Sec.2.1, the self-similarity and infinite

fine structure of the fractal structure make it possible to cre-

ate an infinite variety of new structures through a simple

component. Inspired by this, we combine the fractal struc-

ture with CNN to propose the fractal module (FM).

The FM has no fixed structure. It consists of a basic

component and a parameter (fractal depth, D). Different

network structures can be generated by changing the com-

ponent and depth. In order to better explain the working

mechanism of the module, we provide a specific case in

Figure 3. In Figure 3, the purple area denotes the fractal

module (FM), which contains N3 Goups (blue box) and a

3×3 convolutional layer. Each goup contains N2 Blocks

(green box) and a 3×3 convolutional layer. Similarly, each

block contains N1 Convs (Convolutional layer, yellow box)

and a 3×3 convolutional layer. In this case, we set D = 3
and introduce residual learning in each stage. Thus, this FM

can also be considered as a residual fractal network. The

3×3 convolutional layer applied in the tail of each stage is

used to achieve local feature fusion, which can further im-

prove the model performance. It is worth noting that we

introduce three new parameters (N1, N2, and N3) in this

case, which is used to control the number of feature extrac-

tion blocks in each stage to make the model structure more

diverse. When N1 = N2 = N3, it is a standard fractal

network. When N1 �= N2 �= N3, it can still be seen as a

fractal network since statistical self-similarity is considered

as a special case of self-similarity.

The basic component of this FM is setting as: D =
1, N1 = 1,K = 3 (K is the kernel size). We also intro-

duce residual learning in this component. Thus, this compo-

nent can be seen as a simple residual block. Compared with

the standard residual block [12] and residual channel atten-

tion block [50], we remove batch normalization layer and

channel attention layer, respectively. This makes our model

more flexible and efficient. The operation of this case can

be defined as

Pi = Cd1
3×3

(CN1
(. . . (C1(Pi−1)) . . . )) + Pi−1, (6)

Mj = Cd2
3×3

(BN2
(. . . (B1(Mj−1)) . . . )) +Mj−1, (7)

Lout = Cd3
3×3

(GN3
(. . . (G1(Lin)) . . . )) + Lin, (8)

where Pi is the output of the i-th block, Mj is the output of

the j-th group, and Lout is the output of the fractal module.

C(·), B(·), and G(·) denote the operation of the conven-

tional layer, the residual block, and the residual group in

different depth, respectively.

The fractal module (FM) introduces the fractal struc-

ture into CNN, enabling it to construct an infinite variety

of topologies structure with a simple component. These

topological subnets generate a large number of search paths,

enabling the model to detect rich image features while im-

proving the model’s fault tolerance and robustness.

3.2. Recursive Mechanism (RM)

In Sec.2.2, we introduced the benefits of recursive net-

works. In this paper, we aim to explore a lightweight and

accurate SR model. To further reuse model parameters, we

combine our fractal module with recursive network. As

shown in Figure 2, the gray block is the unfolded structure

of the recursive fractal module (RFM). In the different re-

cursive stage, FM is weight sharing. In other words, there

is only one FM in the RFM, and it appears multiple times

in different recursive stages. By introducing the feedback

mechanism, the results of the current stage are served as the

inputs to the next stage. We also adopt residual learning in

the recursive block to achieve recursive residual learning.

This allows multiple paths between the input and output of

our fractal module, which can learn highly complex features

and increase the utilization of model parameters. Therefore,

we formulate our RFM as

Ls = FFM (Ls−1) + L0, (9)

where s = 1, 2, 3, · · ·, S (S is the number of recursive

stages) and FFM (·) denotes the operation of the fractal

module. Ls−1 and Ls are the input and output of the s-th

recursive stages, respectively.

3.3. Integration with Modern Modules

Various neural network modules have been proposed

in recent years, including but not limited to residual

block [12], dense block [14], memory block [36], resid-

ual dense block [51], and res2net block [9]. All of them

can be used as the component of our fractal module. This

means that by combining existing models with our fractal

framework, plenty of new powerful networks can be cre-

ated. Meanwhile, we can easily integrate the dilated con-

volutions [44] and shuffleNet mechanism [49, 28] with the

proposed fractal module to reduce the model parameters.



Algorithm Scale
Set5 [3]

PSNR / SSIM

Set14 [45]

PSNR / SSIM

BSDS100 [2]

PSNR / SSIM

Urban100 [15]

PSNR / SSIM

Manga109 [31]

PSNR / SSIM

Average

PSNR / SSIM

Bicubic ×2 33.66 / 0.9299 30.24 / 0.8688 29.56 / 0.8431 26.88 / 0.8403 30.80 / 0.9339 30.23 / 0.8832

SRCNN [6] ×2 36.66 / 0.9542 32.45 / 0.9067 31.36 / 0.8879 29.50 / 0.8946 35.60 / 0.9663 33.11 / 0.9219

LapSRN [21] ×2 37.52 / 0.9591 33.08 / 0.9130 31.80 / 0.8950 30.41 / 0.9101 37.27 / 0.9740 34.02 / 0.9302

VDSR [18] ×2 37.53 / 0.9590 33.05 / 0.9130 31.90 / 0.8960 30.77 / 0.9140 37.22 / 0.9750 34.09 / 0.9314

MemNet [35] ×2 37.78 / 0.9597 33.28 / 0.9142 32.08 / 0.8978 31.31 / 0.9195 37.72 / 0.9740 34.43 / 0.9330

SRMDNF [47] ×2 37.79 / 0.9601 33.32 / 0.9159 32.05 / 0.8985 31.33 / 0.9204 38.07 / 0.9761 34.51 / 0.9342

MSRN [24] ×2 38.07 / 0.9608 33.68 / 0.9184 32.22 / 0.9002 32.32 / 0.9304 38.64 / 0.9771 34.99 / 0.9374

D DBPN [] ×2 38.09 / 0.9600 33.85 / 0.9190 32.27 / 0.9000 32.55 / 0.9324 38.89 / 0.9775 35.13 / 0.9378

MDSR [26] ×2 38.11 / 0.9602 33.85 / 0.9198 32.29 / 0.9007 32.84 / 0.9347 38.96 / 0.9776 35.21 / 0.9386

EDSR [26] ×2 38.11 / 0.9602 33.92 / 0.9195 32.32 / 0.9013 32.93 / 0.9351 39.10 / 0.9773 35.27 / 0.9387

RDN [51] ×2 38.24 / 0.9614 34.01 / 0.9212 32.34 / 0.9017 32.89 / 0.9353 39.18 / 0.9780 35.33 / 0.9395

SRRFN (Ours) ×2 38.18 / 0.9612 33.97 / 0.9210 32.35 / 0.9018 33.04 / 0.9361 39.23 / 0.9781 35.35 / 0.9396

SRRFN+ (Ours) ×2 38.24 / 0.9614 34.13 / 0.9224 32.39 / 0.9023 33.24 / 0.9378 39.43 / 0.9786 33.49 / 0.9405

Bicubic ×3 30.39 / 0.8682 27.55 / 0.7742 27.21 / 0.7385 24.46 / 0.7349 26.95 / 0.8556 27.31 / 0.7943

SRCNN [6] ×3 32.75 / 0.9090 29.30 / 0.8215 28.41 / 0.7863 26.24 / 0.7989 30.48 / 0.9117 29.44 / 0.8455

VDSR [18] ×3 33.67 / 0.9210 29.78 / 0.8320 28.83 / 0.7990 27.14 / 0.8290 32.01 / 0.9340 30.29 / 0.8630

LapSRN [21] ×3 33.82 / 0.9227 29.87 / 0.8320 28.82 / 0.7980 27.07 / 0.8280 32.21 / 0.9350 30.36 / 0.8631

MemNet [37] ×3 34.09 / 0.9248 30.00 / 0.8350 28.96 / 0.8001 27.56 / 0.8376 32.51 / 0.9369 30.62 / 0.8669

SRMDNF [47] ×3 34.12 / 0.9254 30.04 / 0.8382 28.97 / 0.8025 27.57 / 0.8398 33.00 / 0.9403 30.74 / 0.8692

MSRN [24] ×3 34.48 / 0.9276 30.40 / 0.8436 29.13 / 0.8061 28.31 / 0.8560 33.56 / 0.9451 31.18 / 0.8757

MDSR [26] ×3 34.66 / 0.9280 30.44 / 0.8452 29.25 / 0.8091 28.79 / 0.8655 34.17 / 0.9472 31.46 / 0.8790

EDSR [26] ×3 34.65 / 0.9280 30.52 / 0.8462 29.25 / 0.8093 28.80 / 0.8653 34.17 / 0.9476 31.48 / 0.8793

RDN [51] ×3 34.71 / 0.9296 30.57 / 0.8468 29.26 / 0.8093 28.80 / 0.8653 34.13 / 0.9484 31.49 / 0.8799

SRRFN (Ours) ×3 34.74 / 0.9296 30.62 / 0.8478 29.29 / 0.8100 28.98 / 0.8689 34.36 / 0.9491 31.60 / 0.8811

SRRFN+ (Ours) ×3 34.84 / 0.9303 30.70 / 0.8490 29.35 / 0.8110 29.21 / 0.8721 34.66 / 0.9505 31.75 / 0.8826

Bicubic ×4 28.42 / 0.8104 26.00 / 0.7027 25.96 / 0.6675 23.14 / 0.6577 24.89 / 0.7866 25.62 / 0.7250

SRCNN [6] ×4 30.48 / 0.8628 27.50 / 0.7513 26.90 / 0.7101 24.52 / 0.7221 27.58 / 0.8555 27.40 / 0.7804

VDSR [18] ×4 31.35 / 0.8830 28.02 / 0.7680 27.29 / 0.7267 25.18 / 0.7540 28.83 / 0.8870 28.13 / 0.8037

LapSRN [21] ×4 31.54 / 0.8850 28.19 / 0.7720 27.32 / 0.7270 25.21 / 0.7560 29.09 / 0.8900 28.27 / 0.8060

MemNet [37] ×4 31.74 / 0.8893 28.26 / 0.7723 27.40 / 0.7281 25.50 / 0.7630 29.42 / 0.8942 28.46 / 0.8094

SRMDNF [47] ×4 31.96 / 0.8925 28.35 / 0.7787 27.49 / 0.7337 25.68 / 0.7731 30.09 / 0.9024 28.71 / 0.8161

MSRN [24] ×4 32.25 / 0.8958 28.63 / 0.7833 27.61 / 0.7377 26.20 / 0.7905 30.57 / 0.9103 29.05 / 0.8235

D DBPN [10] ×4 32.47 / 0.8980 28.82 / 0.7860 27.72 / 0.7400 26.38 / 0.7946 30.91 / 0.9137 29.26 / 0.8265

RDN [51] ×4 32.47 / 0.8990 28.81 / 0.7871 27.72 / 0.7419 26.61 / 0.8028 31.00 / 0.9151 29.32 / 0.8292

EDSR [26] ×4 32.46 / 0.8968 28.80 / 0.7876 27.71 / 0.7420 26.64 / 0.8033 31.02 / 0.9148 29.33 / 0.8289

MDSR [26] ×4 32.50 / 0.8973 28.72 / 0.7857 27.72 / 0.7418 26.67 / 0.8041 31.11 / 0.9146 29.34 / 0.8287

SRRFN (Ours) ×4 32.56 / 0.8993 28.86 / 0.7882 27.75 / 0.7424 26.78 / 0.8071 31.22 / 0.9159 29.43 / 0.8306

SRRFN+ (Ours) ×4 32.66 / 0.9006 28.95 / 0.7900 27.81 / 0.7437 26.98 / 0.8113 31.56 / 0.9190 29.59 / 0.8329

Table 2. BI quantitative comparisons with state-of-the-art SR methods. Best results are highlighted and second best results are underlined.

Obviously, our SRRFN outperforms all SR methods on all benchmark datasets. The ‘Average’ represents average results of these 5 datasets.

4. Experiments

Following previous works [24, 26, 50, 51], we only use

DIV2K (1-800) [1] as our training dataset. For testing, we

choose Set5 [3], Set14 [45], BSDS100 [30], Urban100 [16],

and Manga109 [31]. All of them are the widely used test

benchmark datasets, which contain a variety of scenarios

that can fully validate the model performance.

4.1. Implementation Details

Model setting: In this paper, we propose a gen-

eral framework for SR, named Super-Resolution Recursive

Fractal Network (SRRFN). The core module of SRRFN is

the fractal module (FM). As described in Sec.3, the fractal

module has no fixed structure. It can be expanded to various

networks via changing the component and fractal depth. In

order to verify the validity of the model, we provide a sim-

ple case. As shown in Figure 3, we use this structure as

our fractal module to construct the final SRRFN. We set

D = 3,K = 3, N1 = 1, N2 = 10, N3 = 5, and S = 4
in the final model. We also introduce self-ensemble to im-

prove SRRFN, which is expressed as SRRFN+.

Training setting: During training, we use RGB images

as input and augment the training data with flipping hori-

zontally and vertically. Following previous works [24, 26,

50], we randomly extract 16 LR patches with the size of

48×48 as input, and 1,000 iterations of back-propagation

constitute an epoch. The learning rate is initialized to 10−4

and halved every 200 epochs. We implement our model

with the PyTorch framework and update it with Adam opti-

mizer. All our experiments are performed on GTX TitanX.

Degradation Models: In order to demonstrate the ef-

fectiveness of our proposed SRRFN, we use three degraded

models (BI, BD, and DN) to obtain LR images. BI is the

most widely used degraded model to simulate LR images,

which is essentially a bicubic downsampling operation that



Algorithm Scale
Set5 [3]

PSNR / SSIM

Set14 [45]

PSNR / SSIM

BSDS100 [2]

PSNR / SSIM

Urban100 [15]

PSNR / SSIM

Manga109 [31]

PSNR / SSIM

Average

PSNR / SSIM

DRCN [19] ×2 37.63 / 0.9584 33.06 / 0.9108 31.85 / 0.8947 30.76 / 0.9147 37.63 / 0.9723 34.19 / 0.9302

MS-LapSRN [22] ×2 37.78 / 0.9600 33.28 / 0.9150 32.05 / 0.8980 31.15 / 0.9190 37.78 / 0.9760 34.41 / 0.9336

DRRN [35] ×2 37.74 / 0.9590 33.23 / 0.9140 32.05 / 0.8970 31.23 / 0.9190 37.92 / 0.9760 34.43 / 0.9330

SRFBN [25] ×2 38.11 / 0.9609 33.82 / 0.9196 32.29 / 0.9010 32.62 / 0.9328 39.08 / 0.9779 35.18 / 0.9384

SRRFN (Ours) ×2 38.18 / 0.9612 33.97 / 0.9210 32.35 / 0.9018 33.04 / 0.9361 39.23 / 0.9781 35.35 / 0.9396

DRCN [19] ×3 33.85 / 0.9215 29.89 / 0.8317 28.81 / 0.7954 27.16 / 0.8311 32.31 / 0.9328 30.40 / 0.8625

MS-LapSRN [22] ×3 34.06 / 0.9240 29.97 / 0.8360 28.93 / 0.8020 27.47 / 0.8370 32.68 / 0.9390 30.62 / 0.8676

DRRN [35] ×3 34.03 / 0.9240 29.96 / 0.8350 28.95 / 0.8000 27.53 / 0.7640 32.74 / 0.9390 30.64 / 0.8524

SRFBN [25] ×3 34.70 / 0.9292 30.51 / 0.8461 29.24 / 0.8084 28.73 / 0.8641 34.18 / 0.9481 31.47 / 0.8792

SRRFN (Ours) ×3 34.74 / 0.9296 30.62 / 0.8478 29.29 / 0.8100 28.98 / 0.8689 34.36 / 0.9491 31.60 / 0.8811

DRCN [19] ×4 31.56 / 0.8810 28.15 / 0.7627 27.24 / 0.7150 25.15 / 0.7530 28.98 / 0.8816 28.22 / 0.7987

DRRN [35] ×4 31.68 / 0.8888 28.21 / 0.7722 27.38 / 0.7240 25.44 / 0.7640 29.46 / 0.8960 28.43 / 0.8090

MS-LapSRN [22] ×4 31.74 / 0.8890 28.26 / 0.7740 27.43 / 0.7310 25.51 / 0.7680 29.54 / 0.8970 28.50 / 0.8118

SRFBN [25] ×4 32.47 / 0.8983 28.81 / 0.7868 27.72 / 0.7409 26.60 / 0.8015 31.15 / 0.9160 29.35 / 0.8287

SRRFN (Ours) ×4 32.56 / 0.8993 28.86 / 0.7882 27.75 / 0.7424 26.78 / 0.8071 31.22 / 0.9159 29.43 / 0.8318

Table 3. BI quantitative comparisons with recursive models. Best results are highlighted. Obviously, our SRRFN outperforms all recursive

SR methods on all benchmark datasets. The ‘Average’ represents average results of these 5 datasets.

Algorithm Scale Parameters
Set5 [3]

PSNR / SSIM / Time

Set14 [45]

PSNR / SSIM / Time

BSDS100 [2]

PSNR / SSIM / Time

Urban100 [15]

PSNR / SSIM / Time

Manga109 [31]

PSNR / SSIM / Time

Average

PSNR / SSIM / Time

RCAN [50] ×2 15.44M 38.27 / 0.9614 / 0.60s 34.12 / 0.9216 / 1.11s 32.41 / 0.9027 / 0.75s 33.34 / 0.9384 / 3.78s 39.44 / 0.9786 / 4.55s 35.52 / 0.9405 / 2.16s

SRRFN (Ours) ×2 4.06M 38.18 / 0.9612 / 0.21s 33.97 / 0.9210 / 0.35s 32.35 / 0.9018 / 0.24s 33.04 / 0.9361 / 1.07s 39.23 / 0.9781 / 1.25s 35.35 / 0.9396 / 0.61s

RCAN [50] ×3 15.63M 34.74 / 0.9299 / 0.34s 30.65 / 0.8482 / 0.55s 29.32 / 0.8111 / 0.41s 29.09 / 0.8702 / 1.89s 34.44 / 0.9499 / 2.33s 31.65 / 0.8818 / 1.10s

SRRFN (Ours) ×3 4.24M 34.74 / 0.9296 / 0.17s 30.62 / 0.8478 / 0.23s 29.29 / 0.8100 / 0.16s 28.98 / 0.8689 / 0.62s 34.36 / 0.9491 / 0.79s 31.60 / 0.8811 / 0.39s

RCAN [50] ×4 15.59M 32.63 / 0.9002 / 0.30s 28.87 / 0.7889 / 0.40s 27.77 / 0.7436 / 0.30s 26.82 / 0.8087 / 1.21s 31.22 / 0.9173 / 1.50s 29.46 / 0.8317 / 0.74s

SRRFN (Ours) ×4 4.21M 32.56 / 0.8993 / 0.16s 28.86 / 0.7882 / 0.19s 27.75 / 0.7424 / 0.16s 26.78 / 0.8071 / 0.47s 31.22 / 0.9159 / 0.58s 29.43 / 0.8318 / 0.31s

Table 4. Quantitative comparisons (PSNR/SSIM, Parameters, and Execution time) with RCAN [50].

adopting the Matlab function imresize with the option of

bicubic. To verify the performance of SRRFN in complex

scenarios, we produce LR images in more challenging ways

(BD and DN) like [46, 51]. For BD, we blur HR images

by a Gaussian kernel of size 7×7 with standard deviation

1.6 and downsample the blurred image with scaling factor

×3. To obtain DN model LR images, we perform bicubic

downsampling on HR images with scaling factor ×3, and

then add Gaussian noise with noise level = 30.

4.2. Comparisons with state-of-the-arts

We compare SRRFN with more than 20 SR methods

to fully verify the model effectiveness, including Bicu-

bic, SCN[41], SRCNN [6], SelfExSR [16], A+ [38], ES-

PCN [34], FSRCNN[7], LapSRN [21], MS-LapSRN [22],

VDSR [18], DRCN [19], DRRN [35], MemNet [35], SR-

MDNF [47], D DBPN [10], SRFBN [25], MDSR [26],

EDSR [26], RDN [51], MSRN [24], and RCAN [50]. All

of SR results are evaluated with PSNR and SSIM on the

Y channel of the transformed YCbCr space. Due to page

limitations, only a part of the methods are presented.

Results with BI Degradation Model: In Table 2, we

show the quantitative comparisons with some advanced SR

models, all of them have well-designed structure. In Ta-

ble 3, we show the quantitative comparisons with some

recursive models, including SRFBN [25]. Among them,

best results are highlight and the ‘Average’ denotes aver-

age results of these 5 test datasets. Obviously, our SRRFN

achieves superior results on all datasets and achieves the

best average results on all upsampling factors. Consider-

ing that RCAN [50] and SRRFN (Figure 3 case) are struc-

turally similar, we make a detailed comparison of them in

Table 4. We can observe that RCAN [50] is slightly better

than SRRFN (×2: 0.17dB, ×3: 0.05dB, and ×4: 0.03dB).

However, this gap gradually decreases as the upsampling

factor increases. It is worth noting that the parameter quan-

tity of SRRFN is about 1/4 of RCAN, and the execution

time is 3 times faster than RCAN (time is tested on one

GTX TitanX). This means that SRRFN can achieve simi-

lar results as RCAN with fewer parameters and less execu-

tion time. In Figure 4, we show the visual comparison on

×2,×3, and ×4. We can clearly see that most SR methods

cannot recover clear and right image edges. In contrast, SR-

RFN can reconstruct more realistic high-frequency details.

Compared with RCAN, SR images reconstructed by SR-

RFN also achieve great visual performance. This again ver-

ifies that SRRFN achieves the best balance between model

performance, model size, and execution runtime.

Results with BD and DN Degradation Models: We

also show SR results in BD and DN degradation models

in Table 5. Following [25, 50], our SRRFN is compared

with Bicubic, SRCNN [6], VDSR [18], SRMD(NF) [47],



Model Methods
Set5

PSNR / SSIM

Set14

PSNR / SSIM

BSDS100

PSNR / SSIM

Urban100

PSNR / SSIM

Manga109

PSNR / SSIM

Average

PSNR / SSIM

BD

Bicubic 28.34 / 0.8161 26.12 / 0.7106 26.02 / 0.6733 23.20 / 0.6601 25.03 / 0.7987 25.74 / 0.7318

SRCNN [6] 31.63 / 0.8888 28.52 / 0.7924 27.76 / 0.7526 25.31 / 0.7612 28.79 / 0.8851 28.40 / 0.8159

VDSR [18] 33.30 / 0.9159 29.67 / 0.8269 28.63 / 0.7903 26.75 / 0.8145 31.66 / 0.9260 30.00 / 0.8547

SRMD(NF) [47] 34.09 / 0.9242 30.11 / 0.8364 28.98 / 0.8009 27.50 / 0.8370 32.97 / 0.9391 30.73 / 0.8675

RDN [51] 34.57 / 0.9280 30.53 / 0.8447 29.23 / 0.8079 28.46 / 0.8581 33.97 / 0.9465 31.35 / 0.8770

SRFBN [25] 34.66 / 0.9283 30.48 / 0.8439 29.21 / 0.8069 28.48 / 0.8581 34.07 / 0.9466 31.38 / 0.8768

RCAN [50] 34.70 / 0.9288 30.63 / 0.8462 29.32 / 0.8093 28.81 / 0.8647 34.38 / 0.9483 31.57 / 0.8795

SRRFN (Ours) 34.77 / 0.9293 30.67 / 0.8469 29.31 / 0.8096 28.85 / 0.8653 34.51 / 0.9489 31.62 / 0.8800

SRRFN+ (Ours) 34.86 / 0.9299 30.76 / 0.8479 29.36 / 0.8105 29.06 / 0.8682 34.80 / 0.9502 31.77 / 0.8813

DN

Bicubic 24.14 / 0.5445 23.14 / 0.4828 22.94 / 0.4461 21.63 / 0.4701 23.08 / 0.5448 22.99 / 0.4977

SRCNN [6] 27.16 / 0.7672 25.49 / 0.6580 25.11 / 0.6151 23.32 / 0.6500 25.78 / 0.7889 25.37 / 0.6958

VDSR [18] 27.72 / 0.7872 25.92 / 0.6786 25.52 / 0.6345 23.83 / 0.6797 26.41 / 0.8130 25.88 / 0.7186

SRMD(NF) [47] 27.74 / 0.8026 26.13 / 0.6974 25.64 / 0.6495 24.28 / 0.7092 26.72 / 0.8424 26.10 / 0.7402

RDN [51] 28.46 / 0.8151 26.60 / 0.7101 25.93 / 0.6573 24.92 / 0.7362 28.00 / 0.8590 26.78 / 0.7555

SRFBN [25] 28.53 / 0.8182 26.60 / 0.7144 25.95 / 0.6625 24.99 / 0.7424 28.02 / 0.8618 26.82 / 0.7599

SRRFN (Ours) 28.57 / 0.8194 26.69 / 0.7155 25.98 / 0.6630 25.21 / 0.7506 28.21 / 0.8646 26.93 / 0.7626

SRRFN+ (Ours) 28.66 / 0.8211 26.75 / 0.7169 26.02 / 0.6639 25.34 / 0.7538 28.37 / 0.8672 27.03 / 0.7646

Table 5. Quantitative comparison of BD and DN degradation models. Best results are highlighted.

×2

×3

×4

Method

21.40/0.6094

17.32/0.5169

20.45/0.6560

Bicubic

22.90/0.7197

18.70/0.6358

21.03/0.6989

SRCNN [6]

24.08/0.7693

20.58/0.7440

22.37/0.7780

MSRN [24]

24.50/0.7866

21.30/0.7708

22.72/0.7954

RCAN [50]

24.42/0.7827

21.49/0.7726

23.10/0.8023

SRRFN (Ours)

PSNR/SSIM

PSNR/SSIM

PSNR/SSIM

Orignal (HR)

Figure 4. Visual comparison for ×2, ×3, and ×4 SR images. Our SRRFN can reconstruct realistic images with sharp edges.

B
D

D
N

HR LR + bicubic SRRFN

Figure 5. Results on BD and DN degradation models with x3.

RDN [51], SRFBN [25], and RCAN [50]. All of these

models have been retrained by relevant degradation LR-HR

images. Obviously, our SRRFN achieves state-of-the-art re-

sults on all test datasets. This demonstrates that our SRRFN

can better deal with complex downsampled LR images. It

also means that the fractal structure has better fault toler-

ance and robustness. In Figure 5, we show the effect of

our SRRFN in BD and DN models. Obviously, SRRFN

achieves superior performance even if LR images are de-

graded more seriously. All reconstructed SR images can be

downloaded from https://dwz.cn/noGR4Flb.

5. Investigations

5.1. Differences with Previous Work

Previous works focused on the design of the network

structure. Therefore, plenty of well-designed networks have

been proposed. However, we aim to explore a simple SR

framework that reuses the well-tested network modules and

simplifies the design process. SRRFN and RCAN [50] seem

to have similar structures, but they have at least the follow-

ing differences: (1). our proposed fractal module (FM) has

no fixed structure, we use the residual block as the basic

component just to give a simple example; (2). the RCAN

is difficult to expand, and the introduced CAM destroys the

fractal structure; (3). the SRRFN introduces the recursive

mechanism for recursive residual learning to maximize the



use of model parameters and highly complex feature learn-

ing; (4). the parameters of SRRFN are only 1/4 of RCAN

and the execution time is 3 times faster than it.

5.2. Study of Fractal Depth (D)

The fractal depth will greatly affect the parameter quan-

tity and performance of the fractal module. In Figure 6.(A),

we show the impact of D on the model performance. We

set K = 3 and N1 = N2 = · · · = ND = 4. Obviously,

the PSNR result increases as D increases. Meanwhile, this

growth rate decreases as D increases. This verifies the view

of “performance bottleneck” we presented in Sec.1.(1). It

cannot be ignored that the parameter quantity will increase

as D increases. Therefore, D can be selected according to

actual demands. We set D = 3 in this paper to achieve a

good balance between the model size and performance.

5.3. Study of Recursive Stage (S)

We introduce recursive mechanism into SRRFN to fur-

ther improve the model performance. In Figure 6.(B), we

show the effect of S on the model performance and execu-

tion time. We can observe that as S increases, the PSNR

of SRRFN first increases and finally stabilizes. Meanwhile,

as S increases, the execution time will gradually increase.

Therefore, we conclude that although the recursive mecha-

nism is effective, the number of S should be considered. In

this paper, we set S = 4 to achieve the best balance between

the model performance and execution time.

5.4. Model Size and Execution Time

Various large size SR models have been proposed in re-

cent years. These models are getting deeper and wider, with

a large number of parameters or low execution speed. We

show the comparison of model parameters and execution

time between SRRFN and other SR models in Figure 6.(C)

and (D), respectively. We can clearly see that the parame-

ters of SRRFN are 1/10 of EDSR [26], 1/5 of RDN [51],

and 1/4 of RCAN [50]. Among these state-of-the-art SR

models, our SRRFN achieves superior results with fewer

parameters. Regarding the execution time, SRRFN also

shows excellent results. The execution time of SRRFN is

close to those lightweight SR models (e.g. SRCNN [6],

VDSR [18], MSRN [24]), but the performance is far su-

perior to them. It is worth noting that SRRFN is three times

faster than RCAN [50], but the performance is almost the

same. Moreover, as the size of the LR image increases, the

time gap will gradually increase since the CAM introduced

in RCAN [50] consumes a lot of time. All these investiga-

tions show that SRRFN can achieve excellent performance

with fewer parameters and faster execution time.

Figure 6. Investigations of fractal depth (D), recursive stage (S),

model size, and execution time in BI model.

6. Discussion

Benefits of SRRFN: We combine the fractal structure

with CNN to construct the fractal module, which greatly

simplifies the model design and can construct an infinite va-

riety of topological structures through a simple basic com-

ponent. These topologies structure provide a large number

of search paths that enable the network to extract abundant

image features to reconstruct high-quality SR images.

Limitations of SRRFN: SRRFN consists of a basic

component and a hyperparameter (D), which determines its

final structure. However, which module to choose as the

basic component and how to set the fractal depth are worth

exploring. In this paper, we use a simple module as the ba-

sic component and set D = 3 in the final SRRFN. Although

this solution has achieved excellent results, there may be

better solutions. In future works, we aim to introduce the

AutoML [27, 52] into the FM to automatically select and

determine the final basic component and fractal depth.

7. Conclusions

In this paper, we proposed a Super-Resolution Recursive

Fractal Network (SRRFN). This is a lightweight and accu-

rate SR framework. SRRFN introduces the fractal mod-

ule (FM) for feature extraction and uses recursive mecha-

nism for recursive residual learning, which achieves com-

petitive results with fewer parameters and faster execution

time. The FM is a flexible module with self-similarity and

infinitely refined structure, which can be defined by a simple

basic component and generated by recursion and iteration.

This special structure makes our model more fault-tolerant

and robust. Furthermore, this module can also be used in

other low-level computer vision tasks (e.g. image denoising

and image dehazing) for feature extraction. We will further

verify the performance of the FM in future works.
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