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ABSTRACT
Traffic application classification is an essential step in the network
management process to provide high availability of network ser-
vices. However, network management has seen limited use of traf-
fic classification because of the significant overheads of existing
techniques. In this context we explore the feasibility and perfor-
mance of lightweight traffic classification based on NetFlow records.
In our experiments, the NetFlow records are created from packet-
trace data and pre-tagged based upon packet content. This provides
us with NetFlow records that are tagged with a high accuracy for
ground-truth. Our experiments show that NetFlow records can be
usefully employed for application classification. We demonstrate
that our machine learning technique is able to provide an identifi-
cation accuracy (≈ 91%) that, while a little lower than that based
upon previous packet-based machine learning work (> 95%), is
significantly higher than the commonly used port-based approach
(50 − 70%). Trade-offs such as the complexity of feature selec-
tion and packet sampling are also studied. We conclude that a
lightweight mechanism of classification can provide application in-
formation with a considerably high accuracy, and can be a useful
practice towards more effective network management.

Categories and Subject Descriptors
C.2.3 [Computer Communications Networks]: Network Oper-
ations Network Monitoring; C.2.m [Computer Communication
Networks]: Miscellaneous
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1. INTRODUCTION
The continual growth and evolution of applications, hosts, and

networks have been the hallmark of the Internet — we assert that
this hallmark will be typical of the next generation Internet. Such
a high level of continuous development has been a challenge for
network management. On the other hand, network monitoring and
measurement have been widely used in understanding how well the
network performs and ensuring certain level of QoS specified in the
Service Level Agreements (SLAs) with customers. In this paper,
we focus on one of the essential network measurement primitives
– network traffic classification, which provides inputs to a wide
range of important network management tasks including network
planning, traffic engineering, accounting and billing, and anomaly
detection and mitigation. Despite a wide range of work on this
in the past, for example [4, 3, 13, 5, 8, 10], the classification of
network traffic continues to be a challenge. In particular, network
traffic classification is a complicated multi-factor system involving
the mutual interaction of a range of networks, hosts, applications,
and protocols. Furthermore, there are harsh requirements on sys-
tem performance and robustness before this class of methodology
can be implemented and deployed for practical applications.

The contribution of this paper is a lightweight application classi-
fication scheme. In particular, we apply supervised machine learn-
ing techniques to the problem of network traffic classification in
terms of identifying causal applications of traffic flows. The ready
availability and wide use of NetFlow1 data motivate our work. The
NetFlow [2] system, embodied in many commercial routing prod-
ucts, is a source of data in common use by operators. Such data
have been used for accounting and billing, and more recently has

1We acknowledge that NetFlow may refer specifically to the Cisco
implementation of packet-trace statistics; equivalent approaches in-
clude the NetStream approach of Huawei and cflowd of Juniper.
Throughout this paper we will refer to all such flow-level informa-
tion, generally, as NetFlow.



seen increased use for anomaly detection and capacity planning.
NetFlow systems can be adjusted to be low in overhead compared
to packet level monitoring. Furthermore, there is negligible ex-
tra operational burden on using NetFlow data for new applications.
A number of the larger ISPs regularly collect many terabytes of
NetFlow data each year and archive them for long-term planning
purposes allowing the prospect of networkarchaeologyto further
understand the changing application mix.

In this paper, we adopt the taxonomy that originated with the
Class of Service(CoS) mapping-work of [11], and was further ex-
tended in [7]. The nature of each Internet application allows the
wide variety of services to be divided into several discrete cate-
gories, for example, web-browsing, multimedia, telephony (VoIP),
email activities, peer-to-peer and FTP file transfers, and malicious
traffic (e.g., worms). Our approach provides best operation using
the full features of a NetFlow record, including ports and IP ad-
dresses. While acknowledging the site-specific nature of this ap-
proach, we see such a system as fulfilling an important position
among identification methodologies. One application has been the
identification and tracking the behavior of hosts to better recognize
anomalies . Another example is in the monitoring of SLAs between
two parties in an outsourcing arrangement. In such an arrangement
it is in both parties’ interests to ensure that the behavior of plant
stays within the agreed operating terms. Our techniques are a low-
overhead mechanism to allow for system roles to be identified prior
to such an agreement, and then allow issues such as a changing mix
of applications to be identified at an early stage.

The remainder of this paper is organized as follows. Alongside
the theoretical underpinnings of our classification methodology, the
mechanisms of NetFlow and background details on our evaluation
datasets are given in Section 2. Section 3 details both our baseline
evaluation and improvement gains. Alongside a summary of perti-
nent conclusions, Section 4 provides directions for future work.

2. NETFLOW DATA AND FLOW-LEVEL
TRAFFIC CLASSIFICATION

The classification of network traffic has been performed previ-
ously using features derived from streams of packets. Such feature-
collections are often huge (200+ features) and range in complexity
from Fourier-Transformations and quartile statistics to mean and
variance of packet inter-arrival time and the number of TCP SACK
packets. In such cases all the packets must be observed for the
statistic to be usefully computed, however the classification accu-
racy has been shown to be very good (e.g.,>95%) [8, 14]. The
disadvantage of this approach has been the complexity and costs
associated with the collection, aggregation, and generation of the
desired packet-derived features, a significant factor impeding the
wide deployment of the proposed techniques. In contrast, exten-
sive vendor support has meant flow-level statistics, such as Cisco
NetFlow, are widely available. Our motivation is to test if NetFlow
information is sufficient to accurately classify the traffic. Hence,
we first need to examine the capability of the flow-level statistics.

Examining Cisco NetFlow as an example, NetFlow [2] may be
one of the most widely used traffic monitoring tools in the Internet
today. NetFlow generates flow statistics of traffic flowing through
a router. In NetFlow v5, the most common version, aflow is de-
fined as a unidirectional sequence of packets between a particular
pair of source and destination IP addresses. For each flow, Net-
Flow maintains a record in the router memory containing a number
of fields including the source and destination IP addresses, source
and destination port numbers, inbound and outbound network in-
terfaces, transport protocol, IP type of service, flow starting and

finishing timestamps, cumulative TCP flags, and number of bytes
and number of packets transmitted. Later NetFlow versions contain
additional fields such as MPLS labels and flexible template for flow
definition in NetFlow v9. Upon timeout of a flow record cache, a
UDP/IP packet is generated and forwarded to a NetFlow collector,
which processes and stores the NetFlow records. As obtaining and
maintaining NetFlow data may also be computationally expensive
for routers, especially in high-speed networks, packet sampling, ei-
ther deterministic or random, can be applied. In the rest of the
paper, we will rely on the flow statistical information provided by
NetFlow v5 for traffic classification.

2.1 Näıve Bayes Classification and Kernel Es-
timation

For the purpose of classification, machine learning technique is
applied to the NetFlow flow record. The flow record may thus be
considered as a series of data samplesx = {x1, . . . , xn}, which
is a realization ofX = {X1, . . . , Xn}. Each random variableXi

is described bym features(A1, . . . , Am) that can take numeric or
discrete values. Chosen from the features are a set of discriminators
(also referred to as attributes) that are utilized for classification.
Assume that there arek known classes of interest, represented by
C = {c1, . . . , ck}. Each class is characterized by a distribution
function,f(·|cj), which describes the membership characteristics
of classcj over the defined features. Given an unobserved flowy,
the posterior probability thaty belongs to classcj can be calculated,
according to Bayes rule, as follows:

p(cj |y) =
p(cj)f(y|cj)

P

cj

p(cj)f(y|cj)
,

wherep(cj) denotes the prior distribution of being in classcj .
The goal of supervised traffic classification is to estimatef(·|cj),

given some training setx. By assuming the form of multidimen-
sional Gaussian mixtures (with inherent independence assumption
across features), naı̈ve Bayes kernel approach estimatesf(·|cj) by
fitting over the training data. The estimation of the real density
f(·|cj) is hence given by

f̂(t|cj) =
1

ncj
h

X

xi∈cj

K(
t − xi

h
),

whereh is called the kernel bandwidth andK(t) is a kernel distri-
bution, e.g., standard Gaussian densityK(t) = 1√

2π
exp(−t2/2),

−∞ < t > ∞ for numeric values, and uniform densityK(t) =
1

2
1, −1 ≤ t ≤ 1 for discrete values. Similar to [8], we set the

kernel bandwidthh as in the default value of the WEKA software
suite[12], which we use to perform calculations in this work.

Despite a greatly reduced number of features in the NetFlow
records (in contrast to packet-derived features), it remains impor-
tant to eliminate irrelevant, as well as redundant, features for the set
of features that individually correlate well with the class but have
little inter-correlation. We use the symmetric uncertainty measure
to rank the relevance of the features:

U(Ai, C) = 2
H(Ai) + H(C) − H(Ai, C)

H(Ai) + H(C)
,

whereH(·) is the entropy function, andC is the flow class (consid-
ered as an feature). Note that symmetric uncertainty always lies be-
tween 0 and 1. Furthermore, we use the correlation-based measure
to determine the goodness of any given subset,S, of the features:

X

Aj∈S

U(Aj , C)

,

s

X

Ai∈S

X

Aj∈S

U(Ai, Aj)



By adding features sequentially in the decreasing order of sym-
metric uncertainty and monitoring the amount of increase in the
goodness measure, we select the desired set of features.

2.2 Evaluation Dataset and NetFlow Genera-
tion

Throughout this study we have used data collected by the high-
performance network monitor described in [6]. We use its loss-
limited, full-payload capture to disk providing time-stamps with
resolution of better than 35 nanoseconds. The site we examined
hosts several Biology-related facilities, and collectively employs
about 1,000 researchers, administrators and technical staff. This
site is connected to the Internet via a full-duplex Gigabit Ethernet
link. It was on this connection to the Internet that our monitor was
placed. Traffic was monitored for each traffic-set consists of a full
24-hour, weekday period and for both link directions. The data-
details are further provided in [7].

The manner of sampling consists of taking several fixed length
periods from randomly placed, non-overlapping periods through-
out a 24-hour day. Section 5.1 of [8] provides a comprehensive
description of the sampling mechanism.

This collection of traffic data was hand-classified into a num-
ber of application classes including web browsing (WWW), Email,
Bulk, Attack, P2P, Database, Multimedia, Service, Interaction, and
Games. Overall, our experimental dataset contains over 48.8 mil-
lion IP packets that constitute about 0.8 million TCP flows and 3.5
million UDP/ICMP flows in total. While we focus on the accuracy
of classifying TCP flows, all IP data was used as input to our work
as we wish for the NetFlow flow-cache behavior to be as realistic
as possible.

To obtain NetFlow records from the packet traces collected, we
utilize nProbe, a software implementation of Cisco NetFlow. The
nProbe, providing a flexible PC-based implementation of NetFlow,
allows the use of trace data (e.g., pcap packet-trace files), as input,
thereby permitting repeatability of experiments. In this way we are
able to feed our packet-traces to nProbe and collect flow records
with different settings of packet sampling rate. We set the number
of cache entries to 65,536, which corresponds to the default value in
Cisco 7200 series and 7500 series routers, and set the cache timeout
interval (for both active and inactive flows) to be 60 seconds, which
corresponds to the configuration in a Tier-1 ISP network that we
surveyed. We presume no loss between nProbe and the NetFlow
collector.

Note that not all fields in the nProbe output are meaningful, for
example, the inbound and outbound interfaces. We also exclude the
transport protocol field as we restrict our study to TCP flows (97%,
by volume of the total dataset). Table 1 summarizes the substantial
features in the raw flow records. In addition, we also explore a set
of derivative features and describe them in the same table.

3. EVALUATION AND IMPROVEMENT
We apply the described Bayes and kernel estimation technique to

the NetFlow records for application identification, and demonstrate
the feasibility of this approach. We attempt to answer a number of
questions in this section: (1) does this technique accurately identify
the applications? (2) is there room to further improve its accuracy?
(3) can we bound the computational complexity without affecting
its accuracy? (4) is it robust if the flow records are obtained at low
sampling rate? The purposes of this evaluation are to demonstrate
that the proposed classification techniques are effective, and to in-
vestigate the tradeoffs between the accuracy of classification and
the complexity/overhead of NetFlow system.

Baseline features Explanations
srcIP/dstIP source/destination IP address
srcPort/dstPort source/destination port address
tos IP type of service
sTime/eTime flow start/end timestamp
tcpFlag cumulative OR of TCP flags
bytes total number of bytes observed
pkts number of packets observed

Derivative features Explanations
length duration of flow (eTime−sTime)
pktSize average packet size (bytes/pkts)
byteRate average flow rate (bytes/length)
pktRate average packet rate (pkts/length)
tcpFxxx xxx=syn/ack/fin/rst/psh/urg flag

Table 1: Baseline features and derivative features in the flow
records.

3.1 Baseline Experiments
In our baseline experiment, we take the straightforward approach

of exploring only the baseline features in the flow records. Unless
otherwise noted, the dataset is split randomly into two subsets of
equal size, with one of them being used as the training data and the
other to test the accuracy of the classification. As the objective is
to identify the type of applications for each flow, the accuracy is
measured by the percentage of flows correctly classified. The re-
sult is very encouraging: we find the accuracy of classification is
about 88.3%. This accuracy is already significantly higher than that
of industry standard techniques which use the TCP port number to
achieve only an accuracy of 50-70% [8, 7], although it is lower than
the accuracy of classification techniques based upon packet-derived
features (>95% as reported in [3, 8]). We expect the reason for this
lower accuracy is due to that there is not enough information in
a tuple alone to differentiate some application types; for example,
Voice-over-IP traffic using port 80 may be confused with web traf-
fic.

To understand which features are more relevant, we calculate the
symmetric uncertainty values of all features, and show them in Fig-
ure 1 in descending order; thederivativefeatures in Table 1 are also
shown in this figure but will be explained in the next section. As
expected, among others, the port numbers, the type-of-service, and
the cumulative TCP flag all appear highly relevant. Interestingly,
the IP addresses also show high relevance. This is due to that the IP
addresses often reflect role-specific information on the placement
of the services, e.g., one machine is a mail server, and another is a
web server.
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3.2 Generic Derivative Features
Alongside the baseline features, Figure 1 also shows high sym-

metric uncertainty values for several derivative features: tcpFack,
pktSize, and length as described in Table 1. As we expect it is
possible to improve the performance by using derivative features
in classification, the result of our experiment is disappointing: we
obtain only an improved accuracy value of 89.06%. We should
emphasize that the improvement is insignificant and possibly is an
artifact from this particular dataset. We conjecture that the deriva-
tive features are derived using only simple (albeit non-linear) math
operators, and so they may not carry significantly more informa-
tion than the baseline features. For instance, the derivative pktSize
is derived from the number of bytes and the number of packets.

A specific example of the improvement in accuracy provided by
derivative features is the addition of tcpFack. This is a single bit
representing the presence/absence of the TCP ACK flag on data
packets within a flow during a cache timeout interval. This flag al-
lows a differentiation of the Email and Bulk traffic classes from the
web browser traffic class, as the former two classes tend to have
little full-duplex activity, hence no ACK, in the client-to-server di-
rection.

3.3 Application-aware Derivative Features
While our baseline experiments reveal the effectiveness of the

classification technique using the described features, it is possible
to derive more meaningful features by understanding how different
applications lead to different characteristics in NetFlow records.
This subsection gives an example: the TCP port number.2 Prior
work on application identification, for example [9, 1], has frequently
used the TCP port number to obtain a reasonable accuracy at 50-
70%. In the IANA port allocation it is a common practice for the
ports numbered 1–1024 to refer to specific privileged services and
protocols. For instance, web servers usually use port 80 as the lis-
tening port to accept client connection requests, while a client pro-
gram may take any random port number which must be large (e.g.,
larger than 1024). Hence, the smaller port number of a flow, more
likely used by a server, is considered more informative in traffic
classification. We call this feature the “low port” and the larger
port number of the flow the “high port”.

The relevance of these two features is best illustrated in Figure 2,
which highlights their symmetrical uncertainty values among those
from Figure 1. The low port becomes a predominant feature. Its
symmetrical uncertainty, and thus its entropy, is at least four times
larger than those of the other features. This result is consistent with
prior traffic classification efforts that have relied upon this feature.
Meanwhile, the symmetrical uncertainty of the high port is only
0.04, and thus may contribute much less to improving the accu-
racy of classification. Nevertheless, the specific inclusion of these
two features in the feature set leads to only a marginally improved
accuracy of 91.4%, or intepreted in another way, approximately
a 20% reduction in the number of misclassifications. We conjec-
ture it is because the accuracy is already relatively high with the
kernel estimation technique, leaving little room for improvement
(recall that classification using the more comprehensive feature-set
derived from streams of packets yields only a 95% accuracy).

3.4 Reducing Feature Complexity
The computational complexity of many traffic classification tech-

niques, in terms of both sampling overhead and classification algo-
rithm complexity, can be high due to the large number of features
2We believe this general approach (of exploring knowledge of the
applications) can also be applied to derive other meaningful fea-
tures to further improve accuracy.
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and the large size of the dataset. In many applications, reducing
this complexity is desirable if the impact on the accuracy of clas-
sification is negligible, although for offline classification tasks, it
is not a terrible tradeoff to tolerate a longer processing time for a
marginally improved accuracy. In the next two subsections, we
consider approaching this problem from both directions: reduc-
ing the dimensionality (i.e., number of features), and reducing the
dataset size (i.e., number of flows).

The inclusion of the derivative features may suggest that many
features become redundant. For example, the starting time and the
ending time of a flow may no longer be important once we have
the derivative “flow length”. The cumulative TCP flags may not be
useful either since we have variables to represent each individual
flag. In addition, some features, such as the source and destination
IP addresses, may be particularly site-dependent, which one may
opt to omit in the feature set. While we may exclude these features
to reduce time complexity, we hope the accuracy of classification
is minimally affected. We thus compare the following feature sets:
(1) baseline features, (2) all features, (3) all features excluding sr-
cIP/dstIP, (4) all features excluding srcIP/dstIP, sTime, eTime and
tcpFlag, and (5) acompactset of features determined by the fea-
ture selection algorithm described in Section 2.1. Figure 3 shows
the accuracy of the classification result. We observe that the accu-
racy remains reasonably high by removing irrelevant and redundant
features, while the running time of the kernel estimation algorithm
is greatly reduced—from about 30 hours using the all features fea-
ture set (2) to less than 30 minutes using the compact feature set
(5) with three features (“low port”, “tos”, and “tcpFlag”) under the
same hardware/software settings.
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3.5 Reducing the Training-Set Size
The use of a small training set can be critical in an environ-

ment where the (manual) classification of a large quorum of data
is impractical. Figure 4 illustrates the relationship between the size
of the training set and the accuracy of the classification approach.
The accuracy value is the average from 10 experiments with dif-
ferent seeds. Most notably, despite varying the training set through
three orders of magnitude, the accuracy of the classification pro-
cess varies by less than 8%. The results illustrated here allow us to
be confident in the promotion of this method as a mechanism for
the tracking of host behavior using a relatively small set of training
data.
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At first glance Figure 4 may appear to be counter-intuitive, how-
ever the increasing accuracy of the results is proportional to a com-
bination of the size of the training-set and the number of features.
This may be identified as caused by the (relatively) small number
of flows that are not (clearly/uniquely) identified by the features of
the compact-feature set. The inclusion of a number of additional
features along with the inclusion of a number of samples to allow
both differentiation of these hitherto unclearly defined flows and a
minimization of the mis-classification of other flows leads to an in-
creasing accuracy once the training set contains a sufficient number
of samples. The low accuracy of the wide-range of features when
the training data does not provide sufficient coverage is caused by
the inverse effect: the large error bar results from the sample of data
simply not providing a sufficiently representative sample when the
classifier is exposed to all features - this in-turn leads to the mis-
classification and the level of (in)accuracy noted.

3.6 Impact of Packet Sampling
Packet sampling is a common practice in operational use of Net-

Flow. Sampling mechanisms are often implemented in hardware to
reduce the impact upon both router and NetFlow infrastructure. In
contrast to previous sections where no packet sampling occurs, we
configure nProbe to extract flow records based upon packet sam-
pling.

While packet sampling, e.g., even at a light sampling rate of 1%
or 10%, may dramatically reduce the overhead at routers, espe-
cially in high-speed networks, it is not clear whether such sampling
will have a negative impact on the accuracy of our flow classifica-
tion techniques. To that end, we conduct the following experiment.
First, we show in Figure 5 the number of collected flows varying
with the packet sampling rate. Overall, packet sampling does not
result in a significantly smaller number of obtained flows. For in-
stance, at the 0.1% sampling rate, nProbe still outputs 20% of the
maximum number of flows obtained when no sampling is used.

We then test our classification technique using the flow records
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Figure 5: Number of flows observed by varying packet sam-
pling rate.

collected at different sampling rates. Figure 6 shows the accuracy
varying with the sampling rate for two feature sets: all-features set
and the compact feature set. The results show that the use of packet
sampling does not affect the kernel estimation technique much. An
interesting observation from Figure 6 is that when sampling rate
is very low, e.g., 0.1%, the accuracy of classification is slightly
higher. This, however, is because of an artifact of the packet sam-
pling — when sample rate is very low, a more homogeneous set
of large flows can survive the sampling, which perceivably leads to
more accurate classification. This also suggests that one should be
cautious in using flow characteristics derived by NetFlow data with
packet-sampling enabled, as the result may be biased.
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4. CONCLUSION & FUTURE WORK
Internet network management has developed in parallel with an

Internet that has seen continual growth in the variety and number
of applications, networks, and hosts. In response to such contin-
ual development, network management must provide a wide range
of services, such as performance guarantees, network planning,
and long-term traffic modeling, alongside day-to-day activities of
anomaly detection and mitigation. Motivated by this wide range of
needs we introduce a technique for lightweight application classi-
fication. Our approach to application classification is based upon
flow-level statistics based directly upon standard NetFlow records.
Alongside allowing a low-overhead, widely applicable identifica-
tion mechanism — NetFlow records are commonly available to
network operators — we show that significant improvement may
be made through the introduction of derivative features computed
in a straightforward way from standard NetFlow values. Further,



we have illustrated that our approach functions across a range of
NetFlow sampling rates.

While acknowledging the site-specific nature of the classifier, we
see such a use as fulfilling a unique position among identification
methodologies: for example, site-specific bias is ideal if opera-
tors wish to identify anomalies in the behavior of server systems.
The precise identification (and low-overhead monitoring) of system
roles could see a NetFlow-based method applied to the monitoring
of SLAs for outsourcing agreements.

We present our work not as a complete solution in this field but
as a low-overhead and effective methodology that has a number of
valuable uses. We believe we will require adaptive learning and
classification schemes like this to enable and maintain solutions in
fields such as traffic engineering, anomaly detection, and dynamic
application-centric resource control in the next generation Internet.

Future Work
Noting that the use of additional features has proved valuable, a
future item would be to explore the use of templates and other en-
hanced features and extensions to the commonly used NetFlow v5
implementation (see Section 2). Moreover, we acknowledge the
use of näıve machine learning methods and foresee that methods
such as a combination of C4.5 decision-trees and boosting would
provide a contrasting approach: one based only upon the exis-
tence of samples and not weighted by evidence-based probabili-
ties. Additionally, further work could usefully investigate more
sophisticated application models. Models that encapsulate site-
independence would clearly be advantageous but even models that
encapsulate varying time-dynamics would be useful. An exam-
ple application of this might be an application-specific classifier
as anomaly detector. Such a model would permit the identification
of behavior, normal for one time of the day, but peculiar at another
period.

Another important piece of further work is the application and
testing of our methods to clarify properties of spatial and temporal
stability. With information about both the decay properties of any
classifier and of the effectiveness of a classification scheme across
multiple locations, it would become clear precisely what was the
trade-off between training complexity and wide-ranging applica-
tion.
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