
 Open access  Journal Article  DOI:10.1109/TSE.2019.2903057

Lightweight Assessment of Test-Case Effectiveness Using Source-Code-Quality
Indicators — Source link 

Giovanni Grano, Fabio Palomba, Harald C. Gall

Institutions: University of Zurich

Published on: 01 Apr 2021 - IEEE Transactions on Software Engineering (IEEE)

Topics: Test case, Lightweight methodology, Mutation (genetic algorithm) and Source code

Related papers:

 Refactoring test code

 On the Relation of Test Smells to Software Code Quality

 xUnit Test Patterns: Refactoring Test Code

 Are test smells really harmful? An empirical study

 Automatic test case generation: what if test code quality matters?

Share this paper:    

View more about this paper here: https://typeset.io/papers/lightweight-assessment-of-test-case-effectiveness-using-
3hu9d06aau

https://typeset.io/
https://www.doi.org/10.1109/TSE.2019.2903057
https://typeset.io/papers/lightweight-assessment-of-test-case-effectiveness-using-3hu9d06aau
https://typeset.io/authors/giovanni-grano-1tz1uy5otv
https://typeset.io/authors/fabio-palomba-55j5zp8kdo
https://typeset.io/authors/harald-c-gall-35lv7iz84j
https://typeset.io/institutions/university-of-zurich-144im07m
https://typeset.io/journals/ieee-transactions-on-software-engineering-26rjzvlm
https://typeset.io/topics/test-case-7ehjd9bt
https://typeset.io/topics/lightweight-methodology-14c3bp79
https://typeset.io/topics/mutation-genetic-algorithm-lj9m5lzj
https://typeset.io/topics/source-code-7v292uts
https://typeset.io/papers/refactoring-test-code-1qamnaap7y
https://typeset.io/papers/on-the-relation-of-test-smells-to-software-code-quality-24llw14exd
https://typeset.io/papers/xunit-test-patterns-refactoring-test-code-31rb9bms52
https://typeset.io/papers/are-test-smells-really-harmful-an-empirical-study-4m3nh359qn
https://typeset.io/papers/automatic-test-case-generation-what-if-test-code-quality-50h4ymh7is
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/lightweight-assessment-of-test-case-effectiveness-using-3hu9d06aau
https://twitter.com/intent/tweet?text=Lightweight%20Assessment%20of%20Test-Case%20Effectiveness%20Using%20Source-Code-Quality%20Indicators&url=https://typeset.io/papers/lightweight-assessment-of-test-case-effectiveness-using-3hu9d06aau
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/lightweight-assessment-of-test-case-effectiveness-using-3hu9d06aau
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/lightweight-assessment-of-test-case-effectiveness-using-3hu9d06aau
https://typeset.io/papers/lightweight-assessment-of-test-case-effectiveness-using-3hu9d06aau


Zurich Open Repository and

Archive

University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2021

Lightweight Assessment of Test-Case Effectiveness using

Source-Code-Quality Indicators

Grano, Giovanni ; Palomba, Fabio ; Gall, Harald

Abstract: Test cases are crucial to help developers preventing the introduction of software faults. Unfor-
tunately, not all the tests are properly designed or can effectively capture faults in production code. Some
measures have been defined to assess test-case effectiveness: the most relevant one is the mutation score,
which highlights the quality of a test by generating the so-called mutants, ie variations of the production
code that make it faulty and that the test is supposed to identify. However, previous studies revealed
that mutation analysis is extremely costly and hard to use in practice. The approaches proposed by re-
searchers so far have not been able to provide practical gains in terms of mutation testing efficiency. This
leaves the problem of efficiently assessing test-case effectiveness as still open. In this paper, we investigate
a novel, orthogonal, and lightweight methodology to assess test-case effectiveness: in particular, we study
the feasibility to exploit production and test-code-quality indicators to estimate the mutation score of a
test case. We firstly select a set of 67 factors and study their relation with test-case effectiveness. Then,
we devise a mutation score estimation model exploiting such factors and investigate its performance as
well as its most relevant features. The key results of the study reveal that our estimation model only
based on static features has 86% of both F-Measure and AUC-ROC. This means that we can estimate the
test-case effectiveness, using source-code-quality indicators, with high accuracy and without executing
the tests. As a consequence, we can provide a practical approach that is beyond the typical limitations
of current mutation testing techniques.

DOI: https://doi.org/10.1109/TSE.2019.2903057

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-169143
Journal Article
Accepted Version

Originally published at:
Grano, Giovanni; Palomba, Fabio; Gall, Harald (2021). Lightweight Assessment of Test-Case Effective-
ness using Source-Code-Quality Indicators. IEEE transactions on software engineering, 47(4):758-774.
DOI: https://doi.org/10.1109/TSE.2019.2903057



1

Lightweight Assessment of Test-Case
Effectiveness using Source-Code-Quality

Indicators

Giovanni Grano, Fabio Palomba, and Harald C. Gall

Abstract—Test cases are crucial to help developers preventing the introduction of software faults. Unfortunately, not all the tests are

properly designed or can effectively capture faults in production code. Some measures have been defined to assess test-case

effectiveness: the most relevant one is the mutation score, which highlights the quality of a test by generating the so-called mutants,

i.e., variations of the production code that make it faulty and that the test is supposed to identify. However, previous studies revealed

that mutation analysis is extremely costly and hard to use in practice. The approaches proposed by researchers so far have not been

able to provide practical gains in terms of mutation testing efficiency. This leaves the problem of efficiently assessing test-case

effectiveness as still open. In this paper, we investigate a novel, orthogonal, and lightweight methodology to assess test-case

effectiveness: in particular, we study the feasibility to exploit production and test-code-quality indicators to estimate the mutation score

of a test case. We firstly select a set of 67 factors and study their relation with test-case effectiveness. Then, we devise a mutation

score estimation model exploiting such factors and investigate its performance as well as its most relevant features. The key results of

the study reveal that our estimation model only based on static features has 86% of both F-Measure and AUC-ROC. This means that

we can estimate the test-case effectiveness, using source-code-quality indicators, with high accuracy and without executing the tests.

As a consequence, we can provide a practical approach that is beyond the typical limitations of current mutation testing techniques.

Index Terms—Automated Software Testing, Mutation Testing, Software Quality

✦

1 INTRODUCTION

Software testing is a crucial part in the process of evolv-
ing and delivering high quality software, especially when
catching regression faults [1]. Development teams rely on
test case results and code reviews to decide on whether to
merge a pull request [2] or to deploy a system [3]; moreover,
their productivity is partly dependent on the quality of tests
[4]. Thus, being able to assess the reliability of a test case
is of a paramount importance for a number of software
maintenance and evolution activities.

In recent years, the research community heavily inves-
tigated novel approaches for automatically evaluating the
quality of tests [5]. Amongst the others, mutation testing
is widely recognized as the high-end test coverage criteria
[5]: the basic concept of mutation testing is the creation
of artificially modified versions of the source code, called
mutants [6]. Changes in the production code are introduced
by mutation operators to mimic real faults [7]; at the end, the
test suite is executed against such mutants and evaluated
according to the resulting mutation score, i.e., the ratio of
detected (i.e., killed) mutants over the total number of gen-
erated ones. Previous studies showed that mutation testing
provides developers with a better and trustworthy test-case
effectiveness measure with respect to other code coverage
criteria (e.g., branch or block coverage) [7], [8].

Despite being so powerful, mutation testing still has
one major limitation: it is an extremely expensive activity

• G. Grano, F. Palomba and H.C. Gall are with the University of Zurich,
Switzerland
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since it requires (i) the generation of the mutants, (ii) their
compilation, and (iii) the execution of the test suites against
each of them. Given its nature, this process becomes harder
and harder as the size of a system increases during its
evolution or when the frequency of commits is high [9].

To address the scalability limitation of mutation testing,
researchers investigated three types of approaches [10]: (i)
the “do fewer” ones, where the goal is to select a subset of
mutants to evaluate; (ii) the “do smarter” ones, that exploit
run-time information to avoid unnecessary test executions;
and (iii) the “do faster” ones, that aims at reducing the
execution time for each single mutant [11]. While these ap-
proaches provided some promising results, Gopinath et al.
[12] showed that most of them do not provide enough prac-
tical gain in terms of mutation testing efficiency if compared
with a random selection of mutants. As a consequence,
the problem of automatically assessing test-case effectiveness in
a timely and efficient manner is still far from being solved.

In this paper, we present a novel methodology to as-
sess test-case effectiveness, which is orthogonal to exist-
ing approaches. Rather than working on the quality or
quantity of mutants to generate, we investigate to what
extent we can estimate test-case effectiveness—as indicated by
mutation analysis—by using source-code-quality indicators
computed on both production and test code (e.g., quality
metrics [13] or code/test smells [14], [15]). It is important
to immediately point out that the use of Machine Learning
(ML) techniques in the context of mutation testing has been
initially explored by Zhang et al. [16], who proposed a
classification model aiming at selecting the most powerful
mutants by predicting whether a mutant will be killed or
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not. Their technique, therefore, can be seen as an assistant
tool for other mutation testing assessment techniques, which
can use the model to speed up their performance. The
goal of this paper is diametrically different, as we aim
at studying the possibility to devise a estimation model
able to directly estimate the mutation score of test classes
relying on source-code-quality metrics. We argue that such
a predictive model might be exploited (i) to limit the use of
mutation analysis, e.g., by focusing expensive computations
only on some specific tests, and (ii) to support developers in
understanding what are the characteristics (i.e., the features
used by the estimation model) of both production and test
code that limit/boost test-case effectiveness.

With this aim, we firstly conduct an exploratory study
to understand the relation between 67 different factors and
test-case effectiveness. On the basis of this preliminary
study, we then propose and evaluate a Machine Learning
model to discern effective tests from non-effective ones.

The key results of our study reveal significant differences
between effective and non-effective test code with respect to a
number of test and production-code factors, which can be
thus further explored. A test-code effectiveness estimation
model exploiting static code-quality metrics can achieve
about 86% of both F-Measure and AUC-ROC; moreover,
when compared with a model that also includes statement
coverage as predictor (i.e., the coverage criterion that is
more related to test-code effectiveness according to recent
findings [16], [17]), we observe that the use of dynamic in-
formation can only provide partial improvements, thus not
being extremely needed for obtaining better performance.
We argue that the devised static model can be practically
useful to assess test-case effectiveness in a real-case scenario,
since it does not require the execution of the test cases.

Replication package To enable full replicability of this study,
we publish all the data extraction and analysis scripts in our
replication package [18].

2 RELATED WORK

Mutation testing is an expensive activity and, thus, research
has been conducted in last years to reduce its computational
cost. In this section, we present an overview of the various
approaches presented to achieve such a goal. For the sake of
space limitation, we do not discuss previous work having
as goal the definition of techniques for improving mutation
testing. However, a complete overview on these approaches
is available in the survey conducted by Jia and Harman [5].

Offutt and Untch [10] grouped techniques for speeding-
up mutation analysis into three distinct categories, i.e., do
fewer, do smarter, and do faster. The first category has been
the most investigated one: It aims at reducing the number
of mutants to be evaluated. Kurtz et al. [19] relied on sym-
bolic execution to build static subsumption graphs, where a
mutant subsumes another if tests that kill the first also kill
the second one. Such graphs are then used to reduce the
number of mutants to consider for the mutation analysis.
Strug and Strug [20] used machine learning classification
algorithm to detect and discard similar mutants. The pro-
posed approach relies on a hierarchical graph representation
of mutants, representing a graph kernel using to compute
the similarity. Just et al. [21] exploited run-time information

in order to reduce the number of mutant executions. When
two mutants lead to the same state, only one execution is
needed, while the other can be inferred. Recently, Gopinath
et al. [12] empirically showed that common mutation reduc-
tion techniques do not give advantage over random sam-
pling, given the tiny effectiveness improvements and the
considerable introduced overhead. Zhu et al. [11] showed
how to improve the efficiency of mutation testing adopting
Formal Concept Analysis to cluster mutants and test cases
based on reachability (code coverage) and necessity (weak
mutation) conditions. Their results show that the approach
can speed up mutation analysis up to 94 times, maintaining
an accuracy > 90%. The papers discussed above share
the goal of reducing the computational time required to
apply mutation testing and assess test-case effectiveness.
Our work has the same underlying objective: nonetheless,
we propose a drastically different alternative, namely a
lightweight estimation model exploiting static source-code-
quality attributes as opposed to more expensive compres-
sion or dynamic approaches.

The closest work to the proposed one is the study of
Zhang et al. [16]. They devised a classification model relying
on 12 static and dynamic features to estimate whether a
mutant will be killed or not, showing that code coverage
can be a powerful indicator for assessing the quality of
single mutants. Therefore, the approach aims at selecting the
most powerful mutants in order to reduce the overall cost of
mutation analysis. While Zhang et al. [16] initially showed
the suitability of Machine Learning techniques in the context
of mutation testing, they limit the approach to the evalu-
ation of the quality of single mutants, as opposed to test
cases. Moreover, they need to collect a series of dynamic
information about code coverage and execute mutation
testing, which still remains computationally costly besides
requiring the exploitation of several tools for gathering the
features to be used in the model and possibly hampering its
applicability in a real-case scenario. Conversely, our work
has a different and more comprehensive goal, namely the
one of exploiting Machine Learning models to (i) estimate
the overall effectiveness of test cases without performing
any mutation analysis and (ii) support developers in the
understanding of the key factors to take into account while
developing test cases.

Furthermore, other Machine Learning applications have
been experimented for software testing. Daka et al. [22]
adopted the readability prediction model originally pro-
posed by Buse and Weimer [23] in the context of auto-
matic test case generation with the goal of improving the
comprehensibility of the generated tests, while Grano et al.
[24] preliminarily assessed the feasibility of branch coverage
prediction models, showing promising results. Our work
can be seen as complementary with respect to these papers,
as it aims at estimating test-case effectiveness as measured
by mutation score.

Finally, it is worth to remark that the proposed model
could be helpful to filter out non-effective test cases. This
potentially makes it suitable for improving existing test-
case selection, minimization, and prioritization approaches
[25]. As an example, the output of our model could be
employed within search-based solutions (e.g., [26], [27]) as
an additional fitness factor.
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3 EMPIRICAL STUDY VARIABLES

The first step of our analysis is the selection of dependent
and independent variables.

3.1 Dependent Variable

As dependent variable we use the mutation score, i.e., the
percentage of killed mutants over the total of number of
generated mutants [5]. The choice is driven by previous
research in the field of software testing, which reports muta-
tion score to be the most important code coverage criterion
[5] as well as one the most relevant indicators for developers
[7], [8]. To compute the mutation score, we rely on PITEST1

(or PIT). This choice is due to the fact that PIT was found
to be the most mature publicly available mutation testing
tool [28] and has been shown to limit the generation of
equivalent mutants [29]. Moreover, it has been employed
by most studies concerning mutation testing in the last
years [4], [30], [31]. PIT generates mutants via bytecode
manipulation and provides a wide set of built-in mutators. It
provides a total of 13 mutation operators: 7 are active by de-
fault, i.e., Conditional Boundary, Increments, Invert Negatives,
Math, Negate Conditional, Return Values and Void Method Calls
Mutator; 6 are by default deactivated, i.e., Constructor Calls,
Inline Constant, Non Void Method Calls, Remove Conditionals,
Member Variable and Switch Mutator. In the context of this
work, we apply all the 13 mutators provided by the tool:
in this way, we can have a representative set of mutants.
Indeed, we consider both line-related operators (e.g., Invert
Negatives) and class-related ones (e.g., Member Variable Muta-
tor), thus covering a wider range of of operators that better
simulate the presence of real faults in production code. For
the sake of space, we do not report a complete description
of the operators in the paper; however, this can be find
—along with code examples— in the PIT website.2 For
each production class being mutated, we only execute the
corresponding test case—retrieved according to the strategy
explained in Section 4.1—rather than executing every time
all the test cases of the considered projects (including those
that are not related to the mutated production class).

3.2 Independent Variables

In the context of this study, we consider a total of 67
factors along 5 dimensions i.e., Code Coverage, Test Smells,
Code Metrics, Code Smells and Readability. On the one hand,
we consider all the code quality dimensions that include
metrics statically computable: test smells, production and
test-code metrics, code smells, and readability. Such metrics
allow us to test whether the test effectiveness can be actually
related to source-code quality. On the other hand, we select
statement coverage with the aim of evaluating whether it
is actually needed to assess test effectiveness (more details
later in Section 4). Our final goal is to define a lightweight
estimation model only relying on static code-quality fea-
tures that can be quickly computed on the current version of
test classes. Therefore, we exclude from our analysis the so-
called process metrics (e.g., code churn or historical metrics
about the pass/fail results of the tests). In the following
sections, we briefly discuss the selection of the factors and

1 http://pitest.org 2 http://pitest.org/quickstart/mutators/

their extraction. For the sake of space, we report the detailed
definition of the metrics, as well as the exact versions and
parameters used by the data extraction tools, in the wiki
page of our replication package [18].

3.2.1 Code Coverage

Code coverage describes the degree to which the production
code is executed when a particular test case runs, and has
been largely used in software engineering to decide on
the quality of a test suite [32]. We compute the statement
coverage, i.e., the number of production code statements
executed by a test case, rather than other types of code
coverage (e.g., branch or block coverage) because of several
reasons: (i) Gopinath et al. [17] showed that this type of
coverage is the most related to test-case effectiveness, (ii)
it is fast computable by PIT and (iii) it has a direct relation
with mutation operators that act at line-level [17].

3.2.2 Test Smells

Test smells represent sub-optimal design or implementation
choices applied by developers when defining test cases [15],
[33], [34]. On the one hand, previous research showed that
the presence of test smells can lead the test code to be
less maintainable [35]–[37]. On the other hand, recent work
demonstrated that test smells can be related to problems like
test flakiness or fault-proneness of test and production code
[37], [38]. Thus, test smells may negatively influence the
overall ability of a test case to find faults in production code.
We investigate 8 different test smell types originating from
the catalog by van Deursen et al. [15] and that, together with
the others included in the catalog, have been shown to be
either related to maintainability or effectiveness issues [35],
[37], [38], i.e., Assertion Roulette, Eager Test, Lazy Test, Mys-
tery Guest, Sensitive Equality, Resource Optimism, For Testers
Only, and Indirect Testing. A description of these factors is
available in the wiki page of our replication package [18].

To detect these smells, we employ the detection tool
proposed by Bavota et al. [35], which has been employed
in several previous works in the area [34], [35], [38]. Unlike
other existing detection tools (e.g., [39], [40], or [41]), this tool
can identify all the test smells considered in this study with
a high precision and recall (88% and 100%, respectively).
To ensure the validity of the tool in the context of our
study, we re-evaluate the precision of the detector3 on a
statistically significant sample of 330 test smell instances
it identified over the considered systems (more details on
them in Section 4). Such a set is a 95% statistically significant
stratified sample with a 5% confidence interval of the 2,323
total smell instances detected by the tool. The validation has
been independently manually conducted by two authors
of this paper, who verified each test method and con-
firmed/refused the recommendation given by the detector.
We evaluate the resulting validation agreement using the
Krippendorff’s alpha Krα [42], a test that is generally more
reliable than other existing ones (e.g., Cohen’s k) [42]. The
agreement was equal to 0.94, considerably higher than the
0.80 standard reference score for Krα [42]. The remaining
instances were discussed until an agreement was reached.

3 The recall cannot be evaluated because of the lack of an oracle of test
smells for the considered projects.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at  http://dx.doi.org/10.1109/TSE.2019.2903057

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



4

As a result, the precision of the approach on our dataset is
85%, thus sufficiently accurate for performing our study.

3.2.3 Production and Test Code Metrics

This set is composed of 21 factors measuring both size and
complexity of the code in various ways. We compute those
metrics separately for both production and test code. Most
of them belong to the object-oriented (OO) metric suite pro-
posed by Chidamber and Kemerer [13], while others capture
complementary aspects (e.g., the McCabe cyclomatic com-
plexity [43]) or are an evolution of the original OO metrics
(e.g., the LCOM5 defined by Henderson-Sellers [44]). The
rationale for using these metrics is twofold. Firstly, larger
and more complex production classes might be harder to
test, and, as a consequence, writing effective test cases
for such classes might be harder [45]. Secondly, large and
complex test cases might deeper exercise the code under test
(CUT), leading to a better fault revelation capability.

3.2.4 Code Smells

Code smells indicate symptoms of the presence of poor
design and implementation choices [14]. Previous research
demonstrated that they contribute to the technical debt of
a system, possible affecting its maintainability [46], [47].
For this reason, we include code smells into the considered
factors; our hypothesis is that writing tests for smelly code
is harder, and therefore, tests tend to be less effective. In the
context of this work, we consider a total of 8 code smells, i.e.,
Class Data Should Be Private, Complex Class, Blob, Spaghetti
Code, Message Chain, Long Method, Feature Envy, Functional
Decomposition. Again, a detailed description of these smells
is available in the shared wiki page. The choice of selecting
this wide range of code smells is driven by the willingness
of reaching a high degree of representativeness with respect
to the entire set of code smells available in literature. Indeed,
we consider design flaws that affect most of the suboptimal
aspects of object-oriented design: from methods and classes
having poor cohesion and/or high coupling and complexity
to methods and classes presenting symptoms of poor encap-
sulation or, again, developed using a different programming
paradigm. Furthermore, these smells have different levels of
granularity and have been shown to be highly harmful for
both maintainability [47] and comprehensibility [48], [49].

We employ DECOR [50] to identify instances of the
considered code smells. While the authors of DECOR al-
ready showed its accuracy (F-measure=≈80%), we also re-
evaluated its precision in the context of our work to ensure
that this is the right tool to use. We follow a similar process
as the one described for test smells: We manually validate
a sample composed of 322 code smell instances output by
DECOR. Also in this case, the stratified sample is deemed to
be a 95% statistically significant (confidence interval=5%) of
the 1,967 code smell instances detected. The Krα agreement
between the two authors was 0.96. In this case, the precision
reached 75%: While this value can be considered pretty
high, we are aware of the existence of other detection tools
that might perform better (e.g., [51], [52]). Nevertheless, we
still preferred DECOR because it is lightweight and fast, as
opposed to other approaches (e.g., the ones that analyze the
entire change history of systems [51]).

3.2.5 Readability

The final dimension investigates the readability of both test
cases and production code. Besides being a desirable prop-
erty to have while performing maintenance and evolution
tasks [53], readability-based metrics have been related in
the past to the fault-proneness of source code [54]. Thus, it
is reasonable to think that might be easier to write effective
unit tests for readable production code [55]. At the same
time, test cases with poor readability can be harder to
be evolved and maintained [55], becoming less effective
overtime. To compute the readability scores on both tests
and CUTs, we rely on a state-of-the-art model defined by
Scalabrino et al. [56]. This model improves the seminal
work by Buse and Weimer [23] by (i) adding textual-based
features, being able to be more precise in the assessment of
readability, and (ii) training the model on both production
and test code, allowing its usability in both the contexts.
The approach computes the continuous readability level
r ∈ [0, 1] as the probability for a given class to be readable.
It is worth noting that we employed the original tool made
available by Scalabrino et al. [56] with the aim of avoiding
biases due to re-implementation.

4 RESEARCH QUESTIONS AND CONTEXT

The goal of the empirical study is to gain a deeper under-
standing about the factors that might affect the effectiveness
of test cases, i.e., the ability to reveal faults, with the purpose
of devising an automated approach able to support develop-
ers when assessing the goodness of test cases. The perspective
is of both researchers and practitioners: The former are
interested in evaluating the extent to which lightweight
code quality indicators can be exploited as an alternative to
standard mutation analysis to assess test-case effectiveness;
The latter are instead interested in more scalable solutions
to be adopted in a real use-case scenario.

To achieve our goal, we formulated three research ques-
tions (RQs). The first one represents a preliminary analysis of
the relation between the 67 independent variables selected
and discussed in Section 3 and test-case effectiveness—as
indicated by the mutation score. In particular, we aim at
understanding whether and to what extent the distribution
of the independent variables values differ for test cases hav-
ing high or low mutation scores. If so, this might possibly
indicate a dependence between independent and dependent
variables considered that can be further explored:

RQ1. Is there a relationship between the selected code-quality
factors and test-case effectiveness?

Once established the value of code quality metrics in
the context of test-case effectiveness assessment, we move
toward the definition of an automated technique, based on
Machine Learning approaches [57], able to estimate whether
a test is effective or not, based on its mutation score. This
leads to our second research question:

RQ2. To what extent can we estimate the effectiveness of test
cases?
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Besides evaluating the mutation score estimation model
as a whole, we then conduct a fine-grained analysis aimed
at investigating which are the most relevant features em-
ployed by the devised approach. This can provide further
information for developers with respect to the source code
aspects to keep under control to make a test case effective.
Thus, we formulate our third research question:

RQ3. What are the important code-quality factors that can
indicate that a test case is effective?

The following sections examine the methodological
choices applied to address our three research questions.

4.1 Context Selection

The context of the study is composed of 18 different Java
open source projects whose characteristics are reported in
Table 1. Specifically, the column “build” reports the build
tool (either Maven or Gradle) used by the selected projects;
the column “pairs” reports the number of 〈CUT, test〉 ana-
lyzed, i.e., the pairs of associated production and test classes;
the columns “LOC CUTs” and “LOC Tests” report the overall
size of production and test classes in the considered systems;
the column “mutants” shows the number of mutants gener-
ated for every project. We select such projects as follow: at
first, we select 8 Java open source projects from the list of
projects used by previous mutation testing studies [7], [58],
[59]: these are marked with a ‘*’ symbol in Table 1. Then, we
rely on Google BigQuery4 to select the most popular—based
on the number of stars—GITHUB’s Java projects in 2017. We
include the SQL query in our replication package [18].

4.2 Linking Production to Test Classes

We consider the mutation score achieved by a test case when
exercising the correspondent CUTs as a proxy measure of
test-case effectiveness. Hence, starting from the JUnit test
classes belonging to the considered systems, we need to
identify the production class associated with each of them,
i.e., we need to link each test class to a production class.

To select such pairs, depending on the build tool, we
rely either on the pom (for the MAVEN projects) or on the
build.gradle file (for the GRADLE ones). They contain
the rules to identify the test classes to execute when the
projects need to be built or packaged. We proceed as follows:
At first, we identify all the production and test classes by
scanning the pom or the gradle.build file, e.g., looking
for the sourceDirectory and testSourceDirectory

fields, in the former case. They indicate the location of
the production and test code, respectively. If those fields
are not explicitly reported, we consider the default source
and test directories. After that, we use the include and
exclude tag of the maven-test-plugin (or of the test
task, in the case of GRADLE), so that we consider only the
test cases that are actually ran when the project is built.
In other words, we consider all test cases that developers
of the subject systems ran when they test them, discarding
those that are likely to be not reliable from the developers’
perspective [60]. Once completed this filtering phase, we use

4 https://cloud.google.com/bigquery/

TABLE 1
Characteristics of the projects used for the empirical study

PROJECT BUILD PAIRS LOC CUTS LOC TESTS MUTANTS

RxJava Gradle 442 109,978 159,044 21,181

cat Gradle 62 11,918 5,052 9,850

checkstyle* Maven 228 61,931 46,995 64,330

closure-compiler* Maven 308 140,264 165,600 95,742

commons-beanutils* Maven 56 15,293 20,465 5,542

commons-collections* Maven 103 27,950 23,344 9,957

commons-io* Maven 61 11,397 9,088 4,315

commons-lang* Maven 109 75,160 52,610 39,975

commons-math* Maven 409 133,248 95,589 88,865

fastjson Maven 64 30,107 6,376 36,903

gson Gradle 23 8,691 4,979 6,347

guice Maven 24 6,641 10,685 2,649

javapoet Maven 12 3,589 4,938 2,789

jfreechart* Maven 315 165,631 67,185 86,912

joda-beans Maven 11 3,939 2,712 3,038

jsoup Maven 23 9,872 5,861 7,974

junit4 Maven 48 6,898 5,599 3,066

opengrok Gradle 113 36,342 20,912 25,049

Total - 2,411 858,849 707,034 514,484

a pattern matching approach based on naming conventions
to find the production class related to a certain test class,
as done in many other previous work [34], [61], [62]. Such
an approach has been previously empirically assessed [63],
showing an accuracy close to 85%, that is comparable with
more sophisticated but less scalable techniques (e.g., the
slicing-based approach proposed by Qusef et al. [64]). We
report in the following an example of pom file that refers to
the APACHE COMMONS BEANUTILS project.

1 <plugin>
2 <groupId>org.apache.maven.plugins</groupId>
3 <artifactId>maven-surefire-plugin</artifactId>
4 <configuration>
5 <includes>
6 <include>**/*TestCase.java</include>
7 </includes>
8 <excludes>
9 <exclude>**/*MemoryTestCase.java</exclude>

10 </excludes>
11 ...
12 </plugin>

It declares the include pattern **/*TestCase.java.
We remove the detected pattern from the test
filename and we use the obtained name to match
the test with its CUT. For instance, given a test
case DoubleConverterTestCase.java and the
pattern **/*TestCase.java, we remove the word
TestCase to determine the name of the CUT, i.e.,
DoubleConverter.java. While most of the projects
use the default *Test.java pattern, we rely on the
described approach to tackle non-default text matching. In
case of no include tags, we assume the default behavior.

5 ON THE CHARACTERISTICS OF EFFECTIVE

TESTS

This section reports empirical study design and results
aimed at answering to our RQ1.

5.1 RQ1 Design: Factors Analysis

With our first research question, we are interested in under-
standing to what extent the distribution of the values related
to the 67 considered factors differs for test cases having high
or low mutation scores. To this aim we build two sets of test
cases, named effective and non-effective, starting from the all
test cases in the exploited dataset. To assign test cases to
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Fig. 1. Distribution of the mutation score for the entire set, the first (non-
effective tests) and the fourth quartile (effective tests).

one of the two sets, we use the quartiles of the mutation
score: those falling within the first quartile are assigned to
the non-effective set, while the ones in the fourth quartile
to the effective set. In this process, we discard test cases
that fall between the first and fourth quartiles. This is a
conscious design decision based on what has been reported
in previous software engineering literature [65], [66] with
respect to the so-called discretization noise [67]. This term
refers to the introduction of biases in the data analysis due to
the presence of data points that are not clearly assignable to
a certain class. Since we aim at studying the characteristics
of effective and non-effective tests, then we accept to not
consider test classes having an average effectiveness and
focus only on those that can be considered as having a high-
or low-quality. Note that the impact of this design decision
is further analyzed in Section 8. At the end of this process,
the effective set is composed of 604 test classes, while the non-
effective one of 605 tests. It is worth to remember that every
test in those set comes with its correspondent CUT.

Figure 1 shows the distribution of mutation scores con-
sidering the entire dataset (“All”), the first (“1Q”), and the
fourth (“4Q”) quartiles. As it is possible to observe, the
effective set contains test classes often reaching the maximum
mutation score (median = 0.97), meaning that they can
actually considered as good test classes able to reveal faults
in production code. As for the non-effective set, we observe
that the mutation score is much more scattered (median
= 0.28) and has 0.48 as maximum value: this means that the
set contains test classes that are at most able to “kill” almost
half of the mutants generated on the production class.

To answer RQ1, we compare the distribution of each
factors in the two sets of test classes applying the Wilcoxon
Rank Sum statistical test [68] with α-value = 0.05 as sig-
nificance threshold. Since we performed multiple tests, we
adjusted ρ-values using the Bonferroni-Holm’s correction
procedure [69]: it firstly sorts the ρ-values resulting from n

tests in ascending order of values, multiplying the smallest
ρ-value by n, the next by n − 1, and so on. Then, each
resulting ρ-value is then compared with the desired signifi-
cance level (i.e., 0.05) to determine whether there is statisti-
cally significant difference in the distribution of two factors
within the two sets of test classes. In the second place, we
also estimated the magnitude of the observed differences

TABLE 2
Relation between each factor and mutation score. Rel. = relationship.
“+” indicates that tests with higher mutation score have significantly

higher value on this factor; “-” indicates the opposite case

DIMENSION METRICS REL D-VALUE

Coverage statement coverage + 0.84 (large)

Test Smells Eager Test - 0.31 (small)

CUT’s Code Metrics

LOC - 0.43 (medium)

HALSTEAD - 0.40 (medium)

RFC - 0.62 (large)

CBO - 0.38 (medium)

MPC - 0.58 (large)

IFC - 0.29 (small)

DAC - 0.35 (medium)

DAC2 - 0.34 (medium)

LCOM1 - 0.60 (large)

LCOM2 - 0.49 (large)

LCOM3 - 0.38 (medium)

LCOM4 - 0.49 (large)

CONNECTIVITY - 0.15 (small)

LCOM5 - 0.39 (medium)

COH - 0.37 (medium)

TCC - 0.33 (medium)

LCC - 0.39 (medium)

ICH - 0.36 (medium)

WMC - 0.61 (large)

NOA - 0.35 (medium)

NOPA - 0.23 (small)

NOP - 0.44 (medium)

McCABE - 0.62 (large)

Test Code Metrics

LOC + 0.22 (small)

HALSTEAD + 0.17 (small)

RFC + 0.37 (medium)

MPC + 0.34 (medium)

LCOM1 + 0.44 (medium)

LCOM2 + 0.40 (medium)

LCOM4 + 0.34 (medium)

CONNECTIVITY + 0.25 (small)

LCC + 0.35 (medium)

ICH + 0.19 (small)

WMC + 0.45 (medium)

McCABE + 0.40 (medium)

Code Smell
MC + 0.33 (medium)

FE - 0.31 (small)

Readability
production - 0.19 (small)

test - 0.18 (small)

using the Cliff’s Delta (or d), a non-parametric effect size
measure for ordinal data [70]. We interpret the effect size
values following well-established guidelines [70], i.e., small
for 0.147 < d < 0.33, as medium for 0.33 ≤ d < 0.474
and large for d ≥ 0.474. If the differences in the metric
distributions of effective and non-effective tests are statistically
significant and with a large effect size, then we verify the
possible existence of a relationship between a certain factor
and the effectiveness of test cases.

5.2 RQ1 Results: Factors Analysis

Table 2 reports the results achieved for RQ1. For the sake
of space, we only show the factors having statistically sig-
nificant difference, i.e., p < 0.05 and at least a small effect
size. Factors having a d ≥ 0.33, i.e., at least a medium effect
size between effective and non-effective tests are presented in
bold. The relationship direction is also reported: A “+” sign
indicates a positive relationship, i.e., that tests with higher
mutation scores exhibit higher values for the correspondent
factor; On the contrary, a “-” sign indicates a negative
relationship, i.e., when the test is more effective, the factor
tends to be lower.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at  http://dx.doi.org/10.1109/TSE.2019.2903057

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



7

From the results we can observe that in most cases (41
factors out of 67, i.e., ≈61%) the differences between the
distributions of effective and non-effective tests are statistically
significant. Perhaps more importantly, 21 factors report a
medium effect size and 8 a large one. This result seems
highlighting that the two sets of test classes have relevant
differences with respect to the qualitative parameters taken
into account, possibly indicating the relevance of source-code-
quality metrics —of both production and test code— for assessing
test-case effectiveness. Deeper investigating the single dimen-
sions, interesting findings arise. The first noticeable one is
the relationship between statement coverage and mutation
score, which is the strongest achieved in the entire set of
collected factors (d = 0.84), i.e., the difference in terms of
statement coverage between effective and non-effective tests
is large and statistically significant. From the relationship
direction we can claim that the more the statements executed
by a test case, the higher its effectiveness. It is worth noting
that this result partially contradicts studies that found code
coverage to be not associated to the ability of tests to reveal
faults in production code [30], [32]. On the contrary, we can
rather confirm the findings obtained by Gopinath et al. [17]
and Zhang et al. [16] on the relevance of statement coverage
as a metric related of test-case effectiveness.

A second noticeable finding concerns the relation be-
tween test-case effectiveness and the metrics representing
code complexity. Looking at the metrics computed on the
production classes, 20 of them seem to have a relevant
impact (i.e., medium at least) on test-case effectiveness: These
are related to size (i.e., LOC), complexity (i.e., Halstead, RFC,
WMC, and McCabe), coupling (i.e., CBO, MPC and DAC),
cohesion (i.e., LCOM1, LCOM3, LCOM4, LCOM5, TCC, and
LCC). As for size and complexity, our results confirm the
“common wisdom” reporting that if the production code is
large and complex, then test cases suffer more and cannot properly
reveal faults [71]. Cohesion and coupling metrics support
the result obtained for complexity: indeed, low cohesion
and high coupling heavily contribute to the increase of
source code complexity as well the decrease of source code
maintainability [72], [73].

Similarly, we observe analogous relations between the
code metrics computed on test code: indeed, 8 metrics have
at least a medium impact on test-effectiveness. They are again
mostly related to complexity (i.e., RFC, McCabe and WMC),
coupling (i.e., MPC) and cohesion (i.e., LCOM1, LCOM2,
LCOM5 and LCC). However, in this case the direction of
the relations is positive: this seems to suggest a tendency for
which the higher the quality and the complexity of test code, the
higher its ability to find faults in the production code. We cannot
confirm this hypothesis based on our results, however we
plan future studies on the relation between test-code quality
and test-case effectiveness.

Looking at the relation between test-effectiveness and
test smells, we do not observe important statistically signif-
icant differences. Nevertheless, we show an almost medium
result for the Eager Test smell. Such a smell arises when a
test checks more than one method of the class to be tested
[15]. As reported in previous literature [41], [74], eager tests
are harder to understand, being therefore hardly usable as
documentation; moreover, production code tested by tests
affected by this smell tends to be more fault-prone [37].

As a direct consequence, the test is likely to not be well-
designed to effectively find faults and, at the same time, the
production class badly-designed to be tested in isolation.

A similar phenomenon can be observed looking at code
smells affecting the production code. Indeed, 2 out of 8
factors in this dimension have a statistically significant
negative relationship with mutation score, meaning that the
lower the number of code smells, the higher the ability of tests
to find faults. This result is somehow expected, since code
smells indicate the presence of design issues that make the
source code more complex and harder to maintain [75], thus
making the corresponding tests less effective.

Finally, we do observe a small difference in terms of
readability between effective and non-effective tests for both
production and test code. This may indicate that writing
effective tests might be harder if the production code is less
readable; on the other hand, a low test readability can be a
symptom of general poor test quality [55].

The results discussed so far estimate test effectiveness
as mutation scores obtained by using the 13 operators
altogether. We also conduct additional analysis to estimate
the impact on the relation between factors and effectiveness
for each operator individually. This would indicate if, in
practice, it would be more convenient to exploit subsets of
the considered factors to estimate the effectiveness of tests
with respect to specific mutations. To this aim, we re-run
the experiment done in RQ1 by considering as dependent
variable the mutation score achieved when running PIT on
individual operators. Our analysis reveals that the strength
of the relation between the source code quality factors and
the mutation score is way lower than the one obtained
when considering the operators altogether. Note that having
fewer operators would also decrease the effectiveness of
mutation testing itself [7]. This is true for all the individual
operators. From a practical perspective, this means that the
larger the number of mutation operators used to estimate
the effectiveness of a test, the higher the ability of source
code quality indicators to be impactful in its estimation. The
detailed results of this additional analysis are available in
our replication package [18].

In Summary. Effective tests statistically differ from non-
effective ones for 41/67 of the investigated factors. A
test case tends to be more effective when it has a high
statement coverage and does not contain test smells.
The absence of design flaws in the CUTs and its quality
represent strong factors for test effectiveness.

6 ON THE ESTIMATION OF EFFECTIVE TESTS

Based on the results achieved in RQ1, in this section we
present design and results of the empirical study conducted
to answer RQ2 and RQ3.

6.1 RQ2-RQ3 Design: Evaluating the Capabilities of a

Test-Case Effectiveness Estimation Model

To answer RQ2 and RQ3, we (i) devise and evaluate a test-
case effectiveness estimation model only exploiting static
code quality factors, (ii) compare the latter with a model that
includes the statement coverage as independent variable,
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and (iii) analyze what are the most relevant features that
allows the model to estimate the effectiveness of tests.
The following subsections detail the methodological steps
conducted to answer our research questions.

6.1.1 Independent and Dependent Variables

As independent variables, we evaluate two different config-
urations of the factors selected in Section 3, leading to
the construction of two test-case effectiveness estimation
models. In the first configuration, we consider all factors:
while in our preliminary study we already identified a
number of relevant factors that might be potentially used
as predictors of test-case effectiveness, it is important to
point out that in this research question we are adopting
Machine Learning algorithms, which might (i) use different
independent variables to properly estimate the dependent
variable [57], [76], [77] and (ii) take into account interactions
among independent variables, as opposite to the individual
statistical tests ran in RQ1. In other words, it is not said
that the relevant factors identified through statistical tests
(RQ1) are the same used by the Machine Learning algorithm
to estimate test-case effectiveness (RQ2). For this reason,
we involved all the factors in the construction of the first
estimation model, letting the exploited classifier (Section
6.1.2) to decide on the their importance for classification.
From now on, we refer to this model as the dynamic one.

In the second configuration, we decide to exclude the
statement coverage as independent variable. This factor rep-
resents the only dynamic metric used in the study: as such,
in a real-case scenario it might be costly to compute since it
requires the execution of all test cases of a software system.
For this reason, we aim at measuring the extent to which
a estimation model containing only statically computable
code-quality features can estimate test-case effectiveness as
opposed to a model that mixes both static and dynamic
analysis being therefore, more computationally intensive.
As a side effect of this design choice, we can also evaluate
the actual gain (if any) given by code coverage to the
performance of the estimation model. In the remaining of
this paper, we refer to this model as static while we refer to
the model exploiting statement coverage as dynamic.

As dependent variable we adopt the boolean classification
of test-case effectiveness coming from RQ1, i.e., non-effective
and effective tests are based on the first and fourth quartiles
of the mutation score distribution, respectively—the effect
of discarding other tests is discussed in Section 8.

6.1.2 Selection of the Classifier

As shown in previous literature [78], the classifier used for
prediction purposes can strongly influence the model per-
formance. For this reason, we test different classifiers before
selecting the one that fits better our estimation model: we
compare RANDOM FOREST (RFC), K-NEIGHBORS (KNN),
and SUPPORT VECTOR MACHINES (SVM), as these are (i)
those more frequently adopted for the prediction of testing-
related properties (e.g., Zhang et al. [16] and Strug and Strug
[20] exploited these algorithms in their works), and (ii) they
make different assumptions on the underlying data, as well
as have different advantages and drawbacks in terms of
execution speed and over-fitting [57]. The outcome of this
step is the creation of six combination of estimation models,

i.e., dynamic and static for each classifier, which are trained
and evaluated as reported in the following.

6.1.3 Preprocessing Steps

Before being able to properly evaluate the estimation mod-
els, some preprocessing steps are required: Song et al. [79]
proposed a general framework that defines an appropriate
learning pipeline that includes (i) data normalization, (ii)
feature selection, and (iii) classifier configuration. In our
work, we included all these steps as detailed below. We
do not apply any data balancing strategy [80], since the
two classes—effective and non-effective tests—are naturally
balanced (604 vs 605).

Data normalization. In both the configurations of fea-
tures we perform the feature scaling (a.k.a., data normal-
ization) [81], as recommended in previous works [82], [83].
This technique mutates the raw feature vector into a more
suitable representation for the downstream estimator: such a
normalization is needed to contrast the fact that different in-
dependent variables have a pretty different range of values,
whose make more likely the possibility that some of them
get more influence than they should [81]. We rely on the
STANDARDSCALER implemented in scikit-learn that
processes the features by removing the mean and scaling to
unit variance, thus centering the distribution around 0 with
a standard deviation of 1. This scalarization is important
especially for Support Vector Machine algorithms [84], since
they assume the data to be in a standard range.

Feature Selection. While RFC is able to automatically
filter out non-relevant features—thus avoiding problems
related to multi-collinearity [85]—this is not true for KNN
and SVM. To perform a fair comparison, in these cases we
apply the WRAPPER feature selection algorithm [57], that
systematically exercises all the possible subsets of features
in order to identify the one giving the best performance.

Classifier Configuration. Finally, we also take into ac-
count the problem of configuring the classifiers, as it has a
strong impact on the final performance achieved by estima-
tion models [86]. To this aim, we apply to all the models—
following the procedure described in the next section—
the well-known Grid Search method [84], which performs
a systematic exploration of the parameter space to find the
configuration giving the best performance. We rely on the
GridSearchCV utility5 provided by scikit-learn.

6.1.4 Training and Testing Procedures

To train and validate the experimented models, we use a
nested cross-validation strategy [87]. This selection follows
the advances achieved in the field of Machine Learning re-
search [87], [88], which showed that nested cross-validation
allows to reliably estimate generalization performance of
a learning pipeline involving both parameters tuning and
models evaluation. Indeed, model selection without nested
cross-validation uses the same data for both the tuning and
the evaluation: information might thus leak into the model
overfitting the data, depending on the dataset size and on
the model stability [89]. Nested cross-validation avoids that
by using a set of train, validation and test splits in two
separate loops: (i) an inner loop, used to tuning the model

5 https://goo.gl/9nj7WS
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Fig. 2. 10-fold nested cross-validation. The outer loop is contained in the
blue box, while the inner loop used for parameters tuning is contained in
the orange one.

parameters and (ii) an outer loop, used to evaluate the per-
formance of the model. To better explain the procedure, Fig-
ure 2 shows an example of 10-fold nested cross-validation.
Assume we aim at tuning and evaluating a certain model
M that has a parameter k; and assume the goal is to find an
assignment of k in the set K = {10, 100, 1000, 10000} that
maximize the performance of the model.

The first step adopted by the nested cross-validation
consists of dividing the entire set of data in 10 folds. One
of these folds is retained as test (the blue box in Figure 2)
and left untouched until the end of the computations done
in the inner loop. The remaining nine folds are instead used
within the inner loop: amongst them, one fold is reserved
for the validation (the orange box in Figure 2), while eight of
them are used to train M for each k ∈ K. Once the training
phase is completed, the resulting model is evaluated against
the validation fold. This gives as output four performance
measurements, one for each value of k. The procedure is
repeated nine times, allowing each of the nine folds to be the
test set exactly once: this leads to 9·4 performance indicators
(that is, nine folds multiplied by four possible values of k).
Afterwards, the k that minimizes the average training error
over the nine folds is selected and used to evaluate M on
the test folder previously left out the outer loop. Such a
process is then repeated ten times, so that each fold of the
outer loop is used as test once. The overall accuracy of the
model is finally estimated using the mean of the evaluation
measures over the ten test folds, i.e., the model with the best
average is chosen.

Nested cross-validation allows to select an arbitrary
number of folds for the inner and outer loop. In our study,
we rely on 10-folds for both the two loops. To obtain
such folds, we use a random stratified split approach: in
this technique, each split contains approximately the same
percentage of samples of each target class as the complete
set. To accurately evaluate the trained models, we rely on 7
different widely-adopted evaluation measures, i.e., accuracy,
precision, recall, F1 Score, AUC-ROC, Mean Absolute Error
(MAE) and Brier Score [90]. From our experiments, the
model based on the RANDOM FOREST classifier performs
better than the others in terms of all the evaluation metrics
considered. For the sake of space limitations, in the remain-
ing of the paper we only report and discuss the results for
this model, while a detailed report of the performance of

the models built using the KNN and SVM as classifiers is
available in our replication package [18].

6.1.5 Feature Analysis

Besides evaluating the test-case effectiveness estimation
model as a whole, we also conduct a fine-grained analysis to
understand which are the most influential factors it uses to
actually estimate the dependent variable. This fine-grained
analysis aims at answering to RQ3.

To perform this examination, we rely on the built-in
features of RANDOM FOREST: as explained above, the model
built using this classifier performs better than the other
experimented ones. Thus, we focus our feature analysis
based on the characteristics of this specific model. In par-
ticular, RANDOM FOREST can automatically select the most
relevant features that influence the dependent variable. In
doing so, it relies on the so-called Gini index (a.k.a., Mean
Decrease in Impurity) [91], which indicates the relevance
of a certain feature in terms of the reduction it provides
to the overall entropy of the model, i.e., how much the
model gains by having a feature as independent variable.
By computing the Gini index for all the considered features
during every validation run of the model, we can assess
the gain provided by each feature. Then, we can rank
the features according to the average Gini index achieved
over the 10 different validation runs. The scikit-learn

implementation of the RANDOM FOREST algorithm stores
the information about the Gini index of each feature in the
feature_importances_ vector variable of the model.

It is worth noting that while with the Gini index we
can precisely estimate the contribution given by each pre-
dictor to the actual predictions performed by the model
and understand which factors are more relevant for the
outcome, we cannot statistically verify the importance of
the features. For this reason, as suggested in literature [92],
[93] we complement our feature importance analysis by
adopting the Scott-Knott Effect Size Difference (ESD) test
[94], which allows us to verify the statistical ranking of the
model features with respect to their contribution. This test
represents an effect-size aware variant of the original Scott-
Knott test [95] that (i) uses hierarchical cluster analysis to
partition the set of treatment means into statistically distinct
groups according to their influence in the RANDOM FOREST

classification, (ii) corrects the non-normal distribution of an
input dataset, and (iii) merges any two statistically distinct
groups that have a negligible effect size into one group to
avoid the generation of trivial groups. To measure the effect
size, the tests uses the Cliff’s Delta [70]. In this work, we
employed the ScottKnottESD implementation6 provided
by Tantithamthavorn et al. [94].

6.2 RQ2-RQ3 Results: Evaluating the Capabilities of a

Test-Case Effectiveness Estimation Model

Table 3 shows the performance of the RANDOM FOREST

classifier for the seven considered evaluation metrics. As
explained in Section 6.1.2, we build two test-case effective-
ness estimation models: one containing all the factors (row
dynamic in the table), one excluding the statement coverage

6 https://github.com/klainfo/ScottKnottESD
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(row static), i.e., the only dynamic metrics requiring the
execution of the code.

As shown, the model exploiting both coverage and
static metrics has extremely strong performance, not only
considering the F-Measure (95%) but also when analyzing
AUC-ROC, MAE and Brier Score for which we observe
values reaching 95%, 0.053 and 0.037, respectively. These
results clearly suggest that Machine Learning methods can be
effectively adopted to assess test-case effectiveness. It is worth to
note that we select projects coming from different domains;
therefore, we are confident that our estimation model might
be generally usable in different contexts.

To better understand the features allowing the model
to be so performing, Figure 3 depicts a bar plot showing
the most 20 relevant features used by the model together
with the information about their Gini index. To show the
dominant contribution of the statement coverage, we plot
two bars, one for the statement coverage only, and one
that stacks the remaining 19 factors. Indeed, statement
coverage is the feature providing the major contribution
(Gini index=0.7). On the one hand, this result confirms the
observations made in RQ1, where we found this measure to
be the main characteristic discriminating effective and non-
effective tests. On the other hand, we can confirm again
previous findings that reported on the usefulness of state-
ment coverage in the context of mutation testing [16], [17].
The second most important feature is represented by the
presence of Assertion Roulette instances, while other features
mainly used by the estimation model to classify effective and
non-effective tests regard both production and test code met-
rics. In particular, our results show that cohesion, coupling,
and complexity of both production and test-source-code are
three important aspects that developers should take into
account to ensure a high effectiveness of test cases.

Our findings are generally in line with those of RQ1, con-
firming that source code quality indicators can be exploited
to discriminate the effectiveness of tests. Nevertheless, we
notice some mismatches between the specific features as-
sessed in RQ1 and RQ3. These are basically due to test
and code smells. While in RQ1 the Eager Test feature had a
statistically significant relation with test code effectiveness,
in RQ3 the smells considered by RANDOM FOREST are As-
sertion Roulette and Mystery Guest. The likely reason behind
this mismatch is the interaction that occurs between the
features: indeed, as shown by Tufano et al. [34], the presence
of Assertion Roulette and Mystery Guest instances induce the
co-presence of an Eager Test instance, while Assertion Roulette
and Mystery Guest provide two orthogonal information on
the quality of tests. Thus, the proposed model exploits only
two of the three features when predicting the effectiveness
of tests. Similarly, the absence of code smells from the set
of relevant features adopted by the RANDOM FOREST can
be explained by the relations that such smells have with the
other production code metrics considered. As an example,
the Message Chains smell—that had a statistically significant
relation with test code effectiveness in RQ1—indicates the
existence of a long chain of external calls performed by
a production method. This smell is naturally related to
complexity metrics like the Halstead or readability ones
[14]; since our explanatory model considers the metrics
altogether, the contribution given by the smell is limited by

TABLE 3
Performance of the RFC on nested cross-validation. We report
accuracy (Acc.), precision (Prec.), recall (Rec.), F1 Score (F1),

AUC-ROC (AUC), Mean Absolute Error (MAE) and Brier Score (Brier)

ACC. PREC. REC. F1 AUC MAE BRIER

Dynamic 0.948 0.940 0.960 0.949 0.949 0.051 0.035

Static 0.864 0.864 0.865 0.864 0.864 0.137 0.095

the co-presence of other complexity metrics.

The discussion on the most relevant variables done so far
is also supported by statistical analysis. Indeed, we observe
that statement coverage consistently appeared in the top
Scott-Knott ESD rank (which was computed on the basis
of the Gini index values), followed by the other metrics in
the same order as discussed above: for the top 20 factors,
the test builds 10 distinct groups, where the group 1, i.e.,
the most influent, contains the statement coverage only. We
report the script and the raw data needed to replicate such
a statistical test in our replication package [18].

While the analysis of the dynamic model reports that
statement coverage represents a key indicator for predicting
test-case effectiveness, we also investigate whether its com-
putation is actually needed to obtain good prediction perfor-
mance. Looking at the results achieved by the static model,
we can claim that the exclusion of statement coverage does not
drastically decrease the prediction capabilities of the devised model.
More specifically, both F-Measure and AUC-ROC reach 86%,
being therefore ≈8% less accurate than the model including
the statement coverage, yet still highly performing. This is
confirmed by both MAE and Brier coefficients (0.14 and
0.10), that indicates how (i) the prediction error done by
the model is pretty limited and (ii) the accuracy of the
predictions is high. It is important to point out that the
lower performance of the static model is expected given the
importance of code coverage for mutation testing. However,
in our opinion the results achieved by this model are much
more important than those of the dynamic one from a prac-
tical perspective. Indeed, they highlight that developers can
accurately estimate the effectiveness of test cases without actually
executing them.

Figure 4 shows the most relevant features for the static
model. We observe that it exploits test and code metrics
in a more balanced way with respect to the dynamic, i.e.,
there is no feature having a much higher Gini index with
respect to the others. In other words, the model has more
difficulties in classifying the effectiveness of test cases be-
cause of the lack of a strong information like the statement
coverage: for this reason it weights features differently in
order to gather sufficient knowledge to correctly perform a
prediction. This is especially true for the weights assigned
by the model to production code attributes: indeed, while in
the dynamic model the four most relevant variables are all
related to test-related characteristics, the static one mainly
relies on production code complexity factors such the as
McCabe and RFC metrics. This means that a fully static
model requires different information to balance the lack of
statement coverage, yet having high performance.

More in general, 11 of the top 20 features are related to
production code size, cohesion, coupling, and complexity.
At the same time, it is interesting to observe how also test-
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Fig. 3. Feature importance for the Random Forest Classifier with the
statement coverage

code quality comes into play: 9 test-related metrics involv-
ing cohesion, coupling, and complexity of tests are still in
the top 20 factors according to their Gini index. The results
are all statistically significant, and the ranking provided
by the Scott-Knott ESD test (reported in our replication
package [18]) reflects the most important features discussed
so far: indeed, the same top 20 factors are all reported in the
first 10 groups created by the test.

To better understand the static model performance as
compared to the coverage-including one, the first two au-
thors of the paper manually analyze all the wrong predic-
tions given by the two models. By relying on (i) the source
code of the misclassified tests and (ii) a document reporting
the metrics computed on each of them, they perform a code
review of the tests aimed at understanding which charac-
teristics may have led to a misclassification. The process
is conducted in two joint meetings of eight hours each:
this allows the two inspectors to discuss together about the
possible reasons behind the errors done by the static model
with respect to the dynamic one. As a result, we first observe
that the number of misclassified tests is balanced between
the two models considering both false negatives (FN), i.e.,
tests wrongly predicted as non-effective, and false positive
(FP), i.e., tests wrongly predicted as effective: we have 84
versus 82 FPs and 32 versus 22 FNs for the static and dynamic
models, respectively.

Considering the FN cases of the static model, we observe
that in 94% of the cases these predictions are biased by fac-
tors that characterize non-effective tests. For instance, these
tests have high values for production-code complexity-
metrics (e.g., RFC) and, at the same time, low values for
test-code cohesion ones (e.g., LCOM metrics): from RQ1 we
see that this is the case for non-effective tests. Similarly, the
CUTs have high values for complexity metrics, while the
same is not true for the correspondent test code. On the
contrary, statement coverage is high in 90% of those cases:
while the static model misclassifies them, the dynamic model
is instead able to give correct predictions. Also for false
positive tests, the static model misclassifies the ones having
metric values that characterize effective tests. Indeed, we
observe that 88% of these tests (i) are not smelly, (ii) have
a pretty high complexity and coupling values, while the

0 0.05 0.1 0.15

McCABE prod.
RFC prod.
WMC test

LCOM1 test
LCOM1 prod.

WMC prod.
CBO prod.

test readability
LOC prod.

LCOM2 prod.
CBO test

McCABE test
MPC prod.

prod readability
LCOM2 test

HALSTEAD test
RFC test
LOC test

HALSTEAD prod.
COH prod.

Mean Decrease in Impurity

Fig. 4. Feature importance for the Random Forest Classifier without the
statement coverage

corresponding production code has low complexity, and (iii)
the cohesion and coupling metrics for the production code
are counterbalanced by similar values in the tests. In these
cases, the static model misclassifies the tests independently
from their level of coverage; on the contrary, the dynamic
model misclassifies only those tests having a very high
coverage. While this qualitative analysis identifies some
limitations of the static model, it is important to point out
that the number of misclassified cases remains limited, thus
indicating once again the high ability of source-code-quality
indicators to distinguish effective from non-effective tests.

In Summary. Estimation models can be effectively ex-
ploited to classify test-case effectiveness. A model relying
on both dynamic and static information achieves perfor-
mance close to 95% in terms of F-Measure and AUC-
ROC, while the performance of a model only using static
indicators decreases of ≈9%, yet being highly performing
and a more practical solution in a real-case scenario.

7 DISCUSSION

The key result of our study points out the role of source code
quality with respect to the effectiveness of test cases. While
the results reported so far already demonstrate the accuracy
of our automated technique, in this section we further
discuss our findings, especially in relation to the motivations
behind the achieved results and how the proposed model
can be used by practitioners in a real-case scenario.

7.1 Why Source-Code Metrics can Estimate the Test-

Effectiveness

The foremost finding of our analysis is concerned with the
high ability of static source-code metrics in predicting test-
code effectiveness. On the one hand, this is surprising since
none of the considered source-code metrics explicitly take
into account the specific instruction types where a mutation
can be injected (e.g., in if-statements). On the other
hand, most of the considered factors have a relation with
the degree of source-code complexity (that directly impacts,
for instance, the number and quality of if-statements)
as well as other properties of production/test code that

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at  http://dx.doi.org/10.1109/TSE.2019.2903057

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



12

might have an effect on the effectiveness of test cases. To
better understand the motivations behind the performance
of the proposed estimation model, we perform a fine-
grained qualitative analysis on the tests of our dataset. More
specifically, we cannot proceed in the same way as the
qualitative analysis presented in Section 6.2. Indeed, while
the number of misclassified tests was relatively low (116
and 104 for the static and dynamic model, respectively), the
number of correctly classified tests—which are the subject
of this analysis—is prohibitively large to be analyzed ex-
haustively (i.e., the static model outputs 1,093 true positive
predictions). For this reason, we considered a set of 285
correct predictions: such a set represents a 95% statistically
significant sample with a 5% confidence interval of the
1,093 total correct predictions of the model. Then, similarly
to the previous qualitative analysis, the first two authors
of the paper jointly manually review the source code of
the sample tests, having the possibility to also analyze the
metric values associated with them. In this case, the process
require four meetings of eight hours each and allow them to
discuss about the characteristics and peculiarities that make
some metrics more effective in estimating the effectiveness
of tests. As a result, we identify five main motivation that
give a rationale of the obtained performance.

McCabe Cyclomatic Complexity. The McCabe cyclomatic
complexity of production code has a large explanatory
power, according to the analysis done in RQ1. Similarly, it
is the most relevant factor employed by RANDOM FOREST

when a purely static model is trained (RQ3). These findings
indicate that an important aspect making test cases effective
is represented by the complexity of the source code under
test. From a practical point of view, a high complexity of
production code indicates the presence of several linearly
independent paths [43]. This aspect naturally makes the
design of the corresponding test harder, because it should
be able to exercise every linearly independent path present
in the production code. Considering that the generated
mutants can be injected in an arbitrary linearly independent
path, this makes complex tests more prone to miss them.
Thus, McCabe cyclomatic complexity is confirmed to be a
good indicator of testing effort, as indicated in the past [43].

Response for a Class. The second most relevant metric of
the purely static model is RFC (Response for a Class), which
measures the complexity of a class in terms of method calls.
A high RFC indicates that the production class has a number
of methods that can potentially be executed in response to
a message received by a test. Still in this case, designing
effective tests is harder [96] and this seems to have an
important consequence: diving into our data, we discovered
that in such cases the generated mutants are more prone to
be left alive by a test because the production code executes
paths that do not include the mutated instructions, i.e.,
methods that do not contain mutants are exercised instead
of the one including the actual mutation.

Coupling-related Metrics. A similar discussion can be de-
lineated in the cases of CBO (Coupling Between Object
Classes) and MPC (Message Passing Coupling): both these
metrics assess the degree of coupling of a class. High values
indicate that a class makes several external invocations, thus

reducing the ability of tests to find mutants because the
production code executes paths that have not been mutated.
In other words, the importance of complexity and coupling
metrics tell us that the number of paths possibly executed
in the production code represents an important aspect for
test-case effectiveness. As a consequence, these metrics are
pretty useful for the prediction of the capabilities of a test to
find errors in production code.

Halstead Metrics. Another observation can be made when
looking at the results achieved by the Halstead metric. It
measures the complexity of individual expressions in terms
of number of operands and operators. The higher the value
of the metric the higher the complexity of the lines of pro-
duction code, i.e., the likelihood to have complex statements
in production code that are composed of multiple operands
and operators is higher. This aspect has a direct effect on
the likelihood of a test to kill a mutant: indeed, mutants
can be injected in operands that are not executed by the test
(e.g., the right-hand side of an expression is not executed in
case of OR conditions). As such, the higher the value of this
metric, the lower the ability of a test to kill mutants. A similar
discussion can be done when considering the readability
metric. In its formulation, it considers structural features of
the source code (e.g., number of parenthesis in a statement)
that are likely to increase the complexity of production lines
of code. As a consequence, mutations may be injected in
statements that are not actually executed by a test, limiting
the effectiveness of the test itself.

Test-Case Design. The overall design of a test impacts its
effectiveness. The importance of test size, cohesion, and
coupling metrics indicate that non-focused tests have re-
duced capabilities in finding mutants in production code.
Therefore, they do not focus uniquely on testing the corre-
spondent production code, thus, limiting their scope. Recent
findings have shown that this lack of focus influences the
fault-proneness of production code [37]: our findings sup-
port such a thesis by showing that the greedy nature of these
tests also produces reduced mutation testing capabilities.
This aspect is also influenced by the fact that cohesion
(LCOM, LCOM1, LCOM2, COH) metrics play a role, as
they have the effect of leading a test to be not focused
on a specific portion of code: indeed, tests exercising non-
cohesive classes naturally lead to exercise different methods
of the production code [34].

All in all, both the performance of the model and the
qualitative analysis aimed at understanding the motivations
behind our results suggest that keeping source-code-quality
under control it is possible to improve the effectiveness
of test cases. In the following section, we discuss how
practitioners can actually use the output of the proposed
model in a real-case scenario.

7.2 On the Practical Usage of the Model

The test-case effectiveness estimation model proposed in
this paper has a number of concrete applications in practice.
In the first place, it has the potential to raise the developers’
awareness on the effectiveness of a test suite. We envision the
proposed model to be integrated within existing software
analytics dashboard (e.g., Bitergia7) from which practitioners

7 https://bitergia.com
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can diagnose the health status of their test suites, possibly
becoming aware of the poor effectiveness of some tests.
Differently from existing mutation testing solutions, our
technique allows a lightweight feedback mechanism that
might lead to speed-up the time required to identify non-
effective tests. Indeed, most of the metrics that we con-
sider in the static model are already computed by software
analytics dashboards or can be quickly calculated using
widely-adopted static analysis tools like CHECKSTYLE or
SONARQUBE: for this reason, the data required by our
model is already available to practitioners and this notably
eases the construction of the estimation model, as opposed
to the execution of dynamic mutation testing tools.

The second practical application comes as a natural
consequence of the first one and involves different informed
decisions that can be taken by developers. More specifi-
cally, the output of the estimation model might be used
by practitioners for (i) test selection, i.e., to prevent non-
effective tests from running at every commit in Continuous
Integration, (ii) scheduling preventive actions to improve
non-effective tests, and (iii) running additional mutation
analysis to understand which are the specific operators that
a non-effective test is not able to identify. To better explain
a possible practical usage of the model, let consider the test
case shown in Listing 1.

1 @Test
2 public void testDao() {
3 m_appDatabasePruner = lookup(TaskBuilder.class,

AppDatabasePruner.ID);
4 Date period = ((AppDatabasePruner) m_appDatabasePruner).

queryPeriod(-1);
5
6 try {
7 ((AppDatabasePruner) m_appDatabasePruner).pruneAppCommandTable

(period, 1);
8 ((AppDatabasePruner) m_appDatabasePruner).pruneAppSpeedTable(

period, 1);
9 } catch (DalException e) { e.printStackTrace(); }

10 }

Listing 1. Example of a non-effective test case from the cat project

This test belongs to the class AppDatabasePruner of
the cat project, and has been classified as non-effective
by our technique. In this case PIT performed 73 muta-
tions on the production code, 3 of which have been de-
tected by the test; the statement coverage is 24%. The
test is clearly non-effective for various reasons. At first, the
test lacks of focus, as it calls three different production
methods, i.e., queryPeriod, pruneCommandTable and
pruneAppSpeedTable. Secondly, the test does not con-
tain any assertion statement: it only calls the production
methods, without actually verifying their behavior. More-
over, the correspondent production class suffers from poor
cohesion (LCOM=45) and high complexity (McCabe=27).
On the basis of the corresponding production and test code
metrics, our technique estimates this test as non-effective with
a probability p=0.87.

In the first place, the information given by the devised
test case effectiveness model can be immediately exploited
to decide on whether to remove a test from the set of tests
running in Continuous Integration pipelines. In particular,
one of critical problems when performing continuous test-
ing is related to the excessive time, combined with a limited
time budget, required to run regression tests [97]: our model
may be combined with other criteria (e.g., recency or prior
bug-proneness [31]) to improve test reduction techniques
and support developers in the removal of those tests whose

impact is likely not to produce effects, like the one shown in
Listing 1. Similarly, test reduction based on mutation score
may be exploited in later stages of the testing process, such
as nightly testing or integration testing.

Secondly, practitioners can be preventively informed of
the presence of non-effective tests. As the model is based
on quality-related attributes, developers can act on non-
effective tests to further diagnose and improve their design.
As an example, in the case of the test shown in Listing 1,
a practitioner might decide on devoting some maintenance
effort to make the test more focused on the production code
(e.g., by applying an Extract Method refactoring [14]), or
even if it worth to apply refactoring operations targeting
the correspondent production code (e.g., through an Extract
Class refactoring [14] it would be possible to make the
production code more cohesive and testable).

Finally, we argue that the proposed estimation model
can be adopted as a complementary alternative to standard
mutation testing tools. More specifically, when a new non-
effective test is identified, a developer could be interested
in further diagnosing the issues of the test by running
existing mutation testing tools that provide a fine-grained
overview of the reasons preventing the test to catch faults.
For instance, while source-code quality can be adopted—
using the devised model—for early estimation of test code
effectiveness and for understanding the quality-related fac-
tors that influence more the estimation, a practitioner can
analyze the case of Listing 1 employing PIT to have finer-
grained information on the mutation operators that the test
is not able to identify. In this way, the execution of more
expensive mutation testing tools would be limited to those
tests that actually require further investigation. We believe
that the reasons above have the potential to make mutation
testing more usable in practice.

8 THREATS TO VALIDITY

A number of factors might have threatened our study.

Threats to construct validity. The main threats in this
category regard possible imprecisions in the data extrac-
tion and analysis process. Besides considering 8 systems
that were previously used in mutation testing studies, the
dataset selection process was performed by relying on
Google BigQuery and aimed at extracting the 10 open-
source projects having the highest number of starts. This
might have introduced some sort of selection bias [98]:
however, our results hold on the entire dataset, including
the 8 projects that were not selected based on the number
of stars. This make us confident of the ecological validity
of our findings; nevertheless, further replications would be
desirable. When extracting test classes from the subject
systems we only considered those tests available under
the include tag of the MAVEN pom file. We adopted this
procedure to exclude tests that are not ran when the test

or package MAVEN commands are executed [60].
To automatically compute the considered factors over

the exploited dataset we relied on existing tools. In this
regard, we employed tools which have been shown as
effective in previous literature [35], [50], [56]. Whenever
possible, we also evaluated their suitability in the scope of
our study, finding them to be a good choice for us. The
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prediction model we used to compute the readability factor
has been trained on about 600 code snippets from both
production and test code [99]: therefore, it can be generally
used for both production and test readability. To detect code
smells, we relied on DECOR: our re-assessment showed its
high accuracy; We do not believe that the results would have
changed drastically in case of a more accurate detector.

We approximated test-case effectiveness using the mu-
tation score, relying on the assumption that this measure
can be actually representative of the quality of a test case.
We did so on the basis of existing literature that clearly
demonstrated how mutation score can be considered as the
“high-end test coverage criterion” [11], [100]–[102]. Such
mutation score has been computed at unit-test level: we
cannot exclude that a focus on integration testing would af-
fect the observations provided in this paper. Unfortunately,
we do not have data to speculate on this point, since there
are no mature toolkits allowing to perform mutation testing
at integration level [103]. Nevertheless, we still argue that
our unit-test level solution can be useful for developers and
testers in order to improve the quality of unit test cases and
spread mutation analysis in practice.

To study the characteristics and the capabilities of esti-
mation models in predicting effective and non-effective tests,
we excluded those tests having an average effectiveness—
as indicated by the distribution of mutation scores—in order
to account for the so-called discretization noise [67]. However,
this can be considered a threat: indeed, the statistically sig-
nificant differences found might have biased by the absence
of several test classes. To measure the extent to which this
factor has influenced our findings, we completely re-ran the
analyses made in our study taking into account all tests,
considering as effective those having a mutation score higher
than the median of the distribution, and as non-effective
those tests whose mutation score was lower than or equal
to the median. As a result, we did not observe important
differences with respect to the findings discussed herein,
meaning that the factors that we found to be important
are actually confirmed to be significant even in presence of
noise. The scripts in our replication package allows the full
replication of this additional analysis.

Equivalent and duplicated mutants represent a common
threat for studies involving mutation testing. Determining
whether a mutant is equivalent is undecidable [104] and, in
practice, can involve considerably human effort. As showed
by a recent literature review on mutation testing [11], about
half of the studies in the field does not adopt any approach
for solving the equivalent mutant problem. The remaining
ones rely either on manual analysis [105] or make some
assumptions (treating mutants not killed as either equiva-
lent or non-equivalent [106]). Given the enormous amount
of mutants involved in our study (over 500,000), a manual
evaluation was not a feasible option. Therefore, as done in
previous work [106], we assume all mutants not killed as
possibly not-equivalent. Previous work estimated 20% of
mutants generated by PIT to be equivalent [29]: this might
lead to underestimate the mutation scores computed in our
work. However, since this study focuses more on using the
mutation score to discern effective from non-effective tests,
rather than predicting its exact value, we do not believe that
this would drastically change our results.

Threats to conclusion validity. When investigating the
differences in the factors distributions between effective and
non-effective tests, we employed a well-established statistical
test such as the Wilcoxon Rank Sum [68], adjusting its re-
sults with the Bonferroni-Holm’s correction procedure [69].
Furthermore, we exploited the Cliff’s delta test [70] to assess
the magnitude of the observed differences.

To estimate test-case effectiveness we compared RAN-
DOM FOREST, K-NEIGHBORS and SUPPORT VECTOR MA-
CHINE. To select and validate the best model we used a
nested cross-validation procedure with 10-folds for both the
inner and the outer loop: we configured the parameters of
each model with the aim of relying on the most effective
configuration. Moreover, to reduce interpretation biases and
to deal with the randomness arising from using different
data splits we repeated the validation 10 times. Then, we
exploited a number of evaluation metrics, i.e., F1 Score,
AUC-ROC, MAE and Brier Score, with the aim of providing
a wider overview of the performance of the devised model.

Finally, when evaluating the most relevant features
adopted by the RFC prediction model to estimate test-
case effectiveness, we relied on the Gini index, which has
been shown to be an accurate measure [91]. Moreover, we
statistically confirmed our observations by exploiting the
Scott-Knott ESD test [94].

Threats to external validity. We considered 67 factors
related to 5 different categories: of course, there might be
other additional factors influencing test-case effectiveness
that we did not consider. We plan to enlarge the set of
factors (e.g., considering the role of the complexity of code
changes [107]) as part of our future work. As for the size
of the experiment, we analyzed a dataset composed of 2,411
pairs of test and production classes coming from 18 different
software systems using two different build tools. While this
already represents a large-scale empirical study, replications
targeting different types of projects are still desirable.

9 CONCLUSIONS & FUTURE WORK

In this paper, we first studied the relation between 67 factors
—related to both production and test code— and test-case
effectiveness, measured by means of mutation score. Then,
we devised and evaluated a test-case effectiveness estima-
tion model able to distinguish effective and non-effective tests.

Summing up, the contributions made are as follow:

1) A large scale empirical study involving 2,411 pairs of
test and production classes, aimed at understanding the
relation between 67 production and test code metrics
and test-case effectiveness. It revealed peculiar charac-
teristics distinguishing effective and non-effective tests,
such as higher statement coverage and higher quality
of the corresponding production code.

2) A novel test-case effectiveness estimation model, only
based on static factors, i.e., practical to use for devel-
opers in a real-case scenario since it does not require
the execution of the tests. Such a model is able to
achieve about 86% of both F-Measure and AUC-ROC.
Moreover, our study reveals that the exclusion of dy-
namic attributes does not substantially decrease the
performance of the estimation model.
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3) A comprehensive replication package [18], whose aim
is twofold: ensuring the full replication of our study
and posing a baseline against which future approaches
aimed at more accurately classifying the effectiveness
of test code can be tested.

Our future research agenda considers the main output
of this work. We aim at enlarging the study by considering
(i) how other additional factors influence the effectiveness
of test cases, possibly contributing to higher prediction
performance, (ii) how the proposed model can be exploited
to support different programming languages, (iii) how it
can be adopted at higher granularity levels (e.g., integration
mutation testing), and (iv) how it can be exploited for
other testing-related activities such as test case selection,
minimization, and prioritization [25]. Moreover, we plan to
work on improving existing code-quality checkers to better
support developers during the assessment of software relia-
bility. Finally, we also plan to exploit the technique proposed
by Brown et al. [108] to investigate how the proposed model
works when predicting potential faults that are more closely
coupled with changes made by actual programmers.
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